
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SECP-TUNING: EFFICIENT PRIVACY-PRESERVING
PROMPT TUNING FOR LARGE LANGUAGE MODELS
VIA MPC

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have revolutionized numerous fields, yet their
adaptation to specialized tasks in privacy-sensitive domains such as healthcare and
finance remains constrained due to the scarcity of accessible training data caused
by stringent privacy requirements. Secure Multi-party Computation (MPC)-based
privacy-preserving machine learning provides theoretical guarantees for the pri-
vacy of model parameters and data. However, its application to LLMs has been
predominantly limited to inference, as fine-tuning introduces significant efficiency
challenges, particularly in backward propagation, optimizer, and self-attention
operations. To address these challenges, we propose SecP-Tuning, the first
MPC-based framework designed for efficient, privacy-preserving prompt tuning of
LLMs. SecP-Tuning innovatively integrates Forward-only Tuning (FoT) through
the “data owner-server interaction” paradigm, effectively removing the need for
privacy-preserving computations in backward propagation and optimization pro-
cesses. Furthermore, it devises an efficient privacy-preserving Random Feature
Attention (RFA), effectively mitigating the computational complexity of softmax-
based self-attention and circumventing MPC-incompatible nonlinear operations.
Experimental results demonstrate that, compared to full-Parameter Supervised
Fine-Tuning (SFT) and gradient-based prompt tuning, SecP-Tuning achieves ap-
proximately 12× and 16× end-to-end acceleration, as well as 18× and 20× reduc-
tions in communication overhead, respectively. Moreover, it delivers performance
comparable to gradient-based methods across multiple few-shot tasks. Addi-
tionally, the “black-box/API-style” privacy-preserving tuning paradigm of SecP-
Tuning effectively avoids memory leakage risks caused by gradient/parameter
transmission, thereby striking an optimal balance between efficiency, accuracy,
deployability, and privacy. The code will be released.

1 INTROCTION

Large Language Models (LLMs) (Vaswani et al., 2017; Liu et al., 2019; Hurst et al., 2024; Dubey
et al., 2024; Guo et al., 2025) have achieved groundbreaking advancements in diverse domains, in-
cluding natural language understanding, generation, reasoning, and cross-modal applications. How-
ever, adapting universally pre-trained LLMs to high-sensitivity fields such as healthcare, finance,
government compliance, and industrial manufacturing remains a significant challenge. This diffi-
culty arises from the fact that such sensitive data is closely tied to the interests of data owners and is
subject to regulations (e.g., GDPR, HIPAA) and corporate compliance requirements, making direct
access impractical. Additionally, model parameters may encapsulate statistical information from
the source domain, posing potential privacy risks. Therefore, the key scientific and engineering
challenge in achieving the implementation of “trustworthy intelligence” lies in efficiently adapting
LLMs to specific domains using effective fine-tuning methods, such as Full-Parameter Supervised
Fine-Tuning (SFT) (Wei et al., 2021; Devlin et al., 2019), Low-Rank Adaptation (LoRA) (Hu et al.,
2022; Dettmers et al., 2023), and Prompt Tuning (Lester et al., 2021; Liu et al., 2022), while ensuring
that neither the fine-tuning data nor the resulting model parameters are exposed.

Privacy-Preserving Machine Learning (PPML) based on Secure Multi-Party Computation
(MPC) (Yao, 1986; Goldreich et al., 1987) offers a promising solution. In this paradigm, model

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Others

Backward & Opt.

27%

73%

(a) Time Breakdown of Backward & Opt.

Others

Softmax

25%

75%

(b) Time Breakdown of Softmax.

128 256 512

Sequence Length

102

Co
m

m
 V

ol
um

e
(G

B)

33.94

85.8

260.41

110.31

250.6

710.31
(a) Backward & Opt. Communication Overhead

Others
Backward & Opt.

128 256 512

Sequence Length

102

Co
m

m
 V

ol
um

e
(G

B)

100.79

172.51

341.8

44.45

163.9

628.92
(b) Softmax Comm Overhead

Others
Softmax

Figure 1: The time breakdown for SFT of RoBERTaLARGE (24 layers, 1024 dimensions) using MPC
is analyzed with a sequence length of 512, along with a comparison of communication volumes
across different sequence lengths.

parameters and sensitive data are first secret-shared among participating parties. These parties then
execute MPC protocols through multiple rounds of communication to complete privacy-preserving
computations for forward propagation, backward propagation, and optimization. All computations
are performed on secret-shared inputs and intermediate results, ensuring that parties only learn the
protocol’s explicitly permitted outputs without accessing private data or model parameters. Due to
its compelling privacy guarantees, MPC-based PPML has been successfully applied to the training
of linear models (Mohassel and Zhang, 2017), convolutional neural networks Wagh et al. (2019;
2021), and the inference of Transformer-based LLMs (Hao et al., 2022; Luo et al., 2024; Pang et al.,
2023; Lu et al., 2023).

However, implementing Privacy-Preserving Fine-Tuning (PFT) of LLMs directly using MPC incurs
prohibitive overhead. For instance, performing SFT on RoBERTaLARGE (Liu et al., 2019), consist-
ing of 24 layers and 1024 dimensions, with a sequence length of 512 requires approximately 10
minutes per iteration and incurs a communication overhead of 970GB over a Local-Area Network
(LAN) with 3Gbps bandwidth and 0.8ms latency. As illustrated in Figure 1, two primary factors
contribute to this overhead: a) Backward propagation and optimization, which account for 73% of
the total runtime, far exceeding the cost of forward propagation. This is due to the presence of
numerous MPC-unfriendly nonlinear operations in backward propagation and optimization, such
as Softmax, GELU, and LayerNorm, which must undergo privacy-preserving reverse computation.
These operations cannot be directly executed in MPC environments and must be decomposed into
approximations using addition, multiplication, and comparison, leading to a dramatic increase in
communication rounds and volume. b) Softmax in the self-attention, which contributes 75% of
the total runtime. This is because Softmax involves a large number of MPC-unfriendly nonlinear
operations, including exponentiation, division, and maximum computation. Furthermore, its com-
putational complexity scales quadratically with the input sequence length, causing communication
overhead to grow rapidly as sequence length increases. Gradient-based efficient parameter fine-
tuning methods, such as LoRA and gradient-based prompt tuning, effectively reduce the number of
parameters requiring updates and enhance the efficiency of privacy-preserving optimization. How-
ever, they fail to resolve the fundamental communication overhead caused by backward propagation
and Softmax operations in MPC settings.

In this paper, we take the first step toward addressing the research question: How to perform privacy-
preserving domain adaptation of LLMs in MPC environments efficiently and with high perfor-
mance? Specifically, we propose SecP-Tuning, the first MPC-based privacy-preserving framework
for prompt tuning in LLMs. SecP-Tuning leverages Forward-only Tuning (FoT) (Sun et al., 2022b;a)
to update prompt parameters, fundamentally eliminating the high communication overhead caused
by backward propagation in gradient-based fine-tuning methods, thereby significantly accelerating
the privacy-preserving adaptation process. To address the MPC-unfriendly loss value and Gradient-
Free Optimizer (GFO) (Rios and Sahinidis, 2013) computations in FoT, we introduce an innovative
“Server-Client” architecture. In this architecture, MPC-unfriendly computations for loss values and
GFO are offloaded to the data owner’s local environment for efficient and precise plaintext com-
putation. This approach not only significantly improves speed but also prevents the server from
accessing updated prompt parameters, thereby mitigating the privacy risks of fine-tuning data leak-
age caused by model memorization. Complementing this, we propose privacy-preserving Random
Feature Attention (RFA), which avoids extensive nonlinear operations in softmax while reducing the
complexity of self-attention from quadratic to linear.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

The experimental results systematically validate the comprehensive advantages of SecP-
Tuning across multiple dimensions, including efficiency, performance, deployability, and privacy.
Compared to SFT and gradient-based prompt tuning, SecP-Tuning achieves approximately 12× and
16× end-to-end acceleration, respectively, while reducing communication volume by about 18×
and 20×. Notably, these acceleration advantages are further amplified in bandwidth-constrained
Wide-Area Network (WAN) scenarios. In terms of performance, SecP-Tuning demonstrates supe-
rior results on multiple few-shot fine-tuning tasks (16 samples per class), with an average score
of 82.45, comparable to SFT’s 85.41 and gradient-based cue-based tuning’s 83.84. Deployability
comparison further highlights that SecP-Tuning supports “black-box/API-style” secure tuning, ef-
fectively preventing the potential privacy risks of memory leakage caused by gradient/parameter
transmission back to the server.

2 RELATED WORK

Cryptographic techniques such as MPC and Homomorphic Encryption (HE) (Gentry, 2009; Cheon
et al., 2017) have been widely applied in privacy-preserving machine learning, including early works
on linear networks (Mohassel and Zhang, 2017) and training and inference for convolutional neural
networks (Wagh et al., 2019; 2021; Liu et al., 2017; Riazi et al., 2018; Juvekar et al., 2018). With
the rise of Transformer-based LLMs, researchers have increasingly focused on privacy-preserving
inference for LLMs (Hao et al., 2022; Li et al., 2023; Zeng et al., 2022; Luo et al., 2024; Pang et al.,
2023; Yan et al., 2025), aiming to protect both model parameters and inference data. However,
compared to inference, fine-tuning LLMs involves complex backward propagation and optimizer
computations, which remain underexplored.

Currently, only a few studies perform privacy-preserving domain adaptation of LLMs based on
HE. Specifically, the first HE-based PFT framework, BlindTuner (Panzade et al., 2025), enhances
practicality through pre-trained feature extraction while maintaining accuracy. Subsequently, Med-
BlindTuner (Panzade et al., 2024) extended this approach to biomedical imaging and validated its
effectiveness. To further reduce computational overhead, later works introduced parameter-efficient
methods like LoRA: PrivTuner (Li et al., 2024b), which integrates LoRA with FHE to reduce com-
putation overhead. Rho et al. (2025) replaced self-attention with Gaussian Kernel Attention to miti-
gate the costs of nonlinear operations. In addition, FedShield-LLM (Mia and Amini, 2025) reduced
computational overhead by combining unstructured pruning techniques.

Unlike HE, which relies on intensive unilateral encryption computations and requires costly approx-
imations and re-encryption for nonlinear operations such as Softmax and GELU, making it difficult
to balance efficiency and accuracy, MPC enables complex nonlinear operations through multi-round
communication among participants. This makes MPC more suitable for PFT. However, to the best
of our knowledge, no prior work has explored MPC-based PFT of LLMs.

In addition to cryptographic techniques, Differential Privacy (DP) Dwork and Roth (2014) has also
been applied to privacy-preserving fine-tuning. The primary goal of DP-based privacy-preserving
fine-tuning algorithms (Wang et al., 2024; Li et al., 2024a; Charles et al., 2024) is to ensure
individual-level privacy. This is achieved by introducing mechanisms such as adding random noise
and clipping during the fine-tuning process, which formally limit the influence of any single training
sample on the final model. The privacy guarantee is quantified by the (ϵ, δ) privacy budget. In con-
trast, MPC-based privacy-preserving fine-tuning frameworks provide theoretical privacy guarantees
for privacy parameters and fine-tuning data under a specified threat model, which is fundamentally
different from DP-based privacy-preserving frameworks.

3 PRELIMINARIES

3.1 SOFTMAX-BASED SELF-ATTENTION & RANDOM FEATURE ATTENTION

Softmax-based Self-Attention. The core component of each Transformer layer is the self-
attention mechanism. We omit a detailed discussion of the feed-forward network and other auxiliary
components, as they remain unchanged in our work. Let n and d denote the sequence length and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

embedding dimension, respectively. The self-attention mechanism is computed as follows:

Attention(Q,K,V) = Softmax
(
QK⊤
√
d

)
V ∈ Rn×d . (1)

Here, the rows of Q,K, and V correspond to the query, key, and value vectors. The softmax
function (Bridle, 1989) is applied row-wise, converting the similarity scores between each query
and all key vectors into a probability distribution that weights the contribution of each value vector.

Random Feature Attention. To speed up the softmax operations in attention, Peng et al. (2021)
has employed random feature (Rahimi and Recht, 2007) methods to approximate the dot-then-
exponentiate operation using kernel tricks. The main idea is to approximate the Gaussian kernel
function via its Monte Carlo estimation:

exp
(
− ∥x− x′)∥2/σ2

)
≈

∑M

i=1
φ(x, ωi)φ(x

′, ωi) , (2)

where φ(x, ωi) =
√

2/M cos(ω⊤
i x+ bi), with ωi ∼ N (0, σ2I) and bi ∼ U(0, 2π).

Let ϕ(x) = exp(∥x∥2/(2σ2))
[
φ(x, ω1), ..., φ(x, ωM)

]⊤
, the dot-then-exponentiate function can

be approximated as:

exp
(
x⊤y/σ2

)
= exp

(1

2σ2
∥x∥2 + 1

2σ2
∥y∥2

)
exp

(
− 1

2σ2
∥x− y∥2

)
≈ ϕ(x)⊤ϕ(y). (3)

Substituting this approximation into the softmax attention, we obtain the RFA:

Softmax(qt, {ki}ni=1, {vi}ni=1) =
∑
i

exp(q⊤
t ki/σ

2)v⊤
i∑

j exp(q
⊤
t kj/σ2)

≈
∑
i

ϕ(qt)
⊤ϕ(ki)v

⊤
i∑

j ϕ(qt)⊤ϕ(kj)

=
ϕ(qt)

⊤ ∑
i ϕ(ki)⊗ vi

ϕ(qt)⊤
∑

j ϕ(kj)
:= RFA(qt, {ki}ni=1, {vi}ni=1) ,

(4)

where Q = {qi}ni=1,K = {ki}ni=1, V = {vi}ni=1, and ⊗ denotes the outer product between
vectors. Leveraging this linearized formulation, RFA achieves linear time and memory complexity
with respect to the sequence length.

3.2 GRADIENT-FREE OPTIMIZATION

Gradient-Free Optimization (GFO) (Rios and Sahinidis, 2013) optimizes an objective using only
function (fitness) evaluations, without gradients; hence, it is also called black-box or zeroth-order
optimization. These methods follow a sample–evaluate–update loop and are well-suited to settings
where derivatives are unavailable or too expensive. Black-Box Tuning (Sun et al., 2022b) applies
GFO to prompt tuning for large language models (LLMs), learning a continuous prompt vector
p ∈ RD that minimizes p∗ = argminp∈P L

(
f(p;X), Y

)
, where f is the LLM inference function, L

the loss, and P the prompt space. Because GFO convergence typically degrades in high dimensions,
BBT exploits the low intrinsic dimensionality of LLM prompts by optimizing a latent variable z ∈
Rd with d≪ D and mapping it via a random projection A ∈ RD×d:

z∗ = argmin
z∈Z
L
(
f(Az;X), Y

)
. (5)

CMA-ES (Hansen, 2016) is used in this paper as the gradient-free optimizer.

3.3 2-OUT-OF-2 ARITHMETIC SECRET SHARING

For an integer ring Zn = {0, 1, . . . , n − 1}, a 2-out-of-2 arithmetic secret sharing scheme involves
the following two algorithms:

• The sharing algorithm Shr(x) → ([x]0, [x]1) is used to generate the shares of x. Specifically, a
value r is chosen uniformly at random from Zn, such that [x]0 = r, and [x]1 = x− r (mod n) is
computed.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• The reconstruction algorithm Rec([x]0, [x]1) → x is used to reconstruct x, i.e., x = [x]0 + [x]1
(mod n).

The randomness and uniformity of the share ensure that any individual share reveals no information
about the secret. We denote the arithmetic secret sharing of x as [x] = ([x]0, [x]1).

In the field of secure MPC, numerous secure protocols have been developed for operating over secret
shares [x], including secure addition, multiplication, comparison, and various nonlinear activation
functions. These cryptographic primitives are summarized in Section 6.3. In this work, we treat
these primitives as black-box components and utilize them without requiring additional assumptions
or modifications.

4 SECP-TUNING

4.1 MPC-BASED PRIVACY-PRESERVING FINE-TUNING

The objective of privacy-preserving fine-tuning based on MPC is to fine-tuning a model while safe-
guarding the privacy of both the developer’s proprietary model parameters and the data owner’s
privacy data, ultimately producing fine-tuned parameters. This process involves two principal par-
ties: the model developer and the data owner. The model developer possesses a proprietary model
FΘ, where Θ represents private parameters, while the data owner holds confidential fine-tuning
data X . In this framework, both parties provide the shares of FΘ and X , namely ([Θ]0, [Θ]1) and
([X]0, [X]1), as inputs. These shares are processed using various two-party MPC protocols, such
as privacy-preserving addition, multiplication, and GeLU activation functions, to perform privacy-
preserving inference and generate the shares of the fine-tuned parameters. Under well-defined threat
models such as semi-honest and malicious models, the theoretical security is guaranteed by MPC
protocols and ensures the following: 1) Confidentiality of the model developer’s parameters; 2) Con-
fidentiality of the data owner’s fine-tuning data; and 3) Confidentiality of the fine-tuned parameters.

For efficiency considerations, we adopt the semi-honest threat model.1 In the semi-honest model,
participants execute each step of the protocol correctly and obtain accurate results but may attempt
to infer unauthorized information during execution. The semi-honest threat model is widely used in
Privacy-Preserving Machine Learning (PPML), including early works on privacy-preserving convo-
lutional neural network training and more recent efforts in privacy-preserving inference for LLMs.

Although MPC-based privacy-preserving fine-tuning provides theoretical assurances for the privacy
of model parameters and fine-tuning data while achieving performance comparable to plaintext com-
putation, directly employing MPC for fine-tuning faces significant efficiency challenges. These chal-
lenges primarily stem from the computational costs associated with executing privacy-preserving
backpropagation, optimizers, and self-attention mechanisms using MPC. To address these issues, we
propose SecP-Tuning, which leverages the intrinsic properties of MPC protocols and incorporates
custom-designed, modular components to significantly enhance the efficiency of privacy-preserving
fine-tuning.

4.2 PRIVACY-PRESERVING FORWARD-ONLY TUNING

During the backpropagation phase, numerous nonlinear operators, such as Softmax, GELU, and
LayerNorm, must undergo privacy-preserving reverse computation. In the MPC environment, these
operations cannot be executed directly and must instead be decomposed into fundamental opera-
tions like addition, multiplication, and comparison for approximate computation. This decomposi-
tion significantly amplifies both the number of communication rounds and the overall communica-
tion volume. Furthermore, the deeply stacked architecture of Transformers exacerbates these costs.
Additionally, frequent tensor transpositions, dimension rearrangements, and mask handling during
gradient computation, which are mere memory operations in plaintext, require explicit arithmetic-
to-Boolean domain conversions and additional synchronization in MPC environments, further in-
creasing communication overhead.

1While the malicious threat model better aligns with real-world scenarios, its computational overhead is
significantly higher than that of the semi-honest model. Typically, additional cryptographic techniques such as
zero-knowledge proofs are required to enhance the semi-honest model.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Data Owner

Privacy-preserving InferencePrivacy-preserving Inference

Inference
Data Sharing

Server 0 Server 1

3

1

3

5

6
： Inference Results : Loss Value

Prompt Embedding

Gradient-Free Optimizer ,

4

Best film ever . It was <MASK>

A totally boring movie ! It was <MASK>

： Privacy Input

Initial Prompt

4

: Loss Value

Fine-tuning Data

Best film ever . It was <MASK>

A totally boring movie ! It was <MASK>

great

terrible
: :

7

1

2 2

Figure 2: Workflow of SecP-Tuning. SecP-Tuning leverages secure MPC to protect both training
data and model parameters during fine-tuning. It addresses two key bottlenecks in PFT. First, it
eliminates the computational overhead of backward and optimizer by adopting a FoT paradigm.
Second, it improves the efficiency of privacy-preserving self attention by employing RFA.

During the optimization phase, widely used optimizers like Adam (Kingma and Ba, 2015) require
numerous element-wise operations, including multiplication, division, square root computation, and
bias correction, to perform parameter updates. Among these, division and square root computations
are particularly costly in MPC environments. Moreover, weight decay, learning rate scheduling (e.g.,
cosine, multi-stage, or adaptive scheduling), and gradient scaling (used in mixed-precision simu-
lations) introduce additional nonlinear operations and conditional branching. These complexities
compel frequent domain conversions between arithmetic and boolean fields in MPC environments,
resulting in substantial communication overhead.

Forward-only Tuning (FoT) updates parameters via GFO, fundamentally circumventing the high
communication overhead caused by privacy-preserving backpropagation in gradient-based fine-
tuning methods. This presents a promising avenue for enhancing the efficiency of privacy-preserving
fine-tuning. However, unlike gradient-based optimizers such as Adam, GFO methods, such as CMA-
ES, often involve complex operations that are unable to support in MPC-based PPML frameworks,
such as CrypTen. These operations include ranked index order, outer product of vectors, and matrix
eigendecomposition. This hinder the development of an MPC-based privacy-preserving FoT.

To address this issue, SecP-Tuning integrates the features of MPC and FoT to design a “Server-
Client” architecture that ensures privacy while offloading GFO and loss computation to the client
for plaintext processing. This approach not only significantly enhances efficiency but also prevents
the server from accessing the updated prompt embeddings, thereby mitigating the risk of fine-tuning
data privacy leakage caused by model memorization.

As shown in Fig. 2, SecP-Tuning consists of the following seven steps: 1) The data owner locally
initializes the prompt embedding p and concatenates it with the private fine-tuning token embedding
to obtain the private input embedding X; 2) The data owner locally generates secret shares of X ,
denoted as ([X]0, [X]1), and distributes them to the corresponding servers; 3) Two non-colluding
servers take ([X]0, [X]1) and the secret shares of the private model parameters, ([Θ]0, [Θ]1), as
inputs. They interactively execute privacy-preserving inference using MPC protocols, producing
secret shares of the inference result ([Y]0, [Y]1); 4) The servers send ([Y]0, [Y]1) back to the data
owner; 5) The data owner reconstructs the inference result Y using ([Y]0, [Y]1); 6) The data owner

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

takes the inference result Y and the fine-tuning data labels Ỹ as inputs and calculates the loss value
L locally in plaintext; 7) The data owner inputs the loss value L into the GFO to update the prompt
embedding. By iterating this process multiple times, the data owner ultimately obtains the fine-tuned
prompt embedding for privacy-preserving downstream task inference.

SecP-Tuning leverages the FoT framework from (Sun et al., 2022b) to implement privacy-preserving
fine-tuning. To guarantee fairness and reproducibility of results, it adopts the same GFO, CMA-ES.
However, readers are free to select other gradient-free optimizers, such as random search, Natural
Evolution Strategies, or Bayesian optimization, based on the specific requirements of their scenarios,
thereby further enhancing the flexibility and adaptability of SecP-Tuning.

4.3 PRIVACY-PRESERVING RANDOM FEATURE ATTENTION

Although privacy-preserving FoT based on “Server-Client” architecture addresses the overhead of
privacy-preserving computation in backpropagation and optimizers, SecP-Tuning still faces severe
efficiency challenges stemming from the privacy-preserving implementation of softmax-based self-
attention mechanisms. Specifically, for a vector x = (x1, x2, . . . , xn), Softmax in Transformer
converts it to an n-dimensional probability distribution with

Softmax(x)[i] =
exi−τ∑n

h=1 e
xh−τ

, (6)

where τ = max
(
{xh}nh=1

)
is used to ensure stable numerical computations.

There are the following challenges in performing privacy-preserving computation on softmax-based
self-attention:

• Quadratic complexity with respect to sequence length. Given (Q,K,V) ∈ Rn×d, where n
denotes the sequence length and d the embedding dimension, the complexity of Softmax-based
attention scales as O(n2d). This quadratic dependence becomes prohibitively expensive for long
input sequences.

• Numerous nonlinear operations incompatible with MPC. As shown in Eq. (6), computing the
Softmax function involves three nonlinear operations—exponentiation, division, and maximiza-
tion—all of which are costly to implement under MPC. These operations significantly inflate the
overhead of privacy-preserving attention computation (see Section 6.3.2 for details).

To tackle these challenges, SecP-Tuning employs Random Feature Attention (RFA) to enhance the
efficiency of privacy-preserving Softmax-based self-attention mechanisms. Specifically, compared
to existing softmax approximation methods (Kitaev et al., 2020; Wang et al., 2020; Roy et al., 2021),
RFA offers the following advantages:

• Theoretical Guarantee on Approximation Error. The approximation error is formally bounded,
ensuring reliable accuracy.

• Reduction in Computational Complexity of Softmax. RFA reduces the complexity of softmax
attention from O(n2d) to O(ndr), where r represents the number of random features used.

• Avoidance of Exponentiation and Maximum Operations in Softmax. By bypassing these
costly nonlinear operations, RFA significantly improves efficiency in privacy-preserving settings.

According to Eq. (4), the computation of RFA involves multiplication, division, and cosine function
operations. This implies that although RFA bypasses the exponential and maximum operations in
softmax-based attention, it introduces cosine operations that are not friendly to MPC.

To address this challenge, SecP-Tuning design an efficient MPC-based privacy-preserving cosine
function protocol (Πcosine) by leveraging the periodicity of trigonometric functions and the sum-to-
product formulas. By executing Πcosine, MPC participants can compute the shares of the result
y = cos(x) while preserving the privacy of the input data x. Specifically, Πcosine consists of
two phases: an offline phase and an online phase. In the offline phase, the computation servers
Sj , j = 0, 1, pre-generate random numbers t ∈ ZL and shares of sin(t), cos(t), and t, denoted
as ([t]j , [sin(t)]j , [cos(t)]j). During the online phase, server Sj initially computes [δ]j = [x]j +
[t]j . Subsequently, δ = (x + t) mod τ , where τ represents the periodicity of the trigonometric

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

function, is reconstructed through a single round of bidirectional communication. Finally, each
server Sj computes the shares of cos(x) using the trigonometric addition identity formulas, cos(x) =
sin(δ) sin(t) + cos(δ) cos(t).

By executing Πcosine, the privacy-preserving computation of the cosine function can be accomplished
with only a single round of communication, transmitting 2ℓ-bit elements. Building upon this result,
we further develop an efficient MPC-based privacy-preserving RFA protocol, which reduces the
computational complexity of the Softmax-based attention mechanism while circumventing the need
for expensive exponentiation and maximum operations. Detailed algorithmic descriptions are pro-
vided in Section 6.4.

5 EXPERIMENTS

5.1 SETUP

MPC-Backend & Testbeds. Our implementation is based on the PPML framework CrypTen 2,
while the execution of FoT and RFA relies on the open-source libraries provided in (Sun et al.,
2022b) and (Peng et al., 2021). We conduct our experimental evaluations on three servers, each
equipped with an A100 GPU. To enable a comprehensive efficiency comparison, we utilize Linux
Traffic Control (TC) to simulate various network conditions. Specifically: In the LAN scenario, we
set the bandwidth to 3 Gbps with a round-trip latency of 0.8 ms. For the WAN setting, we consider
two different configurations: {100 Mbps, 80 ms} and {200 Mbps, 40 ms}.

Model and Dataset. We select RoBERTaLARGE as the backbone model to validate the effective-
ness of SecP-Tuning across five representative datasets: SST-2 (Socher et al., 2013), MRPC (Dolan
and Brockett, 2005), RTE Wang et al. (2018), Yelp Polarity (Zhang et al., 2015), and AG’s
News (Zhang et al., 2015). To ensure the reproducibility of experimental results, we adopt the
same hyperparameter settings as (Sun et al., 2022b) for FoT execution. For RFA, we follow the ini-
tialization settings from (Peng et al., 2021) and set the number of random features r to 128. Detailed
configurations are provided in Section 6.6.2 of the appendix.

Baselines. To demonstrate the effectiveness of SecP-Tuning, we established the following base-
lines: 1) SFT: Supervised fine-tuning of all model parameters of pre-trained model. 2) Prompt
Tuning: Training only the prompt embeddings added to the input text while keeping the pre-trained
model parameters frozen. For a fair comparison, we used the same prompt length, manual templates,
label words, and pre-trained prompt embeddings as SecP-Tuning during initialization. We explored
a wide range of learning rates and implemented an early stopping mechanism to prevent overfitting
of gradient-based methods in few-shot scenarios. Specifically, for SFT, the learning rates were set to
[1e-6, 3e-6, 5e-6, 1e-5, 3e-5, 5e-5, 1e-4], with a maximum of 200 epochs and an early stopping pa-
tience of 30 steps. For gradient-based Prompt Tuning, the learning rates were set to [1e-5, 3e-5, 5e-5,
1e-4, 3e-4, 5e-5, 1e-3], with a maximum of 1000 epochs and an early stopping patience of 50 steps.
See Section 6.6.1 of the appendix for specific hyperparameter and corresponding configurations.

Table 1: Efficiency Comparison of RoBERTaLARGE in LAN Setting (3Gbps, 0.8ms). The input
sequence length is set to 512, and the number of prompt tokens is set to 50. The results are the
average of ten runs.

Methods Forward Backward Optimizer Total
Times(s) Comm(GB) Times(s) Comm(GB) Times(s) Comm(GB) Times(s) Comm(GB)

SFT 216.184 260.411 554.512 691.150 20.902 19.159 651.598 970.720

Prompt Tuning 273.313 306.711 605.212 804.900 3.550 4.594 882.075 1116.205

SecP-Tuning (FoT) 173.999 205.358 0.000 0.000 0.138 0.000 174.138 205.359
SecP-Tuning (FoT+RFA) 54.17 56.545 0.000 0.000 0.103 0.000 55.172 56.545

2https://github.com/facebookresearch/CrypTen

8

https://github.com/facebookresearch/CrypTen

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 EFFICIENCY COMPARISON

We perform an end-to-end execution of SecP-Tuning on CrypTen and compare it against baseline
methods. To ensure fairness, all executions use CrypTen’s privacy-preserving operations and de-
fault settings3. Table 1 shows the time and communication overhead of different methods in a
LAN environment, with additional results in a WAN environment provided in Section 6.2. Com-
pared to SFT and gradient-based prompt tuning, SecP-Tuning delivers substantial advancements in
both fine-tuning speed and communication efficiency. Specifically, in a LAN environment, SecP-
Tuning achieves a 12 times speedup over SFT and a 16 times speedup over gradient-based prompt
tuning. Additionally, it reduces communication overhead by 18 times and 20 times, respectively.
This is primarily attributed to SecP-Tuning ’s innovative integration of FoT through the ”data owner-
server interaction” paradigm, which eliminates privacy-preserving computations for backward prop-
agation and optimization. Additionally, the privacy-preserving protocol ΠRFA proposed in this paper
significantly enhances the efficiency of self-attention computations in privacy-preserving settings.

We further observed that, under MPC settings, gradient-based prompt tuning fails to bring efficiency
improvements, and results in slower execution and higher communication overhead. This is because,
while it reduces the number of parameters requiring updates and thereby lowers the computational
overhead of privacy-preserving optimization, it fails to avoid the privacy-preserving computations
for backward propagation and self-attention mechanisms. Furthermore, compared to model tuning,
it incurs additional privacy-preserving forward and backward computations for prompt tokens.

Table 2: Comprehensive performance comparison of SecP-Tuning across various language under-
standing tasks. The results in the table report the mean and standard deviation over three runs. All
experiments are conducted using the pretrained RoBERTaLARGE model with 16 samples per class.

Method SST-2 Yelp P. AG’s News MRPC RTE Avg.Acc Acc Acc F1 Acc

SFT 89.86± 1.23 93.25± 0.64 88.94± 1.12 82.15± 3.76 72.84± 4.52 85.41

Prompt Tuning 85.23± 1.82 88.47± 2.15 85.34± 1.32 68.52± 4.18 62.53± 2.47 78.02
+ Pre-trained prompt / / / 80.35± 3.52 79.80± 1.83 83.84

FoT 89.56± 0.25 91.50± 0.16 81.51± 0.79 61.56± 4.34 52.59± 2.21 75.34
+ Pre-trained prompt / / / 75.51± 5.54 77.62± 1.30 83.14

SecP-Tuning 89.23± 0.12 85.30± 3.71 79.55± 1.32 75.12± 3.32 77.32± 1.52 82.45

5.3 PERFORMANCE COMPARISON

We evaluated the performance of SecP-Tuning on multiple datasets and compared it with baselines
to verify its effectiveness. As shown in Table 2, after utilizing pre-trained prompt embeddings (Gu
et al., 2022), SecP-Tuning achieves performance comparable to gradient-based methods, such as
SFT and gradient-based prompt tuning. Notably, in simpler sentiment classification tasks, such
as SST-2 and Yelp P., SecP-Tuning even outperforms gradient-based prompt tuning. Although the
average performance of SecP-Tuning is slightly inferior to gradient-based methods, it offers superior
efficiency and deployability, enabling the MPC-based privacy-preserving fine-tuning framework to
achieve an optimal balance between privacy, efficiency, and performance.

Table 3: We evaluate the feasibility of As-A-Service (AAS), Accuracy, end-to-end time, commu-
nication overhead, and the total amount of data uploaded/downloaded for completing PFT on the
SST-2 and AG’s News datasets.

AAS Acc Fine-tuning Time Communication Volume Upload (per query) Download (per query)

SST-2 (Sequence Length: 47)
SFT × 87.8 65.86 (h) 67.36 (TB) - -
Prompt Tuning × 72.6 86.15 (h) 149.37 (TB) - -
SecP-Tuning ✓ 89.2 8.81 (h) 14.22 (TB) 12 KB 0.5 KB

AG’s News (Sequence Length: 107)
SFT × 88.4 75.37 (h) 121.27 (TB) - -
Prompt Tuning × 84.0 80.57 (h) 153.45 (TB) - -
SecP-Tuning ✓ 82.1 10.43 (h) 19.68 (TB) 44 KB 2 KB

3More advanced MPC operators can further reduce communication overhead and improve fine-tuning speed.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.4 DEPLOYABILITY COMPARISON

Beyond efficiency and performance, many other factors must be considered in practical scenarios.
As shown in Table 3, we comprehensively compare SecP-Tuning with baseline methods across var-
ious dimensions, including serviceability, accuracy, fine-tuning time, communication volume, and
the amount of uploaded and downloaded data. To ensure a fair comparison of fine-tuning time, we
employ early stopping for all methods: if no improvement in validation accuracy is observed after
1000 steps, the training process is terminated. We find that only SecP-Tuning offers serviceabil-
ity, allowing data owners to perform PFT directly via APIs provided by the model developer. This
ensures that the model developer does not receive any information about the updated parameters.
In contrast, gradient-based methods such as SFT and prompt tuning inherently require the model
developer to obtain shares of the updated parameters. This introduces the risk of the model de-
veloper inferring private fine-tuning data from the updated model parameters. Thus, among all the
methods considered, only SecP-Tuning achieves the best balance in terms of privacy, efficiency, and
performance.

64 128 256 512 1024
Sequence Length

0

2

4

6

8

10

12

14

Ti
m

es
 (

s)

(a) Time Speedup of Privacy-preseving RFA
MPC-based Self_Att

RFA_without_ cosine

RFA

64 128 256 512 1024
Sequence Length

0

2

4

6

8

Ti
m

es
 (

s)

(b) Communication Speedup of Privacy-preseving RFA
MPC-based Self_Att

RFA_without_ cosine

RFA

Figure 3: Comparison of Time and Communication Overhead Between Privacy-Preserving RFA and
Softmax-Based Privacy-Preserving Self-Attention.

5.5 COMPARISON OF RFA AND SELF-ATTENTION

We evaluated the privacy-preserving RFA protocol (ΠRFA) under varying sequence lengths and
compared it with both the MPC-based privacy-preserving self-attention mechanism and the privacy-
preserving RFA protocol without the efficient privacy-preserving cosine algorithm proposed in this
study (ΠRFA without Πcosine

). As illustrated in Figure 3: 1) For the MPC-based privacy-preserving
self-attention, ΠRFA demonstrates significant improvements in execution speed and communica-
tion efficiency. Moreover, as the input length increases, these advantages become increasingly pro-
nounced. This is attributed to the computational complexity of the MPC-based privacy-preserving
self-attention mechanism being quadratic with respect to sequence length, whereas the RFA protocol
exhibits linear complexity. 2) For ΠRFA without Πcosine , the presence of cosine operations, which
are not MPC-friendly, results in relatively limited efficiency gains compared to the MPC-based
privacy-preserving self-attention. In fact, for shorter sequence lengths, such as L = 64 and L = 128,
its time and communication overheads even exceed those of the MPC-based privacy-preserving self-
attention. This directly highlights that the Πcosine algorithm proposed in SecP-Tuning is the critical
factor in enhancing the computational efficiency of privacy-preserving self-attention mechanisms.

6 CONCLUSION

This paper presents SecP-Tuning, the pioneering MPC-based framework designed for efficient and
privacy-preserving prompt tuning of LLMs. By leveraging FoT, it eliminates secure backpropaga-
tion and optimizer computations, while introducing a privacy-preserving random feature attention to
substitute softmax-based self-attention, thereby circumventing MPC-unfriendly nonlinearities and
reducing the computational complexity. Experimental results demonstrate that SecP-Tuning seam-
lessly integrates efficiency, performance, deployability, and privacy.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study focuses on privacy-efficient fine-tuning mechanisms and does not involve ethical or moral
concerns. It does not directly collect, generate, or interfere with any personally identifiable infor-
mation (PII), relying solely on publicly available benchmark datasets (SST-2, MRPC, RTE, Yelp
Polarity, AG’s News). These datasets are widely used within the research community for English
text classification and matching tasks, with licensing terms permitting their use for research pur-
poses. Furthermore, no redistribution of the original data was conducted during the study, and only
model performance and efficiency metrics were reported.

REPRODUCIBILITY STATEMENT

This paper provides comprehensive resources to ensure the reproducibility of the experimental re-
sults of the proposed SecP-Tuning algorithm. Specifically, a thorough description of the theoretical
foundations used in this study, along with relevant references, is included in Section 3. Detailed
steps of the proposed methodology are presented in Section 4, and pseudocode for the privacy-
preserving algorithms proposed in this paper are provided in Section 6.4. In Section 5.1, we present
the experimental setup of SecP-Tuning, including the models, datasets, baseline configurations, de-
pendency libraries, and network environment details. Detailed hyperparameter information is pro-
vided in Section 6.6. These elements ensure the reproducibility of the results in this paper. Further-
more, we plan to release the source code upon publication.

REFERENCES

John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. Advances in neural information processing systems,
2, 1989.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145. IEEE,
2001.

Zachary Charles, Arun Ganesh, Ryan McKenna, H Brendan McMahan, Nicole Mitchell, Krishna
Pillutla, and Keith Rush. Fine-tuning large language models with user-level differential privacy.
arXiv preprint arXiv:2407.07737, 2024.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arith-
metic of approximate numbers. In International conference on the theory and application of
cryptology and information security, pages 409–437. Springer, 2017.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics, pages 4171–4186,
2019.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng
Hong, Tao Wei, and Wenguang Cheng. PUMA: Secure inference of LLaMA-7B in five minutes.
arXiv preprint arXiv:2307.12533, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pages arXiv–2407, 2024.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. In The Algorithmic
Foundations of Differential Privacy, pages 19–20, 2014.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, pages 218–229. ACM, 1987.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. Ppt: Pre-trained prompt tuning for few-
shot learning. In Proceedings of the 60th annual meeting of the association for computational
linguistics (volume 1: long papers), pages 8410–8423, 2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron: Pri-
vate inference on transformers. Advances in Neural Information Processing Systems, 35:15718–
15731, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low latency
framework for secure neural network inference. In 27th USENIX Security Symposium, pages
1651–1669, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In 8th
International Conference on Learning Representations, ICLR 2020, 2020.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens
van der Maaten. CrypTen: Secure multi-party computation meets machine learning. Advances in
Neural Information Processing Systems, 34:4961–4973, 2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3045–3059. Association for Computational Linguistics, 2021. doi:
10.18653/V1/2021.EMNLP-MAIN.243. URL https://doi.org/10.18653/v1/2021.
emnlp-main.243.

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P Xing, and Hao Zhang. MPCFormer:
Fast, performant and private transformer inference with MPC. In Proceedings of the Eleventh
International Conference on Learning Representations, ICLR, 2023.

Xianzhi Li, Ran Zmigrod, Zhiqiang Ma, Xiaomo Liu, and Xiaodan Zhu. Fine-tuning language mod-
els with differential privacy through adaptive noise allocation. arXiv preprint arXiv:2410.02912,
2024a.

Yang Li, Wenhan Yu, and Jun Zhao. Privtuner with homomorphic encryption and lora: A p3eft
scheme for privacy-preserving parameter-efficient fine-tuning of ai foundation models. arXiv
preprint arXiv:2410.00433, 2024b.

12

http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pages 619–631, 2017.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 61–68, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Cheng Hong, Kui Ren, Tao Wei, and
WenGuang Chen. Bumblebee: Secure two-party inference framework for large transformers.
Cryptology ePrint Archive, 2023.

Jinglong Luo, Yehong Zhang, Jiaqi Zhang, Xin Mu, Hui Wang, Yue Yu, and Zenglin Xu. Secformer:
Towards fast and accurate privacy-preserving inference for large language models. arXiv preprint
arXiv:2401.00793, 2024.

Md Jueal Mia and M Hadi Amini. Fedshield-llm: A secure and scalable federated fine-tuned large
language model. arXiv preprint arXiv:2506.05640, 2025.

Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving machine
learning. In Proceedings of 2017 IEEE Symposium on Security and Privacy, pages 19–38. IEEE,
2017.

Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas Schneider. BOLT: Privacy-
preserving, accurate and efficient inference for transformers. Cryptology ePrint Archive, Paper
2023/1893, 2023.

Prajwal Panzade, Daniel Takabi, and Zhipeng Cai. Medblindtuner: Towards privacy-preserving
fine-tuning on biomedical images with transformers and fully homomorphic encryption. In AI
for Health Equity and Fairness: Leveraging AI to Address Social Determinants of Health, pages
197–208. Springer, 2024.

Prajwal Panzade, Javad Rafiei Asl, Daniel Takabi, and Zhipeng Cai. Blindtuner: On enhancement of
privacy-preserving fine-tuning of transformers based on homomorphic encryption. IEEE Internet
of Things Journal, 2025.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. In 9th International Conference on Learning Representations, ICLR
2021, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, 2007.

Donghwan Rho, Taeseong Kim, Minje Park, Jung Woo Kim, Hyunsik Chae, Ernest K Ryu, and
Jung Hee Cheon. Encryption-friendly llm architecture. In The Thirteenth International Confer-
ence on Learning Representations, ICLR, 2025.

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas Schnei-
der, and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for machine
learning applications. In Proceedings of the Asia conference on computer and communications
security, pages 707–721, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review of algorithms
and comparison of software implementations. Journal of Global Optimization, 56(3):1247–1293,
2013.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. Transactions of the Association for Computational Linguis-
tics, 9:53–68, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pages 1631–1642, 2013.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuan-Jing Huang, and Xipeng Qiu. BBTv2:
Towards a gradient-free future with large language models. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, pages 3916–3930, 2022a.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In International Conference on Machine Learning, pages 20841–
20855. PMLR, 2022b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-Party secure computation for
neural network training. Proceedings on Privacy Enhancing Technologies, pages 26–49, 2019.

Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin.
Falcon: Honest-majority maliciously secure framework for private deep learning. Proceedings on
Privacy Enhancing Technologies, pages 188–208, 2021.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Naiyu Wang, Shen Wang, Meng Li, Longfei Wu, Zijian Zhang, Zhitao Guan, and Liehuang Zhu.
Balancing differential privacy and utility: A relevance-based adaptive private fine-tuning frame-
work for language models. IEEE Transactions on Information Forensics and Security, 2024.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Guang Yan, Yuhui Zhang, Zimu Guo, Lutan Zhao, Xiaojun Chen, Chen Wang, Wenhao Wang,
Dan Meng, and Rui Hou. Comet: Accelerating private inference for large language model by
predicting activation sparsity. In 2025 IEEE Symposium on Security and Privacy (SP), pages
2604–2622. IEEE Computer Society, 2025.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In Annual Symposium on Founda-
tions of Computer Science, pages 162–167, 1986.

Wenxuan Zeng, Meng Li, Wenjie Xiong, Wenjie Lu, Jin Tan, Runsheng Wang, and Ru Huang.
MPCViT: Searching for MPC-friendly vision transformer with heterogeneous attention. arXiv
preprint arXiv:2211.13955, 2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

Yu Zheng, Qizhi Zhang, Sherman SM Chow, Yuxiang Peng, Sijun Tan, Lichun Li, and Shan Yin.
Secure softmax/sigmoid for machine-learning computation. In Proceedings of the 39th Annual
Computer Security Applications Conference, pages 463–476, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDICES

The appendix is organized as follows.

• In Section 6.1, we report the use of large language models.
• In Section 6.2, We report additional experimental results for SecP-Tuning , including execution

time overhead in a wide area network (WAN) environment, performance comparison under dif-
ferent sample sizes, comparison with plaintext performance, and performance on other types of
LLMs.

• In Section 6.3, we present the underlying MPC protocols upon which SecP-Tuning is built.
• In Section 6.4, we detail the privacy-preserving algorithms designed for SecP-Tuning, including

privacy-preserving cosine similarity and Random Feature Attention (RFA).
• In Section 6.5, we provide a comprehensive security proof of SecP-Tuning.
• In Section 6.6, we report all the hyperparameter settings used in this paper.

6.1 THE USE OF LARGE LANGUAGE MODELS

This work primarily utilized LLMs for academic English translation and refinement. The use of
LLMs does not pertain to the significance, innovation, or technical soundness of the core aspects of
this work.

Table 4: Efficiency Comparison of RoBERTaLARGE in WAN Setting. The input sequence length is
set to 512, and the number of prompt tokens is set to 50. The results are the average of ten runs.

Bandwidth & Latency Methods Forward (s) Backward (s) Optimizer (s) Total (s)

200Mbps/40ms

SFT 605.315 1, 718.987 48.036 2, 372.338
Prompt Tuning 847.270 1, 997.662 7.810 2, 852.742

SecP-Tuning (FoT) 399.361 0.000 0.133 399.494
SecP-Tuning (FoT+RFA) 102.923 0.000 0.125 103.048

100Mbps/80ms

SFT 1, 502.213 3, 893.772 98.822 5, 494.807
Prompt Tuning 2, 582.691 4, 692.951 10.975 7, 286.617

SecP-Tuning (FoT) 833.448 0.000 0.136 833.584
SecP-Tuning (FoT+RFA) 211.185 0.000 0.122 211.307

6.2 MORE RESULTS

6.2.1 ADDITIONAL EFFICIENCY RESULTS OF SECP-TUNING

This section presents additional efficiency results of SecP-Tuning. As shown in the data from Ta-
ble 4, under a WAN setting of 100Mbps/80ms, SecP-Tuning reduces the update time per iteration
from 7286.6 seconds in gradient-based Prompt Tuning to 211.3 seconds, achieving approximately
34× acceleration, which significantly surpasses the 16× acceleration observed in a 3Gbps/0.8ms
LAN environment. This remarkable improvement stems from its substantial reduction in commu-
nication rounds and volume, enabling structural amplification advantages in bandwidth-constrained
and high-latency WAN scenarios.

Table 5: Performance comparison under varying number of sample. The results in the table report
the mean and standard deviation over three runs. All experiments are conducted using the pretrained
RoBERTaLARGE model.

Mumber of Samples SFT Prompt Tuning FoT

16 85.39± 2.84 68.23± 3.72 89.56± 0.25

32 90.21± 2.32 79.32± 2.63 90.23± 0.31

64 92.17± 2.13 87.65± 2.55 91.06± 0.24

128 93.26± 2.28 92.18± 3.57 91.15± 0.38

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

6.2.2 PERFORMANCE COMPARISON ACROSS DIFFERENT MUMBER OF SAMPLES

In the performance comparison experiments presented in Table 2, FoT demonstrated superior results
across multiple tasks compared to gradient-based SFT and Prompt Tuning. Reference [1] hypothe-
sizes that FoT’s performance advantage stems from the susceptibility of gradient-based optimization
methods to overfitting when dealing with limited training data, whereas FoT, through its exploratory
mechanism, often identifies more optimal solutions.

To further investigate performance under larger sample sizes, we conducted additional experiments
on the SST-2 dataset, setting the number of samples per class to 16, 32, 64, and 128. As shown in the
data from Table 3, when the sample size increases, gradient-based SFT and Prompt Tuning exhibit
more robust performance than FoT.

6.2.3 PERFORMANCE COMPARISON ACROSS DIFFERENT MUMBER OF SAMPLES

In the performance comparison experiments presented in Table 2, FoT demonstrated superior results
across multiple tasks compared to gradient-based SFT and Prompt Tuning. Reference [1] hypothe-
sizes that FoT’s performance advantage stems from the susceptibility of gradient-based optimization
methods to overfitting when dealing with limited training data, whereas FoT, through its exploratory
mechanism, often identifies more optimal solutions.

To further investigate performance under larger sample sizes, we conducted additional experiments
on the SST-2 dataset, setting the number of samples per class to 16, 32, 64, and 128. As shown in the
data from Table 3, when the sample size increases, gradient-based SFT and Prompt Tuning exhibit
more robust performance than FoT.

6.2.4 PERFORMANCE COMPARISON WITH PLAINTEXT

In this section, we supplement the comparison experiments between SecP-Tuning and plaintext
prompt tuning to analyze the differences in efficiency and performance between the two approaches.

Table 6: Performance comparison with plaintext. The results in the table report the mean and stan-
dard deviation over three runs. All experiments are conducted using the pretrained RoBERTaLARGE
model.

Dataset Method Fine-Tuning Time Communication Accuracy

SST-2 Plaintext 10.1 mins 6.25 KB 89.4
SecP-Tuning 8.8 hours 14.22 TB 89.2

AG’s News Plaintext 21.0 mins 23 KB 82.6
SecP-Tuning 10.43 hours 19.68 TB 82.1

The experimental results reveal that SecP-Tuning incurs almost no loss in model utility. This can be
attributed to its construction based on cryptographic MPC techniques. As analyzed in Section 6.3 re-
garding the correctness of MPC protocols, MPC ensures accurate computation results while preserv-
ing the privacy of input data. The slight performance degradation may stem from the approximations
introduced by MPC for nonlinear activation functions, such as GeLU and LayerNorm. This repre-
sents a significant advantage of MPC over other privacy-enhancing methods, such as Differential
Privacy (DP) and Federated Learning (FL). However, the drawback lies in the substantial computa-
tional and communication overhead it introduces, making it currently challenging to generalize to
larger-scale models.

6.2.5 PERFORMANCE ON OTHER TYPES OF LLMS

In this section, we include the performance results of SecP-Tuning on other types of LLMs, namely
GPT2-LARGE (Radford et al., 2019) and T5-LARGE (Raffel et al., 2020). Experimental results
demonstrate that SecP-Tuning is applicable to various architectures of LLMs, including the decoder-
only autoregressive model GPT-2 and the encoder-decoder model T5.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Performance on other types of LLMs.
Model DataSet Accuracy

RoBERTa SST-2 89.2
AG’s News 82.1

GPT-2 SST-2 75.3
AG’s News 77.7

T5 SST-2 89.1
AG’s News 83.8

6.3 UNDERLYING MPC PROTOCOLS

In this section, we provide a brief overview of the underlying protocols used and refer to the works of
Knott et al. (2021) and Zheng et al. (2023) for details. Let Sj with j ∈ {0, 1} be two parties that are
used to execute the MPC protocol. Each party Sj will be given one additive share ([u]j , [v]j) ∈ ZL

of the operation inputs u and v for j ∈ {0, 1}.

6.3.1 PRIVACY-PRESERVING ADDITION, MULTIPLICATION AND COMPARISON PROTOCOLS

In this section, we provide a detailed description of the execution processes for MPC-based addition,
multiplication, and comparison protocols, along with a theoretical analysis of their correctness and
privacy guarantees. Other nonlinear privacy-preserving protocols in Section 6.3.2 and Section 6.4.2
can be constructed by invoking these three protocols, and thus their correctness and security can be
directly proven based on the aforementioned protocols.

Privacy-preserving addition. Suppose two participants, Alice and Bob, each possess secrets u
and v. By executing the addition protocol based on 2-out-of-2 arithmetic secret-sharing ((2, 2)-SS),
they can compute shares of the output w = u + v while preserving the privacy of inputs u and
v. Specifically, the addition protocol based on (2, 2)-SS consists of two phases: the secret sharing
phase and the computation phase.

In the secret sharing phase:

• Alice locally generates shares of her secret u, i.e., Shr(u)→ ([u]0, [u]1), and sends [u]1 to
Bob.

• Bob locally generates shares of his secret v, i.e., Shr(v) → ([v]0, [v]1), and sends [v]1 to
Alice.

In the computation phase:

• Alice computes [w]0 = [u]0 + [v]0.
• Bob computes [w]1 = [u]1 + [v]1.

Correctness Verification: [z]0+[z]1 = [u]0+[v]0+[u]1+[v]1 = ([u]0+[u]1)+([v]0+[v]1) = u+v.

Privacy Guarantee: During computation, Alice and Bob each possess only one random share of
the secrets, ensuring that no information about the original secrets can be inferred.

Privacy-preserving multiplication. Suppose two participants, Alice and Bob, each possess se-
crets u and v. By executing the multiplication protocol based on 2-out-of-2 arithmetic secret-sharing
((2, 2)-SS), they can compute shares of the output w = u+ v while preserving the privacy of inputs
u and v. Specifically, the addition protocol based on (2, 2)-SS consists of two phases: the secret
sharing phase and the computation phase.

In the secret sharing phase:

• Alice locally generates shares of her secret x, i.e., Shr(x)→ ([x]0, [x]1), and sends [x]1 to
Bob.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Bob locally generates shares of his secret y, i.e., Shr(y) → ([y]0, [y]1), and sends [y]1 to
Alice.

• Alice possesses the first random shares of the Beaver triple (a, b, c), i.e., ([a]0, [b]0, [c]0).
• Bob possesses the second random shares of the Beaver triple (a, b, c), i.e., ([a]1, [b]1, [c]1).

• Alice computes [d]0 = [x]0 − [a]0 and [e]0 = [y]0 − [b]0.
• Bob computes [d]1 = [x]1 − [a]1 and [e]1 = [y]1 − [b]1.

In the communication phase:

• Alice sends [d]0 and [e]0 to Bob.
• Bob sends [d]1 and [e]1 to Alice.

In the computation phase:

• Alice reconstructs d = [d]0 + [d]1 = x− a and e = [e]0 + [e]1 = y − b.
• Bob reconstructs d and e similarly.
• Alice computes [z]0 = [x]0e+ d[y]0 + [c]0.
• Bob computes [z]1 = −de+ [x]1e+ d[y]1 + [c]1.

Correctness Verification:
[z]0 + [z]1 = [x]0e+ d[y]0 + [c]0 − de+ [x]1e+ d[y]1 + [c]1

= ([x]0 + [x]1)e+ ([y]0 + [y]1)d− de+ c

= x(y − b) + y(x− a)− (x− a)(y − b) + c

= xy − xb+ xy − ay − xy + ay + xb− ab+ c

= xy.

Privacy Guarantee: During computation, Alice and Bob possess only one random share each of a
and b. Since a and b are randomly generated and independent of the inputs x and y, no information
about x or y is revealed.

Privacy-preserving comparison. Similarly, Alice holds secret u and Bob holds secret v, and the
comparison can be implemented as follows:

• Alice and Bob first generate the shares of their respective private inputs, a.k.a., [u] and [v],
as privacy-preserving addition.

• Two parties locally compute [w] = [u]− [v].
• Two parties jointly invoke the Arithmetic-to-Boolean conversion (Knott et al., 2021) to

convert [w] from Arithmetic sharing to Boolean sharing ⟨z⟩ = A2B([w]).
• Two parties locally extract the most significant bit of Boolean sharing ⟨z⟩ as ⟨b⟩ = ⟨w⟩ ≫
(ℓ− 1)4.

• Finally, the additive shares of [u < v] can be derived by converting Boolean sharing ⟨b⟩
to Arithmetic sharing [b] using Boolean-to-Arithmetic conversion protocol (Knott et al.,
2021).

Correctness & Privacy. Except for sharing the inputs, the computation phase consists of log2 ℓ+1
rounds of communication and transmits 3456 bits. The correctness is easy to follow, and the privacy
guarantee is inherent from well-established 2PC basic primitives.

6.3.2 PRIVACY-PRESERVING NON-LINEAR PROTOCOLS

Privacy-preserving maximum. The maximum of the n-element vector x is implemented by call-
ing log2 n privacy-preserving comparisons using the tree reduction algorithm (Knott et al., 2021).

4≫ ℓ denotes shift ℓ bits to the right.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Privacy-preserving exponential. The exponential function is complex and usually implemented
using the repeated-squaring approximation method

ex = limx→∞
(
1 +

x

2n
)2n

, (7)

which converts exponential calculations into addition and square operations. By fault, iterations are
set n = 8 in (Knott et al., 2021).

Privacy-preserving reciprocal. Function reciprocal 1
x is implemented by the Newton-Raphson

method, which converts reciprocal calculations into addition and multiplication operations. The
iterative formula is

yn+1 = yn(2− xyn). (8)
The initial value of the iteration is

y0 = 3e
1
2−x + 0.003. (9)

The number of iterations is set to 10 in (Knott et al., 2021) by default.

Privacy-preserving square root.
√
x is approximated by the Newton-Raphson method in MPC,

which converts exponential calculations into addition and multiplication operations. The iterative
formula is

yn+1 =
1

2
yn(3− xy2n). (10)

The initial value of the iteration is
y0 = e−2.2(x

2+0.2) + 0.198046875. (11)
The number of iterations is set to 3 in (Knott et al., 2021) by default.

6.4 PRIVACY-PRESERVING PROTOCOLS

6.4.1 PRIVACY-PRESERVING COSINE

We propose an efficient privacy-preserving cosine protocol Πcosine by exploiting the periodicity
of the cosine function and trigonometric addition identity formulas. Here’s a detailed description
of the algorithm steps: In the offline phase, the protocol initiates by generating pseudo-random
values. Specifically, S0 and the trusted third party T jointly produce [t]0, [u]0, [v]0 by evaluating a
pseudo-random function (PRF) with a specific key k0. Similarly, S1 and T generate [t]1 using a
different key k1. Then, the trusted third party T recover the actual value t = [t]0 + [t]1, calculates
[u]1 = sin(t)−[u]0 and [v]1 = cos(t)−[v]0. This phase is crucial for preparing necessary correlated
randomness that will be used in the online phase.

In the online phase, the parties compute the [sin(x)] securely. First, each party Sj computes [δ]j =
[x]j + [t]j (mod τ), where τ represents the periodicity of the trigonometric function, such as 20.
Then, through one round of communication, the parties reconstruct δ by exchanging [δ]0 and [δ]1.
Subsequently, we get p = sin(δ) and q = cos(δ). Finally, each party calculates [y]j = p[u]j +
q[v]j . This effectively leverages the precomputed correlated randomness with the current input [x]
to produce the [sin(x)] in a privacy-preserving manner. The Πcosine requires only one round of
communication during the online phase, with a communication cost of transmitting 2ℓ elements.

Correctness Verification:
[y]0 + [y]1 = p[u]0 + q[v]0 + p[u]1 + q[v]1

= p([u]0 + [u]1) + q([v]0 + [v]1)

= sin(δ) sin(t) + cos(δ) cos(t)

= cos(δ − t)

= cos(x+ t− t)

= cos(x).

Privacy Guarantee: During the computation process, the server Sj only obtains the information of
[x]j , [t]j , [δ]j , and δ. Since δ = x+ t (mod τ) and t is independent of x, δ is also independent of
x. Therefore, Sj cannot gain any information about the private input x during execution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 1: Protocol for Privacy-preserving Cosine Πcosine

Input: For j ∈ {0, 1}, Sj holds the shares [x]j ; Pseudo-Random Function (PRF), and key kj .
Output: For j ∈ {0, 1}, Sj returns the shares [y]j , where y = cos(x).
/* Offline Phase */

1 S0, T : [t]0, [u]0, [v]0 ← PRF (k0)
2 S1, T : [t]1 ← PRF (k1)
3 T : t = [t]0 + [t]1, [u]1 = sin(t)− [u]0, [v]1 = cos(t)− [v]0
/* Online Phase */

4 [δ]j = [x]j + [t]j (mod τ)
5 δ = [δ]0 + [δ]1 // reconstruct δ by 1 round of communication
6 p = sin(δ), q = cos(δ)
7 [y]j = p[u]j + q[v]j

6.4.2 PRIVACY-PRESERVING FEATURE ATTENTION

The Privacy-preserving RFA Protocol (ΠRFA) is designed to enable computation of RFA with pri-
vacy preservation. The algorithm involves two parties, S0 and S1, and a trusted third party T , to
collaboratively compute the RFA while keeping the input data secure. In the offline phase, the pro-
tocol begins with the generation of pseudo-random values. Specifically, S0 and the trusted third
party T jointly produce [t]0, [u]0, [v]0 by evaluating a PRF with a random seed r0, and also generate
matrix W using another random seed r. On the other hand, S1 and the trusted third party T generate
[t]1 by evaluating the PRF with a different random seed r1, and use the same matrix W generated
earlier. Then, the trusted third party T recovers the actual value t = [t]0 + [t]1. Based on t, T
computes [u]1 = sin(t)− [u]0 and [v]1 = cos(t)− [v]0. This offline phase essentially prepares some
necessary random values and parameters, which will be used in the online phase. Although these
values are related to trigonometric functions, they are computed in a way that preserves privacy as
the actual values are hidden within the shares.

In the online phase, the algorithm focuses on computing the attention mechanism. First, for each
query qt at time step t and key ki, the corresponding feature mappings are computed. This is done
by taking the shares of qt and ki (i.e., [q]t and [k]i) and applying a cosine-based transformation
denoted as Πcosine, scaled by a factor of

√
2/r. The scaling factor is important to ensure proper

normalization of the feature mappings.

Next, for each key-value pair (ki, vi), the share [z]j is computed as the element-wise product (de-
noted by ⊗) between the feature - mapped key [ϕ(ki)]j and the value vi. This effectively combines
the key’s feature representation with its associated value.

Then, the attention score [s]j is calculated as the dot product between the feature-mapped query
[ϕ(qt)]j and the feature-mapped key [ϕ(ki)]j . This dot product represents the similarity between the
query and the key in the transformed feature space.

Finally, the output share [y]j is obtained by dividing [z]j by [s]j . This step normalizes the combined
key-value representation by the attention score, resulting in the weighted value that will be used as
the output of the attention mechanism. The division here is crucial as it implements the attention-
weighting process, where the value is scaled according to how relevant the corresponding key is to
the query.

6.5 SECURITY ANALYSIS

SecP-Tuningadheres to a semi-honest (also known as honest-but-curious) assumption similar to the
works of Li et al. (2023) and Dong et al. (2023), where honest participants constitute the majority.
Under this assumption, the security of SecP-Tuningcan be formally proved against static semi-
honest adversaries denoted as A, which can potentially corrupt no more than one of the servers in
the hybrid model.

SecP-Tuningis constructed from the well-established sub-protocols of Knott et al. (2021); Zheng
et al. (2023), and we invoke these protocols in a black-box manner. Leveraging the concept of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 2: Privacy-preserving RFA Protocol (ΠRFA)
Input: For j ∈ {0, 1}, Sj holds the shares {[q]t, [k]i, [v]i};
Output: For j ∈ {0, 1}, Sj returns the shares [y]j , where y = RFA([q]t, [k]i, [v]i).
/* Offline Phase */

1 S0, T : [t]0, [u]0, [v]0 ← PRF (r0);W ← PRF (r)
2 S1, T : [t]1 ← PRF (r1);W ← PRF (r)
3 T : t = [t]0 + [t]1, [u]1 = sin(t)− [u]0, [v]1 = cos(t)− [v]0
/* Online Phase */

4 [ϕ(qt)]j =
√

2
rΠcosine(W [qt]j); [ϕ(ki)]j =

√
2
rΠcosine(W [ki]j)

5 [z]j = [ϕ(ki)]j ⊗ vi
6 [s]j = [ϕ(qt)]j · [ϕ(ki)]j
7 [y]j = [z]j/[s]j

composable security established by Canetti (2001), it is easy to see that the security of SecP-Tuningis
guaranteed in the sub-protocols hybrid model.

Table 8: Core and auxiliary hyper-parameters for Feedforward-only Tuning (FoT) and Random
Feature Attention (RFA).

Name Symbol Default Description

Batch size - 16 -
Optimizer - CMA-ES Derivative-free evolutionary strategy

(no backward propagation required).
Prompt length L 50 Number of continuous prompt tokens

(controls raw dimension D = L ×
demb).

Initial prompt p0 NLI-pretrained Pretrained prompt (e.g., on MNLI) for
sentence-pair tasks.

Subspace dimension d 500 Dimension of the low-dimensional
search subspace; trade-off between cov-
erage and GFO efficiency.

Population size λ 20 Number of CMA-ES offspring per gen-
eration (heuristic: 4 + 3 log d).

Random projection A Uniform Projection matrix A ∈ RD×d sampled
from a uniform distribution (found su-
perior to Gaussian).

Loss function L(·) Cross-Entropy Provides dense supervisory signal un-
der few-shot regime.

API call budget - 8000 Maximum number of model inference
calls (evaluation points).

Early stopping - 1000 Stop if dev accuracy shows no improve-
ment for 1000 evaluations.

Kernel type - Gaussian Shift-invariant kernel approximated by
random features.

Number of Random fea-
tures

D 128 Number of random features per head.

Random feature vectors {wi} wi ∼ N (0, I) Base Gaussian samples; drawn once
(fixed) for reproducibility.

6.6 HYPERPARAMETERS

6.6.1 HYPERPARAMETERS OF GRADIENT-BASED FINE-TUNING

For gradient-based fine-tuning methods, including SFT and gradient-based Prompt Tuning, we uti-
lized the standard Adam optimizer with a batch size of 16. Additionally, we explored a wider range
of learning rates and implemented an early stopping mechanism to mitigate overfitting. Specifi-
cally, for SFT, the learning rates were selected from the range [1e-6, 3e-6, 5e-6, 1e-5, 3e-5, 5e-5,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

1e-4], with a maximum of 200 epochs and an early stopping patience of 30 steps, meaning training
would terminate if no improvement was observed on the validation set for 30 consecutive steps.
For gradient-based Prompt Tuning, the learning rates were chosen from the range [1e-5, 3e-5, 5e-
5, 1e-4, 3e-4, 5e-5, 1e-3], with a maximum of 1000 epochs and an early stopping patience of 50
steps, indicating that training would halt if no improvement was observed on the validation set for
50 consecutive steps.

6.6.2 HYPERPARAMETERS OF FEEDFORWARD-ONLY TUNING AND RANDOM FEATURE
ATTENTION

To ensure the reproducibility of the experimental results, SecP-Tuning adopted the same hyperpa-
rameter settings as those used by its forward propagation plugin and random feature attention mech-
anism plugin. The specific hyperparameter names, symbols, values, and descriptions are detailed in
Table 8.

22

	Introction
	Related Work
	Preliminaries
	Softmax-based Self-Attention & Random Feature Attention
	Gradient-Free Optimization
	2-out-of-2 Arithmetic Secret Sharing

	SecP-Tuning
	MPC-based Privacy-preserving Fine-tuning
	Privacy-preserving Forward-Only Tuning
	Privacy-preserving Random Feature Attention

	Experiments
	Setup
	Efficiency Comparison
	Performance Comparison
	Deployability Comparison
	Comparison of RFA and Self-Attention

	Conclusion
	The Use of Large Language Models
	More Results
	Additional Efficiency Results of SecP-Tuning
	Performance Comparison Across Different Mumber of Samples
	Performance Comparison Across Different Mumber of Samples
	Performance Comparison with Plaintext
	Performance on other types of LLMs

	Underlying MPC Protocols
	Privacy-Preserving Addition, Multiplication and Comparison Protocols
	Privacy-Preserving Non-Linear Protocols

	Privacy-preserving Protocols
	Privacy-preserving Cosine
	Privacy-preserving Feature Attention

	Security Analysis
	Hyperparameters
	Hyperparameters of Gradient-based Fine-Tuning
	Hyperparameters of Feedforward-only Tuning and Random Feature Attention

