Under review as a conference paper at ICLR 2026

SECP-TUNING: EFFICIENT PRIVACY-PRESERVING
PROMPT TUNING FOR LARGE LANGUAGE MODELS
VIA MPC

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have revolutionized numerous fields, yet their
adaptation to specialized tasks in privacy-sensitive domains such as healthcare and
finance remains constrained due to the scarcity of accessible training data caused
by stringent privacy requirements. Secure Multi-party Computation (MPC)-based
privacy-preserving machine learning provides theoretical guarantees for the pri-
vacy of model parameters and data. However, its application to LLMs has been
predominantly limited to inference, as fine-tuning introduces significant efficiency
challenges, particularly in backward propagation, optimizer, and self-attention
operations. To address these challenges, we propose SecP-Tuning, the first
MPC-based framework designed for efficient, privacy-preserving prompt tuning of
LLMs. SecP-Tuning innovatively integrates Forward-only Tuning (FoT) through
the “data owner-server interaction” paradigm, effectively removing the need for
privacy-preserving computations in backward propagation and optimization pro-
cesses. Furthermore, it devises an efficient privacy-preserving Random Feature
Attention (RFA), effectively mitigating the computational complexity of softmax-
based self-attention and circumventing MPC-incompatible nonlinear operations.
Experimental results demonstrate that, compared to full-Parameter Supervised
Fine-Tuning (SFT) and gradient-based prompt tuning, SecP-Tuning achieves ap-
proximately 12x and 16 x end-to-end acceleration, as well as 18 x and 20x reduc-
tions in communication overhead, respectively. Moreover, it delivers performance
comparable to gradient-based methods across multiple few-shot tasks. Addi-
tionally, the “black-box/API-style” privacy-preserving tuning paradigm of SecP-
Tuning effectively avoids memory leakage risks caused by gradient/parameter
transmission, thereby striking an optimal balance between efficiency, accuracy,
deployability, and privacy. The code will be released.

1 INTROCTION

Large Language Models (LLMs) (Vaswani et al., [2017; |Liu et al., 2019; |Hurst et al., 2024} Dubey
et al., 2024; \Guo et al., 2025) have achieved groundbreaking advancements in diverse domains, in-
cluding natural language understanding, generation, reasoning, and cross-modal applications. How-
ever, adapting universally pre-trained LLMs to high-sensitivity fields such as healthcare, finance,
government compliance, and industrial manufacturing remains a significant challenge. This diffi-
culty arises from the fact that such sensitive data is closely tied to the interests of data owners and is
subject to regulations (e.g., GDPR, HIPAA) and corporate compliance requirements, making direct
access impractical. Additionally, model parameters may encapsulate statistical information from
the source domain, posing potential privacy risks. Therefore, the key scientific and engineering
challenge in achieving the implementation of “trustworthy intelligence” lies in efficiently adapting
LLMs to specific domains using effective fine-tuning methods, such as Full-Parameter Supervised
Fine-Tuning (SFT) (Wei et al.| 2021} Devlin et al.,[2019), Low-Rank Adaptation (LoRA) (Hu et al.,
2022;|Dettmers et al.,[2023)), and Prompt Tuning (Lester et al.,[2021} Liu et al.,[2022)), while ensuring
that neither the fine-tuning data nor the resulting model parameters are exposed.

Privacy-Preserving Machine Learning (PPML) based on Secure Multi-Party Computation
(MPC) (Yao, |1986; |Goldreich et al., [1987) offers a promising solution. In this paradigm, model

Under review as a conference paper at ICLR 2026

(a) Time Breakdown of Backward & Opt. (b) Time Breakdown of Softmax. (a) Backward & Opt. Communication Overhead (b) Softmax Comm Overhead
021 ez

Others Others
Backward & Opt. Softmax

= @
[v) o
oth -~ 260.41) o
fowm]._ foremh 2 ” £
o 25% 3 S
s .
€ €10
73% 75% é §
\
etar]

ES E] B E] 236 B
Sequence Length Sequence Length

Figure 1: The time breakdown for SFT of ROBERTay argg (24 layers, 1024 dimensions) using MPC
is analyzed with a sequence length of 512, along with a comparison of communication volumes
across different sequence lengths.

parameters and sensitive data are first secret-shared among participating parties. These parties then
execute MPC protocols through multiple rounds of communication to complete privacy-preserving
computations for forward propagation, backward propagation, and optimization. All computations
are performed on secret-shared inputs and intermediate results, ensuring that parties only learn the
protocol’s explicitly permitted outputs without accessing private data or model parameters. Due to
its compelling privacy guarantees, MPC-based PPML has been successfully applied to the training
of linear models (Mohassel and Zhang| 2017)), convolutional neural networks Wagh et al.| (2019
2021)), and the inference of Transformer-based LLMs (Hao et al.,[2022; Luo et al.}2024; |Pang et al.
20235 |[Lu et al., [2023)).

However, implementing Privacy-Preserving Fine-Tuning (PFT) of LLMs directly using MPC incurs
prohibitive overhead. For instance, performing SFT on RoBERTay arge (Liu et al., [2019)), consist-
ing of 24 layers and 1024 dimensions, with a sequence length of 512 requires approximately 10
minutes per iteration and incurs a communication overhead of 970GB over a Local-Area Network
(LAN) with 3Gbps bandwidth and 0.8ms latency. As illustrated in Figure |1} two primary factors
contribute to this overhead: a) Backward propagation and optimization, which account for 73% of
the total runtime, far exceeding the cost of forward propagation. This is due to the presence of
numerous MPC-unfriendly nonlinear operations in backward propagation and optimization, such
as Softmax, GELU, and LayerNorm, which must undergo privacy-preserving reverse computation.
These operations cannot be directly executed in MPC environments and must be decomposed into
approximations using addition, multiplication, and comparison, leading to a dramatic increase in
communication rounds and volume. b) Softmax in the self-attention, which contributes 75% of
the total runtime. This is because Softmax involves a large number of MPC-unfriendly nonlinear
operations, including exponentiation, division, and maximum computation. Furthermore, its com-
putational complexity scales quadratically with the input sequence length, causing communication
overhead to grow rapidly as sequence length increases. Gradient-based efficient parameter fine-
tuning methods, such as LoRA and gradient-based prompt tuning, effectively reduce the number of
parameters requiring updates and enhance the efficiency of privacy-preserving optimization. How-
ever, they fail to resolve the fundamental communication overhead caused by backward propagation
and Softmax operations in MPC settings.

In this paper, we take the first step toward addressing the research question: How to perform privacy-
preserving domain adaptation of LLMs in MPC environments efficiently and with high perfor-
mance? Specifically, we propose SecP-Tuning, the first MPC-based privacy-preserving framework
for prompt tuning in LLMs. SecP-Tuning leverages Forward-only Tuning (FoT) (Sun et al.|[2022bza)
to update prompt parameters, fundamentally eliminating the high communication overhead caused
by backward propagation in gradient-based fine-tuning methods, thereby significantly accelerating
the privacy-preserving adaptation process. To address the MPC-unfriendly loss value and Gradient-
Free Optimizer (GFO) (Rios and Sahinidis| 2013)) computations in FoT, we introduce an innovative
“Server-Client” architecture. In this architecture, MPC-unfriendly computations for loss values and
GFO are offloaded to the data owner’s local environment for efficient and precise plaintext com-
putation. This approach not only significantly improves speed but also prevents the server from
accessing updated prompt parameters, thereby mitigating the privacy risks of fine-tuning data leak-
age caused by model memorization. Complementing this, we propose privacy-preserving Random
Feature Attention (RFA), which avoids extensive nonlinear operations in softmax while reducing the
complexity of self-attention from quadratic to linear.

Under review as a conference paper at ICLR 2026

The experimental results systematically validate the comprehensive advantages of SecP-
Tuning across multiple dimensions, including efficiency, performance, deployability, and privacy.
Compared to SFT and gradient-based prompt tuning, SecP-Tuning achieves approximately 12x and
16 x end-to-end acceleration, respectively, while reducing communication volume by about 18x
and 20x. Notably, these acceleration advantages are further amplified in bandwidth-constrained
Wide-Area Network (WAN) scenarios. In terms of performance, SecP-Tuning demonstrates supe-
rior results on multiple few-shot fine-tuning tasks (16 samples per class), with an average score
of 82.45, comparable to SFT’s 85.41 and gradient-based cue-based tuning’s 83.84. Deployability
comparison further highlights that SecP-Tuning supports “black-box/API-style” secure tuning, ef-
fectively preventing the potential privacy risks of memory leakage caused by gradient/parameter
transmission back to the server.

2 RELATED WORK

Cryptographic techniques such as MPC and Homomorphic Encryption (HE) (Gentryl 2009; |(Cheon
et al.,|2017) have been widely applied in privacy-preserving machine learning, including early works
on linear networks (Mohassel and Zhang| 2017) and training and inference for convolutional neural
networks (Wagh et al.l 2019} 2021} |L1u et al., 2017; |R1azi et al., 2018} Juvekar et al., 2018). With
the rise of Transformer-based LLMs, researchers have increasingly focused on privacy-preserving
inference for LLMs (Hao et al.| [2022; |Li et al., 2023} [Zeng et al.,|2022;|Luo et al.l|2024; [Pang et al.,
2023; |Yan et al., [2025), aiming to protect both model parameters and inference data. However,
compared to inference, fine-tuning LLMs involves complex backward propagation and optimizer
computations, which remain underexplored.

Currently, only a few studies perform privacy-preserving domain adaptation of LLMs based on
HE. Specifically, the first HE-based PFT framework, BlindTuner (Panzade et al.| [2025), enhances
practicality through pre-trained feature extraction while maintaining accuracy. Subsequently, Med-
BlindTuner (Panzade et al., [2024)) extended this approach to biomedical imaging and validated its
effectiveness. To further reduce computational overhead, later works introduced parameter-efficient
methods like LoRA: PrivTuner (Li et al.,2024b), which integrates LoORA with FHE to reduce com-
putation overhead. Rho et al.| (2025) replaced self-attention with Gaussian Kernel Attention to miti-
gate the costs of nonlinear operations. In addition, FedShield-LLM (Mia and Amini, [2025) reduced
computational overhead by combining unstructured pruning techniques.

Unlike HE, which relies on intensive unilateral encryption computations and requires costly approx-
imations and re-encryption for nonlinear operations such as Softmax and GELU, making it difficult
to balance efficiency and accuracy, MPC enables complex nonlinear operations through multi-round
communication among participants. This makes MPC more suitable for PFT. However, to the best
of our knowledge, no prior work has explored MPC-based PFT of LLMs.

In addition to cryptographic techniques, Differential Privacy (DP) Dwork and Roth|(2014)) has also
been applied to privacy-preserving fine-tuning. The primary goal of DP-based privacy-preserving
fine-tuning algorithms (Wang et al., [2024; [Li et al,, [2024a; |(Charles et al., 2024)) is to ensure
individual-level privacy. This is achieved by introducing mechanisms such as adding random noise
and clipping during the fine-tuning process, which formally limit the influence of any single training
sample on the final model. The privacy guarantee is quantified by the (¢, d) privacy budget. In con-
trast, MPC-based privacy-preserving fine-tuning frameworks provide theoretical privacy guarantees
for privacy parameters and fine-tuning data under a specified threat model, which is fundamentally
different from DP-based privacy-preserving frameworks.

3 PRELIMINARIES

3.1 SOFTMAX-BASED SELF-ATTENTION & RANDOM FEATURE ATTENTION

Softmax-based Self-Attention. The core component of each Transformer layer is the self-
attention mechanism. We omit a detailed discussion of the feed-forward network and other auxiliary
components, as they remain unchanged in our work. Let n and d denote the sequence length and

Under review as a conference paper at ICLR 2026

embedding dimension, respectively. The self-attention mechanism is computed as follows:
T

K

Attention(Q, K, V) = Softmax (Q
Vd
Here, the rows of Q, K, and V correspond to the query, key, and value vectors. The softmax
function (Bridle| [1989) is applied row-wise, converting the similarity scores between each query
and all key vectors into a probability distribution that weights the contribution of each value vector.

) V e R™¥4 (1)

Random Feature Attention. To speed up the softmax operations in attention, Peng et al.|(2021)
has employed random feature (Rahimi and Recht, 2007) methods to approximate the dot-then-
exponentiate operation using kernel tricks. The main idea is to approximate the Gaussian kernel
function via its Monte Carlo estimation:

N2/ ~52) A~ M . .
exp (— x = x)|*/0%) = Y p(xwi)p(x,wi) , @)
where p(x,w;) = \/2/M cos(w,” x + b;), with w; ~ N(0,021) and b; ~ U(0, 27).

Let ¢(x) = exp(||x[|?/(20?)) [¢(x,w1), ..., p(x, oJM)]T, the dot-then-exponentiate function can
be approximated as:

1 1 1
exp (x'y/o?) = exp (= [Ix[|*> + p\\yllg) exp (= 55 lx - yII?) = o(x) T o(y). (3)

202 I

Substituting this approximation into the softmax attention, we obtain the RFA:

n n exp(aq/ k; /o
Softmax(qy, {k;}i—q, {vi}izq) ZZ ex; /k ;02)

(ar) T¢
NZZ en) w @

¢lar) " 3, ok 1) X Vi
= < :RFAq7k’L ;Lzuv’i ;L:)
ST 5, 000,) (e i)
where Q@ = {q;}-;, K = {ki};,V = {v;}]-;, and ® denotes the outer product between
vectors. Leveraging this linearized formulation, RFA achieves linear time and memory complexity
with respect to the sequence length.

3.2 GRADIENT-FREE OPTIMIZATION

Gradient-Free Optimization (GFO) (Rios and Sahinidis| 2013) optimizes an objective using only
function (fitness) evaluations, without gradients; hence, it is also called black-box or zeroth-order
optimization. These methods follow a sample—evaluate—update loop and are well-suited to settings
where derivatives are unavailable or too expensive. Black-Box Tuning (Sun et al., 2022b) applies
GFO to prompt tuning for large language models (LLMs), learning a continuous prompt vector
p € RP that minimizes p* = arg min,ep £ (f(p; X), Y) , where f is the LLM inference function, £
the loss, and P the prompt space. Because GFO convergence typically degrades in high dimensions,
BBT exploits the low intrinsic dimensionality of LLM prompts by optimizing a latent variable z €
R? with d < D and mapping it via a random projection A € RP*¢:

" :argl;réigﬁ(f(Az;X),Y). 5)

CMA-ES (Hansen, |2016)) is used in this paper as the gradient-free optimizer.

3.3 2-OUT-OF-2 ARITHMETIC SECRET SHARING

For an integer ring Z,, = {0,1,...,n — 1}, a 2-out-of-2 arithmetic secret sharing scheme involves
the following two algorithms:

* The sharing algorithm Shr(z) — ([x]o, [x]1) is used to generate the shares of x. Specifically, a
value r is chosen uniformly at random from Z,,, such that [x]o = r, and [z]; = 2 —r (mod n) is
computed.

Under review as a conference paper at ICLR 2026

* The reconstruction algorithm Rec([z]o, [x]1) — « is used to reconstruct z, i.e., z = [z]o + [z]1
(mod n).

The randomness and uniformity of the share ensure that any individual share reveals no information
about the secret. We denote the arithmetic secret sharing of z as [x] = ([z]o, [z]1)-

In the field of secure MPC, numerous secure protocols have been developed for operating over secret
shares [z], including secure addition, multiplication, comparison, and various nonlinear activation
functions. These cryptographic primitives are summarized in Section In this work, we treat
these primitives as black-box components and utilize them without requiring additional assumptions
or modifications.

4 SECP-TUNING

4.1 MPC-BASED PRIVACY-PRESERVING FINE-TUNING

The objective of privacy-preserving fine-tuning based on MPC is to fine-tuning a model while safe-
guarding the privacy of both the developer’s proprietary model parameters and the data owner’s
privacy data, ultimately producing fine-tuned parameters. This process involves two principal par-
ties: the model developer and the data owner. The model developer possesses a proprietary model
Fo, where © represents private parameters, while the data owner holds confidential fine-tuning
data X. In this framework, both parties provide the shares of Fg and X, namely ([©]o, [©]1) and
([XJo,[X]1), as inputs. These shares are processed using various two-party MPC protocols, such
as privacy-preserving addition, multiplication, and GeLU activation functions, to perform privacy-
preserving inference and generate the shares of the fine-tuned parameters. Under well-defined threat
models such as semi-honest and malicious models, the theoretical security is guaranteed by MPC
protocols and ensures the following: 1) Confidentiality of the model developer’s parameters; 2) Con-
fidentiality of the data owner’s fine-tuning data; and 3) Confidentiality of the fine-tuned parameters.

For efficiency considerations, we adopt the semi-honest threat modelﬂ In the semi-honest model,
participants execute each step of the protocol correctly and obtain accurate results but may attempt
to infer unauthorized information during execution. The semi-honest threat model is widely used in
Privacy-Preserving Machine Learning (PPML), including early works on privacy-preserving convo-
lutional neural network training and more recent efforts in privacy-preserving inference for LLMs.

Although MPC-based privacy-preserving fine-tuning provides theoretical assurances for the privacy
of model parameters and fine-tuning data while achieving performance comparable to plaintext com-
putation, directly employing MPC for fine-tuning faces significant efficiency challenges. These chal-
lenges primarily stem from the computational costs associated with executing privacy-preserving
backpropagation, optimizers, and self-attention mechanisms using MPC. To address these issues, we
propose SecP-Tuning, which leverages the intrinsic properties of MPC protocols and incorporates
custom-designed, modular components to significantly enhance the efficiency of privacy-preserving
fine-tuning.

4.2 PRIVACY-PRESERVING FORWARD-ONLY TUNING

During the backpropagation phase, numerous nonlinear operators, such as Softmax, GELU, and
LayerNorm, must undergo privacy-preserving reverse computation. In the MPC environment, these
operations cannot be executed directly and must instead be decomposed into fundamental opera-
tions like addition, multiplication, and comparison for approximate computation. This decomposi-
tion significantly amplifies both the number of communication rounds and the overall communica-
tion volume. Furthermore, the deeply stacked architecture of Transformers exacerbates these costs.
Additionally, frequent tensor transpositions, dimension rearrangements, and mask handling during
gradient computation, which are mere memory operations in plaintext, require explicit arithmetic-
to-Boolean domain conversions and additional synchronization in MPC environments, further in-
creasing communication overhead.

"While the malicious threat model better aligns with real-world scenarios, its computational overhead is
significantly higher than that of the semi-honest model. Typically, additional cryptographic techniques such as
zero-knowledge proofs are required to enhance the semi-honest model.

Under review as a conference paper at ICLR 2026

Server 0 Server 1
A [?] | Privacy-preserving Inference Privacy-preserving Inference [?]
JL=t 3 X, X]; 3 Ly
i IR ON
Gradient-Free Optimizer (X1, [X14) D;ge;?;:ng
p | Prompt Embedding |- ------
: T X: Privacy Input
Po | Initial Prompt | . Best film ever . It was <MASK>
: @ """ P A totally boring movie ! It was <MASK>
4
A
142 | | | | Fine-tunin :
- g Data !
_ |great _ Best film ever . It was <MASK>
Y: X:
terrible A totally boring movie ! It was <MASK>
~ 6 =
(€ iL = _Z’(Y, Y): Loss Value |‘1 Y: Inference Results |
A
i Data Owner

Figure 2: Workflow of SecP-Tuning. SecP-Tuning leverages secure MPC to protect both training
data and model parameters during fine-tuning. It addresses two key bottlenecks in PFT. First, it
eliminates the computational overhead of backward and optimizer by adopting a FoT paradigm.
Second, it improves the efficiency of privacy-preserving self attention by employing RFA.

During the optimization phase, widely used optimizers like Adam (Kingma and Bal |2015) require
numerous element-wise operations, including multiplication, division, square root computation, and
bias correction, to perform parameter updates. Among these, division and square root computations
are particularly costly in MPC environments. Moreover, weight decay, learning rate scheduling (e.g.,
cosine, multi-stage, or adaptive scheduling), and gradient scaling (used in mixed-precision simu-
lations) introduce additional nonlinear operations and conditional branching. These complexities
compel frequent domain conversions between arithmetic and boolean fields in MPC environments,
resulting in substantial communication overhead.

Forward-only Tuning (FoT) updates parameters via GFO, fundamentally circumventing the high
communication overhead caused by privacy-preserving backpropagation in gradient-based fine-
tuning methods. This presents a promising avenue for enhancing the efficiency of privacy-preserving
fine-tuning. However, unlike gradient-based optimizers such as Adam, GFO methods, such as CMA-
ES, often involve complex operations that are unable to support in MPC-based PPML frameworks,
such as CrypTen. These operations include ranked index order, outer product of vectors, and matrix
eigendecomposition. This hinder the development of an MPC-based privacy-preserving FoT.

To address this issue, SecP-Tuning integrates the features of MPC and FoT to design a “Server-
Client” architecture that ensures privacy while offloading GFO and loss computation to the client
for plaintext processing. This approach not only significantly enhances efficiency but also prevents
the server from accessing the updated prompt embeddings, thereby mitigating the risk of fine-tuning
data privacy leakage caused by model memorization.

As shown in Fig. 2] SecP-Tuning consists of the following seven steps: 1) The data owner locally
initializes the prompt embedding p and concatenates it with the private fine-tuning token embedding
to obtain the private input embedding X; 2) The data owner locally generates secret shares of X,
denoted as ([X]o, [X]1), and distributes them to the corresponding servers; 3) Two non-colluding
servers take ([X]o,[X]1) and the secret shares of the private model parameters, ([O]o, [0]1), as
inputs. They interactively execute privacy-preserving inference using MPC protocols, producing
secret shares of the inference result ([Y]o, [Y]1); 4) The servers send ([Y]o, [Y]1) back to the data
owner; 5) The data owner reconstructs the inference result Y using ([Y]o, [Y]1); 6) The data owner

Under review as a conference paper at ICLR 2026

takes the inference result Y and the fine-tuning data labels Y as inputs and calculates the loss value
L locally in plaintext; 7) The data owner inputs the loss value L into the GFO to update the prompt
embedding. By iterating this process multiple times, the data owner ultimately obtains the fine-tuned
prompt embedding for privacy-preserving downstream task inference.

SecP-Tuning leverages the FoT framework from (Sun et al.| |2022b)) to implement privacy-preserving
fine-tuning. To guarantee fairness and reproducibility of results, it adopts the same GFO, CMA-ES.
However, readers are free to select other gradient-free optimizers, such as random search, Natural
Evolution Strategies, or Bayesian optimization, based on the specific requirements of their scenarios,
thereby further enhancing the flexibility and adaptability of SecP-Tuning.

4.3 PRIVACY-PRESERVING RANDOM FEATURE ATTENTION

Although privacy-preserving FoT based on “Server-Client” architecture addresses the overhead of
privacy-preserving computation in backpropagation and optimizers, SecP-Tuning still faces severe
efficiency challenges stemming from the privacy-preserving implementation of softmax-based self-
attention mechanisms. Specifically, for a vector x = (x1,22,...,%,), Softmax in Transformer
converts it to an n-dimensional probability distribution with

eaj,;*T

where 7 = max ({z,}}_,) is used to ensure stable numerical computations.

Softmax(x)]] (6)

There are the following challenges in performing privacy-preserving computation on softmax-based
self-attention:

* Quadratic complexity with respect to sequence length. Given (Q,K,V) € R"*%, where n
denotes the sequence length and d the embedding dimension, the complexity of Softmax-based
attention scales as O(n2d). This quadratic dependence becomes prohibitively expensive for long
input sequences.

* Numerous nonlinear operations incompatible with MPC. As shown in Eq. (6), computing the
Softmax function involves three nonlinear operations—exponentiation, division, and maximiza-
tion—all of which are costly to implement under MPC. These operations significantly inflate the
overhead of privacy-preserving attention computation (see Section [6.3.2|for details).

To tackle these challenges, SecP-Tuning employs Random Feature Attention (RFA) to enhance the
efficiency of privacy-preserving Softmax-based self-attention mechanisms. Specifically, compared
to existing softmax approximation methods (Kitaev et al.|[2020; |Wang et al.,|2020; Roy et al.,|2021),
RFA offers the following advantages:

* Theoretical Guarantee on Approximation Error. The approximation error is formally bounded,
ensuring reliable accuracy.

* Reduction in Computational Complexity of Softmax. RFA reduces the complexity of softmax
attention from O(n?d) to O(ndr), where r represents the number of random features used.

* Avoidance of Exponentiation and Maximum Operations in Softmax. By bypassing these
costly nonlinear operations, RFA significantly improves efficiency in privacy-preserving settings.

According to Eq. (), the computation of RFA involves multiplication, division, and cosine function
operations. This implies that although RFA bypasses the exponential and maximum operations in
softmax-based attention, it introduces cosine operations that are not friendly to MPC.

To address this challenge, SecP-Tuning design an efficient MPC-based privacy-preserving cosine
function protocol (I.qsine) by leveraging the periodicity of trigonometric functions and the sum-to-
product formulas. By executing Il.,s;ne, MPC participants can compute the shares of the result
y = cos(x) while preserving the privacy of the input data x. Specifically, I osine consists of
two phases: an offline phase and an online phase. In the offline phase, the computation servers
S;,7 = 0,1, pre-generate random numbers ¢ € Z;, and shares of sin(t), cos(t), and ¢, denoted
as ([t];, [sin(t)];, [cos(t)];). During the online phase, server S; initially computes [0]; = [z]; +
[t];. Subsequently, § = (z +t) mod 7, where 7 represents the periodicity of the trigonometric

Under review as a conference paper at ICLR 2026

function, is reconstructed through a single round of bidirectional communication. Finally, each
server S; computes the shares of cos(z) using the trigonometric addition identity formulas, cos(z) =
sin(9) sin(t) + cos(d) cos(t).

By executing I1cqsine, the privacy-preserving computation of the cosine function can be accomplished
with only a single round of communication, transmitting 2¢-bit elements. Building upon this result,
we further develop an efficient MPC-based privacy-preserving RFA protocol, which reduces the
computational complexity of the Softmax-based attention mechanism while circumventing the need
for expensive exponentiation and maximum operations. Detailed algorithmic descriptions are pro-
vided in Section

5 EXPERIMENTS

5.1 SETUP

MPC-Backend & Testbeds. Our implementation is based on the PPML framework CrypTen EL
while the execution of FoT and RFA relies on the open-source libraries provided in (Sun et al.,
2022b) and (Peng et al,, [2021). We conduct our experimental evaluations on three servers, each
equipped with an A100 GPU. To enable a comprehensive efficiency comparison, we utilize Linux
Traffic Control (TC) to simulate various network conditions. Specifically: In the LAN scenario, we
set the bandwidth to 3 Gbps with a round-trip latency of 0.8 ms. For the WAN setting, we consider
two different configurations: {100 Mbps, 80 ms} and {200 Mbps, 40 ms}.

Model and Dataset. We select ROBERTa; srgge as the backbone model to validate the effective-
ness of SecP-Tuning across five representative datasets: SST-2 (Socher et al.,2013)), MRPC (Dolan
and Brockett, [2005), RTE |Wang et al.| (2018), Yelp Polarity (Zhang et al., 2015), and AG’s
News (Zhang et al., 2015). To ensure the reproducibility of experimental results, we adopt the
same hyperparameter settings as (Sun et al.| 2022b) for FoT execution. For RFA, we follow the ini-
tialization settings from (Peng et al.|[2021) and set the number of random features r to 128. Detailed
configurations are provided in Section [0.6.2]of the appendix.

Baselines. To demonstrate the effectiveness of SecP-Tuning, we established the following base-
lines: 1) SFT: Supervised fine-tuning of all model parameters of pre-trained model. 2) Prompt
Tuning: Training only the prompt embeddings added to the input text while keeping the pre-trained
model parameters frozen. For a fair comparison, we used the same prompt length, manual templates,
label words, and pre-trained prompt embeddings as SecP-Tuning during initialization. We explored
a wide range of learning rates and implemented an early stopping mechanism to prevent overfitting
of gradient-based methods in few-shot scenarios. Specifically, for SFT, the learning rates were set to
[le-6, 3e-6, 5e-6, 1e-5, 3e-5, Se-5, le-4], with a maximum of 200 epochs and an early stopping pa-
tience of 30 steps. For gradient-based Prompt Tuning, the learning rates were set to [1e-5, 3e-5, Se-5,
le-4, 3e-4, Se-5, le-3], with a maximum of 1000 epochs and an early stopping patience of 50 steps.
See Section [6.6.T] of the appendix for specific hyperparameter and corresponding configurations.

Table 1: Efficiency Comparison of RoOBERTa arge in LAN Setting (3Gbps, 0.8ms). The input
sequence length is set to 512, and the number of prompt tokens is set to 50. The results are the
average of ten runs.

Methods Forward Backward Optimizer Total
Times(s) | Comm(GB) | Times(s) | Comm(GB) | Times(s) | Comm(GB) | Times(s) | Comm(GB)
SFT 216.184 | 260411 | 554512 | 691.150 | 20.902 | 19159 | 651.598 | 970.720
Prompt Tuning 273313 | 306.711 | 605.212 | 804.900 | 3550 | 4594 | 882.075 | 1116.205

SecP-Tuning (FoT) 173.999 205.358 0.000 0.000 0.138 0.000 | 174.138 205.359
SecP-Tuning (FoT+RFA) 54.17 56.545 0.000 0.000 0.103 0.000 55.172 56.545

https://github.com/facebookresearch/CrypTen

https://github.com/facebookresearch/CrypTen

Under review as a conference paper at ICLR 2026

5.2 EFFICIENCY COMPARISON

We perform an end-to-end execution of SecP-Tuning on CrypTen and compare it against baseline
methods. To ensure fairness, all executions use CrypTen’s privacy-preserving operations and de-
fault settingsﬂ Table |1{ shows the time and communication overhead of different methods in a
LAN environment, with additional results in a WAN environment provided in Section Com-
pared to SFT and gradient-based prompt tuning, SecP-Tuning delivers substantial advancements in
both fine-tuning speed and communication efficiency. Specifically, in a LAN environment, SecP-
Tuning achieves a 12 times speedup over SFT and a 16 times speedup over gradient-based prompt
tuning. Additionally, it reduces communication overhead by 18 times and 20 times, respectively.
This is primarily attributed to SecP-Tuning ’s innovative integration of FoT through the “data owner-
server interaction” paradigm, which eliminates privacy-preserving computations for backward prop-
agation and optimization. Additionally, the privacy-preserving protocol ITggs proposed in this paper
significantly enhances the efficiency of self-attention computations in privacy-preserving settings.

We further observed that, under MPC settings, gradient-based prompt tuning fails to bring efficiency
improvements, and results in slower execution and higher communication overhead. This is because,
while it reduces the number of parameters requiring updates and thereby lowers the computational
overhead of privacy-preserving optimization, it fails to avoid the privacy-preserving computations
for backward propagation and self-attention mechanisms. Furthermore, compared to model tuning,
it incurs additional privacy-preserving forward and backward computations for prompt tokens.

Table 2: Comprehensive performance comparison of SecP-Tuning across various language under-
standing tasks. The results in the table report the mean and standard deviation over three runs. All
experiments are conducted using the pretrained ROBERTa orgg model with 16 samples per class.

SST-2 Yelp P. AG’s News MRPC RTE
Method ‘ Acc ‘ Acc ‘ Acc ‘ F1 ‘ Acc ‘ Avg.
SFT | 89.86 £1.23 | 93.25+0.64 | 88.94+1.12 | 82.15+3.76 | 72.84 £4.52 | 85.41

Prompt Tuning 85.23+1.82 | 88.47+2.15 | 85.34+1.32
+ Pre-trained prompt / / /

68.52+4.18 | 62.53 £2.47 | 78.02
80.35+3.52 | 79.80 £1.83 | 83.84

FoT 89.56 £0.25 | 91.50 £0.16 | 81.51£0.79 | 61.56 £4.34 | 52.59 +2.21 | 75.34
+ Pre-trained prompt / / / 7551 £5.54 | 77.62+1.30 | 83.14
SecP-Tuning 89.23+0.12 | 85.304+3.71 | 79.55+1.32 | 75.12+£3.32 77.32+1.52 8245

5.3 PERFORMANCE COMPARISON

We evaluated the performance of SecP-Tuning on multiple datasets and compared it with baselines
to verify its effectiveness. As shown in Table 2] after utilizing pre-trained prompt embeddings (Gu
et al.l 2022), SecP-Tuning achieves performance comparable to gradient-based methods, such as
SFT and gradient-based prompt tuning. Notably, in simpler sentiment classification tasks, such
as SST-2 and Yelp P., SecP-Tuning even outperforms gradient-based prompt tuning. Although the
average performance of SecP-Tuning is slightly inferior to gradient-based methods, it offers superior
efficiency and deployability, enabling the MPC-based privacy-preserving fine-tuning framework to
achieve an optimal balance between privacy, efficiency, and performance.

Table 3: We evaluate the feasibility of As-A-Service (AAS), Accuracy, end-to-end time, commu-
nication overhead, and the total amount of data uploaded/downloaded for completing PFT on the
SST-2 and AG’s News datasets.
AAS Acc Fine-tuning Time Communication Volume Upload (per query) Download (per query)
SST-2 (Sequence Length: 47)

SFT X 87.8 65.86 (h) 67.36 (TB) -

Prompt Tuning X 72.6 86.15 (h) 149.37 (TB) - -

SecP-Tuning v 89.2 8.81 (h) 14.22 (TB) 12 KB 0.5 KB
AG’s News (Sequence Length: 107)

SFT X 88.4 75.37 (h) 121.27 (TB) -

Prompt Tuning X 84.0 80.57 (h) 153.45 (TB) - -

SecP-Tuning v 82.1 10.43 (h) 19.68 (TB) 44 KB 2 KB

*More advanced MPC operators can further reduce communication overhead and improve fine-tuning speed.

Under review as a conference paper at ICLR 2026

5.4 DEPLOYABILITY COMPARISON

Beyond efficiency and performance, many other factors must be considered in practical scenarios.
As shown in Table 3, we comprehensively compare SecP-Tuning with baseline methods across var-
ious dimensions, including serviceability, accuracy, fine-tuning time, communication volume, and
the amount of uploaded and downloaded data. To ensure a fair comparison of fine-tuning time, we
employ early stopping for all methods: if no improvement in validation accuracy is observed after
1000 steps, the training process is terminated. We find that only SecP-Tuning offers serviceabil-
ity, allowing data owners to perform PFT directly via APIs provided by the model developer. This
ensures that the model developer does not receive any information about the updated parameters.
In contrast, gradient-based methods such as SFT and prompt tuning inherently require the model
developer to obtain shares of the updated parameters. This introduces the risk of the model de-
veloper inferring private fine-tuning data from the updated model parameters. Thus, among all the
methods considered, only SecP-Tuning achieves the best balance in terms of privacy, efficiency, and
performance.

(a) Time Speedup of Privacy-preseving RFA (b) C peedup of Privacy-preseving RFA
14 MPC-based Self _Att MPC-based Self _Att
12 MREA_without Neosine 8 MREA_without Neosine
Mrra Mrra
_ 10 6
) C)
n 8 n
£ £
4
(S F
4
2
2
0 0
64 128 256 512 1024 64 128 256 512 1024
Sequence Length Sequence Length

Figure 3: Comparison of Time and Communication Overhead Between Privacy-Preserving RFA and
Softmax-Based Privacy-Preserving Self-Attention.

5.5 COMPARISON OF RFA AND SELF-ATTENTION

We evaluated the privacy-preserving RFA protocol (IIgrr4) under varying sequence lengths and
compared it with both the MPC-based privacy-preserving self-attention mechanism and the privacy-
preserving RFA protocol without the efficient privacy-preserving cosine algorithm proposed in this
study (IIrr A without 11,p.:m.)- As illustrated in Figure 3: 1) For the MPC-based privacy-preserving
self-attention, IIpr 4 demonstrates significant improvements in execution speed and communica-
tion efficiency. Moreover, as the input length increases, these advantages become increasingly pro-
nounced. This is attributed to the computational complexity of the MPC-based privacy-preserving
self-attention mechanism being quadratic with respect to sequence length, whereas the RFA protocol
exhibits linear complexity. 2) For Ilrr A without IT,...m.» the presence of cosine operations, which
are not MPC-friendly, results in relatively limited efficiency gains compared to the MPC-based
privacy-preserving self-attention. In fact, for shorter sequence lengths, such as L = 64 and L = 128,
its time and communication overheads even exceed those of the MPC-based privacy-preserving self-
attention. This directly highlights that the IT.,s;y,. algorithm proposed in SecP-Tuning is the critical
factor in enhancing the computational efficiency of privacy-preserving self-attention mechanisms.

6 CONCLUSION

This paper presents SecP-Tuning, the pioneering MPC-based framework designed for efficient and
privacy-preserving prompt tuning of LLMs. By leveraging FoT, it eliminates secure backpropaga-
tion and optimizer computations, while introducing a privacy-preserving random feature attention to
substitute softmax-based self-attention, thereby circumventing MPC-unfriendly nonlinearities and
reducing the computational complexity. Experimental results demonstrate that SecP-Tuning seam-
lessly integrates efficiency, performance, deployability, and privacy.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study focuses on privacy-efficient fine-tuning mechanisms and does not involve ethical or moral
concerns. It does not directly collect, generate, or interfere with any personally identifiable infor-
mation (PII), relying solely on publicly available benchmark datasets (SST-2, MRPC, RTE, Yelp
Polarity, AG’s News). These datasets are widely used within the research community for English
text classification and matching tasks, with licensing terms permitting their use for research pur-
poses. Furthermore, no redistribution of the original data was conducted during the study, and only
model performance and efficiency metrics were reported.

REPRODUCIBILITY STATEMENT

This paper provides comprehensive resources to ensure the reproducibility of the experimental re-
sults of the proposed SecP-Tuning algorithm. Specifically, a thorough description of the theoretical
foundations used in this study, along with relevant references, is included in Section E} Detailed
steps of the proposed methodology are presented in Section [4] and pseudocode for the privacy-
preserving algorithms proposed in this paper are provided in Section[6.4] In Section[5.1] we present
the experimental setup of SecP-Tuning, including the models, datasets, baseline configurations, de-
pendency libraries, and network environment details. Detailed hyperparameter information is pro-
vided in Section[6.6] These elements ensure the reproducibility of the results in this paper. Further-
more, we plan to release the source code upon publication.

REFERENCES

John Bridle. Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. Advances in neural information processing systems,
2, 1989.

Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136—145. IEEE,
2001.

Zachary Charles, Arun Ganesh, Ryan McKenna, H Brendan McMahan, Nicole Mitchell, Krishna
Pillutla, and Keith Rush. Fine-tuning large language models with user-level differential privacy.
arXiv preprint arXiv:2407.07737, 2024.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arith-
metic of approximate numbers. In International conference on the theory and application of
cryptology and information security, pages 409-437. Springer, 2017.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088—10115, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics, pages 4171-4186,
2019.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng
Hong, Tao Wei, and Wenguang Cheng. PUMA: Secure inference of LLaMA-7B in five minutes.
arXiv preprint arXiv:2307.12533, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pages arXiv—2407, 2024.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. In The Algorithmic
Foundations of Differential Privacy, pages 19-20, 2014.

11

Under review as a conference paper at ICLR 2026

Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, pages 218-229. ACM, 1987.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. Ppt: Pre-trained prompt tuning for few-
shot learning. In Proceedings of the 60th annual meeting of the association for computational
linguistics (volume 1: long papers), pages 8410-8423, 2022.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772, 2016.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron: Pri-
vate inference on transformers. Advances in Neural Information Processing Systems, 35:15718-
15731, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low latency
framework for secure neural network inference. In 27th USENIX Security Symposium, pages
1651-1669, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In 8th
International Conference on Learning Representations, ICLR 2020, 2020.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark Ibrahim, and Laurens
van der Maaten. CrypTen: Secure multi-party computation meets machine learning. Advances in
Neural Information Processing Systems, 34:4961-4973, 2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-
tau Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3045-3059. Association for Computational Linguistics, 2021. doi:
10.18653/V1/2021. EMNLP-MAIN.243. URL https://doi.org/10.18653/v1/2021.
emnlp-main.243.

Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P Xing, and Hao Zhang. MPCFormer:
Fast, performant and private transformer inference with MPC. In Proceedings of the Eleventh
International Conference on Learning Representations, ICLR, 2023.

Xianzhi Li, Ran Zmigrod, Zhigiang Ma, Xiaomo Liu, and Xiaodan Zhu. Fine-tuning language mod-
els with differential privacy through adaptive noise allocation. arXiv preprint arXiv:2410.02912,
2024a.

Yang Li, Wenhan Yu, and Jun Zhao. Privtuner with homomorphic encryption and lora: A p3eft

scheme for privacy-preserving parameter-efficient fine-tuning of ai foundation models. arXiv
preprint arXiv:2410.00433, 2024b.

12

http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243

Under review as a conference paper at ICLR 2026

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pages 619-631, 2017.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 61-68, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Cheng Hong, Kui Ren, Tao Wei, and
WenGuang Chen. Bumblebee: Secure two-party inference framework for large transformers.
Cryptology ePrint Archive, 2023.

Jinglong Luo, Yehong Zhang, Jiaqi Zhang, Xin Mu, Hui Wang, Yue Yu, and Zenglin Xu. Secformer:
Towards fast and accurate privacy-preserving inference for large language models. arXiv preprint
arXiv:2401.00793, 2024.

Md Jueal Mia and M Hadi Amini. Fedshield-llm: A secure and scalable federated fine-tuned large
language model. arXiv preprint arXiv:2506.05640, 2025.

Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable privacy-preserving machine
learning. In Proceedings of 2017 IEEE Symposium on Security and Privacy, pages 19-38. IEEE,
2017.

Qi Pang, Jinhao Zhu, Helen Mollering, Wenting Zheng, and Thomas Schneider. BOLT: Privacy-
preserving, accurate and efficient inference for transformers. Cryptology ePrint Archive, Paper
202371893, 2023.

Prajwal Panzade, Daniel Takabi, and Zhipeng Cai. Medblindtuner: Towards privacy-preserving
fine-tuning on biomedical images with transformers and fully homomorphic encryption. In Al
for Health Equity and Fairness: Leveraging Al to Address Social Determinants of Health, pages
197-208. Springer, 2024.

Prajwal Panzade, Javad Rafiei Asl, Daniel Takabi, and Zhipeng Cai. Blindtuner: On enhancement of
privacy-preserving fine-tuning of transformers based on homomorphic encryption. IEEE Internet
of Things Journal, 2025.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. In 9th International Conference on Learning Representations, ICLR
2021, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1-67, 2020.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, 2007.

Donghwan Rho, Taeseong Kim, Minje Park, Jung Woo Kim, Hyunsik Chae, Ernest K Ryu, and
Jung Hee Cheon. Encryption-friendly llm architecture. In The Thirteenth International Confer-
ence on Learning Representations, ICLR, 2025.

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori, Thomas Schnei-
der, and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for machine
learning applications. In Proceedings of the Asia conference on computer and communications
security, pages 707-721, 2018.

13

Under review as a conference paper at ICLR 2026

Luis Miguel Rios and Nikolaos V Sahinidis. Derivative-free optimization: a review of algorithms
and comparison of software implementations. Journal of Global Optimization, 56(3):1247-1293,
2013.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse

attention with routing transformers. Transactions of the Association for Computational Linguis-
tics, 9:53-68, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pages 1631-1642, 2013.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuan-Jing Huang, and Xipeng Qiu. BBTv2:
Towards a gradient-free future with large language models. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, pages 3916-3930, 2022a.

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning for
language-model-as-a-service. In International Conference on Machine Learning, pages 2084 1—
20855. PMLR, 2022b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: 3-Party secure computation for
neural network training. Proceedings on Privacy Enhancing Technologies, pages 26—49, 2019.

Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin.
Falcon: Honest-majority maliciously secure framework for private deep learning. Proceedings on
Privacy Enhancing Technologies, pages 188-208, 2021.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Naiyu Wang, Shen Wang, Meng Li, Longfei Wu, Zijian Zhang, Zhitao Guan, and Liehuang Zhu.
Balancing differential privacy and utility: A relevance-based adaptive private fine-tuning frame-
work for language models. IEEE Transactions on Information Forensics and Security, 2024.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Guang Yan, Yuhui Zhang, Zimu Guo, Lutan Zhao, Xiaojun Chen, Chen Wang, Wenhao Wang,
Dan Meng, and Rui Hou. Comet: Accelerating private inference for large language model by
predicting activation sparsity. In 2025 IEEE Symposium on Security and Privacy (SP), pages
2604-2622. IEEE Computer Society, 2025.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In Annual Symposium on Founda-
tions of Computer Science, pages 162—-167, 1986.

Wenxuan Zeng, Meng Li, Wenjie Xiong, Wenjie Lu, Jin Tan, Runsheng Wang, and Ru Huang.
MPCVIT: Searching for MPC-friendly vision transformer with heterogeneous attention. arXiv
preprint arXiv:2211.13955, 2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

Yu Zheng, Qizhi Zhang, Sherman SM Chow, Yuxiang Peng, Sijun Tan, Lichun Li, and Shan Yin.
Secure softmax/sigmoid for machine-learning computation. In Proceedings of the 39th Annual
Computer Security Applications Conference, pages 463-476, 2023.

14

Under review as a conference paper at ICLR 2026

APPENDICES

The appendix is organized as follows.

* In Section we report the use of large language models.

* In Section [6.2] We report additional experimental results for SecP-Tuning , including execution
time overhead in a wide area network (WAN) environment, performance comparison under dif-
ferent sample sizes, comparison with plaintext performance, and performance on other types of
LLMs.

* In Section[6.3] we present the underlying MPC protocols upon which SecP-Tuning is built.

* In Section [6.4] we detail the privacy-preserving algorithms designed for SecP-Tuning, including
privacy-preserving cosine similarity and Random Feature Attention (RFA).

* In Section[6.5] we provide a comprehensive security proof of SecP-Tuning.
* In Section[6.6] we report all the hyperparameter settings used in this paper.

6.1 THE USE OF LARGE LANGUAGE MODELS

This work primarily utilized LLMs for academic English translation and refinement. The use of
LLMs does not pertain to the significance, innovation, or technical soundness of the core aspects of
this work.

Table 4: Efficiency Comparison of ROBERTa; srge in WAN Setting. The input sequence length is
set to 512, and the number of prompt tokens is set to 50. The results are the average of ten runs.

Bandwidth & Latency | Methods Forward (s) | Backward (s) | Optimizer (s) | Total (s)
SFT 605.315 1,718.987 48.036 2,372.338
Prompt Tuning 847.270 1,997.662 7.810 2,852.742
200Mbps/40ms SecP-Tuning (FoT) 399.361 0.000 0.133 399.494
SecP-Tuning (FoT+RFA) 102.923 0.000 0.125 103.048
SFT 1,502.213 3,893.772 98.822 5,494.807
Prompt Tuning 2,582.691 4,692.951 10.975 7,286.617
100Mbps/80ms SecP-Tuning (FoT) 833.448 0.000 0.136 833.5%4
SecP-Tuning (FoT+RFA) 211.185 0.000 0.122 211.307

6.2 MORE RESULTS

6.2.1 ADDITIONAL EFFICIENCY RESULTS OF SECP-TUNING

This section presents additional efficiency results of SecP-Tuning. As shown in the data from Ta-
ble 4] under a WAN setting of 100Mbps/80ms, SecP-Tuning reduces the update time per iteration
from 7286.6 seconds in gradient-based Prompt Tuning to 211.3 seconds, achieving approximately
34x acceleration, which significantly surpasses the 16x acceleration observed in a 3Gbps/0.8ms
LAN environment. This remarkable improvement stems from its substantial reduction in commu-
nication rounds and volume, enabling structural amplification advantages in bandwidth-constrained
and high-latency WAN scenarios.

Table 5: Performance comparison under varying number of sample. The results in the table report
the mean and standard deviation over three runs. All experiments are conducted using the pretrained
ROBERTaLARGE model.

Mumber of Samples | SFT | Prompt Tuning | FoT
16 ‘ 85.39 £2.84 ‘ 68.23 £ 3.72 ‘ 89.56 £ 0.25
32 ‘ 90.21 £2.32 ‘ 79.32 £ 2.63 ‘ 90.23 £ 0.31
64 ‘ 92.17£2.13 ‘ 87.65 + 2.55 ‘ 91.06 £ 0.24
128 ‘ 93.26 + 2.28 ‘ 92.18 £ 3.57 ‘ 91.15 £ 0.38

15

Under review as a conference paper at ICLR 2026

6.2.2 PERFORMANCE COMPARISON ACROSS DIFFERENT MUMBER OF SAMPLES

In the performance comparison experiments presented in Table 2, FoT demonstrated superior results
across multiple tasks compared to gradient-based SFT and Prompt Tuning. Reference [1] hypothe-
sizes that FoT’s performance advantage stems from the susceptibility of gradient-based optimization
methods to overfitting when dealing with limited training data, whereas FoT, through its exploratory
mechanism, often identifies more optimal solutions.

To further investigate performance under larger sample sizes, we conducted additional experiments
on the SST-2 dataset, setting the number of samples per class to 16, 32, 64, and 128. As shown in the
data from Table 3, when the sample size increases, gradient-based SFT and Prompt Tuning exhibit
more robust performance than FoT.

6.2.3 PERFORMANCE COMPARISON ACROSS DIFFERENT MUMBER OF SAMPLES

In the performance comparison experiments presented in Table 2, FoT demonstrated superior results
across multiple tasks compared to gradient-based SFT and Prompt Tuning. Reference [1] hypothe-
sizes that FoT’s performance advantage stems from the susceptibility of gradient-based optimization
methods to overfitting when dealing with limited training data, whereas FoT, through its exploratory
mechanism, often identifies more optimal solutions.

To further investigate performance under larger sample sizes, we conducted additional experiments
on the SST-2 dataset, setting the number of samples per class to 16, 32, 64, and 128. As shown in the
data from Table 3, when the sample size increases, gradient-based SFT and Prompt Tuning exhibit
more robust performance than FoT.

6.2.4 PERFORMANCE COMPARISON WITH PLAINTEXT

In this section, we supplement the comparison experiments between SecP-Tuning and plaintext
prompt tuning to analyze the differences in efficiency and performance between the two approaches.

Table 6: Performance comparison with plaintext. The results in the table report the mean and stan-
dard deviation over three runs. All experiments are conducted using the pretrained ROBERTay argg
model.

Dataset Method | Fine-Tuning Time | Communication | Accuracy
SST2 Plaintext 10.1 mins 6.25 KB 89.4
SecP-Tuning 8.8 hours 14.22 TB 89.2
AG’s News Plaintext 21.0 mins 23 KB 82.6
SecP-Tuning 10.43 hours 19.68 TB 82.1

The experimental results reveal that SecP-Tuning incurs almost no loss in model utility. This can be
attributed to its construction based on cryptographic MPC techniques. As analyzed in Section[6.3|re-
garding the correctness of MPC protocols, MPC ensures accurate computation results while preserv-
ing the privacy of input data. The slight performance degradation may stem from the approximations
introduced by MPC for nonlinear activation functions, such as GeL.U and LayerNorm. This repre-
sents a significant advantage of MPC over other privacy-enhancing methods, such as Differential
Privacy (DP) and Federated Learning (FL). However, the drawback lies in the substantial computa-
tional and communication overhead it introduces, making it currently challenging to generalize to
larger-scale models.

6.2.5 PERFORMANCE ON OTHER TYPES OF LLMS

In this section, we include the performance results of SecP-Tuning on other types of LLMs, namely
GPT2-LARGE (Radford et al.| [2019) and T5-LARGE (Raffel et al., [2020). Experimental results
demonstrate that SecP-Tuning is applicable to various architectures of LLMs, including the decoder-
only autoregressive model GPT-2 and the encoder-decoder model T5.

16

Under review as a conference paper at ICLR 2026

Table 7: Performance on other types of LLMs.
Model | DataSet | Accuracy

SST-2 89.2

ROBERTa | AGogNews | 82.1
SST-2 75.3

GPT-2 AG’s News 77.7
Ts SST-2 89.1
AG’s News 83.8

6.3 UNDERLYING MPC PROTOCOLS

In this section, we provide a brief overview of the underlying protocols used and refer to the works of
Knott et al.{(2021) and Zheng et al.| (2023) for details. Let S; with j € {0, 1} be two parties that are
used to execute the MPC protocol. Each party S; will be given one additive share ([u];, [v];) € Zp,
of the operation inputs u and v for j € {0,1}.

6.3.1 PRIVACY-PRESERVING ADDITION, MULTIPLICATION AND COMPARISON PROTOCOLS

In this section, we provide a detailed description of the execution processes for MPC-based addition,
multiplication, and comparison protocols, along with a theoretical analysis of their correctness and
privacy guarantees. Other nonlinear privacy-preserving protocols in Section and Section
can be constructed by invoking these three protocols, and thus their correctness and security can be
directly proven based on the aforementioned protocols.

Privacy-preserving addition. Suppose two participants, Alice and Bob, each possess secrets u
and v. By executing the addition protocol based on 2-out-of-2 arithmetic secret-sharing ((2, 2)-SS),
they can compute shares of the output w = u + v while preserving the privacy of inputs v and
v. Specifically, the addition protocol based on (2, 2)-SS consists of two phases: the secret sharing
phase and the computation phase.

In the secret sharing phase:

* Alice locally generates shares of her secret u, i.e., Shr(u) — ([u]o, [u]1), and sends [u]; to
Bob.
* Bob locally generates shares of his secret v, i.e., Shr(v) — ([v]o, [v]1), and sends [v]; to
Alice.
In the computation phase:

* Alice computes [w]g = [u]o + [v]o.

* Bob computes [w]; = [u]1 + [v]1.
Correctness Verification: [z]o+[z]1 = [u]o+[v]o+[u]1+[v]1 = ([u]o+[u]1)+([v]o+][v]1) = utv.
Privacy Guarantee: During computation, Alice and Bob each possess only one random share of

the secrets, ensuring that no information about the original secrets can be inferred.

Privacy-preserving multiplication. Suppose two participants, Alice and Bob, each possess se-
crets u and v. By executing the multiplication protocol based on 2-out-of-2 arithmetic secret-sharing
((2,2)-SS), they can compute shares of the output w = w + v while preserving the privacy of inputs
u and v. Specifically, the addition protocol based on (2,2)-SS consists of two phases: the secret
sharing phase and the computation phase.

In the secret sharing phase:

* Alice locally generates shares of her secret x, i.e., Shr(z) — ([z]o, [z]1), and sends [z]; to
Bob.

17

Under review as a conference paper at ICLR 2026

Bob locally generates shares of his secret y, i.e., Shr(y) — ([y]o, [y]1), and sends [y]; to
Alice.

* Alice possesses the first random shares of the Beaver triple (a, b, ¢), i.e., ([a]o, [b]o, [c]o)-

» Bob possesses the second random shares of the Beaver triple (a, b, ¢), i.e., ([a]1, [0]1, [c]1)-

* Alice computes [d]g = [z]o — [a]o and [e]op = [y]o — [D]o-
* Bob computes [d]; = [z]; — [a]1 and [e]; = [y]1 — [b]1-

In the communication phase:

* Alice sends [d]o and [e]o to Bob.
* Bob sends [d]; and [e]; to Alice.

In the computation phase:

* Alice reconstructs d = [d]o + [d]; =x —aand e = [e]o + [e]1 =y — .
* Bob reconstructs d and e similarly.

* Alice computes [z]o = [z]oe + d[y]o + [c]o-

* Bob computes [z]; = —de + [z]1e + d[y]1 + [c]1-

Correctness Verification:

[2]o + [2]1 = [z]oe + d[yo + [clo — de + [z]1e + d[y]1 + [c]x
= ([z]o + [z]1)e + ([ylo + [yl1)d — de + ¢
=z(y—b)+yl@—a)—(z—a)ly—0)+c
=zxy—xb+axy—ay—axy+ay+xzb—ab+c
=zy.

Privacy Guarantee: During computation, Alice and Bob possess only one random share each of a
and b. Since a and b are randomly generated and independent of the inputs and y, no information
about z or y is revealed.

Privacy-preserving comparison. Similarly, Alice holds secret « and Bob holds secret v, and the
comparison can be implemented as follows:

* Alice and Bob first generate the shares of their respective private inputs, a.k.a., [u] and [v],
as privacy-preserving addition.

* Two parties locally compute [w] = [u] — [v].

* Two parties jointly invoke the Arithmetic-to-Boolean conversion (Knott et al., [2021) to
convert [w] from Arithmetic sharing to Boolean sharing (z) = A2B([w]).

 Two parties locally extract the most significant bit of Boolean sharing (z) as (b) = (w) >
(= 1

* Finally, the additive shares of [u < v] can be derived by converting Boolean sharing (b)

to Arithmetic sharing [b] using Boolean-to-Arithmetic conversion protocol (Knott et al.)
2021).

Correctness & Privacy. Except for sharing the inputs, the computation phase consists of log, ¢ + 1
rounds of communication and transmits 3456 bits. The correctness is easy to follow, and the privacy
guarantee is inherent from well-established 2PC basic primitives.

6.3.2 PRIVACY-PRESERVING NON-LINEAR PROTOCOLS

Privacy-preserving maximum. The maximum of the n-element vector « is implemented by call-
ing log, n privacy-preserving comparisons using the tree reduction algorithm (Knott et al., [2021]).

> £ denotes shift £ bits to the right.

18

Under review as a conference paper at ICLR 2026

Privacy-preserving exponential. The exponential function is complex and usually implemented
using the repeated-squaring approximation method
= lim, oo (14 52) @)

which converts exponential calculations into addition and square operations. By fault, iterations are
set n = 8 in (Knott et al., 2021)).

Privacy-preserving reciprocal. Function reciprocal % is implemented by the Newton-Raphson
method, which converts reciprocal calculations into addition and multiplication operations. The
iterative formula is

Yn+1 = yn(2 - myn) (8)
The initial value of the iteration is

Yo = 3¢ % 4 0.003. ©)
The number of iterations is set to 10 in (Knott et al., [2021)) by default.

Privacy-preserving square root. +/x is approximated by the Newton-Raphson method in MPC,
which converts exponential calculations into addition and multiplication operations. The iterative
formula is

Yn+1 = %yn(S - myrzl) (10)
The initial value of the iteration is
yo = e~ 22(510-2) 4 (.198046875. (11)
The number of iterations is set to 3 in (Knott et al.| 2021)) by default.

6.4 PRIVACY-PRESERVING PROTOCOLS

6.4.1 PRIVACY-PRESERVING COSINE

We propose an efficient privacy-preserving cosine protocol Il.,sine by exploiting the periodicity
of the cosine function and trigonometric addition identity formulas. Here’s a detailed description
of the algorithm steps: In the offline phase, the protocol initiates by generating pseudo-random
values. Specifically, Sy and the trusted third party T jointly produce [t]o, [u]o, [v]o by evaluating a
pseudo-random function (PRF) with a specific key kg. Similarly, S; and T generate [t]; using a
different key k1. Then, the trusted third party T recover the actual value ¢ = [t]g + [t]1, calculates
[u]; = sin(t) —[u]o and [v]; = cos(t) —[v]o. This phase is crucial for preparing necessary correlated
randomness that will be used in the online phase.

In the online phase, the parties compute the [sin(x)] securely. First, each party S; computes [0]; =
[]; + [t]; (mod T), where T represents the periodicity of the trigonometric function, such as 20.
Then, through one round of communication, the parties reconstruct ¢ by exchanging [d] and [d];.
Subsequently, we get p = sin(d) and ¢ = cos(d). Finally, each party calculates [y]; = plu]; +
q[v];. This effectively leverages the precomputed correlated randomness with the current input [z]
to produce the [sin(z)] in a privacy-preserving manner. The Il..s;ne requires only one round of
communication during the online phase, with a communication cost of transmitting 2/ elements.

Correctness Verification:
[ylo + [yl =] + qlv

[u

o +pluli +qvh

]
J1) +q([v]o + [v]1)

I
w0
o
B
S
N
w0
28
B

~—
~
N
+
(@}
o}
w0
A
>,
N
Q
o}
w0
2
-
=

Privacy Guarantee: During the computation process, the server .S; only obtains the information of
[z];, [t];, [0];, and 0. Since 6 = x +t (mod 7) and t is independent of z, ¢ is also independent of
x. Therefore, S; cannot gain any information about the private input during execution.

19

(SR

N & B

Under review as a conference paper at ICLR 2026

Algorithm 1: Protocol for Privacy-preserving Cosine I1qsine

Input: For j € {0,1}, S; holds the shares [z];; Pseudo-Random Function (PRF), and key k;.
Output: For j € {0,1}, S; returns the shares [y];, where y = cos(x).

/x Offline Phase x*/

SO7T : [t}Oa [u]Ov [U]O &~ PRF(kO)

Sl,T : [th — PRF(kl)

T:t=1[t]o+ [tlh, [u]1 = sin(t) — [u]o, [v]1 = cos(t) — [v]o

/* Online Phase */

[0]; = [#]; + [t]; (mod T)

d =1[0]o+[6]1 // reconstruct § by 1 round of communication
p = sin(d), ¢ = cos(9)

[y]; = plul; + qlv];

6.4.2 PRIVACY-PRESERVING FEATURE ATTENTION

The Privacy-preserving RFA Protocol (IIzr 4) is designed to enable computation of RFA with pri-
vacy preservation. The algorithm involves two parties, Sy and S1, and a trusted third party 7, to
collaboratively compute the RFA while keeping the input data secure. In the offline phase, the pro-
tocol begins with the generation of pseudo-random values. Specifically, Sy and the trusted third
party T jointly produce [t]o, [u]o, [v]o by evaluating a PRF with a random seed 7, and also generate
matrix W using another random seed r. On the other hand, S; and the trusted third party 7" generate
[t]1 by evaluating the PRF with a different random seed r;, and use the same matrix W generated
earlier. Then, the trusted third party T recovers the actual value ¢ = [t]p + [t];. Based on ¢,T
computes [u]; = sin(t) — [u]o and [v]; = cos(t) — [v]o. This offline phase essentially prepares some
necessary random values and parameters, which will be used in the online phase. Although these
values are related to trigonometric functions, they are computed in a way that preserves privacy as
the actual values are hidden within the shares.

In the online phase, the algorithm focuses on computing the attention mechanism. First, for each
query g at time step ¢ and key k;, the corresponding feature mappings are computed. This is done
by taking the shares of ¢; and k; (i.e., [¢]+ and [k];) and applying a cosine-based transformation
denoted as I1.,sine, scaled by a factor of \/2/r. The scaling factor is important to ensure proper
normalization of the feature mappings.

Next, for each key-value pair (k;,v;), the share [z]; is computed as the element-wise product (de-
noted by ®) between the feature - mapped key [¢(k;)]; and the value v;. This effectively combines
the key’s feature representation with its associated value.

Then, the attention score [s]; is calculated as the dot product between the feature-mapped query
[#(q¢)]; and the feature-mapped key [¢(k;)];. This dot product represents the similarity between the
query and the key in the transformed feature space.

Finally, the output share [y]; is obtained by dividing [z]; by [s];. This step normalizes the combined
key-value representation by the attention score, resulting in the weighted value that will be used as
the output of the attention mechanism. The division here is crucial as it implements the attention-
weighting process, where the value is scaled according to how relevant the corresponding key is to
the query.

6.5 SECURITY ANALYSIS

SecP-Tuningadheres to a semi-honest (also known as honest-but-curious) assumption similar to the
works of [Li et al.| (2023) and [Dong et al.| (2023, where honest participants constitute the majority.
Under this assumption, the security of SecP-Tuningcan be formally proved against static semi-
honest adversaries denoted as A, which can potentially corrupt no more than one of the servers in
the hybrid model.

SecP-Tuningis constructed from the well-established sub-protocols of [Knott et al.| (2021)); Zheng
et al.| (2023), and we invoke these protocols in a black-box manner. Leveraging the concept of

20

Under review as a conference paper at ICLR 2026

Algorithm 2: Privacy-preserving RFA Protocol (ITgga)
Input: For j € {0,1}, S; holds the shares {[q];, [k];, [v] };

Output: For j € {0,1}, S returns the shares [y|;, where y = RF A([ql¢, [kl;, [v];).
/x Offline Phase */

SO7 [}03[] 7[”]0(7PRF(T.0);W<;PRF(T)

S1,T : [t]y + PRF(r1); W < PRF(r)

T:t=1[t]o+ [tlh, [u]1 = sin(t) — [u]o, [v]1 = cos(t) — [v]o
/% Online Phase */

[Qb(qt)} = \/EHﬂosine(W[qt]j>; [¢(k1)]] = \/chosine(W[ki}j)

[2]; = [¢(ki)]; ® vs
[s]; = [(ae)l; - [o(ki)];
[yl = [2];/1s];

composable security established by (Canetti| (2001), it is easy to see that the security of SecP-Tuningis
guaranteed in the sub-protocols hybrid model.

Table 8: Core and auxiliary hyper-parameters for Feedforward-only Tuning (FoT) and Random
Feature Attention (RFA).

Name Symbol Default Description

Batch size - 16 -

Optimizer - CMA-ES Derivative-free evolutionary strategy
(no backward propagation required).

Prompt length L 50 Number of continuous prompt tokens
(controls raw dimension D = L X
demb)-

Initial prompt Po NLI-pretrained Pretrained prompt (e.g., on MNLI) for
sentence-pair tasks.

Subspace dimension d 500 Dimension of the low-dimensional
search subspace; trade-off between cov-
erage and GFO efficiency.

Population size A 20 Number of CMA-ES offspring per gen-
eration (heuristic: 4 + 3log d).

Random projection A Uniform Projection matrix A € R”*? sampled

from a uniform distribution (found su-
perior to Gaussian).

Loss function L(+) Cross-Entropy Provides dense supervisory signal un-
der few-shot regime.

API call budget - 8000 Maximum number of model inference
calls (evaluation points).

Early stopping - 1000 Stop if dev accuracy shows no improve-
ment for 1000 evaluations.

Kernel type - Gaussian Shift-invariant kernel approximated by
random features.

Number of Random fea- D 128 Number of random features per head.

tures

Random feature vectors {w;} w; ~ N(0,1) Base Gaussian samples; drawn once

(fixed) for reproducibility.

6.6 HYPERPARAMETERS
6.6.1 HYPERPARAMETERS OF GRADIENT-BASED FINE-TUNING

For gradient-based fine-tuning methods, including SFT and gradient-based Prompt Tuning, we uti-
lized the standard Adam optimizer with a batch size of 16. Additionally, we explored a wider range
of learning rates and implemented an early stopping mechanism to mitigate overfitting. Specifi-
cally, for SFT, the learning rates were selected from the range [1e-6, 3e-6, 5e-6, le-5, 3e-5, Se-5,

21

Under review as a conference paper at ICLR 2026

le-4], with a maximum of 200 epochs and an early stopping patience of 30 steps, meaning training
would terminate if no improvement was observed on the validation set for 30 consecutive steps.
For gradient-based Prompt Tuning, the learning rates were chosen from the range [le-5, 3e-5, Se-
5, le-4, 3e-4, 5e-5, le-3], with a maximum of 1000 epochs and an early stopping patience of 50
steps, indicating that training would halt if no improvement was observed on the validation set for
50 consecutive steps.

6.6.2 HYPERPARAMETERS OF FEEDFORWARD-ONLY TUNING AND RANDOM FEATURE
ATTENTION

To ensure the reproducibility of the experimental results, SecP-Tuning adopted the same hyperpa-
rameter settings as those used by its forward propagation plugin and random feature attention mech-
anism plugin. The specific hyperparameter names, symbols, values, and descriptions are detailed in
Table 8.

22

	Introction
	Related Work
	Preliminaries
	Softmax-based Self-Attention & Random Feature Attention
	Gradient-Free Optimization
	2-out-of-2 Arithmetic Secret Sharing

	SecP-Tuning
	MPC-based Privacy-preserving Fine-tuning
	Privacy-preserving Forward-Only Tuning
	Privacy-preserving Random Feature Attention

	Experiments
	Setup
	Efficiency Comparison
	Performance Comparison
	Deployability Comparison
	Comparison of RFA and Self-Attention

	Conclusion
	The Use of Large Language Models
	More Results
	Additional Efficiency Results of SecP-Tuning
	Performance Comparison Across Different Mumber of Samples
	Performance Comparison Across Different Mumber of Samples
	Performance Comparison with Plaintext
	Performance on other types of LLMs

	Underlying MPC Protocols
	Privacy-Preserving Addition, Multiplication and Comparison Protocols
	Privacy-Preserving Non-Linear Protocols

	Privacy-preserving Protocols
	Privacy-preserving Cosine
	Privacy-preserving Feature Attention

	Security Analysis
	Hyperparameters
	Hyperparameters of Gradient-based Fine-Tuning
	Hyperparameters of Feedforward-only Tuning and Random Feature Attention

