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Abstract

Recent advances in Multimodal Large Lan-001
guage Models (MLLMs) have enhanced their002
versatility as they integrate a growing number003
of modalities. Considering the heavy cost of004
training MLLMs, it is necessary to reuse the005
existing ones and further extend them to more006
modalities through Modality-incremental Con-007
tinual Learning (MCL). However, this often008
comes with a performance degradation in the009
previously learned modalities. In this work, we010
revisit the MCL and investigate a more severe011
issue it faces in contrast to traditional continual012
learning, that its degradation comes not only013
from catastrophic forgetting but also from the014
misalignment between the modality-agnostic015
and modality-specific components. To address016
this problem, we propose an elegantly simple017
MCL paradigm called "MErge then ReAlign"018
(MERA). Our method avoids introducing heavy019
training overhead or modifying the model ar-020
chitecture, hence is easy to deploy and highly021
reusable in the MLLM community. Extensive022
experiments demonstrate that, despite the sim-023
plicity of MERA, it shows impressive perfor-024
mance, holding up to a 99.84% Backward Rel-025
ative Gain when extending to four modalities,026
achieving a nearly lossless MCL performance.027

1 Introduction028

With the recent trend of developing general-029

purpose any-modality Multimodal Large Language030

Models (MLLMs)(Panagopoulou et al., 2023; Chen031

et al., 2023a; Wu et al., 2024; Han et al., 2024; Zhan032

et al., 2024), MLLMs are evolving towards integrat-033

ing more modalities. The typical MLLM architec-034

ture includes modality-specific encoders, modality-035

specific connectors, and a shared Large Language036

Model (LLM). A standard process of training037

MLLMs involves aligning modality-specific com-038

ponents with LLM through modality-text paired039

data and then fine-tuning on modality-text instruc-040

tion data. Such architecture and training strategy041

have been successfully applied to a wide range 042

of modalities, i.e., image(Liu et al., 2024b,a), 043

video(Lin et al., 2024a; Maaz et al., 2024), audio(Li 044

et al., 2024; Wu et al., 2024), point cloud(Chen 045

et al., 2024), etc, equipping MLLMs with the abil- 046

ity to understand a growing number of modalities. 047

Existing methods(Wu et al., 2024; Zhan et al., 048

2024; Panagopoulou et al., 2023; Fu et al., 2024) 049

typically employ a joint training strategy, where the 050

MLLM is simultaneously trained on datasets of all 051

predefined modalities. However, it is challenging 052

to extend an existing MLLM to new modalities 053

as it requires another round of joint training on 054

the datasets of previous modalities and the new 055

modalities. 056

Accordingly, Continual Learning (CL) is pro- 057

posed to learn from a stream of data. When incre- 058

mentally learning on the new data, a phenomenon 059

called catastrophic forgetting(McCloskey and Co- 060

hen, 1989; Goodfellow et al., 2014) often occurs, 061

i.e., the model forgets the previously learned knowl- 062

edge. To this end, many CL methods(Kirkpatrick 063

et al., 2017; Yu et al., 2024b; Scialom et al., 2022; 064

Wang et al., 2024) have been proposed to allevi- 065

ate catastrophic forgetting. Moreover, Modality- 066

incremental Continual Learning (MCL)(Yu et al., 067

2024a) focuses on the particular scenario of in- 068

crementally extending MLLMs to new modalities. 069

However, it is worth noting that: the performance 070

degradation encountered in MCL comes not only 071

from forgetting but also from the misalignment 072

between modality-agnostic and modality-specific 073

components. 074

To address both forgetting and misalignment, 075

we propose a simple yet effective two-stage MCL 076

paradigm called "MErge then ReAlign" (MERA). 077

The first stage of MERA aims at addressing the 078

forgetting problem. Inspired by the great success 079

of model merging technique in multi-task learn- 080

ing(Yadav et al., 2024a; Yu et al., 2024c; Yang 081

et al., 2024b,a), we introduce model merging to 082
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our MCL framework for the purpose of mitigating083

forgetting. In this work, we focus on the simplest084

model merging method, i.e., weight averaging, and085

revise it into an MCL form, aiming to provide a086

basic framework. We achieve this by associating its087

merging coefficients with the progress of CL stages088

and only merging the modality-agnostic compo-089

nents.090

The second stage of MERA aims at addressing091

the misalignment problem. We leverage a small092

subset of data from each learned modality to realign093

the modality encoders with the LLM backbone. In094

this stage, modality encoders and LLM backbone095

are both frozen, only the connectors are updated096

to enable an efficient realignment between them.097

Further experiments show that the realigning stage098

can significantly narrow the gap between the in-099

crementally learned MLLM and the individually100

trained expert MLLMs on each modality.101

In summary, the contributions of this paper are102

threefold:103

• We revisit the Modality-incremental Contin-104

ual Learning (MCL) and investigate a more105

severe issue it faces in contrast to traditional106

continual learning: its performance degrada-107

tion comes not only from forgetting but also108

from misalignment.109

• We propose "MErge then ReAlign" (MERA),110

an elegantly simple and effective two-stage111

MCL paradigm, to address both forgetting112

and misalignment.113

• Extensive experiments demonstrate that our114

MERA significantly outperforms other rep-115

resentative continual learning methods, and116

even achieves a nearly lossless MCL perfor-117

mance.118

2 Related Work119

2.1 Multimodal Large Language Models120

Recent advances(Panagopoulou et al., 2023; Chen121

et al., 2023a; Wu et al., 2024; Han et al., 2024;122

Zhan et al., 2024) in Multimodal Large Language123

Models (MLLMs) have extended Large Language124

Models (LLMs) to perceive multimodal inputs such125

as image, video, audio, point cloud, etc. Early at-126

tempts like Flamingo(Alayrac et al., 2022) integrate127

vision encoders with LLMs via cross-attention to128

perform image captioning and visual question an-129

swering (VQA) tasks. Subsequent methods like130

InstructBLIP(Dai et al., 2023) leverage instruction 131

tuning to build a general-purpose multimodal sys- 132

tem. These attempts lead to the rapid development 133

of MLLMs. 134

Among these MLLMs, the most influential one 135

is LLaVA(Liu et al., 2024b,a), which utilizes a sim- 136

ple MLP connector to project visual information en- 137

coded by the pre-trained vision encoder into the lan- 138

guage embedding space while leveraging visual in- 139

struction tuning. Due to its simplicity and effective- 140

ness, LLaVA-like architecture is widely adopted 141

by a wide range of subsequent MLLMs(Lin et al., 142

2024b,a; Maaz et al., 2024; Wu et al., 2024; Chen 143

et al., 2024). In this paper, we assume that the 144

MLLM has a LLaVA-like architecture that includes 145

modality-specific encoders and connectors, and a 146

shared modality-agnostic LLM. 147

2.2 Continual Learning 148

Extending existing MLLMs to new modalities can 149

be viewed as a Continual Learning (CL) prob- 150

lem. CL approaches allow models to continually 151

acquire new knowledge with minor forgetting of 152

previously learned knowledge. Existing CL meth- 153

ods mainly fall into the following three categories: 154

Regularization-based methods(Kirkpatrick et al., 155

2017; Huszár, 2017; Schwarz et al., 2018) seek to 156

protect the parameters that store important knowl- 157

edge. However, storing the importance matrix re- 158

quires extra memory with the same scale of the 159

trainable parameters at training time. Architecture- 160

based methods(Yu et al., 2024a,b; Zadouri et al., 161

2024) add task-specific parameters to the base 162

model for each new task. The drawbacks of this cat- 163

egory are that it requires modifications of the model 164

architecture, harming its reusability, and the model 165

scale often grows linearly as tasks increase, intro- 166

ducing extra memory overhead. Replay-based 167

methods(Scialom et al., 2022; Wang et al., 2024) 168

leverage a small subset of previous data and replay 169

them while learning on new data. A drawback of 170

this category is that it requires access to partial data 171

from the previous tasks or distributions. However, 172

this drawback is relatively minor in real applica- 173

tions as the replay data are often accessible. 174

Table 1 summarizes the characteristics of dif- 175

ferent CL categories. Among all the CL methods, 176

replay-based methods are the simplest and most 177

widely used for LLMs since they are extra-train- 178

memory-free and arch-modification-free. In this 179

work, we propose a simple MCL paradigm that has 180

the same advantages as replay-based methods. 181
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Extra-Train-Memory-Free Arch-Modification-Free Replay-Data-Free
Regularization-Based ✘ ✔ ✔

Architecture-Based • ✘ ✔

Replay-Based ✔ ✔ ✘

MERA (Ours) ✔ ✔ ✘

Table 1: Characteristics of different CL categories and our proposed MERA. Extra-train-memory-free: whether
introduces extra GPU memory overhead at training time. Arch-modification-free: whether requires modifying the
architecture of the model or adding auxiliary components. Replay-data-free: whether requires access to partial data
from the previous tasks or distributions. • denotes that some methods of this category don’t satisfy the property. ✘
denotes that this drawback is relatively minor in real applications.

2.3 Model Merging182

Model merging is an emerging technique often183

used for multi-task learning(Yadav et al., 2024a;184

Yu et al., 2024c; Yang et al., 2024b,a). It aims to185

combine the strengths of multiple isomorphic mod-186

els into one unified model. The simplest model187

merging method is weight averaging(Utans, 1996),188

where weights from each model are averaged to189

form the merged model. Model merging is based190

on the assumption that the models being merged191

lie in the same flat loss basin(Neyshabur et al.,192

2020), hence their interpolations also have low193

losses. Aside from its applications in multi-task194

learning, model merging can be naturally leveraged195

to reduce forgetting(Marczak et al., 2024).196

3 Analysis of Degradations in MCL197

Modality-incremental Continual Learning (MCL)198

is a special scenario of CL, where models incremen-199

tally learn on the data from new modalities. The200

first attempt of MCL is (Yu et al., 2024a). How-201

ever, we point out that the MCL faces a more severe202

problem. In contrast to traditional CL scenarios,203

where the degradation comes solely from the forget-204

ting of old knowledge, the degradation encountered205

in MCL comes from two aspects: forgetting and206

misalignment.207

Forgetting: the modality-agnostic components208

(the LLM backbone for MLLM) forget the knowl-209

edge of old modalities.210

Misalignment: the modality-agnostic compo-211

nents are misaligned with the modality-specific212

ones. When adapting to a new modality, the LLM213

backbone and the newly added modality encoder214

and connector are updated while the old ones are215

kept frozen. Therefore, the LLM backbone in-216

evitably drifts away from the original multimodal217

feature space of old modality encoders (even the218

feature space of the new modality encoder, if its219

connector is not synchronously updated with LLM 220

backbone). This process results in misalignment, 221

further worsening the degradation. A potential 222

exception to misalignment is when replay-based 223

methods are applied since the old modality-specific 224

components are also updated synchronously. How- 225

ever, empirical results in Section 5.5 suggest that 226

replay-based methods still suffer from a certain de- 227

gree of misalignment and it can be compensated by 228

our proposed realigning stage. 229

Due to the existence of misalignment, MCL 230

problem requires special treatments compared to 231

traditional CL problems. 232

4 Method 233

First, we define the Modality-incremental Contin- 234

ual Learning (MCL) problem as follows. Given a 235

sequence of m modalities {M1,M2, . . . ,Mm} and 236

their corresponding datasets {D1, D2, . . . , Dm}, 237

the model sequentially learns on each Di with the 238

permission to access a r% size subset of previ- 239

ous data as replay data1 Ri ← sample r% data 240

from {D1, D2, . . . , Di}. We denote the model 241

after the i-th incremental training stage as θi = 242

{θagni , θspeci }, where θagni , θspeci denote modality- 243

agnostic and modality-specific components, respec- 244

tively. For MLLM, the modality-agnostic compo- 245

nent is the LLM backbone, and modality-specific 246

components include encoders and connectors of 247

each modality. 248

To mitigate performance degradations in the 249

previously learned modalities, we propose a two- 250

stage MCL paradigm called "MErge then ReAlign" 251

(MERA). In each stage of MCL, MERA executes 252

1Different from the definition of replay data in the
context of replay-based methods, where Ri is sampled
from {D1, D2, . . . , Di−1}. In this paper, if not ex-
plained, Ri for replay-based methods is sampled from
{D1, D2, . . . , Di−1} while Ri for our realigning stage is sam-
pled from {D1, D2, . . . , Di}.
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Stage1: Merging

Standard training CMA merging

Stage2: Realigning

Next

MCL stage
LLM

backbone

Connector

Encoder

Forgetting

Training on replay data

Figure 1: Pipeline of the proposed MERA. The procedures in gray boxes involve training. and represent the
frozen and trainable modules, respectively.

the following two stages: merging and realigning,253

to address the forgetting and misalignment respec-254

tively. The overall pipeline of MERA is illustrated255

in Figure 1.256

4.1 Stage 1: Merging257

Motivation. Model merging has achieved great258

success in the field of multi-task learning for its259

superior capability of combining the strengths of260

multiple models into one. Moreover, Yadav et al.261

(2024b) finds that model merging is more effec-262

tive with larger models. Therefore, applying model263

merging to large-scale models, such as MLLMs,264

is inherently beneficial. Inspired by these, we in-265

troduce model merging to our MCL framework to266

mitigate forgetting.267

However, model merging methods generally can268

not be directly applied to continual learning. In this269

work, we only focus on the simplest model merging270

method, i.e., weight averaging, and revise it into a271

CL form to provide a basic framework. To adapt272

weight averaging to CL, we associate its merging273

coefficients with the progress of CL stages, forming274

a Cumulative Moving Average (CMA) merging. At275

the i-th training stage, the CMA merged model is276

calculated by:277

CMA(θi−1, θi; i) =
i− 1

i
θi−1 +

1

i
θi278

To further adapt to the MCL framework, we only279

merge the modality-agnostic components (the LLM280

backbone) and ensemble the modality-specific com-281

ponents (encoders and connectors of each modal-282

ity):283

CMA∗(θi−1, θi; i) = {CMA(θagni−1 , θ
agn
i ; i),

θspeci−1 , θ
spec
i }

284

To perform MCL, when starting from θi−1 to285

incrementally learn a new modality Mi, firstly we286

directly train the model on Di to get θi,vanilla.287

Note that the training process here is the same288

as the standard way of training an MLLM on a 289

single modality, except that the initial weights 290

of the model are inherited from θi−1. Then sec- 291

ondly, we apply CMA merging to θi,vanilla and 292

θi−1 to derive the merged model θi,merged = 293

CMA∗(θi−1, θi,vanilla; i) with integrated knowl- 294

edge of both new modality and old modalities. 295

Discussion. Different from other CL methods, 296

the LLM backbone is asynchronously updated with 297

the new connector in the merging stage. To be 298

specific, in the standard MLLM training step, they 299

are synchronously updated indeed, however, in the 300

CMA merging step, only the LLM backbone is 301

updated, resulting in an additional misalignment 302

between them2. 303

4.2 Stage 2: Realigning 304

To address the misalignment issue, we simply lever- 305

age a small replay dataset Ri ← sample r% data 306

from {D1, D2, . . . , Di} to further fine-tune all the 307

connectors of θi,merged to obtain the final θi. This 308

process realigns the encoders of each modality with 309

the LLM backbone. The training objective for re- 310

aligning is unchanged from the original MLLM 311

training objective, i.e., the auto-regressive loss. 312

The realigning stage is similar to replay-based 313

CL methods(Scialom et al., 2022; Wang et al., 314

2024) in form as they both leverage a replay dataset, 315

however, they are essentially different. First, replay 316

methods train on the joint dataset of Di and Ri, 317

while our realigning stage trains solely on Ri. Sec- 318

ond, the purpose of replay is to review the previ- 319

ous knowledge, while the motivation of realigning 320

stage is to align modality spaces. Third, replay 321

methods update all the parameters to consolidate 322

old knowledge, in contrast, keeping the LLM back- 323

bone frozen is crucial in the realigning stage, other- 324

wise the LLM would overfit on replay data. 325

2This is the reason we sample Ri from {D1, D2, . . . , Di}
rather than {D1, D2, . . . , Di−1} in our realigning stage.
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5 Experiments326

5.1 Experimental Setup327

We build our MCL experiments on four modalities:328

image, video, audio, and point cloud, with two329

different training orders. Based on the prevalence330

of different modalities, we determine the two orders331

as follows. Sequential Order: image→ video→332

audio→ point cloud. Reverse Order: point cloud333

→ audio → video → image. On top of this, the334

adopted datasets, metrics, models, and baselines335

are listed as follows.336

Datasets. For each modality Mj , we leverage a337

dataset of Captioning (Cap) task and a dataset of338

Question Answering (QA) task to form the joint339

dataset Dj = {Dj,Cap, Dj,QA}. The Cap and340

QA datasets for each modality are listed respec-341

tively. For image modality, we use MSCOCO-342

2014(Lin et al., 2014) and OK-VQA(Marino et al.,343

2019). For video modality, we use MSVD(Chen344

and Dolan, 2011) and MSVD-QA(Xu et al., 2017).345

For audio modality, we use AudioCaps(Kim et al.,346

2019) and Clotho-AQA(Lipping et al., 2022).347

For point cloud modality, we use a subset of348

Cap3D(Luo et al., 2024) and a subset of Cap3D-349

QA(Panagopoulou et al., 2023). More details of350

these datasets are in Appendix A.351

Evaluation Metrics. First, we leverage Relative352

Gain(Scialom et al., 2022; Wang et al., 2024) as353

a normalized metric across different tasks. We354

train expert MLLMs individually on each single355

modality Mj and test with their respective holdout356

data, taking their scores on the k-th dataset Dj,k357

as upper bound Ssup
j,k . In the incremental stage i,358

the Relative Gain of modality Mi with its dataset359

Dj = {Dj,k}Kk=1 is calculated by:360

Relative Gainij =
1

K

K∑
k=1

Si
j,k

Ssup
j,k

361

where Si
j,k is the score on the test set of Dj,k in the362

stage i. Here, we utilize CIDEr score(Vedantam363

et al., 2015) and prediction accuracy (Acc) for Cap364

and QA tasks respectively to calculate Ssup
j,k and365

Si
j,k. To evaluate the performance degradations of366

the previously learned modalities, we calculate the367

Backward Relative Gain in the stage i as:368

Bw Relative Gaini =
1

i− 1

i−1∑
j=1

Relative Gainij369

To measure the plasticity, i.e., the ability to adapt to370

new knowledge, we calculate the Forward Relative371

Gain in the stage i as: 372

Fw Relative Gaini = Relative Gainii 373

Model and Training Details. We leverage the 374

mainstream MLLM architecture, i.e., LLaVA-like 375

architecture with the Llama-3-8B-Instruct (Dubey 376

et al., 2024) as its LLM backbone. The selections 377

of modality encoders and connectors are detailed 378

in Appendix B. Trainings that involve updating 379

the LLM backbone utilize LoRA(Hu et al., 2022) 380

for parameter-efficient fine-tuning. The training 381

process in our merging stage is the same as the 382

regular MLLM training, i.e., in the first step, only 383

the connector is updated with Cap datasets, then in 384

the second step, the connector and the LLM back- 385

bone are updated with all the task-related datasets 386

(the combination of Cap and QA datasets in our 387

case). In our realigning stage, the replay datasets 388

are randomly sampled from the joint datasets of 389

Cap and QA tasks. For each training process, the 390

hyperparameters are listed in Appendix B. 391

Baselines. In our experiments, we compare our 392

MERA with non-CL fine-tuning and the represen- 393

tative methods of each CL category: Fine-Tuning: 394

directly train MLLMs sequentially on each modal- 395

ity without applying any CL method. Replay: the 396

vanilla replay-based CL method. During training 397

on a new task, the model is updated with both 398

samples from the current task and a set of ran- 399

domly sampled replay data from previous tasks, 400

to review knowledge of earlier tasks while learn- 401

ing the new one. EWC(Kirkpatrick et al., 2017): 402

the most representative regularization-based CL 403

method. EWC mitigates forgetting by restricting 404

the updates of important weights during training 405

on new tasks. It uses the Fisher information matrix 406

to measure the importance of each weight. Path- 407

Weave(Yu et al., 2024a): an architecture-based CL 408

method, also the first MCL method for MLLMs. 409

PathWeave uses an adapter-in-adapter mechanism 410

to memorize and extract knowledge from histori- 411

cal modalities to enhance the learning of the cur- 412

rent modality. PathWeave is originally built on 413

X-InstructBLIP(Panagopoulou et al., 2023). For 414

a fair comparison, we implement PathWeave for 415

our adopted MLLM architecture3. Implementation 416

details of each baseline method are in Appendix D. 417

3In their original settings, PathWeave removes the newly
added modules when testing the former modalities. However,
this results in the inability to perform cross-modality tasks,
which are common in real applications. Therefore, we do not
remove them for a fair comparison.
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Figure 2: Progressive Backward Relative Gain in modality-incremental continual learning. For each stage i, we plot
the average score of corresponding Backward Relative Gain with two different training orders. We set Backward
Relative Gain to 100% for the 1-st stage, denoting the initial performance without degradation.

Method Sequential Reverse
Mean Std Mean Std

Fine-Tuning 59.76 27.23 48.96 35.70
Replay (1%) 66.09 25.86 43.95 39.03
Replay (10%) 77.52 16.32 51.90 36.34
EWC 74.93 17.14 68.01 21.54
PathWeave 86.85 12.17 80.09 13.31
MERA (1%) 97.90 6.02 84.42 12.93
MERA (10%) 101.00 3.90 93.42 6.25

Table 2: The mean and standard deviation of Backward
Relative Gains in all the training stages. Results are
reported on different training orders. The best results
are in bold, while the second-best are underlined.

5.2 Main Results418

We conduct experiments under our MCL setting419

with both sequential and reverse orders. For Re-420

play and our MERA, results using r%, r = {1, 10}421

replay data are reported, denoted by Replay (r%)422

and MERA (r%) respectively. The progressive423

Backward Relative Gains averaged from different424

training orders are plotted in Figure 2. It is ob-425

served that our MERA demonstrates an impressive426

capability of mitigating performance degradation427

with consistent and promising Backward Relative428

Gains. When extending to all the four modalities,429

MERA (10%) holds up to a 99.84% Backward Rel-430

ative Gain, indicating that MERA can achieve a431

nearly lossless MCL performance, with at least432

20.37% absolute improvements of Backward Rela-433

tive Gain compared with other baselines. Notably,434

when only leveraging 1% replay data, MERA (1%)435

can still achieve at least 15.94% absolute improve-436

ments over other baselines. 437

Further, we calculated the mean and standard de- 438

viation of Backward Relative Gains in all training 439

stages for each method, in different training orders. 440

Table 2 shows that our MERA (10%) achieves the 441

highest mean and lowest standard deviation in both 442

training orders, indicating its superior performance 443

and high stability. Notably, in sequential order, 444

MERA (10%) performs even better than lossless 445

MCL, with an over 100% average Backward Rel- 446

ative Gain, also at least 14.15% absolute improve- 447

ments of average Backward Relative Gain over 448

other baselines. In reverse order, MERA (10%) 449

also achieves at least 13.33% absolute improve- 450

ments. When with only 1% replay data, MERA 451

(1%) still achieves at least 11.05% and 4.33% abso- 452

lute improvements in sequential and reverse orders 453

respectively. 454

From Figure 2 and its raw data shown in Ap- 455

pendix E, we also observe a faint phenomenon of 456

Positive Backward Transfer(Lin et al., 2022) that 457

learning new knowledge improves the performance 458

on previously learned tasks. For most CL meth- 459

ods and non-CL fine-tuning, the Backward Rela- 460

tive Gain comes to a low level when incrementally 461

learning the first modality (corresponding to the 462

2-nd training stage), but starts to stabilize or even 463

increase when incrementally learning more modal- 464

ities. 465

5.3 Efficiency Comparisons 466

We further compare the efficiency of different base- 467

lines and our MERA, as shown in Table 3. It is ob- 468

served that our MERA can achieve optimal results 469
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Method Training Inference
Peak Memory Time-Consuming Peak Memory Lantency per Token

Fine-Tuning 37.43 GB 53 h 17.71 GB 34 ms
Replay (1%) 37.43 GB 54 h 17.71 GB 34 ms
Replay (10%) 37.43 GB 59 h 17.71 GB 34 ms
EWC 38.73 GB 54 h 17.71 GB 34 ms
PathWeave 40.08 GB 81 h 20.32 GB 111 ms
MERA (1%) 37.43 GB 54 h 17.71 GB 34 ms
MERA (10%) 37.43 GB 61 h 17.71 GB 34 ms

Table 3: Training and inference overheads of different methods. The peak memories during training and inference
are measured with batch sizes of 4 and 1 respectively. The time-consuming refers to the total GPU hours for
continually learning the four modalities. All metrics are measured on a single NVIDIA RTX A6000 48G. The
non-optimal results are colored in red.

Method Sequential Reverse
Mean Std Mean Std

Fine-Tuning 59.76 27.23 48.96 35.70
+Merging 90.29 7.42 70.00 30.87
+Realigning 87.92 12.41 71.90 24.52
MERA 101.00 3.90 93.42 6.25

Table 4: Ablation study of different components in
MERA. The realigning stage uses 10% replay data.
The mean and standard deviation of Backward Relative
Gains in all the training stages are reported on different
training orders. The best results are in bold.

except that MERA (1%) and MERA (10%) intro-470

duce 2% and 15% extra training time-consuming471

respectively. However, we believe its trade-off be-472

tween training time-consuming and performance473

is worthwhile, considering the impressive perfor-474

mance of MERA. In our experiments, EWC and475

PathWeave introduce marginal extra training mem-476

ory overhead, as we employ parameter-efficient477

fine-tuning. However, for larger LoRA ranks478

or even full model fine-tuning, their extra train-479

ing memory consumptions would be substantial,480

as they necessitate storing additional parameters481

whose sizes increase linearly with the trainable pa-482

rameters.483

5.4 Ablation Study484

We conduct ablation studies to investigate the effec-485

tiveness of each component in MERA. Results are486

shown in Table 4. Firstly, from Table 4 and Table 2,487

it is observed that the merging stage alone can al-488

ready beat many other baselines, achieving the best489

and second-best performances among baselines in490

sequential and reverse orders respectively. Sec-491

Method Sequential Reverse
Mean Std Mean Std

Fine-Tuning 59.76 27.23 48.96 35.70
+Realigning +28.16 -14.83 +22.93 -11.17
Replay (1%) 66.09 25.86 43.95 39.03
+Realigning +20.64 -9.75 +24.35 -8.36
Replay (10%) 77.52 16.32 51.90 36.34
+Realigning +14.21 -6.67 +23.71 -11.07
EWC 74.93 17.14 68.01 21.54
+Realigning +19.54 -6.87 +23.02 -13.25
PathWeave 86.85 12.17 80.09 13.31
+Realigning +6.22 -0.28 +2.40 -1.53
Merging 90.29 7.42 70.00 30.87
+Realigning +10.71 -3.52 +23.42 -24.63

Table 5: Applying realigning to different CL or non-CL
methods can further improve their Backward Relative
Gain and stability. The realigning stage uses 10% replay
data. The increased mean indicates better performance,
while the decreased standard deviation indicates better
stability. Improvements are colored in green.

ondly, the realigning stage alone can also achieve 492

performance improvements by addressing the mis- 493

alignment issue. Combining both the merging and 494

realigning stages, MERA further narrows the gap 495

between the incrementally learned models and the 496

individually trained experts on each modality, even, 497

surpassing the individually trained experts in se- 498

quential training order with over 100% Backward 499

Relative Gain. 500

5.5 Misalignment Is Common in MCL 501

Since the realigning stage achieves great success 502

on top of our proposed merging stage, we further 503

ask another question: does realigning benefit other 504

CL methods, or is misalignment a common phe- 505

nomenon in MCL? To examine this, we perform 506
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Figure 3: Progressive Forward Relative Gain in modality-incremental continual learning. For each stage i, we
plot the average score of corresponding Forward Relative Gain with two different training orders. We set Forward
Relative Gain to 100% for the 1-st stage, denoting the initial lossless plasticity.

the realigning stage at the end of every training507

stage for different CL or non-CL methods to ob-508

serve whether there are performance improvements.509

Table 5 shows that the additional realigning stage510

brings substantial performance improvements and511

increased stability for different CL or non-CL meth-512

ods. Based on this observation, we can conclude513

that misalignment is a common phenomenon in514

MCL, and can be compensated by our proposed515

realigning stage.516

5.6 Plasticity Analysis517

Aside from alleviating performance degradation,518

the capability to adapt to new knowledge, i.e., plas-519

ticity, is also an important aspect. We use Forward520

Relative Gain as the metric to evaluate it. The521

progressive Forward Relative Gains averaged from522

different training orders are plotted in Figure 3.523

It is observed that the most elastic CL methods524

are EWC and PathWeave, while our MERA (10%)525

demonstrates comparable plasticity.526

Notably, from Figure 3, we observe a strong phe-527

nomenon of Positive Forward Transfer(Ke et al.,528

2021) that the knowledge or skills acquired from529

earlier tasks improve the learning efficiency of new530

tasks. The Positive Forward Transfer emerges be-531

fore the 4-th training stage, on EWC, PathWeave,532

and MERA. This phenomenon is also reported by533

other MCL literature(Yu et al., 2024a). In contrast534

to Positive Forward Transfer, there is a gradual535

plasticity loss(Dohare et al., 2024, 2023) as the536

model attempts to retain more knowledge. This537

explains the decreases in Forward Relative Gain538

across different CL methods in the 4-th stage, as539

the plasticity loss comes to a dominant position. 540

6 Future Work 541

This work is one of the early attempts of MCL, 542

mainly focusing on designing effective methods 543

and addressing the misalignment issue. However, 544

our extensive experiments suggest that there are 545

many other interesting aspects of MCL that war- 546

rant attention. In Section 5.2 and Section 5.6, we 547

observe the phenomenons of Positive Backward 548

Transfer and Positive Forward Transfer, respec- 549

tively. This could be related to the complex cross- 550

modal interaction in multimodal learning, urging 551

for further research on the mechanisms of modal- 552

ity interaction and methods that boost a positive 553

modality interaction, in the context of MCL. 554

7 Conclusion 555

In this paper, we mainly focus on designing effec- 556

tive methods for Modality-incremental Continual 557

Learning (MCL). First, we revisit MCL and inves- 558

tigate a more severe issue it faces in contrast to 559

traditional continual learning that its performance 560

degradation comes not only from forgetting but also 561

from misalignment. To address both the forgetting 562

and misalignment, we propose MERA, a simple yet 563

effective MCL paradigm. Extensive experiments 564

demonstrate that MERA significantly outperforms 565

the baselines, and even achieves a nearly lossless 566

MCL performance. Further, we observe a sign of 567

complex cross-modal interaction in MCL, provid- 568

ing a direction for future work. 569
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Limitations570

Our work is restricted in the following aspects.571

First, our experiments are limited to four commonly572

used modalities due to the lack of resources for573

other less-studied modalities. Second, our exper-574

iments are limited to two types of tasks for each575

modality due to the lack of general-purpose and576

diverse instruction datasets and their corresponding577

benchmarks for some modalities, i.e., audio and578

point cloud. Third, our method is limited to any-to-579

text MLLMs while there is now a trend of explor-580

ing any-to-any MLLMs. However, the main idea581

of MERA is generic to any-to-any MLLMs since582

their architecture topologies are similar. Fourth,583

our work only explores the simplest model merging584

method in the context of MCL, aiming to provide585

a universal framework, leaving the adaptation of586

other model merging methods to MCL for future587

work.588
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Appendix846

A Dataset Details847

Table 6 details the statistics of each dataset. Some848

datasets are filtered from their original ones:849

• MSCOCO-2014(Lin et al., 2014): Each image850

has multiple captions, we only use its first851

caption to form the training set.852

• Clotho-AQA(Lipping et al., 2022): Each sam-853

ple is annotated with a confidence level, we854

only use the samples whose confidence levels855

are "yes" to form the training set and test set.856

• Cap3D(Luo et al., 2024): Since the original857

dataset is huge in scale, we filter out the sam-858

ples whose caption is longer than 100 letters.859

Then, we randomly sample a 50K subset as860

the training set.861

• Cap3D-QA(Panagopoulou et al., 2023): Since862

the original dataset is huge in scale, we ran-863

domly sample a 30K subset as the training864

set.865

For each dataset, we use a randomly sampled 1K866

subset of its holdout test set as the final test set, ex-867

cept for the MSVD(Chen and Dolan, 2011), since868

the size of its original test set is less than 1K.869

B Implementation Details870

We build our experimental codebase on top of871

LLaVA(Liu et al., 2024b,a) and NExT-GPT(Wu872

et al., 2024). We detail the modality-specific com-873

ponents of each modality as follows:874

• Image: We use CLIP-ViT-L-336px(Openai,875

2021) as the pre-trained image encoder, a ran-876

domly initialized MLP as the connector.877

• Video: We use CLIP-ViT-L-336px(Openai,878

2021) as the pre-trained video encoder, a ran-879

domly initialized MLP as the connector. We880

uniformly sample 4 frames from a video as in-881

put frames. Then each frame is encoded by the882

video encoder separately. The output feature883

frames are downsampled by 2x using bilinear884

pooling before sending into the connector to885

improve efficiency.886

• Audio: We use BEATsiter3+(AS2M)(Chen887

et al., 2023b) as the pre-trained audio encoder,888

a Q-Former(Li et al., 2023) initialized from889

#Training Set #Test Set License
MSCOCO-2014* 82K 1K CC-BY 4.0

OK-VQA 26K 1K CC-BY 4.0
MSVD 48K 670 -

MSVD-QA 30K 1K -
AudioCaps 44K 1K -

Clotho-AQA* 15K 1K MIT License
Cap3D* 50K 1K ODC-BY 1.0

Cap3D-QA* 30K 1K -

Table 6: Statistics of the datasets. Datasets marked with
* are filtered from their original ones.

the pre-trained bert-base-uncased(Kenton and 890

Toutanova, 2019) as the connector. The num- 891

ber of query tokens is set to 32. 892

• Point Cloud: We use Point-BERT-v1.2(Xu 893

et al., 2024) as the pre-trained point cloud 894

encoder, a randomly initialized MLP as the 895

connector. 896

We set the hyperparameters mainly following pre- 897

vious worksLiu et al., 2024b,a, as listed in Table 7. 898

For training that involves updating the LLM back- 899

bone, we utilize parameter-efficient fine-tuning 900

with LoRA(Hu et al., 2022) applied across all lin- 901

ear modules within the LLM, setting the LoRA 902

rank to 128 and the alpha parameter to 128. All 903

the experiments are conducted on a single NVIDIA 904

RTX A6000 48G with FP16. 905

C Evaluation Details 906

For the calculation of CIDEr scores(Vedantam 907

et al., 2015), we utilized an open-sourced library 908

CaptionMetrics(wangleihitcs, 2019). For the calcu- 909

lation of prediction accuracy, we leverage a GPT- 910

based open-ended QA evaluation with GPT-4o mini 911

as the judge model. The GPT is prompted to 912

judge whether the generated prediction semanti- 913

cally matches the ground truth answer. The prompt 914

template is shown in Table 8. All the reported 915

experimental results are from single runs. 916

D Implementation of Baselines 917

The implementation details of each CL baseline are 918

listed as follows: 919

• Replay leverage a replay dataset Ri ← sam- 920

ple r% data from {D1, D2, . . . , Di−1} when 921

training on a new modality Mi. It can be seen 922

as training on a joint dataset of Ri and Di. 923

12



Hyperparameters Std-Stage 1 Std-Stage 2 Realigning
Trainable Components Connectors LLM and Connectors Connectors

Batch Size 128 16 16
Learning Rate of Connectors 1e-3 2e-5 2e-5

Learning Rate of LLM - 2e-4 -
Learning Rate Schedule Cosine Decay

Warmup Ratio 0.03
Epoch 1

Table 7: Hyperparameters for each training stage. Std-stage 1 and Std-stage 2 refer to the stage 1 and 2 of the
standard MLLM training process.

System Prompt:
You are an intelligent chatbot designed for evaluat-
ing the correctness of generative outputs for question-
answer pairs. Your task is to compare the predicted
answer with the correct answer and determine if they
match meaningfully. Here’s how you can accomplish
the task:
##INSTRUCTIONS:
- Focus on the meaningful match between the predicted
answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared
to the answer.
User Prompt:
Please evaluate the following question-answer pair:

Question: <question>
Correct Answer: <answer>
Predicted Answer: <prediction>

Provide your evaluation only as a yes/no and score
where the score is an integer value between 0 and 5,
with 5 indicating the highest meaningful match. Please
generate the response in the form of a Python dictio-
nary string with keys ’pred’ and ’score’, where value
of ’pred’ is a string of ’yes’ or ’no’ and value of ’score’
is in INTEGER, not STRING.DO NOT PROVIDE
ANY OTHER OUTPUT TEXT OR EXPLANATION.
Only provide the Python dictionary string. For exam-
ple, your response should look like this: {’pred’: ’yes’,
’score’: 4.8}.

Table 8: Prompts to query the GPT for open-ended QA
evaluation. The placeholders in red boxes are filled
according to each evaluated sample.

• EWC firstly estimates the Fisher information924

matrix Fi−1 of the last training stage i− 1 as:925

Fi−1 =

Ex∼Di−1∇θi−1
L(θi−1, x) · ∇θi−1

L(θi−1, x)
T

926

where L(θi−1, x) denotes the auto-regressive927

loss of model θi−1 on data x ∼ Di−1, which928

is sampled from a 1% size random subset of 929

Di−1. Then the loss function L∗(θi, x) of 930

stage i is: 931

L∗(θi, x) = L(θi, x) +
i−1∑
j=0

λ

2
Fj(θi − θi−1)

2 932

where the hyperparameter λ is set to 1 as 933

default. This implementation of L∗(θi, x) 934

is known as Online EWC(Huszár, 2017; 935

Schwarz et al., 2018). 936

• PathWeave leverages Adapter-in-Adapter 937

(AnA) modules. In our implementation, the 938

AnA modules are injected in the LLM rather 939

than the connector for a fair comparison. The 940

rank of AnA is consistent with the LoRA rank 941

of other baselines, which is 128. 942

E Complete Raw Data 943

Table 9 and Table 10 show the raw data of Figure 2 944

and Figure 3. 945
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Method
Image Video Audio Point Cloud

MSCOCO OK-VQA MSVD MSVD-QA AudioCaps Clotho-AQA Cap3D Cap3D-QA
Individually Trained Experts 100.76 0.358 138.39 0.460 60.14 0.658 99.93 0.568

Fine-Tuning

Stage 1 100.76 0.358 - - - - - -
Stage 2 54.52 0.172 130.22 0.555 - - - -
Stage 3 34.87 0.303 12.78 0.292 43.17 0.590 - -
Stage 4 58.63 0.201 29.55 0.350 8.28 0.094 84.40 0.524

Replay (1%)

Stage 1 100.76 0.358 - - - - - -
Stage 2 41.45 0.125 137.07 0.569 - - - -
Stage 3 65.79 0.276 30.74 0.312 55.21 0.675 - -
Stage 4 59.94 0.225 102.16 0.469 22.17 0.490 81.43 0.508

Replay (10%)

Stage 1 100.76 0.358 - - - - - -
Stage 2 50.65 0.266 137.67 0.584 - - - -
Stage 3 83.32 0.318 33.87 0.381 44.82 0.651 - -
Stage 4 67.42 0.259 133.43 0.520 24.13 0.525 73.19 0.515

EWC

Stage 1 100.76 0.358 - - - - - -
Stage 2 64.84 0.208 155.09 0.595 - - - -
Stage 3 44.22 0.211 73.14 0.569 59.86 0.690 - -
Stage 4 56.54 0.227 36.72 0.564 26.64 0.651 96.40 0.551

PathWeave

Stage 1 100.76 0.358 - - - - - -
Stage 2 78.06 0.234 158.51 0.606 - - - -
Stage 3 79.07 0.251 138.63 0.547 59.47 0.682 - -
Stage 4 66.92 0.255 123.39 0.536 38.53 0.639 97.32 0.554

MERA (1%)

Stage 1 100.76 0.358 - - - - - -
Stage 2 93.70 0.304 153.73 0.573 - - - -
Stage 3 90.42 0.316 147.42 0.567 57.09 0.678 - -
Stage 4 95.18 0.334 142.67 0.562 53.04 0.678 79.32 0.454

MERA (10%)

Stage 1 100.76 0.358 - - - - - -
Stage 2 98.30 0.340 152.20 0.579 - - - -
Stage 3 96.46 0.346 147.89 0.566 61.49 0.684 - -
Stage 4 98.05 0.338 141.25 0.560 56.79 0.678 87.59 0.468

Table 9: Raw data of sequential order training. Results that are better than the last stage are colored in green,
indicating a Positive Backward Transfer.

Method
Point Cloud Audio Video Image

Cap3D Cap3D-QA AudioCaps Clotho-AQA MSVD MSVD-QA MSCOCO OK-VQA
Individually Trained Experts 99.93 0.568 60.14 0.658 138.39 0.460 100.76 0.358

Fine-Tuning

Stage 1 99.93 0.568 - - - - - -
Stage 2 2.74 0.178 39.25 0.519 - - - -
Stage 3 37.26 0.280 21.34 0.158 121.29 0.550 - -
Stage 4 26.69 0.199 23.11 0.519 23.40 0.266 86.12 0.342

Replay (1%)

Stage 1 99.93 0.568 - - - - - -
Stage 2 0.98 0.101 48.48 0.640 - - - -
Stage 3 35.18 0.337 8.30 0.138 124.89 0.546 - -
Stage 4 9.39 0.192 17.67 0.498 1.06 0.255 83.38 0.347

Replay (10%)

Stage 1 99.93 0.568 - - - - - -
Stage 2 0.63 0.171 47.38 0.641 - - - -
Stage 3 68.26 0.470 12.83 0.372 134.07 0.575 - -
Stage 4 3.42 0.241 18.33 0.540 2.81 0.228 87.31 0.342

EWC

Stage 1 99.93 0.568 - - - - - -
Stage 2 29.97 0.442 59.31 0.672 - - - -
Stage 3 19.91 0.375 29.25 0.611 148.26 0.578 - -
Stage 4 45.25 0.327 23.39 0.511 47.53 0.524 98.91 0.320

PathWeave

Stage 1 99.93 0.568 - - - - - -
Stage 2 71.79 0.420 55.07 0.648 - - - -
Stage 3 63.75 0.380 38.73 0.628 148.61 0.577 - -
Stage 4 55.23 0.370 37.23 0.603 85.67 0.521 87.04 0.361

MERA (1%)

Stage 1 99.93 0.568 - - - - - -
Stage 2 64.79 0.470 58.77 0.684 - - - -
Stage 3 66.76 0.377 43.00 0.595 147.99 0.547 - -
Stage 4 70.40 0.387 51.02 0.651 140.20 0.538 93.33 0.362

MERA (10%)

Stage 1 99.93 0.568 - - - - - -
Stage 2 87.10 0.505 58.99 0.695 - - - -
Stage 3 79.24 0.437 58.65 0.650 145.56 0.552 - -
Stage 4 81.05 0.425 60.28 0.653 146.72 0.569 97.62 0.367

Table 10: Raw data of reverse order training. Results that are better than the last stage are colored in green, indicating
a Positive Backward Transfer.
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