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Abstract

Segmentation of cell nuclei in microscopy images is a prevalent necessity in cell biol-
ogy. Especially for three-dimensional datasets, manual segmentation is prohibitively time-
consuming, motivating the need for automated methods. Learning-based methods trained
on pixel-wise ground-truth segmentations have been shown to yield state-of-the-art results
on 2d benchmark image data of nuclei, yet a respective benchmark is missing for 3d image
data. In this work, we perform a comparative evaluation of nuclei segmentation algorithms
on a database of manually segmented 3d light microscopy volumes. We propose a novel
learning strategy that boosts segmentation accuracy by means of a simple auxiliary task,
thereby robustly outperforming each of our baselines. Furthermore, we show that one of
our baselines, the popular three-label model, when trained with our proposed auxiliary
task, outperforms the recent StarDist-3D.

As an additional, practical contribution, we benchmark nuclei segmentation against
nuclei detection, i.e. the task of merely pinpointing individual nuclei without generating
respective pixel-accurate segmentations. For learning nuclei detection, large 3d training
datasets of manually annotated nuclei center points are available. However, the impact on
detection accuracy caused by training on such sparse ground truth as opposed to dense
pixel-wise ground truth has not yet been quantified. To this end, we compare nuclei
detection accuracy yielded by training on dense vs. sparse ground truth. Our results suggest
that training on sparse ground truth yields competitive nuclei detection rates.

Keywords: machine learning, image analysis, instance segmentation, instance detection,
nuclei segmentation, auxiliary training task

1. Introduction

Locating and segmenting cell nuclei is often the first step in many analyses of biological
processes on the cell level and their reaction to potential new medical treatments. Manual
segmentation of nuclei in three-dimensional microscopy images is tedious. Hence 3d bench-
mark image data with pixel-wise ground truth labelings are barely available.1 Instead, 3d
benchmark image data predominantly come with sparse ground truth annotations in the
form of nuclei center point locations (see e.g. (Ulman et al., 2017)). Consequently, meth-
ods for learning 3d nuclei segmentation based on pixel-wise, dense ground truth labelings
remain understudied to date. Related work is focused on learning nuclei detection based on

1. This is opposed to large fully annotated 2d benchmark datasets, see e.g. image set BBBC038v1 available
from the Broad Bioimage Benchmark Collection (Ljosa et al., 2012)
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the given sparse ground truth (Ulman et al., 2017; Höfener et al., 2018), or for 3d segmen-
tation on leveraging very small sets of 2d slices with dense labelings (Çiçek et al., 2016) or
bounding boxes together with a low number of pixel-wise annotated instances (Zhao et al.,
2018).

Figure 1: Top: Exemplary slice of an image in the dataset. Densely packed nuclei in the
nervous system of the C. elegans L1 larva (towards the left) are particularly hard
to separate, in some cases even by eye. Bottom: Close-up on said nervous system.

In this work, we employ a densely annotated dataset of 28 three-dimensional microscopy
images described in (Long et al., 2009), each containing hundreds of nuclei, to benchmark
3d nuclei segmentation methods trained on dense pixel-wise ground truth.2 Figure 1 shows
an exemplary image slice. We focus on methods that yield state-of-the-art results for
nuclei segmentation in 2d data, and have been established for generic 3d segmentation
applications. In particular, we focus on U-Net based architectures (Ronneberger et al.,
2015; Çiçek et al., 2016) for pixel-wise training and prediction. Furthermore, we compare
our results to (Weigert et al., 2019) who recently reported results on the same dataset.

Nuclei segmentation is an instance segmentation problem, where the challenge is to
separate object instances that appear in dense clusters. Existing U-Net based instance
segmentation approaches that are directly applicable to 3d nuclei segmentation rely on
classification of boundary pixels (Chen et al., 2016; Guerrero-Pena et al., 2018; Caicedo
et al., 2019; Falk et al., 2019), classification of boundary edges between pixels (Funke et al.,
2018), or regression of signed distances to boundary pixels (Heinrich et al., 2018). These
methods have in common the property that small variations in the predictions at individual
pixels can lead to drastic changes in the resulting instance segmentation; e.g., misclassifying
a single boundary pixel as foreground can lead to a false merge of two nuclei.

In this work, we propose a novel auxiliary task that is designed to address this issue
during training. In particular, we propose to train for predicting vectors pointing to the
center of mass of the containing nucleus as an auxiliary task in addition to training for
predicting the usual output variables. Note that training such offset vectors in itself is

2. We thank the authors of (Long et al., 2009) for providing the data.
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not new, (Xie et al., 2015) locate the points with the highest number of incoming vectors
for nuclei detection and (Li et al., 2018) use them not as an auxiliary task but in a split
network branch, the output of which is used for additional post-processing. In contrast,
we do not use the vectors for inference, only for training. We show in an evaluation on
28 3d microscopy images that training for the proposed auxiliary task boosts the accuracy
of each underlying baseline model. Furthermore, our baseline three-label model (Caicedo
et al., 2019), when trained with the proposed auxiliary task, outperforms the proposal-based
approach StarDist-3D (Weigert et al., 2019) in terms of average AP3 .

In addition to our methodological contribution, our work also provides a practical contri-
bution. Due to the lack of densely annotated benchmark 3d nuclei images, to our knowledge,
the impact of training on dense vs. sparse ground truth for 3d nuclei detection has not yet
been quantified. In this work we fill this gap by contributing a quantitative comparison
of densely- vs. sparsely trained 3d nuclei detection. In particular, we compare a state-of-
the-art sparsely trained method that regresses Gaussian blobs of fixed radius around center
points (Höfener et al., 2018) to the densely trained U-Net based architectures considered
in the course of our methodological contribution. Our evaluation shows that training on
sparse annotations in the form of nuclei center points yields competitive detection rates on
par with baseline segmentation methods, but is outperformed by models trained with our
auxiliary task.

In summary, we contribute (1) a novel auxiliary training task that boosts the accuracy of
underlying baseline models for 3d nuclei segmentation, and (2) a quantitative comparison of
densely- vs. sparsely trained methods for nuclei detection. Our code for all compared meth-
ods is available on https://github.com/Kainmueller-Lab/aux_cpv_loss/tree/arxiv.

2. Method

Methods for pixel- or edge-wise boundary prediction share the property that they rely on a
small number of training pixels for learning to distinguish densely packed clusters of objects
from larger, solitary objects, as illustrated in Figure 2B. Existing methods approach this
issue by up-weighting the boundary class with a fixed factor (Caicedo et al., 2019), by adap-
tive up-weighting of boundary misclassifications that cause large segmentation errors (Funke
et al., 2018), or by phrasing the boundary prediction task as a regression problem on the
(signed) Euclidean distance transform to the boundary pixels (filtered by some smooth
capping function) (Bai and Urtasun, 2016; Heinrich et al., 2018).

Instead, we propose a simple auxiliary training task that does not require any explicit,
optimized weighting scheme nor any architectural changes and is nevertheless able to focus
the training on reducing misclassifications that induce large segmentation errors. Specifi-
cally, we propose to regress vectors that point from each foreground pixel to the center of
mass of the respective nucleus (see Figure 2C). We employ a sum of squared differences loss
on these center point vectors, and add that to the main pixel classification or regression
loss. Thus, in case a cluster of objects is mistaken for a single object or vice-versa, all
foreground pixels of the involved object(s) contribute to form a large loss, instead of just
a small subset of (up-weighted) boundary pixels as in (Caicedo et al., 2019; Funke et al.,
2018), or pixels close to these as in (Heinrich et al., 2018).

3. avAP: mean average precision, averaged over a range of IoU thresholds
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We found our auxiliary task to be most beneficial when training for absolute vectors to
center points instead of unit vectors pointing towards center points. Note that unit vectors
pointing away from object boundaries have been considered with a similar motivation for
instance segmentation in 2d natural images (Bai and Urtasun, 2016), yet not as auxiliary
task but to pre-train part of a model that regresses the distance transform to boundary
pixels. Training for absolute vectors is facilitated in our case of nuclei segmentation because
of the relatively small size and roughly ellipsoidal shape of nuclei.

(A) (B) (C) (D)
Exemplary nuclei Boundary label Center point

vectors
Prediction

Figure 2: Illustration of the benefit of center point vectors as auxiliary training task. 1st
row: Image detail focused on a single nucleus. 2nd row: Two densely packed
nuclei, hard to distinguish by eye. (A) Raw image details. (B) Sketch of boundary
pixels. (C) Sketch of a few exemplary center point vectors. While boundary
labels distinguish between the presence of two vs. one nucleus at only the few
pixels where two nuclei touch, center point vectors exhibit large differences at
all foreground pixels. (D) Center point vectors per pixel predicted as auxiliary
variables by our proposed model (3d, only the x-component is shown here).

Altogether, the proposed auxiliary task is easily integrated into standard end-to-end
trainable models, with the only required architectural change being three additional output
channels (one for each component of the 3d center point vectors). The one other training
component that is affected by integrating our auxiliary task is elastic augmentation, where
we generate training center point vectors on the fly. This can be done efficiently so that
training performance is not considerably affected (For more details see Appendix B).

3. Experiments

We evaluate our methods and baselines on a set of 28 3d confocal microscopy images of wild
type C. elegans at the L1 larval stage, as described in (Long et al., 2009). The nuclei of all
cells were stained with DAPI, and all nuclei that can be distinguished by eye were segmented
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manually. Each 3d image captures a single C. elegans larva. Due to the stereotypical nature
of C. elegans, this amounts to about 558 nuclei per image. All images have a near-isotropic
voxel size of 0.116× 0.116× 0.122µm3 and an average size of 140× 140× 1100 pixel. To be
able to compare our results to (Weigert et al., 2019) we use the same data split. Accordingly,
the dataset consists of a training set of 18 images, a validation set of 3 images, and a test set
of 7 images. To verify our results further, we additionally perform 4-fold cross-validation
(see Appendix C and Table 3) For the segmentation task we compare three baseline models,
each trained with and without our proposed auxiliary task:

1. A model with a single scalar output regressing the signed Euclidean distance transform
to the boundary pixels filtered by a tanh function, with sum of squared differences
loss(sdt, see (Heinrich et al., 2018))

2. A 3-label model trained to classify background, foreground, and boundary pixels with
a softmax cross entropy loss (3 label, see (Caicedo et al., 2019))

3. An edge affinity model for pairwise, direct neighbor affinities with binary cross entropy
loss (affinities, see (Fowlkes et al., 2003; Funke et al., 2018)).

We denote training with our auxiliary task of regressing nuclei center point vectors as
+cpv. We use a 3 layer 3d U-Net backbone architecture in all experiments, with 10 fil-
ters at the first layer, and a filter increase factor of 4. All scenarios are trained with
the identical network configuration and hyper-parameters. We use standard elastic, inten-
sity, flipping/transposing and rotation augmentations and the Adam optimizer with default
parameters (Kingma and Ba, 2014). For more details see Appendix B. To obtain segmenta-
tions, we form a topographic map from the outputs of our respective models and employ a
seed threshold to locate basins. These are used as seeds in an off-the-shelf watershed trans-
form (Coelho, 2013) and grown until a foreground threshold is reached. See Appendix C
for more details on post-processing.

For the nuclei detection task we evaluate the above models with respect to their detection
performance, and add a purely detection-based method, namely a model with a single scalar
output for regressing Gaussian blobs around center point annotations with sum of squared
differences loss (gauss, see (Höfener et al., 2018)). The Gaussian regression scenario requires
post-processing of the predicted maps to extract center point locations. Non-maximum
suppression (nms) is used to locate local maxima above a threshold, with an additional
hyper-parameter for the window size.

We use the validation set to determine the number of training epochs and the post-
processing hyper-parameters for each scenario individually. For details on the resulting
hyper-parameters see Appendix D. All results are averaged over the test set over three
independently trained and validated models.

As error metric we use the precision metric used in the kaggle 2018 data science bowl4:
AP = TP

TP+FP+FN . For pixel-wise segmentation of nuclei, we evaluate AP at a range
of Intersection over Union (IoU) thresholds. For nuclei center point detection, we define
TP, FP and FN as follows: A true positive detection is a center point that lies within a
ground truth label and only one such center point counts per label. All other center point

4. https://www.kaggle.com/c/data-science-bowl-2018
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Table 1: Quantitative evaluation of nuclei segmentation results: Average Precision (AP =
TP

TP+FP+FN ) for multiple intersection over union (IoU) thresholds. StarDist-3D
results from (Weigert et al., 2019). Numbers at all IoU thresholds corroborate
the finding that the models trained with our proposed auxiliary task outperform
their respective baseline. The best model (3-label +cpv) outperforms the more
sophisticated StarDist-3D model in terms of avAP and in terms of some, but
not all, IoU thresholds.

AP avAP AP0.10 AP0.20 AP0.30 AP0.40 AP0.50 AP0.60 AP0.70 AP0.80 AP0.90

StarDist-3D 0.628 0.936 0.926 0.905 0.855 0.765 0.647 0.460 0.154 0.004

sdt 0.597 0.911 0.899 0.872 0.813 0.701 0.596 0.406 0.164 0.012
sdt + cpv 0.622 0.930 0.921 0.895 0.839 0.745 0.635 0.449 0.177 0.010

3-label 0.629 0.928 0.919 0.892 0.833 0.734 0.623 0.461 0.231 0.041
3-label + cpv 0.638 0.937 0.930 0.907 0.848 0.750 0.641 0.473 0.224 0.035

affinities 0.587 0.900 0.889 0.857 0.79 0.689 0.588 0.421 0.145 0.003
aff. + cpv 0.608 0.921 0.912 0.886 0.826 0.726 0.615 0.430 0.154 0.006

detections count as false positives, and ground truth labels that do not contain any center
point detection count as false negatives.

Table 1 and Figure 3 list our quantitative evaluation of segmentation results on the
test set. An extended table can be found in Appendix C. Table 2 lists our quantitative
evaluation of nuclei detection results. Figure 4 shows exemplary results.
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Figure 3: Quantitative evaluation of nuclei segmentation results: Each plot shows the base-
line model and the respective model trained with the auxiliary task (+cpv). The
shaded area indicates the performance of the respective best and worst perform-
ing model of three independent runs. The +cpv models consistently outperform
the base models. Best viewed on screen with zoom. See Table 1 for numbers.
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Table 2: Top row: Quantitative evaluation of nuclei detection results. All numbers are aver-
aged over three independently trained and validated runs each. The models trained
with the auxiliary task (+cpv) consistently perform better than their respective
baseline model. The detection performance of the Gaussian regression model is
roughly in between the base models and the models with the auxiliary task. Bot-
tom row: For comparison, nuclei segmentation accuracy at an IoU threshold of
0.3, showing that segmentation AP0.3 approximately coincides with detection AP.

metric sdt sdt
+cpv

3-label 3-label
+cpv

aff. aff.
+cpv

gauss

detection
AP 0.878 0.899 0.900 0.908 0.878 0.894 0.895

segmentation
AP0.3 0.872 0.895 0.892 0.907 0.857 0.886 -

With regards to nuclei segmentation trained on dense ground truth, our proposed auxil-
iary task boosts segmentation accuracy by up to more than 4% in terms of AP0.5. Detection
accuracy improves by around 1% – 2% in terms of AP when compared to the respective
baselines. These gains are achieved without actually using the predicted vectors to separate
clusters of nuclei in the post-processing, just training with the auxiliary task improves the
quality of the main prediction. As for nuclei detection trained on sparse ground truth, the
Gaussian regression model keeps up surprisingly well and shows better performance than
most baseline models and is only slightly outperformed by around 0.5% - 1% by the models
trained with the auxiliary task.

4. Conclusion

We have proposed an auxiliary task to be used for training deep ConvNets for cell nuclei
segmentation in microscopy images. On a database of 28 3d microscopy images, we show
that training with this auxiliary task consistently improves performance in terms of nuclei
detection and segmentation accuracy. Our proposed auxiliary task is simple and easy to
integrate into existing deep learning based 3d segmentation frameworks.

Furthermore, we have shown in a quantitative comparison that nuclei center point de-
tection shows competitive performance when trained on sparse center point ground truth
annotations as compared to training on dense ground truth labels.
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(a)

(b)

(c)

Figure 4: Exemplary results of the head including the nervous system of one worm of the
test set using our 3-label+cpv model. Grayscale: Maximum intensity projection
of raw 3d data. True positives: Blue: Ground truth. Green: Prediction. Cyan:
Overlay. Others: Red: False positives. Yellow: False negatives. a) Detection re-
sults: Most nuclei are detected and localized precisely. b) True positive instances:
Only a few pixels at the borders in blue or green, the rest cyan, indicating the
match of prediction and ground truth. c) False positive and false negative in-
stances: Most cells are detected, indicated by the high overlap of yellow and red
and the missing red and yellow dots in a), however the IoU overlap is too small
for some to count as correct segmentations. (see Fig. 5 for whole worms and
Fig. 6 for comparison of 3-label model and 3-label+cpv model (appendix), visu-
alized with napari (napari contributors, 2019), best viewed on screen with zoom
and in color)
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Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ron-
neberger. 3d u-net: Learning dense volumetric segmentation from sparse annotation.
In Sebastien Ourselin, Leo Joskowicz, Mert R. Sabuncu, Gozde Unal, and William Wells,
editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016,
pages 424–432, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46723-8.

Luis Pedro Coelho. Mahotas: Open source software for scriptable computer vision. Journal
of Open Research Software, 1, July 2013. doi: http://dx.doi.org/10.5334/jors.ac.

Thorsten Falk, Dominic Mai, Robert Bensch, Özgün Çiçek, Ahmed Abdulkadir, Yassine
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Vladimı́r Ulman, Martin Maška, Klas EG Magnusson, Olaf Ronneberger, Carsten Haubold,
Nathalie Harder, Pavel Matula, Petr Matula, David Svoboda, Miroslav Radojevic, et al.
An objective comparison of cell-tracking algorithms. Nature methods, 14(12):1141, 2017.

Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers. Star-convex
polyhedra for 3d object detection and segmentation in microscopy. arXiv:1908.03636,
2019.

Yuanpu Xie, Xiangfei Kong, Fuyong Xing, Fujun Liu, Hai Su, and Lin Yang. Deep voting:
A robust approach toward nucleus localization in microscopy images. In Nassir Navab,
Joachim Hornegger, William M. Wells, and Alejandro F. Frangi, editors, Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015, pages 374–382, Cham,
2015. Springer International Publishing. ISBN 978-3-319-24574-4.

Zhuo Zhao, Lin Yang, Hao Zheng, Ian H Guldner, Siyuan Zhang, and Danny Z Chen.
Deep learning based instance segmentation in 3d biomedical images using weak annota-
tion. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 352–360. Springer, 2018.

10

https://github.com/napari/napari
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a


An Auxiliary Task for Learning Nuclei Segmentation in 3D Microscopy Images

Appendix A. Visualization

(a)

(b)

(c)

Figure 5: Exemplary results of the worst and best test images using our 3-label+cpv model.
Grayscale: MIP of raw 3d data. True positives: Blue: Ground truth. Green: Pre-
diction. Cyan: Overlay. Others: Red: False positives. Yellow: False negatives.
a) Detection results: Most false positive or false negative detections are in the
front part of the worm, especially in the densely packed nervous system. b) True
positive instances: Only a few pixels at the borders in blue or green, the rest
cyan, indicating the match of prediction and ground truth. c) False positive and
false negative instances: Most cells are detected, however the IoU overlap (in this
case 0.5) is too small for some to count as correct segmentations. (visualized with
napari (napari contributors, 2019), best viewed on screen with zoom and in color)
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(a) 3-label (xy, z projected)

(b) 3-label (rotated 90 degrees; xz, y projected)

(c) 3-label+cpv (xy, z projected)

(d) 3-label+cpv (rotated 90 degrees; xz, y projected)

Figure 6: Exemplary segmentation results obtained with our 3-label model versus the 3-
label+cpv model. The images show a projection of the 3d data onto a 2d image
(not an individual 2d slice). Grayscale: Maximum intensity projection of raw 3d
data. Red: False positives (w.r.t. IoU threshold 0.5). Yellow: False negatives
(w.r.t. IoU threshold 0.5). There is one dot per FP and FN. The colored lines
show the outline of the respective segmentation at the xy-slice of their biggest
xy-area. Both models make mistakes for a similar subset of nuclei, indicating
that those are the ones that are particularly hard to detect and separate. Yet our
3-label+cpv model has fewer errors. Note, if there is a high overlap of a FP and
a FN in both projections, the IoU did not reach the threshold (in this case 0.5)
to be counted as a match. (best viewed on screen with zoom and in color)
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Appendix B. Network details

We use the identical 3d U-net architecture for all models. The network has 10 feature
maps after the first convolution and has three layers of 2 convolutions each. After each 2×
down/upsampling the number of feature maps is in/decreased four-fold. We use 3 × 3 × 3
convolutions, valid padding and ReLU activation functions and constant upsampling. The
size of the input window is 230 × 230 × 200, resulting in an output size of 140 × 140 × 108,
corresponding nicely to the data sample size of 140 × 140 × X. To train the network we
use the Adam optimizer with a fixed learning rate of 1e−4. We do not explicitly weigh
the different loss components (main loss and auxiliary task loss). This is viable as their
magnitude is comparable. An exception is the sdt model trained with the auxiliary task.
To bring the components to a reasonably similar magnitude we used a factor of 100 for the
sdt loss; however, we did not optimize this factor.

The sdt model has a single output and uses the sum of squared differences loss function.
The affinity model has four outputs, three for the three direct neighbors (affinities) and one
for a separate foreground/background segmentation and uses the binary cross entropy loss
with a sigmoid activation per channel. The 3-label model has three outputs, one for the
background, one for the boundary and one for the interior and uses the categorical cross
entropy loss with a softmax activation. The extended cpv models have each three additional
channels for the three dimensional center point vector and use the sum of squared differences
loss for the auxiliary task.

The extra computational power required by our auxiliary task is small. GPU-wise, the
difference to the base models is minimal, as the networks are identical except for three
additional output neurons. The only non-negligible additional computational requirement
stems from the use of elastic augmentation during training. For this we need to compute the
ground truth center point vectors on-the-fly instead of pre-computing them for all training
data. As this is done on the CPU and independent for each training step, it can be done in
parallel, and cached for multiple subsequent iterations. We used 20 CPU cores and observed
that training time is increased by 10% as compared to baseline training.

Appendix C. Post-processing details

For the sdt models the network output can directly be used in the watershed transform,
all regions smaller than the seed threshold are seeds and are extended until they reach the
foreground as determined by the foreground threshold. The euclidean distance transform
is computed from the boundary pixel within the instances. Thresholding the foreground at
zero leaves the instances slightly small. Validation performance improves by still threshold-
ing at zero but additionally dilating all instances by one5. For the 3-label models we use one
minus the softmax value of the interior class for the watershed map. One minus the softmax
value of the background class is used to define the foreground. For the affinity models we
use one minus the average affinity value per pixel for the map. To determine the seeds
the affinity values are thresholded individually, if two out of three are above the threshold,
the pixel belongs to a seed region. The prediction performance of affinities improves if the
boundary between neighboring instances is more than a single pixel. We erode all instances

5. https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_dilation.html
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before training once to achieve this effect. To reverse the effect of this on the prediction,
the resulting instances are dilated once.

We additionally experimented with using the center point vector predictions not only
as an auxiliary task during training but also for the post-processing (similar to (Xie et al.,
2015)). To this end we transform the three dimensional vector map into a one dimensional
height map by accumulating for each pixel a counter of how many vectors point to it.
Thresholding this height map results in regions which can be used, as before, as seeds
for the watershed. The performance was comparable to using the main prediction. For
detection we also list models for which the hyper-parameters were validated and selected
wrt. their segmentation performance, instead of their detection performance (val. column).
(see Table 3 for the extended results)

For the results in Table 1 and Table 2 we used the same training/test/validation data
split as (Weigert et al., 2019) to get comparable numbers. To further verify our results we
additionally performed 4-fold cross-validation, with the afore mentioned results being one of
the folds. The sizes of the training/test/validation sets remain fixed. However, each model
of the new folds is only trained once, in contrast to the three independent runs per model
for the first fold. The additional numbers confirm our results (see Table 4)

Table 3: Quantitative evaluation results comparing the segmentation results at an IoU
threshold of 0.5 and the detection results: We additionally compare seeds com-
puted based on the main prediction (depending on the base model) and based
on the cpv prediction as well as detection performance with the hyper-parameters
selected based on the validation performance on the detection task versus on the
segmentation task. The models trained with the auxiliary task consistently per-
form better than their respective baseline model. The detection performance of
the Gaussian regression model is better than the baseline models but slightly worse
than the models with the auxiliary task (except for the aff+cpv model).

metric val. seeds sdt sdt
+cpv

3-label 3-label
+cpv

aff. aff.
+cpv

gauss

segmentation:

AP0.5 seg main 0.701 0.745 0.734 0.750 0.689 0.726 -
AP0.5 seg cpv - 0.732 - 0.733 - 0.725 -

detection:

AP det main 0.878 0.899 0.900 0.908 0.878 0.894 0.895
AP seg main 0.879 0.898 0.896 0.909 0.871 0.892 -
AP det cpv - 0.889 - 0.878 - 0.896 -
AP seg cpv - 0.887 - 0.881 - 0.890 -
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Table 4: Quantitative evaluation results for the cross-validation: Overall, the cross-
validation confirms the previous results. The models trained with the auxiliary
task consistently perform better than their respective baseline model. The Gaus-
sian regression model does slightly better than before and is only outperformed
by the 3-label+cpv model.

metric sdt sdt
+cpv

3-label 3-label
+cpv

aff. aff.
+cpv

gauss

segmentation:

avAP 0.596 0.618 0.624 0.625 0.579 0.602 -
AP0.5 0.693 0.729 0.720 0.733 0.676 0.712 -
AP0.3 0.870 0.896 0.886 0.897 0.855 0.885 -

detection:

AP 0.873 0.895 0.893 0.902 0.871 0.896 0.897

Appendix D. Hyper-parameter details

All models were trained (checkpoints were saved periodically) and validated independently.
This leads to different optimal hyper-parameters per model. The best checkpoint and post-
processing parameters were determined jointly. In Tables 5, 6, 7 and 8 we list the values for
the selected training iteration and post-processing thresholds for all models used to generate
the numbers in Table 1 and Table 2 individually. For the models marked as dilated, the
resulting instances are dilated once to get the final instances (as described in Appendix C).
The validation column defines if the hyper-parameters have been selected wrt. validation
performance for segmentation or for detection.
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Table 5: Overview model hyper-parameters: sdt (+cpv)

Model validation
on

Iteration seed
threshold

cpv seed
threshold

foreground
threshold

dilated

sdt (base)
I seg 60000 -0.14 - 0.0 yes
I det 60000 -0.14 - 0.0 yes

II seg 100000 -0.13 - 0.0 yes
II det 100000 -0.13 - 0.0 yes

III seg 100000 -0.14 - 0.0 yes
III det 100000 -0.14 - 0.0 yes

sdt +cpv
I seg 90000 -0.13 - 0.0 yes
I det 80000 -0.13 - 0.0 yes
I seg 80000 - 70 0.0 yes
I det 80000 - 70 0.0 yes

II seg 90000 -0.12 - 0.0 yes
II det 100000 -0.14 - 0.0 yes
II seg 90000 - 70 0.0 yes
II det 160000 - 60 0.0 yes

III seg 160000 -0.12 - 0.0 yes
III det 200000 -0.11 - 0.0 yes
III seg 120000 - 70 0.0 yes
III det 160000 - 70 0.0 yes
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Table 6: Overview model hyper-parameters: 3-label (+cpv)

Model validation
on

Iteration seed
threshold

cpv seed
threshold

foreground
threshold

dilated

3-label (base)
I seg 200000 0.7 - 0.95 no
I det 100000 0.8 - 0.7 no

II seg 100000 0.8 - 0.95 no
II det 100000 0.7 - 0.95 no

III seg 200000 0.7 - 0.95 no
III det 200000 0.7 - 0.5 no

3-label +cpv
I seg 360000 0.7 - 0.95 no
I det 400000 0.7 - 0.95 no
I seg 400000 - 80 0.9 no
I det 400000 - 60 0.9 no

II seg 100000 0.7 - 0.95 no
II det 100000 0.7 - 0.99 no
II seg 200000 - 100 0.95 no
II det 220000 - 90 0.95 no

III seg 220000 0.7 - 0.95 no
III det 220000 0.7 - 0.5 no
III seg 100000 - 80 0.95 no
III det 100000 - 70 0.95 no
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Table 7: Overview model hyper-parameters: affinities (+cpv)

Model validation
on

Iteration seed
threshold

cpv seed
threshold

foreground
threshold

dilated

affinities (base)
I seg 300000 0.99 - 0.99 yes
I det 300000 0.99 - 0.99 yes

II seg 200000 0.99 - 0.99 yes
II det 400000 0.99 - 0.8 yes

III seg 300000 0.99 - 0.99 yes
III det 300000 0.99 - 0.99 yes

affinities +cpv
I seg 200000 0.99 - 0.99 yes
I det 400000 0.99 - 0.99 yes
I seg 160000 - 70 0.99 yes
I det 300000 - 40 0.99 yes

II seg 200000 0.99 - 0.99 yes
II det 160000 0.99 - 0.95 yes
II seg 100000 - 80 0.99 yes
II det 200000 - 50 0.99 yes

III seg 160000 0.99 - 0.99 yes
III det 160000 0.99 - 0.8 yes
III seg 160000 - 80 0.99 yes
III det 160000 - 60 0.99 yes

Table 8: Overview model hyper-parameters: gauss

Model validation
on

Iteration gauss
threshold

nms
distance

dilated

gauss
I det 60000 0.25 3 no

II det 80000 0.35 2 no

III det 50000 0.25 2 no
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