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Abstract
Calibration of probabilistic forecasts in the re-
gression setting has been widely studied in the
single dimensional case, where the output vari-
ables are assumed to be univariate. In many prob-
lem settings, however, the output variables are
multi-dimensional, and in the presence of depen-
dence across the output dimensions, measuring
calibration and performing recalibration for each
dimension separately can be both misleading and
detrimental. In this work, we focus on represent-
ing predictive uncertainties via samples, and pro-
pose a recalibration method which accounts for
the joint distribution across output dimensions to
produce calibrated samples. Based on the concept
of highest density regions (HDR), we define the
notion of HDR calibration, and show that our re-
calibration method produces samples which are
HDR calibrated. We demonstrate the performance
of our method and the quality of the recalibrated
samples on a suite of benchmark datasets in multi-
dimensional regression, a real-world dataset in
modeling plasma dynamics during nuclear fusion
reactions, and on a decision-making application
in forecasting demand.

1. Introduction
Calibration in probabilistic forecasting, in general terms,
refers to the alignment between the predicted probabilities
and empirical frequencies of the true observations. Along-
side other quantitative metrics to assess predictive distribu-
tions, e.g. negative log-likelihood (NLL) or simply accuracy
of the mean, calibration is considered an important and de-
sirable quality of probabilistic forecasts, and many works
have appraised the utility of calibration in various appli-
cation settings (Gneiting et al., 2007; Malik et al., 2019;
Deshpande & Kuleshov, 2021; Chung et al., 2023).
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Within the general principle of “aligning predicted and em-
pirical probabilities”, various notions of calibration exist,
and these definitions also vary slightly between classifica-
tion and regression settings. In this work, we focus on the
regression setting where both the inputs, X , and targets, Y ,
are continuous.

We begin our discussion from the observation that the most
widely studied notions of calibration in regression are usu-
ally confined to the setting where the targets are single
dimensional (Gneiting et al., 2007; Pearce et al., 2018;
Kuleshov et al., 2018; Song et al., 2019; Cui et al., 2020;
Zhao et al., 2020; Sahoo et al., 2021; Kuleshov & Desh-
pande, 2022). While multi-dimensional regression models
are widely used in machine learning, especially in applica-
tions such as model-based control (Chua et al., 2018; Malik
et al., 2019; Yu et al., 2020; Kidambi et al., 2020) or model-
ing in the physical sciences (Sexton et al., 2012; Duraisamy
et al., 2019; Abbate et al., 2021; Char et al., 2023a), we find
that methods which account for the joint multi-dimensional
distribution in assessing calibration and recalibrating the
prediction is generally lacking. In lieu of more sophisticated
methods, calibration is often considered for each output
dimension independently. However, failing to account for
interplay among the output dimensions may be problematic
when dependence does exist. In this case, the collection of
marginals is not sufficient to provide an accurate assessment
of the prediction quality (see Figure 1 for an example).

In this work, we address the problem of calibration in multi-
dimensional regression by first formalizing a notion of cali-
bration which can account for dependence among the output
dimensions and further proposing a recalibration algorithm
for the joint predictive distribution. We summarize our main
contributions as follows:

• By leveraging existing ideas in highest density regions
(HDR), we propose the notion of HDR calibration,
which accounts for dependence in the output dimen-
sions in defining and evaluating calibration for multi-
dimensional distributional predictions.

• We develop a recalibration algorithm for multi-
dimensions which produces HDR calibrated predictive
distributions via a sampling procedure.

• We provide extensive demonstrations of the merits
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Figure 1. We demonstrate a pitfall of assessing the calibration of each dimension independently for multi-dimensional distributional
predictions. (From Left to Right) Consider a 2-dimensional target space where samples from the predictive distribution (labeled Pred)
and ground truth distribution (labeled GT) are displayed as a scatter plot. The predictive distribution exhibits the opposite correlation in
the output dimensions compared to the ground truth, but each of the marginal distributions are accurate. Assessing calibration of each
dimension separately suggests a well-calibrated predictive distribution. Highest density regions (HDRs), on the other hand, are able to
account for the dependence in the dimensions. Assessing HDR calibration, which considers the output dimensions jointly, reveals the
miscalibration of the full joint distribution.

of the notion of HDR calibration and the efficacy of
the recalibration algorithm on a suite of benchmark
datasets in multi-dimensional regression, and two real-
world datasets: a dynamics modeling task in nuclear
fusion, and a downstream decision-making application
in forecasting customer demand.

We continue our discussion by first describing the problem
setting and relevant concepts to motivate the definition of
HDR calibration in Section 2. Based on this notion of
calibration, we present our proposed HDR recalibration
algorithm in Section 3. We provide empirical evaluations in
Section 41.

2. Preliminaries and Related Works
2.1. Setting and Notation

Upper case letters X , Y denote random variables (r.v.), and
lower case letters x, y denote their observed values. We
consider the regression setting with an input feature space
X ⊆ Rn and a target space Y ⊆ RD. We use xd, Xd,
yd, and Y d to denote the d

th
dimension of input and target

vectors. f and F denote the true probability density func-
tion (PDF) and cumulative distribution function (CDF), and
when it exists, we denote the true quantile function with
F−1. Estimates of these functions are denoted with f̂ , F̂
and F̂−1. We use subscripts to indicate the corresponding
random variable of the PDFs and CDFs (e.g. fX and FX are
the marginal PDF and CDF of X , and fY |X and FY |X are
the PDF and CDF of Y conditioned on X). When condition-
ing on a specific value X = x, we denote the conditional
distribution functions as fY |x and FY |x. Lastly, we assume
that new target samples can be drawn from the distribution
estimate, and we denote the random variable corresponding

1Code is available at: https://github.com/YoungseogChung/
multi-dimensional-recalibration

to these new target samples as Ŷ . In particular, this can
be done by sampling X ∼ fX from the dataset and subse-
quently sampling Ŷ |X ∼ f̂Y |X . Importantly, note that the
distribution of Ŷ is still tied to the distribution of X .

2.2. Calibration in Univariate Regression

Before discussing the multi-dimensional setting, we first
provide a brief review of notions of calibration in the uni-
variate setting. A widely accepted notion of calibration in
univariate regression is probabilistic calibration (Gneiting
et al., 2007). A predictive distribution F̂Y |X is probabilisti-
cally calibrated if

P (Y ≤ F̂−1
Y |X(p)) = p,∀p ∈ (0, 1). (1)

This notion is also referred to as simply calibra-
tion (Kuleshov et al., 2018), quantile calibration (Song
et al., 2019), or average calibration (Zhao et al., 2020;
Chung et al., 2021b) since it focuses on the average validity
of the predictive quantile function F̂−1

Y |X . We henceforth
refer to this notion as average calibration. Here, we note
that the true distribution FY |X trivially satisfies Eq. 1 since
FY |X(Y ) ∼ U(0, 1) by the probability integral transform
and P (F̂Y |X(Y ) ≤ p) = p is the CDF of U(0, 1).

From this general definition, subsequent works have de-
rived various notions of calibration, usually by placing
different conditions in assessing the empirical probability
(LHS of Eq. 1). For example, distribution calibration (Song
et al., 2019) assesses average calibration conditioned on the
predictive distribution; individual calibration (Zhao et al.,
2020) requires average calibration conditioned on each in-
put point, x ∈ X ; and group calibration (Kleinberg et al.,
2016; Hébert-Johnson et al., 2017) requires average calibra-
tion conditioned on specific subsets of the input space with
non-zero measure.

In all of the aforementioned notions, Y is assumed to be
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univariate (i.e Y ⊆ R), and predictive conditional quantiles
F̂−1
Y |X : X × (0, 1)→ Y are utilized to measure the discrep-

ancy between predicted and empirical probabilities (RHS
and LHS of Eq. 1).

2.3. The Multi-dimensional Setting

While a naive application of the notions of univariate calibra-
tion to multi-dimensional distribution functions may seem
plausible, in the multivariate setting, the quantile function
is not well-defined (Belloni & Winkler, 2009), and further,
FY (Y ) for Y ∈ RD when D > 1 is no longer uniformly
distributed (Barbe et al., 1996; Genest & Rivest, 2001). To
circumvent these issues, prior works have suggested utiliz-
ing projections of the target variable Y in order to define
and assess calibration of multi-dimensional distributional
predictions. We formalize such methods as follows.

Consider a mapping g : X × Y → Z , where Z ⊆ R. Fur-
thermore, we let Z and Ẑ be the r.v.s over the projection
outputs when using target labels Y and Ŷ , respectively. Con-
cretely, Z := g(X,Y ) and Ẑ := g(X, Ŷ ). Since sampling
from the predicted distribution is cheap, we can estimate
the CDF FZ|X using the empirical distribution of Ẑ|X . We
refer to this empirical CDF as F̂Z|X .

Then, following the definition of average calibration (Eq. 1),
we can define calibration in the projected space as satisfying,
∀p ∈ (0, 1),

P (Z ≤ F̂−1
Z|X(p)) = p (2)

or equivalently, P (F̂Z|X(Z) ≤ p) = p. (3)

We can easily show that the optimal prediction F̂Y |X =
FY |X satisfies this definition of calibration in the projected
space.

Proposition 2.1. The optimal distributional prediction, i.e.
F̂Y |X = FY |X , satisfies calibration in the projected space,
Eq. 3. (proof in Section A)

Several prior works have proposed specific versions of Eq. 3
with specific projection functions. Ziegel & Gneiting (2014)
introduced copula calibration by utilizing the predictive
CDF as the projection function, i.e. g(X, ·) = F̂Y |X . In
this specific case, the distribution of the projections is called
the Kendall distribution (Nelsen et al., 2003).

One can also utilize the predictive PDF for the projection
function such that g(X, ·) = f̂Y |X , in which case Eq. 3
bears intrinsic relationships to existing concepts of highest
predictive density (HPD) values (Harrison et al., 2015; Dal-
masso et al., 2020; Zhao et al., 2021) and highest density
regions (HDR) (Hyndman, 1996).

While there are several candidates for projection func-

tions, in this work, we choose to focus on using the pre-
dictive PDF. In particular, we leverage its connections
with HPD and HDR to formalize a notion of calibration
in multi-dimensions (Defn. 2.2) and propose a recalibra-
tion procedure that achieves this notion of calibration (Sec-
tion 3). Hence, in the rest of this work, we always assume
Z := f̂Y |X(Y ) and Ẑ := f̂Y |X(Ŷ ).

For any given (x, y), HPDx(y) is a measure of how plausible
y is w.r.t f̂Y |x and is defined as

HPDx(y) =

∫
y′:f̂Y |x(y′)≥f̂Y |x(y)

f̂Y |x(y
′)dy′. (4)

In words, HPDx(y) is the predicted probability of observing
Ŷ that is more likely than y, where the likelihood is deter-
mined by f̂Y |x. Considering the definition of Z and Ẑ, we
see that

HPDx(y) (5)

= P (f̂Y |x(Ŷ ) ≥ f̂Y |x(y) | X = x) (6)

= 1− F̂Z|x(f̂Y |x(y)). (7)

Further, HPD values, which are probabilities, have a direct
relationship to HDRs, which are prediction sets. For clarity,
we provide a definition of HDR below using our notation,
and we refer the reader to Section C for the original notation
by Hyndman (1996). For a fixed x and constant λ ∈ R, we
define the λ-density region as DRx(λ) := {y : f̂Y |x(y) ≥
λ}. Then for a given coverage level p, the p-HDR is the
smallest density region with probability greater than or equal
to p. Concretely,

HDRx(p) := DRx(λ
∗)

where λ∗ = sup{λ : P (Ŷ ∈ DRx(λ)|X = x) ≥ p}.

By their definitions, the following equivalence holds:

HPDx(y) ≤ p ⇐⇒ y ∈ HDRx(p) (8)

We note that calibration is generally defined in terms of
prediction sets of a distribution, and drawing on the intrinsic
relationships between HDR, HPD and Eq. 7, we formalize
Eq. 3 with the notion of HDR calibration:

Definition 2.2. A predictive PDF f̂Y |X is HDR calibrated
if, ∀p ∈ (0, 1),

P (Y ∈ HDRX(p)) = p (9)
or equivalently, P (HPDX(Y ) ≤ p) = p. (10)

Proposition 2.3. HDR calibration holds if and only if Equa-
tion 3 holds. (proof in Section A)
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Similar to average calibration (Eq. 1), which requires Y
to be contained in the p-prediction set (defined by the pth

quantile) with probability p, HDR calibration requires the
p-HDR to contain Y with probability p.

Utilizing projections allows one to define notions of calibra-
tion in the multi-dimensional setting which can account for
dependence in the output dimension, granted that the projec-
tion function models the dependence. Further, based on the
definitions, one can assess calibration (or miscalibration)
via the discrepancy between the predicted and empirical
probabilities. Following the commonly used notion of ex-
pected calibration error (ECE) (Guo et al., 2017; Cui et al.,
2020; Tran et al., 2020; Chung et al., 2021b) we can measure
the (L1-)ECE w.r.t the general notion of calibration defined
in Eq. 3 as

Ep∼U(0,1)

∣∣∣P (F̂Z|X(Z) ≤ p)− p
∣∣∣ . (11)

Not only do these metrics allow one to evaluate the quality
of uncertainty for multi-dimensional predictions, but they
can also be used to improve a model’s predictive distribution
via a recalibration procedure.

2.4. Recalibration

Probabilistic models are usually trained by optimizing a loss
function which may not be necessarily aligned with calibra-
tion. This can often lead to models being miscalibrated at
the end of the training (Guo et al., 2017; Kuleshov et al.,
2018; Chung et al., 2021b). A post-hoc recalibration step
can be applied on top of the trained model to adjust for its
level of miscalibration observed on a held-out calibration or
validation dataset.

Post-hoc recalibration is well-studied in classification, and
there are several methods which have proven to be effec-
tive in producing well-calibrated (discrete) class probabili-
ties (Platt et al., 1999; Zadrozny & Elkan, 2001; 2002; Guo
et al., 2017; Gupta & Ramdas, 2021).

This problem is not as widely studied in regression, however,
and to the best of our knowledge, the most popular method
is that of Kuleshov et al. (2018), which learns an isotonic
mapping between expected and observed quantile levels.
Crucially, this method readily applies only to the case when
the targets Y are univariate, and we henceforth refer to
this algorithm as “single dimensional (SD) recalibration”.
In Section 3, we propose a recalibration procedure for the
multivariate setting.

While also proposed for the single dimensional setting, it
is worth mentioning that Izbicki et al. (2022) proposes a
conformal prediction method which bears relevance as their
method utilizes HPD values as the conformity score. How-
ever, there are key differences: while they are focused on
producing prediction sets for a fixed coverage level (as is the

goal of conformal prediction), we are focused on expressing
the full predictive distribution. Crucially, since Izbicki et al.
(2022) does not consider multi-dimensional target spaces,
their method does not account for dependence in the target
dimensions, and the algorithm relies on constructing a fi-
nite grid of the target space, which is ill-suited for higher
dimensions. As we will discuss in Section 3, our recali-
bration procedure explicitly addresses dependence in the
target dimensions and is more scalable as it focuses on sam-
pling from a predictive distribution in the multi-dimensional
space. We refer the reader to Appendix B for additional
details on related works.

2.5. Predictive Uncertainty and Sampling

Ensuring the calibration of predictive uncertainties becomes
important when deploying probabilistic models in down-
stream applications. The application setting will dictate how
the uncertainties are utilized. For example, in the context of
Bayesian optimization, depending on the acquisition func-
tion, the uncertainties may be used to construct confidence
bounds (Auer, 2002; Srinivas et al., 2009), compute prob-
abilities or expectations (Jones et al., 1998), or be used to
sample from (Thompson, 1933; Kandasamy et al., 2018;
Char et al., 2019). For model-based control where a prob-
abilistic dynamics model is learned, the uncertainty-aware
model is most often used to sample plausible transitions and
trajectories (Chua et al., 2018; Janner et al., 2019; Mehta
et al., 2021; Char et al., 2023b).

In this work, we focus on sampling to represent and uti-
lize the predictive uncertainties and aim to produce samples
from a well-calibrated predictive distribution. Applying SD
recalibration (Kuleshov et al., 2018) to multi-dimensional
settings will necessitate recalibrating each dimension sep-
arately, which renders each dimension independent in the
recalibrated samples. However, we note that this, in fact, is
how recalibration is utilized in practice to multi-dimensional
settings (e.g. Malik et al. (2019)). The algorithm we pro-
pose in the next section performs recalibration jointly across
all output dimensions and is able to consider dependence
across the dimensions.

3. Method
In this section, we describe our proposed recalibration pro-
cedure which aims to achieve HDR calibration (Defn. 2.2).
We describe the procedure in two parts. Section 3.1 details
the recalibration algorithm that aims to optimize for Eq. 3,
which is equivalent to HDR calibration by Proposition 2.3.
Afterwards, Section 3.2 describes a pre-conditioning step
that can modify the predictive PDF to account for depen-
dence in the output dimensions when applying the recalibra-
tion algorithm.
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Figure 2. Demonstration of HDR recalibration on a marginal distributional prediction. (Top Left) The initial prediction (labeled Pred)
displays bias in the mean prediction and fails to model the correlation in the ground truth distribution (labeled GT). (Top Row) Without
the PDF adjustment step, we observe that observations (GT points) fall more often in the higher level HDRs (level sets defined by darker
boundaries) than lower level HDRs (level sets bounded by lighter colors). HDR recalibration re-samples from each HDR according to the
observed frequencies (i.e. the learned recalibration mapping), hence when producing recalibrated samples, the higher level HDRs (i.e.
outer level sets of f̂ ) are over-sampled and the lower level HDRs (inner level sets of f̂ ) are under-sampled. The resulting recalibrated
samples are HDR calibrated (right-most plot), but we can visually assess that the samples are suboptimal and in particular, fail to model the
correlation in the dimensions. (Bottom Row) Before the recalibration procedure, we can estimate the bias in the mean on the calibration
dataset and correlation in the dimensions with the correlation matrix of the mean prediction error. After applying these two adjustments,
HDR calibration reveals that each p-HDR contains more than p proportion of the observations (which also indicates that the level sets are
too wide). Hence, HDR recalibration proportionately under-samples from each HDR, which results in well-calibrated samples that also
reflect the correlation in the output dimensions.

3.1. HDR Recalibration Algorithm

The proposed recalibration algorithm is comparable to that
of Kuleshov et al. (2018) for univariate settings, but with
key differences – the recalibration occurs in the projected
space Z , and the recalibration output must be translated
back into the target space Y .

First, we estimate a recalibration mapping in the pro-
jected space by using observations of the random variable
F̂Z|X(Z) with a calibration dataset {(xi, yi)}Ni=1, i.e. the
observed values are {F̂Z|xi

(zi)}Ni=1 where zi = f̂Y |xi
(yi).

To elaborate more on this procedure, note that zi is a scalar
value produced by evaluating the PDF f̂Y |xi

at yi, where
f̂Y |xi

is the PDF of the predictive distribution. F̂Z|xi
(zi) is

also a scalar value produced by evaluating the CDF F̂Z|xi
at

zi, however, F̂Z|xi
is an empirical CDF over the projected

space that is estimated by producing samples from the pre-
dictive distribution f̂Y |xi

. Again, we note that sampling
from the predictive distribution is cheap, thus estimating
this empirical CDF is also cheap. Algorithm 3 provides
exact details on this estimation step.

Afterwards, we learn the monotonic mapping R : [0, 1]→
[0, 1] where R(p) := P (F̂Z|X [Z] ≤ p). R is then applied
to the predictive distribution at each x, F̂Z|x, to produce the
recalibrated predictive distribution R ◦ F̂Z|x.

Proposition 3.1. Consider R ◦ F̂Z|X for an invertible map-
ping R. Then R ◦ F̂Z|X satisfies Eq. 3, i.e.

P (R ◦ F̂Z|X(Z) ≤ p) = p ∀p ∈ (0, 1).

(proof in Section A)

One can therefore use such a recalibration map, R, to draw
new, calibrated samples in Z space. However, it remains un-
clear how to relate these samples back to their counterparts
in Y space. To address this issue, we present a sampling
algorithm that operates over samples of r.v. Ŷ . The key
idea is to re-sample from the set of samples generated from
f̂Y |X according to what the distribution should look like in
Z space. In particular, for any fixed x, we can draw many
samples from the predictive PDF, {ŷj}Mj=1 ∼ f̂Y |x, then
apply the projection f̂Y |x(·) to produce the dataset of tuples

5



Sampling-based Multi-dimensional Recalibration

Algorithm 1 HDR Recalibration: Training
1: Input: Calibration dataset {(xi, yi)}Ni=1, predictive

PDF f̂Y |X .
2: f̂Y |X ← ADJUST(f̂Y |X) (Algorithms 5, 6, 7).
3: Construct the dataset C = {F̂Z|xi

(zi)}Ni=1, where
zi = f̂Y |xi

(yi) (see Algorithm 3).
4: Sort values in C to construct {c(i)}Ni=1, construct the

recalibration dataset C′ = {i/N, c(i)}Ni=1.
5: Learn the recalibration mapping R on C′.
6: Output: Recalibration mapping R.

Algorithm 2 HDR Recalibration: Sampling

1: Input: Test point x, predictive PDF f̂Y |X , recalibra-
tion mapping R, number of samples M .

2: f̂Y |X ← ADJUST(f̂Y |X). (Algorithms 5, 6, 7).
3: Construct D = {(ŷj , ẑj)}Mj=1 by producing M sam-

ples ŷj ∼ f̂Y |x and setting ẑj = f̂Y |x(ŷj).
4: Re-sample from D to construct D′ = {(ŷk, ẑk)}Mk=1

s.t. {ẑk}Mk=1 approximately follows R ◦ F̂Z|x (see
Algorithm 4).

5: Output: Recalibrated samples at x, {ŷk}Mk=1.

D = {(ŷj , ẑj)}, where ẑj = f̂Y |x(ŷj), and note that by
definition, ẑj ∼ f̂Z|x, F̂Z|x. We then re-sample from D to
produce {(yk, zk)} ⊆ D such that the distribution of {zk}
is more closely aligned with R ◦ F̂Z|x. Concretely, this is
done by forming an empirical CDF of the Ẑ samples {ẑj}
using binning, re-weighting each bin to match R ◦ F̂Z|x,
then re-sampling from each bin according to the adjusted
weights. The full algorithm is summarized in Algorithms
1 and 2: Algorithm 1 describes the procedure for learning
the recalibration map R, and Algorithm 2 describes the test
time sampling procedure. We provide more details on each
of the steps in Section D. Crucially, the corresponding {yk}
are HDR calibrated.

Proposition 3.2. Suppose that Ẑ ∼ R ◦ F̂Z|X and that R
is an invertible mapping. Then the distribution of Ŷ is HDR
calibrated. (proof in Section A)

3.2. Adjusting the Predictive PDF

The HDR recalibration algorithm from Section 3.1 produces
a predictive distribution (via samples) s.t. the p-HDR con-
tains p proportion of the target observations, on average,
∀p ∈ (0, 1). However, this predictive distribution can still
fail to address dependencies among the output dimensions.
This is because, for any fixed x, the HDRs are constructed
with level sets of f̂Y |x, and, if f̂Y |x fails to model depen-
dencies, then the recalibrated samples will also express
independence among the output dimensions. We provide an
illustration in Figure 2. The top row shows that the pre-hoc
predictive distribution assumes independence in the output
dimensions, which is reflected in the spherical boundaries
of the HDRs. After HDR recalibration, the shape of the
recalibrated distribution is still spherical, even though the
calibration dataset (i.e. ground truth (GT) observations in
blue) displays correlation among the dimensions.

This highlights the importance of the projection function
f̂Y |X , and ideally, f̂Y |X should better reflect the true distri-
bution in order for the recalibration procedure to produce

more accurate samples. Further, if we can estimate the er-
rors in f̂Y |X (e.g. correlation, bias) with a held-out dataset,
it can be beneficial to adjust f̂Y |X for these factors prior to
recalibration.

As a concrete instantiation of this adjustment, we propose a
simple procedure to adjust the PDF of multivariate Gaussian
distributions by estimating the bias in the predicted mean
(i.e. the location of the HDRs), standard deviation (i.e. the
width of the HDRs in each dimension), and the correlation
in output dimensions (i.e. the shape of the HDRs) with a
held-out dataset and correcting the PDF for each of these
aspects. We provide details on each adjustment in Section D,
and we suggest applying the composition of these adjust-
ments prior to recalibration, as indicated with the ADJUST
step in Line 2 of Algorithms 1 and 2. The bottom row of
Figure 2 provides an illustration of the mean adjustment
and correlation adjustment. We can observe that the result-
ing recalibrated samples more closely reflect the ground
truth distribution. In our experiments, we always apply the
composition of adjustments, and we provide an ablation
study of performing HDR recalibration with and without
adjustments in Section E.5.

Lastly, we note that the ADJUST steps in Line 2 of Algo-
rithms 1 and 2 are meant to be a general procedure that
depends on the type of predictive distribution used, and the
adjustments provided in Algorithms 5, 6, and 7 in Section D
are examples that are specific to the case when the predic-
tive distribution is Gaussian. When either the predictive
or ground truth distributions are complex, these specific
adjustment steps may be insufficient to adequately model
the relationships among the output dimensions, and more
sophisticated adjustments may be necessary.

4. Experiments
We demonstrate the efficacy of the proposed method on two
sets of modeling tasks (Section 4.1) and one downstream
decision-making task (Section 4.2). Across all experiments,
we compare the performance of model predictions with no
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recalibration (i.e. pre-hoc), with SD recalibration, and with
HDR recalibration.

4.1. Modeling Tasks

The two modeling tasks are comprised of 1) a suite of bench-
mark regression datasets and 2) a real-world dataset from the
physical sciences – modeling plasma dynamics in a nuclear
fusion device called a tokamak.

Datasets. The “mulan” benchmark (Tsoumakas et al.,
2011) is a set of prediction tasks with multi-dimensional tar-
gets of up to 16 dimensions. Among these tasks, we take re-
gression datasets with at least 1000 datapoints, which result
in the following 5 datasets: scpf (3D), rf1 (8D), rf2 (8D),
scm1d (16D), scm20d (16D). On each dataset, we make
train-validation-test splits of proportions [65%, 20%, 15%],
and use the train set to learn a probabilistic neural network
(PNN), which is a neural network that predicts a multivari-
ate Gaussian distribution with a diagonal covariance matrix.
Section E.2 provides the full set of details on the experiment
setup for this benchmark experiment.

In the nuclear fusion experiment, we take three different
pre-trained dynamics models of plasma evolution during nu-
clear fusion reactions as the pre-hoc models. These models
were learned from recorded data of nuclear fusion experi-
ments conducted on the DIII-D tokamak (Luxon, 2002), a
magnetic confinement nuclear fusion device. Controlling
these devices is meticulously difficult, and these dynamics
models were used to optimize model-based control policies
for deployment on DIII-D. Each model takes in the current
plasma state and tokamak actuators, then predicts a multi-
dimensional predictive distribution over several key plasma
state variables for the next time step. All three models pre-
dict a multivariate Gaussian distribution with a diagonal
covariance matrix. Two of the models (Fusion1 and Fu-
sion2) predict a 3-dimensional state target, and the third
model, (Fusion3) predicts one additional state variable to
predict a 4-dimensional target. Section E.3 provides the full
set of details on the experiment setup for the nuclear fusion
experiment.

Evaluation. We perform evaluations for both the bench-
mark and fusion modeling tasks as follows. For every test
input xi, samples are drawn from the predictive distribu-
tion, and we denote this set of samples as Si = {ŷj}Mj=1.
We report evaluation metrics based on the predictions, Si,
and the true target datapoint, yi, for each (xi, yi) in the test
set. When applying recalibration (SD or HDR), we use
the validation set to learn the recalibration mapping R and
apply the mapping in producing Si. Sections E.2 and E.3
provides full details on the evaluation procedure for each
set of experiments.

Metrics. As evaluation metrics, we report one proper scor-
ing rule and two measures of calibration. Proper scoring
rules (Gneiting & Raftery, 2007) are summary statistics of
overall performance of a distributional prediction, and they
serve as both an optimization objective as well as evaluation
metrics. Because we represent the predictive distribution
via samples, we use the energy score as our core evaluation
metric. The energy score is defined in terms of expectations
w.r.t the predictive distribution and hence, is amenable to
estimation with samples.

Given a test datapoint (xi, yi) and the predictive distribu-
tion at xi, f̂Y |xi

, the (negatively-oriented) energy score,
ES(f̂Y |xi

, yi), is defined as

ES(f̂Y |xi
, yi) = Ef̂Y |xi

∥∥∥Ŷ − yi

∥∥∥β
2
− 1

2
Ef̂Y |xi

∥∥∥Ŷ − Ŷ ′
∥∥∥β
2
,

where each of Ŷ and Ŷ ′ are independent r.v.s that are both

distributed ∼ f̂Y |xi
, and β is a hyperparameter ∈ (0, 2).

Additionally, we report two measures of calibration: “HDR
Expected Calibration Error (HDR-ECE)” and “single dimen-
sional ECE (SD-ECE)”. We estimate both metrics by first
drawing K probability values: 0 ≤ p1 < p2 · · · < pK ≤ 1
as the predicted probabilities.

HDR-ECE is computed as ECE (Eq. 11) using the notion
of HDR calibration, and this produces one value for the full
joint predictive distribution:

̂HDR-ECE =
1

K

K∑
k=1

|p̂k − pk|,

where p̂k is an estimate of the empirical probability term,
P (F̂Z|X(Z) ≤ pk).

To compute SD-ECE, we first compute ECE using the notion
of average calibration (Eq. 1) for each output dimension

separately: ̂SD-ECEd, d ∈ [D]. Since this produces D
values, and we take the average to summarize SD-ECE as a
single scalar:

̂SD-ECE =
1

D

D∑
d=1

̂SD-ECEd

We point out that SD-ECE is simply a point of reference
since it computes miscalibration as the sum of calibration
error from each output dimension. Thus, this metric may
not provide an accurate representation of miscalibration of
the full joint distribution and may display pathologies, as
described in Figure 1.

We refer the reader to Section E.1 for the full set of details
on how each metric is estimated. Lastly, note that all three
metrics (Energy score, HDR-ECE, SD-ECE) are negatively
oriented, i.e. lower values are more desirable.
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Pre-hoc SD Recalibration HDR Recalibration

Dataset Energy HDR-ECE SD-ECE Energy HDR-ECE SD-ECE Energy HDR-ECE SD-ECE

scpf 3.97 (0.37) 0.30 (0.00) 0.15 (0.00) 4.00 (0.37) 0.04 (0.00) 0.02 (0.00) −0.79 (0.42) 0.07 (0.01) 0.17 (0.00)
rf1 0.11 (0.01) 0.08 (0.00) 0.05 (0.00) 0.11 (0.01) 0.03 (0.00) 0.01 (0.00) 0.08 (0.01) 0.01 (0.00) 0.05 (0.00)
rf2 1.06 (0.28) 0.07 (0.00) 0.05 (0.00) 1.06 (0.28) 0.04 (0.00) 0.01 (0.00) 1.04 (0.28) 0.09 (0.01) 0.06 (0.00)
scm1d 1.13 (0.00) 0.48 (0.00) 0.11 (0.00) 1.13 (0.00) 0.24 (0.00) 0.02 (0.00) 0.36 (0.05) 0.04 (0.00) 0.01 (0.00)
scm20d 1.29 (0.01) 0.48 (0.00) 0.11 (0.00) 1.31 (0.01) 0.25 (0.00) 0.02 (0.00) 0.81 (0.09) 0.04 (0.00) 0.02 (0.00)

Fusion1 2.48 (0.03) 0.34 (0.00) 0.11 (0.00) 2.48 (0.03) 0.14 (0.00) 0.05 (0.00) −3.73 (0.14) 0.13 (0.00) 0.06 (0.00)
Fusion2 1.95 (0.01) 0.45 (0.00) 0.17 (0.00) 1.93 (0.01) 0.31 (0.00) 0.09 (0.00) −1.85 (0.05) 0.05 (0.00) 0.01 (0.00)
Fusion3 4.79 (0.07) 0.35 (0.00) 0.09 (0.00) 5.03 (0.08) 0.17 (0.00) 0.03 (0.00) −5.01 (0.39) 0.09 (0.00) 0.05 (0.00)

Table 1. Results from multi-dimensional regression and recalibration experiments. The mean is shown with 1 standard error in parentheses
(0.00 indicates that the values were smaller than 2 decimal places). The lowest mean value for each metric is bolded. (Top) Results from
the benchmark experiments. (Bottom) Results from the nuclear fusion dynamics model experiments.

Results. Table 1 provides results on both the benchmark
(Top) and nuclear fusion tasks (Bottom). We see that across
all 5 benchmark datasets and the 3 nuclear fusion tasks, the
energy score indicates that the samples produced by HDR
recalibration are the highest quality and has best approx-
imated the ground truth distribution. HDR recalibration
also improves HDR-ECE compared to the pre-hoc model
on 4 out of 5 benchmark datasets and on all three fusion
tasks, which is expected given HDR recalibration aims to
minimize HDR-ECE. Likewise, SD recalibration aims to
minimize SD-ECE, which it achieves on 4 out of 5 bench-
mark datasets and 2 out of 3 fusion tasks. However, the fact
that SD recalibration does not improve the energy score fur-
ther supports the argument that SD-ECE is not an adequate
metric for assessing multi-dimensional predictions.

4.2. Decision-making with Demand Forecasts

We apply the proposed recalibration algorithm in a decision-
making setting, where a decision-maker (in this case a gro-
cery store manager) must forecast future demand for store
items and stock the items accordingly. Similar to the in-
ventory management experiments in Kuleshov et al. (2018);
Malik et al. (2019), we take the “Corporacion Favorita”
Kaggle dataset (Favorita et al., 2017), which records the his-
torical sales of items from a supermarket chain in Ecuador.
We take the top three most sold items between the dates
2015-01-01 to 2017-08-11 and set up the modeling problem
s.t. the grocery store forecasts the demand for the three
products in the next business day, given the recent four day
history of the sales and variables that indicate the day of the
week and week of the year. Given that sales of items in a
store may display dependence (e.g. seasonality or cannibal-
ization), modeling the dependencies across the three items
will be important.

We set up the decision-making problem s.t. the grocery
store attributes very high loss to under-stocking (e.g. loss of
reputation and future demand) and also incurs a small loss

for over-stocking (e.g. possible spoilage and waste):

Losst = 10 ∗Qt,under-stock + 1 ∗Qt,over-stock,

where Losst denotes the loss on day t, Qt,under-stock denotes
the quantity of under-stocked items on day t, and Qt,over-stock
denotes the quantity of over-stocked items on day t. The
demand forecasts are generated as samples from the predic-
tive distribution (i.e. possible realizations of the next day
demand), and we use a cautious decision policy that makes
the decisions based on the sample that forecasts the highest
demand. With a total of 795 days in the dataset, we train the
probabilistic model with the first 559 days while using the
subsequent 159 days as the validation set, and we use this
same validation set for recalibration. With the remaining 77
days, we simulate the decision-making problem and record
the accumulated loss. We repeat the simulation across 5
different seeds and report the average loss and standard error.
We refer the reader to Section E.4 for more details on the
experiment setup.

Pre-hoc SD Recal HDR Recal

Loss 916.81 (4.16) 910.82 (5.19) 865.34 (7.83)

Table 2. Total loss incurred by each method in sales simulation
experiment. The mean loss is shown with 1 standard error in
parentheses.

Table 2 displays the accumulated loss based on each method.
While SD recalibration marginally outperforms the distri-
bution with no recalibration (Pre-hoc), HDR recalibration
significantly improves the loss, demonstrating that the joint
calibration of predictions provides utility in this decision-
making setting.

5. Discussion
In this work, we addressed the problem of recalibrating
multi-dimensional distributional predictions. Prior recali-
bration methods consider each target dimension separately
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and fail to take into account dependencies that may exist
in the dimensions. Bridging ideas in calibration of projec-
tions of multivariate targets, HPD values, and HDRs, we
defined the notion of HDR calibration and proposed the
HDR recalibration algorithm.

HDR calibration leverages the property that for any dis-
tributional prediction setting, the p-HDR of the optimal
prediction will contain the true observations with empirical
frequency p. As HDRs consider the full joint distribution, it
is a more adequate notion for assessment of calibration of
multi-dimensional distributional predictions. The proposed
HDR recalibration algorithm aims to achieve HDR cali-
bration by performing recalibration in the projected space,
sampling from the recalibrated projection distribution, and
mapping the projection samples back to the target space.
This produces a sampling-based representation of the HDR
calibrated distribution. Across the suite of benchmark multi-
dimensional regression tasks, plasma dynamics prediction
tasks, and decision-making task, HDR recalibration consis-
tently improves the quality of the predictive samples com-
pared to the baseline methods.

We note that HDR calibration is a specific instance of cali-
bration in the projected space with the predictive PDF as the
projection function. Other projection functions which cap-
ture various aspects of the data distribution can also be used,
and we leave for future work exploring such projections.
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A. Theoretical Statements
Proposition 2.1 The optimal distributional prediction, i.e. F̂Y |X = FY |X , satisfies calibration in the projected space,
Eq. 3.

Proof. Recall the definition of calibration in the projected space, which we restate here:

P (Z ≤ F̂−1
Z|X(p)) = p,∀p ∈ (0, 1), (12)

where Z := g(X,Y ), X ∼ fX , Y ∼ fY |X and F̂Z|X is the CDF of the r.v. Ẑ|X .

For any p ∈ (0, 1),

P (Z ≤ F̂−1
Z|X(p)) (13)

= P (F̂Z|X(Z) ≤ p) (14)

=

∫
X
P
(
F̂Z|x(Z) ≤ p | X = x

)
dFX(x) (15)

By the condition of the statement, we have F̂Y |X = FY |X , thus F̂Y |x = FY |x.

F̂Y |x = FY |x (16)

⇒ Ŷ |x d
= Y |x (Ŷ |x ∼ F̂Y |x, Y |x ∼ FY |x, and “

d
= ”denotes “equal in distribution”) (17)

⇒ g(x, Ŷ )|x d
= g(x, Y )|x (18)

⇒ Ẑ|x d
= Z|x (Ẑ|x := g(x, Ŷ )|x and Z|x := g(x, Y )|x) (19)

⇒ F̂Z|x = FZ|x (Ẑ|x ∼ F̂Z|x and Z|x ∼ FZ|x) (20)

Then, by the probability integral transform, F̂Z|x(Z|x) ∼ U(0, 1) and P
(
F̂Z|x(Z) ≤ p | X = x

)
= p.

Thus we have ∫
X
P
(
F̂Z|x(Z) ≤ p | X = x

)
dFX(x) (21)

=

∫
X
pdFX(x) (22)

=

∫
X
pfX(x)dx (23)

= p

∫
X
fX(x)dx (24)

= p. (25)

Proposition 2.3 HDR calibration holds if and only if Equation 3 holds.

Proof. We first prove “HDR calibration holds” =⇒ Equation 3.
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For any given p ∈ (0, 1).

P (Y ∈ HDRX(p)) (26)
= P (HPDX(Y ) ≤ p) (27)

=

∫
X
P (HPDx(Y ) ≤ p | X = x)dFX(x) (28)

=

∫
X

∫
Y
I{HPDx(y) ≤ p}dFY |x(y)dFX(x) (29)

=

∫
X

∫
Y
I{1− F̂Z|x(f̂Y |x(y)) ≤ p}dFY |x(y)dFX(x) (30)

=

∫
X

∫
Y
I{1− p ≤ F̂Z|x(f̂Y |x(y))}dFY |x(y)dFX(x) (31)

=

∫
X
P (1− p ≤ F̂Z|x(f̂Y |x(Y )) | X = x)dFX(x) (32)

= P (1− p ≤ F̂Z|X(f̂Y |X(Y )) (33)

= 1− P (F̂Z|X(f̂Y |X(Y )) ≤ 1− p) (34)
= p (by condition that HDR calibration holds) (35)

Thus, ∀p ∈ (0, 1),

1− P (F̂Z|X(f̂Y |X(Y )) ≤ 1− p) = p (36)

⇐⇒ P (F̂Z|X(f̂Y |X(Y )) ≤ 1− p) = 1− p (37)

⇐⇒ P (F̂Z|X(f̂Y |X(Y )) ≤ p) = p (Equation 3), (38)

proving that “HDR calibration holds” =⇒ Equation 3.

We can reverse all of the steps to prove the other direction, which completes the proof.

Proposition 3.1 Consider R ◦ F̂Z|X for an invertible mapping R. Then R ◦ F̂Z|X satisfies Eq. 3, i.e.

P (R ◦ F̂Z|X(Z) ≤ p) = p ∀p ∈ (0, 1).

Proof. For any fixed p ∈ (0, 1), let q = R−1(p).

Note the following equality

P (F̂Z|X(Z) ≤ p) (39)

=

∫
X
P (F̂Z(Z|x) ≤ p | X = x)dF (x). (40)

Applying R to F̂Z|X , we have

P (R ◦ F̂Z|X(Z) ≤ p) (41)∫
X
P (R ◦ F̂Z|x(Z) ≤ p | X = x)dF (x) (42)

=

∫
X
P (F̂Z|x(Z) ≤ R−1(p) | X = x)dF (x) (43)

=

∫
X
P (F̂Z|x(Z) ≤ q | X = x)dF (x) (44)

= P (F̂Z|X(Z) ≤ q) (45)
= p (by definition of R(q)) (46)
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Proposition 3.2 Suppose that Ẑ ∼ R ◦ F̂Z|X and that R is an invertible mapping. Then the distribution of Ŷ is HDR
calibrated.

Proof. To first clarify the notation in the proposition statement, in writing Ẑ ∼ R ◦ F̂Z|X , the notation for Ẑ has been
overloaded as in the main text, we have stated that Ẑ is the r.v. of the distribution function F̂Z|X .

Following the context of Section 3.1, the Ŷ and Ẑ in this proposition statement should be taken as any arbitrary r.v. that
is generated as follows: Ŷ is an arbitrary r.v. in Y , and Ẑ is the corresponding r.v. in the projected space induced by the
projection function f̂Y |X and the r.v. Ŷ .

By Proposition 3.1, we know that if Ẑ ∼ R ◦ F̂Z|x, then Eq. 3 holds.

By Proposition 2.3, we know that Eq. 3 is equivalent to HDR calibration, i.e. the distribution function of Ŷ satisfies HDR
calibration.

B. Additional Details on Related Works
Izbicki et al. (2022) proposes “HPD-split” as a conformal prediction method that utilizes HPD values (Eq. 4) as the split
residuals, and simply by the method of split conformal prediction, given a fixed level α ∈ (0, 1), the prediction set produced
by HPD-split is guaranteed at least 1− α coverage on average over the data distribution, i.e. marginal validity (Definition 1,
Izbicki et al. (2022)) holds.

As discussed in Section 2.4, while their method does not consider multi-dimensional target spaces, because of the intrinsic
relationship between HPD values and HDRs (Eq. 8), it is interesting to consider the relationship between the prediction set
produced by HPD-split, HDR calibration (Defn. 2.2), and our proposed recalibration algorithm (Algorithms 1, 2).

Since HDR calibration is a notion of calibration defined for a predictive distribution function f̂ , F̂ , strictly speaking, one
cannot state that the prediction set by HPD-split is HDR calibrated since there is no notion of a probability distribution
function: given a fixed p ∈ (0, 1), HPD-split produces a set S ⊆ Y s.t. P (Y ∈ S) ≥ p, but following Definition 2.2, one
cannot construct HDR(p) as the concept of HDR is intrinsically tied to a distribution function. This is not particular to
HPD-split, but a key feature of all conformal prediction methods that differentiates it from calibration (or recalibration)
methods: conformal prediction methods output prediction sets for a specified α-level, while calibration methods output full
predictive distributions.

However, conversely, one can construct prediction sets from predictive distributions, and we can show that a prediction set
constructed from the HDR recalibration procedure satisfies marginal validity that holds for HPD-split, i.e. our recalibration
procedure shares the conformal guarantees of HPD-split.

Proof. Assume an invertible interpolation algorithm for the recalibration mapping R in Algorithm 1 s.t. ∀α ∈
{ 1
N , 2

N , . . . N−1
N , 1}, R−1(α) = c(Nα) (Recall that c(i) is the ith order statistic of the recalibration dataset C′ in Algo-

rithm 1). Assume a fixed level α ∈ { 1
N , 2

N , . . . N−1
N , 1}.

Recall that the CDF of the recalibrated distribution in Z space is R ◦ F̂Z|X (Section 3.1). Given a test input point x, consider
constructing a 1-sided prediction interval in Z with expected coverage equal to 1− α, i.e. {z : R ◦ F̂Z|x(z) ≥ α)}.

{z : R ◦ F̂Z|x(z) ≥ α)}
= {z : F̂Z|x(z) ≥ R−1(α)}
= {z : F̂Z|x(z) ≥ c(Nα)}

Following the definition Z := f̂Y |X(Y ), we have that the pre-image of this set in Y space is the following set

C(x) = {y : F̂Z|x(f̂Y |x(y)) ≥ c(Nα)}
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Note that this set is identical to the conformal prediction set in Definition 15 of Izbicki et al. (2022), and following their
Theorem 20, this set satisfies marginal validity, i.e.

P (Y ∈ C(X)) ≥ 1− α

Feldman et al. (2023) is another conformal prediction method, but which aims to produce prediction sets in multi-dimensional
target spaces. Their method relies on training a VAE on the dataset to learn a representation that is amenable to performing
quantile regression. In addition to the point that it is a conformal method which produces prediction sets instead of
distributions, we note that their work is somewhat orthogonal to our setting as it is a pre-hoc method, whereas we are focused
on post-hoc methods which can be applied on top of pre-hoc trained models (as discussed in Section 2.4).

C. Additional Definitions
Average Calibration. We provide additional notes on average calibration (Eq. 1), which we restate here:

P (Y ≤ F̂−1
Y |X(p)) = p,∀p ∈ [0, 1].

We can rewrite this expression by conditioning on X = x and applying the law of total probability:

P (Y ≤ F̂−1
Y |X(p)) = Ex∼fX

[
P
(
Y ≤ F̂−1

Y |x(p)
∣∣∣X = x

)]
.

Copula Calibration and Kendall Distribution. We first re-state copula calibration using our notation.

Copula calibration requires Eq. 3 with Z := F̂Y |X(Y ), Ẑ := F̂Y |X(Ŷ ), and F̂Z|X : [0, 1]→ [0, 1] is the Kendall distribution:
F̂Z|X(p) = P (Ẑ ≤ p).

Utilizing the notation from Ziegel & Gneiting (2014) the Kendall distribution of any CDF F is denoted asKF : [0, 1]→ [0, 1],
where KF (p) = P (F (Y ) ≤ p) for p ∈ [0, 1], and copula calibration is defined as

P (KF̂X
[F̂X(Y )] ≤ p) = p,∀p ∈ [0, 1].

Highest Density Region Hyndman (1996) defines highest density regions as follows. Given a coverage level p, the p-HDR
of the predictive PDF f̂Y |x, Rf̂Y |x

(p) is defined as

Rf̂Y |x
(p) = {y : f̂Y |x(y) ≥ f̂p}, (47)

where f̂p = arg sup
f̂p

{P (Ŷ ∈ Rf̂Y |x
(p) | X = x) ≥ p}. (48)

We note that this definition, which is stated here nearly verbatim from the original definitions from Hyndman (1996),
is recursive. To clarify, Rf̂Y |x

(p) is the prediction set which has the highest density values w.r.t. f̂Y |x and which has p
integrated probability. We refer the reader to Figure 1 of Hyndman (1996) or Figure 2 of Zhao et al. (2021) for helpful
visualizations.

D. Additional Details on Algorithms
D.1. Subroutine Algorithms

This section provides details on the algorithms that are used as subroutines of the main algorithms (Algorithms 1 and 2 from
Section 3).

Algorithm 3 is used in Algorithm 1 to construct the recalibration mapping dataset.
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Algorithm 4 is used in Algorithm 2 to re-sample from a set of predictive samples to construct a set of recalibrated samples.
We point out that Algorithm 4 provides an implementation of using binning to apply the recalibration mapping R during
re-sampling. However, there can be other ways of applying R during re-sampling (e.g. isotonic regression).

Algorithms 5, 6, 7 comprise the PDF adjustment step described in Section 3.2, which is used in Line 2 of both Algorithms 1
and 2. While the PDF adjustment step is meant to be a general procedure to correct for biases or correlations that are evident
based on the predictions on a held-out dataset, because diagonal Gaussians are commonly used for multi-dimensional
distributional predictions, we provide an instantiation of the adjustment procedure specifically for diagonal Gaussian
distributions. In our experiments, we used a composition of all three algorithms in order - i.e. the PDF was first adjusted for
the mean, then the standard deviation, and lastly the covariance. We note that Algorithm 6 requires a choice of loss function
defined for univariate Gaussians, and in our experiments, we used SD-ECE (single dimensional expected calibration error)
as the loss function.

Lastly, note that in practice, Algorithms 5, 6, 7 are actually run only once during Training (Line 2 of Algorithm 1). During
testing, the learned adjustment functions are simply applied to the distributional predictions (Line 2 of Algorithm 2).

Algorithm 3 Constructing the Recalibration Mapping Dataset

1: Input: Calibration dataset {(xi, yi)}Ni=1, predictive PDF f̂Y |X , number of samples M .
2: C ← ∅
3: for i ∈ [N ] do
4: Draw M samples from f̂Y |xi

to construct {ŷi,j}Mj=1 and apply f̂Y |xi
to each sample to construct {ẑi,j}Mj=1 where

ẑi,j = f̂Y |xi
(ŷi,j)

5: zi ← f̂Y |xi
(yi)

6: Estimate empirical CDF F̂Z|xi
with {ẑi,j}Mj=1 and evaluate zi: ri = F̂Z|xi

(zi)
7: C ← C ∪ {ri}
8: end for
9: Output: C

Algorithm 4 Producing HDR Recalibrated Samples via Binning
1: Input: Dataset of tuples of predictive samples and projections D = {(ŷj , ẑj)}Mj=1, recalibration mapping R, number of

bins B.
2: Place D into B equal width binsM = {bi = [li, ui)}Bi=1 w.r.t {ẑj}Mj=1, s.t. minẑj (ŷj , ẑj) ∈ b1, maxẑj (ŷj , ẑj) ∈ bB ,

and the number of elements in each bin |bi| = ⌊MB ⌋.
3: Recalibrated samples D′ ← ∅
4: for i ∈ [B] do
5: Sampling rate for bin si = R

(
i ∗ ⌊MB ⌋/M

)
−R

(
(i− 1) ∗ ⌊MB ⌋/M

)
.

6: Sample from bi with probability si to construct the dataset {(ŷk, ẑk)}Ki

k=1 where Ki = ⌊(si ∗ ⌊MB ⌋)⌋
7: D′ ← D′ ∪ {ŷk}Ki

k=1.
8: end for
9: Output: D′.

Algorithm 5 Mean Adjustment for Gaussian Distributions

1: Input: Calibration dataset {(xi, yi)}Ni=1, predictive Gaussian PDF f̂Y |X := (µ̂X , σ̂X).
2: Predict the conditional mean at each xi, µ̂i, and compute the bias: bias = 1

N

∑N
i=1(yi − µ̂i).

3: Define the mean adjustment function: A ((µ̂, σ̂)) = (µ̂+ bias, σ̂)
4: Output: Mean adjusted Gaussian distribution A ((µ̂X , σ̂X)).
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Algorithm 6 Standard Deviation Adjustment for Diagonal Gaussian Distributions

1: Input: Calibration dataset {(xi, yi)}Ni=1, predictive Gaussian PDF f̂Y |X := (µ̂X , σ̂X), loss function for univariate
Gaussian distributions L : (µ× σ,Y)→ R

2: Predict the conditional mean and standard deviation at each xi: (µ̂i, σ̂i).
3: Optimized standard deviation ratios S ← [ ].
4: for d ∈ [D] do
5: cd = argminc∈R+

1
N

∑N
i=1 L

(
(µ̂d

i , c ∗ σ̂d
i ), y

d
i

)
.

6: Append cd to S.
7: end for
8: Concatenate S into a vector and denote it ŝ ∈ RD.
9: Define the standard deviation adjustment function: A ((µ̂, σ̂)) = (µ̂, ŝ⊙ σ̂), where ⊙ indicates element-wise product.

10: Output: Standard deviation adjusted Gaussian distribution A ((µ̂X , σ̂X)).

Algorithm 7 Covariance Adjustment for Diagonal Gaussian Distributions

1: Input: Calibration dataset {(xi, yi)}Ni=1, predictive Gaussian PDF f̂Y |X := (µ̂X , σ̂X).
2: Predict the conditional mean and standard deviation at each xi: (µ̂i, σ̂i).
3: Compute the error in mean prediction {ϵi}Ni=1, where ϵi = yi − µ̂i.
4: Compute the error correlation matrix from {ϵi}Ni=1: ρ̂ ∈ RD×D.
5: Define the covariance adjustment function, A ((µ̂, σ̂)) = (µ̂, Σ̂(σ̂, ρ̂)), where Σ̂(σ̂, ρ̂) = Diag(σ̂) · ρ̂ ·Diag(σ̂), Diag(σ̂)

denotes the D ×D diagonal matrix with elements of σ̂ in the diagonal, and · is the standard matrix-matrix product
operation.

6: Output: Covariance adjusted Gaussian distribution A ((µ̂X , σ̂X)).
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D.2. Algorithm Analysis

We provide an analysis of the computational complexity of the main algorithms, Algorithms 1 and 2. Because the ADJUST
step (Line 2) is an auxiliary procedure, we first analyze the run time of both algorithms excluding this step.

Algorithm 1

• Line 3: When constructing the dataset C, computing the value F̂Z|xi
(zi) involves drawing M samples from f̂Y |xi

and
sorting M values of zi, hence takes O(M logM) time for each i ∈ [N ], and thus takes O(NM logM) time.

• Line 4: Sorting N values takes O(N logN) time.

• Line 5: Learning R depends on the algorithm used. If one uses binning, this step takes no additional time since the bins
are already defined by C′.

Therefore, the whole procedure takes O(NM logM) time, where N is the number of datapoints in the calibration dataset,
and M is the number of samples drawn to estimate the empirical CDF F̂Z|X .

Algorithm 2

• Line 3: Drawing M samples and applying f̂Y |x on each sample takes O(M) time.

• Line 4: Following Algorithm 4:

– Line 2 of Algorithm 4: The most expensive step is sorting M values, which takes O(M logM) time.
– Lines 4-8 for-loop of Algorithm 4: In each iteration, we re-sample from each bin of ⌊MB ⌋ points, which takes
O(M/B) time. Since there are B iterations, the whole for-loop takes O(M) time.

Therefore, the whole procedure takes O(M logM) time, where M is the number of samples drawn to express the predictive
distribution f̂Y |x.

PDF Adjustment Step (ADJUST)

• Algorithm 5 takes O(N) time.

• The run time of Algorithm 6 depends on the optimization algorithm used in Line 5, but since the optimization is
repeated for D dimensions with a dataset of N points, it takes at least Ω(ND) time.

• In Algorithm 7, correlation estimation (Line 4) takes O(ND2) time, and the covariance matrix estimation involves two
matrix multiplication of size D ×D, which takes O(D3) time, hence the overall complexity is O(ND2 +D3).
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E. Additional Details on Experiments
E.1. Evaluation Metrics

Energy score Given a test datapoint (xi, yi) and the predictive distribution at xi, f̂Y |xi
, the (negatively-oriented) energy

score, ES(f̂Y |xi
, yi), is defined as

ES(f̂Y |xi
, yi) = Ef̂Y |xi

∥∥∥Ŷ − yi

∥∥∥β
2
− 1

2
Ef̂Y |xi

∥∥∥Ŷ − Ŷ ′
∥∥∥β
2
,

where each of Ŷ and Ŷ ′ are independent r.v.’s following the distribution f̂Y |xi
, and β is a hyperparameter ∈ (0, 2). We

estimate this score with

ÊS(f̂Y |xi
, yi) =

1

|S|
∑
ŷ∈S

∥ŷ − yi∥β2 −
1

2|S ′||S ′′|
∑

ŷ′∈S′,ŷ′′∈S′′

∥ŷ′ − ŷ′′∥β2

by drawing finite sets of samples S,S ′, and S ′′ independently from the distribution f̂Y |xi
. The exact number of samples

drawn for each of S,S ′,S ′′ is provided in the following sections on each of the experiments. We set β = 1.7 for all of our
experiments, but other values also result in similar trends as reported.

Given the test set, D = {(xi, yi)}Ni=1, we report the mean energy score over D:

ÊS =
1

N

N∑
i=1

ÊS(f̂Y |xi
, yi).

HDR-ECE HDR-ECE (highest density region expected calibration error) is computed following the equation for expected
calibration error (ECE) in Eq. 11 with the notion of HDR calibration, specifically Eq. 3, which is equivalent to Definition 2.2
by Proposition 2.3. We estimate HDR-ECE with the test setD = {(xi, yi)}Ni=1 as follows. At a test input xi, since we do not
know the closed form of F̂Z|xi

, we estimate F̂Z|xi
(zi) by first drawing a set of samples from f̂Y |xi

: {ŷj}Mj=1, then applying
f̂Y |xi

to each sample to construct Si = {ẑj = f̂Y |xi
(ŷj)}Mj=1 ∼ F̂Z|xi

, and finally produce the estimate for F̂Z|xi
(zi) as

pi =
1

M

M∑
j=1

I{ẑj ≤ zi} =
1

M

M∑
j=1

I{f̂Y |xi
(ŷj) ≤ f̂Y |xi

(yi)}.

Then for any pk ∈ [0, 1] we estimate the empirical probability term, P (F̂Z|X(Z) ≤ pk), as

p̂k =
1

N

N∑
i=1

I {pi ≤ pk} .

Finally, we choose K probability values: 0 ≤ p1 < p2 · · · < pK ≤ 1 and estimate HDR-ECE as the empirical estimate of
Eq. 11:

̂HDR-ECE =
1

K

K∑
k=1

|p̂k − pk|.

The exact number of samples drawn to estimate F̂Z|xi
is provided in the following sections on each of the experiments. For

the probability values, we set K = 99 and used the following grid of probability values: [0.01, 0.02, 0.03, . . . 0.98, 0.99].

SD-ECE SD-ECE (single dimensional expected calibration error) is computed as the mean of ECE measured for each
output dimension independently following the notion of univariate calibration (Eq. 1). For each dimension d, given a test
input xi, we first estimate F̂Y d|xd

i
(ydi ) with a set of predictive samples Si = {ŷj}Mj=1 ∼ f̂Y |xi

as

pdi =
1

M

M∑
j=1

I{ŷdj ≤ ydi }.
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Then for a given probability pk ∈ [0, 1], we estimate the empirical coverage term, P (F̂Y d|Xd(Y d) ≤ pk), as

p̂dk =
1

N

N∑
i=1

I
{
pdi ≤ pk

}
.

Thus, we estimate the “SD-ECE at dimension d” (SD-ECEd) as ̂SD-ECEd = 1
K

∑K
k=1 |p̂dk − pk|, and take the average of

̂SD-ECEd over all of the output dimensions to estimate SD-ECE:

̂SD-ECE =
1

D

D∑
d=1

̂SD-ECEd,

where D is the number of dimensions of Y .

Again, the exact number of samples drawn to estimate F̂Y |xi
is provided in the following sections on each of the experiments.

Just as with HDR-ECE, for the probability values, we set K = 99 and used the following grid of probability values:
[0.01, 0.02, 0.03, . . . 0.98, 0.99].

Lastly, we note that calibration plots (a.k.a. reliability diagrams) in Figures 1 and 2 were produced with the Uncertainty
Toolbox (Chung et al., 2021a).

E.2. Benchmark Regression Tasks

We use the following 5 datasets from the “mulan” benchmark (Tsoumakas et al., 2011): scpf (3D), rf1 (8D), rf2 (8D),
scm1d (16D), scm20d (16D). With each dataset, we make train-validation-test splits of proportions [65%, 20%, 15%], and
train a probabilistic neural network (PNN) (Lakshminarayanan et al., 2017; Nix & Weigend, 1994) that predicts a diagonal
Gaussian distribution.

For all of the datasets, the PNN trained has 5 fully connected layers, each with 200 hidden units, and the output parametrizes
a diagonal Gaussian with a mean and a log-variance prediction. The Gaussian likelihood loss was used for training, with a
learning rate of 0.001 and no weight decay was used. Training was halted early if the validation loss did not improve for
more than 100 epochs, for a maximum of 1000 epochs. All of the models early-stopped their training.

After training a PNN on the train set, we learn the recalibration mapping on the validation split and produce 20 independent
sets of recalibrated predictive samples on the test split (for methods SD Recalibration and HDR Recalibration). For the
Pre-hoc method, samples were drawn from the PNN model without any recalibration. For scpf, each set contained 5000
samples of ŷ ∼ f̂Y |x at each test point x, for rf1, rf2, 8000 samples, and for scm1d, scm20d, 10000 samples. We compute
each evaluation metric (Energy score, HDR-ECE, SD-ECE) on each of these sets of samples, then take the average for each
metric across the 20 sets of samples. We then repeat this process (data splits, model training, recalibration and repeated
sampling) with 5 different seeds, and report the mean and standard error of the metrics in Table 1 (Top).

E.3. Dynamics Modeling in Nuclear Fusion

We first provide some background information on the problem setup of modeling plasma dynamics for tokamaks. A tokmak
is a device that magnetically confines a toroidal plasma, and it is one of the most promising devices for making nuclear
fusion energy a reality. With the potential of providing an abundant source of safe and clean power generation, nuclear
fusion, which is the physical process during which atomic nuclei combine together to form heavier atomic nuclei, is regarded
as the power source of the future. However, fusion reactions are difficult to control, and recently, there has been increasing
interest in both learning dynamics models (Boyer et al., 2021; Abbate et al., 2021) and applying those models for control of
tokamaks (Mehta et al., 2021; 2022; Char et al., 2023a; Seo et al., 2021; 2022). In model-based control, a model of the
system dynamics is learned and used e.g. to optimize a control policy offline, or the model is deployed online for model
predictive control (Rawlings, 2000). In either case, the learned model is sampled repeatedly to optimize a control sequence,
hence obtaining well-calibrated samples which reflect the intricacies of the true system dynamics is crucial (Malik et al.,
2019; Chua et al., 2018).

We take 3 different pre-trained dynamics models that were used to optimize control policies for deployment on the DIII-D
tokamak, a nuclear fusion device in San Diego that is operated by General Atomics (Luxon, 2002). All three models were
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trained with logged data from past experiments (referred to as “shots”) on this device. As input, the models take in the
current state of the plasma and the actuators from the tokamak. They then output a multi-dimensional predictive distribution
of several key plasma state variables in the next timestep. Two of the models, which we refer to as Fusion1 and Fusion2,
predict a 3-dimensional target: βN (the ratio of plasma pressure over magnetic pressure), density (the line-averaged electron
density), and li (internal inductance). The third model, Fusion3, predicts one additional variable, dr (differential rotation of
the plasma), to predict a 4-dimensional target. For the actuators, the model takes in the amount of power and torque injected
from the neutral beams, the current, the magnetic field, and four shape variables (elongation, aminor, triangularity top, and
triangularity bottom). This, along with the state space, make for an input dimension of 11 (for Fusion1 and Fusion2) or 12
(for Fusion3).

All three pre-trained models have the same model architecture. It is a recurrent probabilistic neural network (RPNN), which
features an encoding layer by an RNN with 64 hidden units followed by a fully connected layer with 256 units, and a
decoding layer of fully connected layers with [128, 512, 128] units, which finally outputs a diagonal Gaussian parameterized
by the mean and a log-variance prediction. The Gaussian likelihood loss was used for training, with a learning rate of 0.0003
and weight decay of 0.0001. In using dynamics models to sample trajectories and train policies, the key metric practitioners
are concerned with is explained variance, hence explained variance on a held out validation set of 1000 shots was monitored
during training and training was halted early if there was no improvement for more than 250 epochs. Fusion2 and Fusion3
were trained with a non-smoothed dataset consisting of 12000 shots in the training dataset, and Fusion2 explains on average
57% of the variance in the outputs, and Fusion3 40%. Fusion1 was trained with a smoothed version of the dataset and
explains on average 63% of variance in the outputs.

For each of these models, we learn the recalibration mapping with a validation dataset consisting of 1000 shots’ worth
of data for methods SD Recalibration and HDR Recalibration. For the Pre-hoc method, samples were drawn from the
pre-trained models without any recalibration. For all models and methods, we drew 3000 samples at each test datapoint. We
compute the average of each evaluation metric across 10 sets of predictive samples on a single set of 20 held-out test shots,
and repeat this process for 10 different sets of 20 test shots. We report the mean and standard error across these 10 sets in
Table 1 (Bottom).

E.4. Decision-making with Demand Forecasting

The demand forecasting model takes in the recent 4-day history of sales of each of the top three most sold items, and
categorical variables which indicate the day of the week and week of the year, which makes for a total of 14 input dimensions.
The model is then trained to predict a distribution over how much of each item was sold in the next business day. i.e. over
3-dimensional targets.

To demonstrate versatility of the proposed HDR recalibration method, in this experiment, we used NGBoost (natural gradient
boosting (Duan et al., 2020)) for the demand forecasting model. We used the NGBRegressor, which predicts a diagonal
Gaussian distribution. The model was trained with the CRPScore with a learning rate of 0.005, and number of estimators
set to 1000. Training was stopped early if the CRPScore on the validation set did not improve for 20 iterations. The same
validation set was used for recalibration.

During testing, we use the demand forecasting model to produce a set of samples that reflect possible realizations of demand
for each of the three products in the next business day. Among these samples, we filter out samples which are over the
budget. Then, with the remaining samples, we select the sample with the maximum sum of demand across the three products,
and take this sample as the action – i.e. this sample is how much quantity of each product the store will prepare for the next
business day. With the true sales data of the next business day, we compute the loss as described in Section 4.2. To set the
budget, we took the mean of sales in the validation set.

For each method (Pre-hoc, HDR recalibration, SD recalibration), the simulation across the test set was repeated 10 times
and the average of the cumulative loss across these 10 times was recorded. This full pipeline (model training, sampling, 10
repeated simulations) was done with 5 different seeds, and the mean and standard error of the cumulative loss across the 5
seeds is reported in Table 2.

E.5. Ablation Study on the Effects of PDF Adjustment in HDR Recalibration

We present an ablation study which demonstrates the effect of the PDF adjustment step, described in Section 3.2. For the 5
benchmark datasets, we run HDR recalibration without the adjustment step, and compare evaluation metrics against running
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HDR recalibration with the adjustment. The results are shown in the table below. The “With Adjustment” columns have
been reproduced here from Table 1 for convenience. The energy score indicates that the adjustment step improves the quality
of the predictive samples.

Without Adjustment With Adjustment

Dataset Energy HDR-ECE SD-ECE Energy HDR-ECE SD-ECE

scpf 3.55 (0.37) 0.03 (0.00) 0.15 (0.00) −0.79 (0.42) 0.07 (0.01) 0.17 (0.00)
rf1 0.09 (0.02) 0.01 (0.00) 0.06 (0.00) 0.08 (0.01) 0.01 (0.00) 0.05 (0.00)
rf2 1.05 (0.29) 0.01 (0.00) 0.05 (0.00) 1.04 (0.28) 0.09 (0.01) 0.06 (0.00)
scm1d 1.11 (0.01) 0.40 (0.00) 0.07 (0.00) 0.36 (0.05) 0.04 (0.00) 0.01 (0.00)
scm20d 1.27 (0.01) 0.42 (0.00) 0.07 (0.00) 0.81 (0.09) 0.04 (0.00) 0.02 (0.00)

Table 3. Results from comparing the HDR recalibration method without and with the PDF adjustment step. The energy score indicates
that the adjustment step significantly improves the sample quality when performing HDR recalibration.

E.6. Computing Infrastructure

All of the model training was done with 4 NVIDIA GeForce RTX 2080 Ti GPUs.

All of the evaluation was done on a CPU machine with Intel(R) Xeon(R) Gold 6238 CPU @ 2.10GHz.
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