
Under review as a conference paper at ICLR 2023

TEXT-GUIDED DIFFUSION IMAGE STYLE TRANSFER
WITH CONTRASTIVE LOSS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, diffusion models have demonstrated superior performance in text-
guided image style transfer. However, due to the stochastic nature of the diffu-
sion models, there exists a fundamental trade-off between transforming styles and
maintaining content in the diffusion models. Although a simple remedy would be
using deterministic sampling schemes such as denoising diffusion implicit model
(DDIM) that guarantees the perfect reconstruction, it requires the computationally
expensive fine-tuning of the diffusion models. To address this, here we present a
text-guided sampling scheme using a patch-wise contrastive loss. By exploiting
the contrastive loss between the samples and the original images, our diffusion
model can generate an image with the same semantic content as the source im-
age. Experimental results demonstrate that our approach outperforms the existing
methods while maintaining content and requiring no additional training on the
diffusion model.

1 INTRODUCTION

Style transfer is the task that converts the style of a given image into another style while preserving
its content. Over the past few years, GAN-based methods such as pix2pix (Isola et al., 2017), cy-
cleGAN (Zhu et al., 2017), and contrastive unpaired image-to-image translation (CUT) have been
developed (Park et al., 2020). Recently, joint use of a pretrained image generator and image-text en-
coder enabled text-guided image editing which requires little or no training of the networks (Radford
et al., 2021; Crowson et al., 2022; Patashnik et al., 2021; Gal et al., 2022; Kwon & Ye, 2022).

Inspired by the success of diffusion models for image generation (Ho et al., 2020; Song et al., 2020),
image editing (Liu et al., 2021), in-painting (Avrahami et al., 2022), super-resolution (Chung et al.,
2022), etc., many researchers have recently investigated the application of the diffusion models
for image-to-image style transfer (Saharia et al., 2022; Su et al., 2022). For example, (Saharia
et al., 2022; 2021) proposed conditional diffusion models that require paired dataset for image-to-
image style transfer. One of the limitations of these approaches is that the diffusion models need
to be trained with paired data set with matched source and target styles. As collecting the matched
source and target domain data is impractical, many recent researchers have focused on unconditional
diffusion models.

Figure 1: Results of our style transfer method on various artistic styles. The source images are
translated into various styles while maintaining their structure.
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For example, the dual diffusion implicit bridge (DDIB) (Su et al., 2022) exploits two score functions
that have been independently trained on two different domains. Although DDIB can translate one
image into another without any external condition, it also requires training of two diffusion models
for each domain which involves additional training time and a large amount of dataset. On the other
hand, DiffusionCLIP (Kim et al., 2022) leverages the pretrained diffusion models and CLIP encoder
to enable text-driven image style transfer without additional large training data set. Unfortunately,
DiffusionCLIP still requires additional fine-tuning of the model for the desired style. Besides the
additional complexity, unconditional diffusion models for image style transfer have further limita-
tions in maintaining content. This is because the reverse sampling procedure of the diffusion models
does not have an explicit constraint to impose the content consistency, and the stochastic nature of
diffusion models makes them easy to change the content and styles at the same time.

To address this, here we propose a diffusion model that transfers the style of a given image while
preserving its semantic content by using contrastive loss similar to CUT (Park et al., 2020). Since
contrastive loss can exploit the spatial information in terms of positive and negative pairs, we found
that diffusion model already contains the spatial information that can be used to maintain the con-
tent. Furthermore, in contrast to DiffusionCLIP, it only requires the CUT loss fine-tuning via light
weighted multi-layer perceptron (MLP) layers rather than the diffusion model, so the computational
complexity can be significantly reduced. Even more, thanks to the extracted spatial features from
diffusion models, we observe that the MLP fine-tuning is not even necessary with slight decrease in
quality.

To verify the effectiveness of this method, we present a text-driven style transfer using CLIP (Rad-
ford et al., 2021). In particular, we utilize CLIP in a patch-wise manner similar to (Kwon & Ye,
2022) thanks to its stable style translation. Our contribution can be summarized as following:

• Thanks to the content disentanglement using contrastive loss, to our best knowledge, our
method is the first style transfer method with unconditional diffusion model that overcomes
the trade-off between style and content.

• Our method only requires contrastive loss from the pre-trained diffusion models rather than
fine-tuning the diffusion model for target domain, so the computational complexity is much
low but still allows effective image transfer to any unseen domain.

2 RELATED WORKS

Image style transfer Neural style transfer (Gatys et al., 2016) is the first approach to change the
style texture of the content image into a style image by iterative optimization process. However,
these iterative process takes significant amount of time. Alternatively, the adaptive instance normal-
ization (AdaIN) by (Huang & Belongie, 2017) converts the means and variances of the features of
the source image to those of the target image, which enables arbitrary style transfer.

On the other hand, pix2pix (Isola et al., 2017), CycleGAN (Zhu et al., 2017) and CUT (Park et al.,
2020) rely on different mechanisms for content preservation. Specifically, in CycleGAN (Zhu et al.,
2017), the cycle consistency assumes bijective relationship between two domains for content preser-
vation, whose constraint is often restrictive in some applications. In order to overcome this re-
striction, CUT (Park et al., 2020) was proposed to maximize the mutual information between the
content input and stylized output images in a patch-based manner on the feature space. This leads
to preservation of the structure between the two images while changing appearance.

With the advent of CLIP model (Radford et al., 2021), it has been shown that text-guided image
synthesis can be accomplished without collecting style images. CLIP has semantic representative
power which results from large scale dataset consisting of 400 millions image and text pairs. This
enables text-driven image manipulation. StyleCLIP (Patashnik et al., 2021) was proposed to opti-
mize latent vector of the content input given text prompt by using CLIP and pretrained StyleGAN
(Karras et al., 2020). However, image modification using StyleCLIP is limited to the domain of the
pretrained generator. In order to solve this issue, StyleGAN-NADA (Gal et al., 2022) presented out-
of-domain image manipulation method that shifts the generative model to new domains. VQGAN-
CLIP (Crowson et al., 2022) has shown that VQGAN (Esser et al., 2021) can also be used as a
pretrained generative model to generate or edit high quality images without training. In order not to
be restricted to the domains of the pretrained generators, CLIPstyler (Kwon & Ye, 2022) proposed a
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Figure 2: An illustration on sampling schemes of four diffusion models for style transfer.

Figure 3: Our proposed method. In order to guide the diffusion model, CUT loss is calculated using
the noise estimator ϵθ(·) and CLIP loss using the CLIP model. Through these losses, gradients are
added to the predicted mean at each time step. More details regarding CUT implementation on the
diffusion model are described in METHOD and APPENDIX sections.

CNN encoder-decoder model that learns both content and style properties through patch-wise CLIP
loss.

Diffusion models for style transfer Diffusion probabilistic models have attracted great attention
because of their superior performance in generating images despite their long training time (Ho
et al., 2020; Song et al., 2020). The diffusion model is a generative model that involves Markov
chain of forward process by gradually adding Gaussian noise (Ho et al., 2020). Then, with a trained
noise estimation model, clean samples are generated from the latent noise by iterative denoising
process. They have been applied to a wide variety of computer vision areas involving super resolu-
tion (Rombach et al., 2022), segmentation (Baranchuk et al., 2022), image editing (Avrahami et al.,
2022), medical image processing (Kim et al., 2021), and video generation (Ho et al., 2022).

Recently, there have been several attempts to translate images from one domain to another using
diffusion models. Palette (Saharia et al., 2022) demonstrated that various types of image-to-image
translation can be performed by utilizing conditional diffusion models which require paired dataset
for training. For unconditional diffusion models, DDIB (Su et al., 2022) proposed to exploit two
score functions which have been independently trained on two different domains. However, it re-
quires training diffusion models on each style domain, which takes a significant amount of time.
Meanwhile, DiffusionCLIP (Kim et al., 2022) was proposed for image manipulation using a pre-
trained diffusion model. Specifically, DiffusionCLIP fine-tunes the model with identity and style
losses, which explicitly impose constraints on transferring appearance while maintaining structure.
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Though it could be trained easily with semantic knowledge of CLIP, the model needs to be fine-
tuned for each style domain. Additionally, diffusion models with guidance from regression models
have been proposed for image-to-image translation tasks (Wolleb et al., 2022). Although it could
transform the content images with the desired style without additional training on diffusion models,
its generated image suffers from inconsistency with the content image.

3 METHODS

3.1 DILEMMA OF DIFFUSION MODELS

For image style transfer, the generative process should convert an image into a given style while
retaining the content. However, diffusion models have difficulties in maintaining the semantic infor-
mation. Specifically, in diffusion models, given a source data distribution q(x0), latent variable xt

is computed by forward diffusion process. DDPM (Ho et al., 2020) directly samples xt from x0 by
adding Gaussian noise with βt ∈ (0, 1) at time t ∈ [1, ..., T ],

xt =
√
αtx0 +

√
1− αtϵ (1)

where ϵ ∼ N (0, I), αt = 1 − βt, and αt =
∏t

i=0 αi. The reverse sampling process to generate a
clean image is then given by:

xt−1 =
1√

1− βt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
+ σtϵ. (2)

Although the noise ϵ contributes to achieve sample diversity, it in return leads to a loss of content
in the context of style transfer. The stack of these stochastic steps can result in the images with
completely different content even if the images are sampled from the same intermediate latent. In
order to preserve the semantics, ILVR (Choi et al., 2021) in Fig. 2 tried to generate diverse samples
with image condition, but still suffers from the stochasticity by ϵ. Meanwhile, the content can be
preserved with DDIM (Song et al., 2020) whose sampling process is:

xt−1 =
√

αt−1fθ(xt, t) +
√
1− αt−1 − σ2

t ϵθ(xt, t) + σ2
t ϵ (3)

where σt is the variance of noise which controls how stochastic the sampling process is, and fθ is
given by:

fθ(xt, t) :=
xt −

√
1− αtϵθ(xt, t)√

αt
.

(4)
When σt = 0, the noise term ϵ is removed from (3) and then we can successfully preserve the
content. Since the sampling process is deterministic, however, the style is also preserved, which
is not desired for style transfer as shown in Fig. 2. DiffusionCLIP in Fig. 2 tried to overcome this
problem by fine-tuning ϵθ, which takes much time and computation. In order to solve this dilemma,
we propose diffusion-based style transfer method using guidance that requires no additional training
on the diffusion model and is applicable even to unseen domains.

3.2 GUIDANCE FOR DIFFUSION MODELS

Guiding gradients in diffusion models is the method proposed in the context of class-conditional
image generation (Dhariwal & Nichol, 2021). Accordingly, even the unconditional diffusion model
can generate conditional images using guidance by classifiers or CLIP.

Specifically, as proposed in the past work (Avrahami et al., 2022), gradients for the guidance is
calculated as

∇x̂0,t
Ltotal(x̂0,t, x0, ptarget, psource)

where ptarget and psource are text prompts for target and source domain, respectively. From DDPM,
the estimated clean image x̂0,t from the latent variable xt (Avrahami et al., 2022) can be produced
from the noise approximation model ϵθ(xt, t):

x̂0,t =
xt√
αt

−
√
1− αtϵθ(xt, t)√

αt
. (5)
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The gradients are then added to the predicted mean at each time step t. The guiding method is illus-
trated in Figure 3. In order to achieve superior performance, we incorporate two types of guidance -
style and content guidance.

CLIP loss for style guidance The CLIP model is trained on extensive language and image dataset
which results in its great semantic power (Radford et al., 2021). Thanks to this semantic capacity,
we can generate images in diverse styles with only text prompts. The CLIP loss for style guidance
can be formulated as:

LCLIP = Lglobal(x̂0,t, ptarget) + Ldirectional(x̂0,t, x0, ptarget, psource) (6)

The global CLIP loss Lglobal calculates the cosine distance in the CLIP embedding space between
the generated image x̂0,t and the style prompt ptarget (Patashnik et al., 2021) as follows:

Lglobal(x̂0,t, ptarget) = DCLIP (x̂0,t, ptarget). (7)

Since the global loss suffers from mode collapse and corrupted image quality, the directional CLIP
loss Ldirectional was proposed (Gal et al., 2022). It aligns the direction in the CLIP embedding
space between text and image pairs. In our case, it can be formulated as:

Ldirectional(x̂0,t, x0, ptarget, psource) = 1− ∆I ·∆T

∥ ∆I ∥∥ ∆T ∥
(8)

where ∆I = Eimg(x0) − Eimg(x̂0,t), ∆T = Etxt(psource) − Etxt(ptarget) for CLIP’s image en-
coder Eimg and text encoder Etxt. Meanwhile, the patch-based CLIP loss was proposed to enhance
the generated images’ quality (Kwon & Ye, 2022). So, we adopt the patch-based scheme in both
Lglobal and Ldirectional.

CUT loss for content guidance With respect to style transfer task, it is essential that diffusion
models not only transform the style, but also preserve the content. CUT loss (Park et al., 2020)
has been proven to effectively maintain structure information by maximizing mutual information
between corresponding input and output patches. It requires training an encoder which can capture
the spatial information from the input. Features z extracted from the encoder are then used for
contrastive learning. Meanwhile, the noise predictor, U-net in the diffusion model, has been shown
to contain spatial information (Baranchuk et al., 2022). Thus, we could easily apply the patch-wise
contrastive loss in order to preserve contents by utilizing the spatial information extracted from the
diffusion model without its additional training as shown in Figure 3. It can be formulated as follows:

LCUT (x̂0,t, x0) = Ex0

[∑
l

∑
s

ℓ(ẑsℓ , z
s
ℓ , z

S\s
ℓ )

]
(9)

where ẑl and zl are ϵθ’s l-th layer features from x̂0,t and x0, respectively. We denote s as a spatial lo-
cation in {1, . . . , Sl} where Sl is the number of spatial locations in the feature zl. Additionally, ℓ(·)
is cross-entropy loss. By minimizing the CUT loss, we can maintain the semantic consistency be-
tween the reverse sampled image x̂0,t and the original image x0 so that the content can be preserved.
More details are described in the Section A.2.

It is important how contrastive loss for content guidance is incorporated into the diffusion model.
We exploit two methods. First, as illustrated in the Figure 3, feature maps are extracted from the
encoder part of the noise estimator ϵθ,enc(xt, t). Then, the feature maps are forwarded to the MLP
network F . Then, the feature maps zi’s for the CUT loss are extracted as the output of the MLP
network F . The main motivation of using MLP network F is to fine-tune the network so that better
spatial features are extracted for contrastive loss. In the second method, we bypass the MLP network
and extract features directly from the diffusion model so that we can further reduce the computation
time and complexity of the MLP network with a slight loss of image quality.

For the case of MLP fine-tuning, the network F consists of two linear layers and ReLU activation
between them. The number of output channels are 256. L2 norm of the outputs become the final
outputs, which are then utilized to calculate cross entropy loss. The outputs can be written as:

zl = Fl(ϵθ,enc(x0)), ẑl = Fl(ϵθ,enc(x̂0)). (10)

In order to fine-tune the network F , we carry out two stages, each consisting of forward and reverse
processes. During these two stages, ϵθ(xt, t) is fixed. At the first stage, the network F is fine-tuned.
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Figure 4: Comparison against GAN-based style transfer methods. Our method outperforms four
GAN-based methods in perspective of both style transformation and content preservation.

Methods User study CLIP score ↑ Face ID ↓
Content ↑ Style ↑

StyleCLIP 3.84 1.46 0.0925 0.3750
StyleGAN-NADA 3.15 2.71 0.1222 0.4948

VQGAN-CLIP 1.83 2.79 0.1379 0.7661
CLIPstyler 2.05 2.93 0.1347 0.6664

Ours 4.33 4.39 0.1483 0.4219

Table 1: User study and quantitative results on GAN-based methods for style transfer. The bold text
and underline refer to the best and second best results, respectively.

From the source image x0, we can get xt0 from the forward noising process, where t0 ∈ [0, T ]. As
shown in the Figure 3, we can reverse xt0 to x̂t0−1 with other style and content guidance excluding
CUT loss. From (5), x̂0,t0−1 can be obtained. With x̂0,t0−1 and x0, we can obtain feature maps
from ϵθ(xt, t) and fine-tune the network F using the CUT loss. Again, we can reverse x̂t0−1 with
guidance in order to get x̂t0−2. By repeating these procedures, we can get x̂0. Then, MLP fine-
tuning is finished. At the second stage, all the networks, including F , are fixed and the outputs are
generated with style and content guidance including CUT loss.

Total loss On top of the contrastive loss, we include the feature loss LV GG, which is the mean-
squred error between the VGG feature maps of x̂0,t and x0, and the pixel loss LMSE , which is the
L2 norm of the pixel difference between them.

Lcontent = LCUT (x̂0,t, x0) + LV GG(x̂0,t, x0) + LMSE(x̂0,t, x0) (11)

Therefore, the total loss function for the guidance is formulated as:

Ltotal = LCLIP (x̂0,t, x0, ptarget, psource) + Lcontent(x̂0,t, x0 (12)

The weights for each loss function are hyperparameters which need to be chosen by users. The
examples of these weights are given in the Section A.1 and Table 6.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Dataset The images used as content reference are from FFHQ (Karras et al., 2019), CelebA-HQ
(Karras et al., 2017), ImageNET (Deng et al., 2009), LSUN-Church (Yu et al., 2015), and CycleGAN
dataset (Zhu et al., 2017). They contain images of human faces, objects, scenes, and churches.
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Figure 5: Comparison between three diffusion-based style transfer methods. Our proposed method
can modulate styles from unseen domain images that other diffusion models cannot.

Methods Photo domain Unseen domain

Content ↑ Style ↑ Content ↑ Style ↑

DiffusionCLIP 4.05 2.90 3.20 2.75
Ours 4.70 4.70 4.55 4.55

Table 2: User study results on comparison against DiffusionCLIP.

Furthermore, in order to evaluate the performance of our proposed model on the images from unseen
domains, we utilize Wikiart dataset (Danielczuk et al., 2019). All the images are resized to 256 ×
256 for the diffusion models. For patch-based guidance, we randomly crop 96 patches from a
source image and then apply perspective augmentation and affine transformation. More details are
illustrated in the Appendix.
Pretrained diffusion models We utilize the unconditional diffusion model trained on ImageNET
dataset with 256 × 256 image size (Dhariwal & Nichol, 2021) and the model trained on FFHQ
dataset with 256 × 256 image size (Choi et al., 2021).
Sampling scheme Either DDIM or DDPM method can be applied in our method during the forward
and reverse diffusion steps. We basically adopt the DDIM strategy as the forward noising process
and DDPM method as the reverse sampling. When T is the total time step, we respace the step size
from T to T ′. Then with the source image x0, we obtain the latent xt0 from the forward diffusion
process, where t0 ∈ [0, T ′]. We choose (T ′, t0) as (50, 25) as default when T = 1000. From
this latent xt0 , the stylized output image is sampled through diffusion processes. In this way,
not only can more latent information be preserved from the source image, but the image can be
sufficiently converted to a new style at the same time. By greatly reducing the number of iterations,
inference time could be significantly reduced. The sampling scheme is illustrated in Figs. 2, 3 and
the comparative studies on the choice of (T ′, t0) are illustrated in the Section B.1.
4.2 COMPARATIVE STUDIES

Figure 1 shows that our method achieves outstanding results on various artistic styles. In addition,
we perform comparisons with GAN-based and diffusion-based style transfer methods, respectively.

4.2.1 GAN-BASED MODELS

For GAN-based models, we compare four state-of-the-art methods - StyleCLIP (Patashnik et al.,
2021), StyleGAN-NADA (Gal et al., 2022), VQGAN-CLIP (Crowson et al., 2022), CLIPstyler
(Kwon & Ye, 2022). The results of the comparison are illustrated in Figure 4. We could clearly
see that our proposed model outperforms in aspect of retaining the content. The generated out-
puts from both StyleCLIP and StyleGAN-NADA show distorted results that non-face objects, such
as hands or hats, are removed from the output images. Although results from VQGAN-CLIP and
CLIPstyler show relatively better result in perspective of content, we observe that some details of the
face, such as eyes or mouth, are crumbled. In contrast, our proposed method does not compromise
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Figure 6: Ablation study on three losses for content guidance - LMSE , LV GG, LCUT . In each row,
source images are translated into the style of ”golden” and ”oil painting of flowers”, respectively.
Patch-wise contrastive loss helps to preserve content information.

MSE VGG CUT MSE, VGG MSE, VGG, CUT

Content ↑ 2.80 2.05 3.90 2.90 4.75
Style ↑ 2.05 3.10 3.85 3.70 4.20

Table 3: User study results on ablation studies regarding content losses. Bold text and underline
refer to the best and the second best scores, respectively.

the structural information in that hats and hands are retained in the outputs, and neither hairs nor
eyes are crushed. Also, the results show that our proposed method generates outputs with feasible
texture. StyleCLIP gives unsatisfactory results that still look like photos. StyleGAN-NADA has dif-
ficulty in translating images into pop art style. VQGAN-CLIP and CLIPstyler also fail at generating
Pixar and Uiyo-e style images. On the contrary, we could see that our method provides high fidelity
samples which are transferred into the styles of the target prompt.

In addition to the qualitative results, the superiority of our method is verified by quantitative results.
In Table 1, we could see that our proposed method achieves the best scores in both user study
and CLIP score. Although StyleCLIP attains the smallest loss in face identity, this implies that
StyleCLIP maintains semantic information too much that it cannot transform the style enough. In
contrast, VQGAN-NADA and CLIPstyler modulate the images too much that they even transform
the content. However, our method could achieve both of them. Meanwhile, CLIP score is calculated
in a global manner as explained in the equation (7) and in a patch-based manner. Face identity loss
is calculated using ArcFace (Deng et al., 2019). The images used for quantitative experiments are
the same as those used for the user study.
4.2.2 DIFFUSION MODELS

For diffusion-based models, we adopt two methods for comparison - DDIB (Su et al., 2022) and
DiffusionCLIP (Kim et al., 2022). Since DDIB requires two different score functions, we trained
a new diffusion model on Wikiart dataset in order to evaluate its translation performance between
painting and photo domains. For the photo domain, we utilized the pretrained diffusion models
described above. The qualitative and quantitative results of the comparison are demonstrated in the
Figure 5 and the Table 2.

The third column of the Figure 5 shows that DDIB suffers from identity loss. Though the portrait
is translated into photo, its facial identity is destroyed. Also, it is hard to delineate the shape of the
church with the output of DDIB. Furthermore, the most critical drawback of DDIB is that diffusion
models have to be trained for each new domain. In this regard, image translation from portrait to
neon light style is not available. Meanwhile, DiffusionCLIP shows relatively satisfying quality in
translating photos into another style. Once the images are not well converted into the photo domain,
however, it is inevitable to get unsatisfactory results from unseen domain images, as shown in the
first and third rows of the Figure 5. This is supported by user study results on DiffusionCLIP. As
can be seen in the Table 2, its content score in unseen domains is 0.85 lower than the score in
photo domain. More examples are provided in the Figure 17. In contrast, we can observe that our
proposed method can stylize images not only from photo domains but also unseen domains such
as portrait or painting. The portrait is transformed into photo while maintaining its facial identity.
Also, the painting of church is translated into neon light style while retaining even small objects
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like a cross. It is confirmed with user study results. The scores between photo domain and unseen
domains are highly similar, which means that our method can modulate images even from unseen
domain. In terms of computational time, as shown in Table 5, our method is significantly faster than
DiffusionCLIP.

4.3 ROLES OF CONTENT LOSSES

In order to check the roles of content guidance losses, we conducted ablation studies. As proposed in
the equation (11), the content loss for guidance is comprised of three different losses, LCUT , LV GG,
and LMSE . Among the three losses, we investigate the power of LCUT by eliminating it from the
total content loss. In Figure 6, we can see that LV GG and LMSE are not enough to sufficiently
preserve the structural properties. The outlines of the buildings remain, but not their details such
as windows. When we employ all the three losses, we could get the best results regarding content
preservation. In the upper row of the Figure 6, even letters in the source image are preserved in
the output with contrastive content loss. The superiority of LCUT is also justified with user study
results. As shown in the Table 3, LCUT scores higher than LMSE , LV GG, and even both of them.

4.4 SKIPPING MLP
As discussed before, we also removed the MLP network F to eliminate the fine-tuning process. As
shown in the Figure 7 and the Table 4, the quality of the generated images is slightly inferior to our
method in perspective of both content preservation and style modulation. This justifies the use of
MLP network F to extract better features. However, the difference in quality is so small that users
can choose which method to use based on their preferences.

Figure 7: Style-transferred images from the fast version of our method.

Methods CLIP score ↑ VGG loss ↓ Computation time (sec)

Ours 0.1705 90.3081 91
Ours-fast 0.1643 96.8257 45

Table 4: Quantitative comparisons between our method and its fast version.

5 CONCLUSION

In this paper, we proposed a diffusion based image style transfer without content changes by utiliz-
ing the contrastive loss. Our method does not require additional training on the diffusion models,
and only requires light MLP training. Furthermore, our fast implementation does not require any
MLP layers so that the computational time is significantly reduced with a slight performance loss.
Extensive experiments demonstrated that contrastive loss with diffusion model results in the high
capability to maintain content. The discussions on limitations are given in the Appendix.
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A DETAILS OF IMPLEMENTATION

A.1 DATA MANIPULATION AND HYPERPARAMETERS

In order to utilize directional CLIP loss in a patch-based manner (Kwon & Ye, 2022), we randomly
crop the source image. The patch size can have various ranges, but we mainly utilize (0.01, 0.05)
for texture styles, such as golden or green crystal, and (0.01, 0.3) for artistic styles, such as painting
by Gogh or pop art. The cropped images are then augmented with perspective function and random
affine transformation.

For style and content guidance, we utilized various weights for each loss according to different
styles. Even though the values can be varying for each style, the weights for Lglobal and Ldirectional

usually range from 5000 to 30000. In addition, the weights for LCUT , LV GG, and LMSE are
generally 100, 100, and 10000, respectively. However, one can change these values to improve
image quality.

A.2 PATCH-WISE CROSS ENTROPY LOSS FOR CUT GUIDANCE

We explain cross-entropy loss in the equation (9) in more detail (Park et al., 2020). The inputs for
the loss are a query v, and its positive v+ and negatives v−

i where i ∈ [1, . . . , N ] . The query is
a patch from the generated image and the positive is the corresponding patch of the source image.
The negatives are the other non-corresponding patches of the source image. Then the cross-entropy
loss helps a patch share embedding space with the corresponding patch of the input and not with the
other patches. It can be written as,

ℓ(v,v+,v−) = −log

[
ev·v

+/τ

ev·v+/τ +ΣN
i=1e

v·v−
i /τ

]
(13)

where τ is a temperature

Figure 8: Diagram of MLP network Fl. Its input is feature maps from the l-th layer of the encoder
part of the noise estimator ϵθ.

A.3 TRAINING DDIB

For comparison with DDIB, we trained a diffusion model with 13 thousands of images from Wikiart
dataset. They were 256×256 in size. The architecture of the model is based on the guided diffusion
(Dhariwal & Nichol, 2021). The model use 128 base channels and the attention at 16×16 and 8×8
resolutions. Residual blocks for upsampling and downsampling are not used. We fixed the variance
as a constant (Ho et al., 2020). The model was trained during 50,000 iterations with batch size 8 on
a NVIDIA RTX 3090.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 EFFECT OF THE NUMBER OF TIMESTEPS

Since the diffusion process usually takes lots of time, two techniques are widely used - respacing
and skipping time steps (Chung et al., 2022; Kim et al., 2022). The last time step T is respaced into
T ′. Then we forward the diffusion model to time t0 < T ′ and reverse the diffusion process from
xt0 . T ′ and t0 have various effects on both image quality and time consumption. As shown in the
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Figure 9: The effect of the respaced time T ′ and skipped time t0. (a) demonstrates the images
sampled with (T ′,t0). The first row shows the difference between various T ′ when t0 is its half and
the second row shows the difference between various t0 when T ′ = 50. (b) and (c) illustrates the
relationship between sampling time and CLIP score as graphs for the first and second rows of (a),
respectively.

Figure 9 (a) and (b), image quality with respect to style transformation enhances as respacing time
step T ′ increases. However, its growth rate decreases and its difference is imperceptible even though
sampling time still increases. In the mean time, CLIP score decreases as skip time step t0 increases
as illustrated in the Figure 9 (c). On the other hand, the content information is not fully preserved in
the early time steps t0 = 15 or 20 as shown in the Figure 9 (a). Thus, we set (T ′, t0) as (50, 25) for
our baseline.

B.2 DIFFUSION MODELS’ TRADE-OFF BETWEEN STYLE AND CONTENT

With respect to style transfer, one of the challenges posed by unconditional diffusion models is
to maintain content of the given image. When transforming styles of the given image, its content
changes simultaneously. GAN-based methods explicitly impose content losses, such as a reconstruc-
tion loss. This results in good performance in content preservation. In contrast, diffusion models
have no constraint during training phase. They generate high quality images in correspondence with
the training data domain. The semantic constraints are not considered which finally results in the
degradation in the quality of the generated images.

Here, we compare four diffusion models - ILVR, DDIM, DiffusionCLIP, and our proposed method
- with respect to style and content in the Figure 2. ILVR utilizes down-sampled reference image as
condition in each reverse denoising steps. The condition helps the generated image share its content
information with the reference image. However, it cannot have same identity because reverse DDPM
steps without condition should be given sufficiently in order to generate images in photo style. This
accordingly results in a loss of content. DDIM can reconstruct the source image when the variance
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Methods Data preparation # Param. Training time Inference time (sec)

ILVR - - - 100
DDIM - - - 11
DDIB - 1104 M > 200 hrs 12

DiffusionCLIP 5.85 min 113 M 293 sec 96
Ours - 0.7 M 45 sec 45

Ours-fast - - - 45

Table 5: Comparison on computational complexity of the diffusion models.

of noise σt is set as 0. However, the style is also preserved with zero variance. When we control
σt as larger than zero, we can get photo style images but their content is altered with stochastic
noise. DiffusionCLIP tried to solve the trade-off between content and style by fine-tuning the score
function ϵθ. However, it requires much more time due to the model training for each style and data
preparation. In addition, the content cannot be maintained when the source images are from unseen
domains. In contrast, our proposed method does not require additional training on the diffusion
model. This leads to shorter time than DiffusionCLIP. With the help of CUT guidance, we could
retain the content of source image from any domain and translate it into different styles.

B.3 MORE COMPARISON WITH GAN AND CNN-BASED METHODS

In addition to the comparative studies on the GAN-based methods in the Section 4.2.1, we conducted
more comparisons with various GAN-based and CNN-based methods including both text and image
guidance. For text guidance method, we compared our method with one more method, LDAST
(Fu et al., 2022). For image guidance, we included three methods, SANet (Fan & Ling, 2017),
AdaIN (Huang & Belongie, 2017), and WCT2 (Yoo et al., 2019). As shown in the Figure 10, we
could notice that LDAST and WCT2 could preserve the content information better than SANet and
AdaIN. However, all the four methods for comparison show inferior performance in perspective of
style transformation.

B.4 ROLES OF LOSSES

Our loss consists of Lglobal, and Ldirectional as shown in the equation (6). We examine the role of
each loss by applying the loss functions one by one. In Figure 11, we evaluate on three styles - green
crystal, neon light, and fire. The images in the lower row tend to be more stylized than images in the
upper row, which means that directional CLIP loss leads the diffusion models to higher performance
in style modulation. In addition, we verified the role of patch-based guidance. The results show

Figure 10: Comparative study results.
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that CLIP guidance with whole image tends to stylize the image in local parts. In contrast, the
patch-based guidance transforms the image into the given style that covers large area.

Figure 11: Ablation study on four losses for style guidance - CLIP global loss, patch-based CLIP
global loss, CLIP directional loss, and patch-based CLIP directional loss.

B.5 DDPM AND DDIM FOR DIFFUSION PROCESSES

Although either DDPM or DDIM can be utilized for both forward and reverse processes, we con-
ducted a comparative study in order to show their differences in the generated images. As shown
in Figure 12, results from the forward DDIM show better performance in preserving content than
DDPM. For reverse process, DDPM tends to transform styles better compared to DDIM. Accord-
ingly, we chose to use DDIM as forward and DDPM as reverse process as default.

Figure 12: Ablation study results on diffusion processes. From the second column to the right,
the combinations of methods (forward, reverse) are (DDIM, DDPM), (DDPM, DDPM), (DDPM,
DDIM), and (DDIM, DDIM).
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B.6 UNSEEN DOMAINS

DiffusionCLIP tried to solve the trade-off between content and style by fine-tuning the diffusion
model with identity loss. Because of the constraints imposed on the finetuned model, the trans-
formed image shows high performance in identity preservation. However, the fine-tuned model ϵ̂θ
converts only the photo domain images. When it comes to unseen domains, such as portraits or
paintings, they should be converted to photo images through ϵθ. Since it has not been fine-tuned
with identity loss, the semantic information is lost during the reverse sampling process due to the
stochastic property of the diffusion model. Thus, the final output from images of unseen domains is
degraded in its quality. In contrast, our proposed method can transform even the unseen domain im-
ages with only one step. Since our method can preserve the identity with content guidance, the final
outputs do not suffer from quality degradation. Also, our method takes about 90 seconds whereas
DiffusionCLIP requires about 400 seconds for model fine-tuning and sampling. As described in the
Figure 2, DiffusionCLIP requires two steps from portrait to photo to Pixar domains. In this pro-
cess, the face identity is destroyed. However, the proposed method could preserve the identity while
transforming into the style of Pixar.

B.7 USER STUDY

For quantitative analysis, we conducted user study. For comparison with GAN-based methods, 60
images with four styles have been used in total. The styles involved are “golden”, “clay”, “3d
render in the style of Pixar”, and “pop art.” We utilized human face images because StyleCLIP and
StyleGAN-NADA are based on face dataset. In addition, we totally generated 24 images with six
styles for comparison with DiffusionCLIP. We chose three styles (“neon light”, “green crystal”, and
“Ukiyo-e”) for the photo domain and the other three styles (“3d render in the style of Pixar”, “pop
art”, and “golden”) for unseen domains. We used portraits and paintings from Wikiart dataset for
unseen domain images. Besides, for ablation study on content losses, we used 15 images for three
styles (“golden”, “oil painting of flowers”, “leather”) in total. The number of questions were 14.
20 users participated in the user study, and their ages range from 20 to 60 years old. They were
randomly recruited online.

C LIMITATIONS

Although our proposed method has various strengths and shows great performance, there remain
some limitations. As described in the Appendix A.1, one should find weights for each loss though
their relevant ranges are given in this paper.

Model Style prompt CLIP-global CLIP-directional CUT MSE VGG Patch size t0

ImageNET

Cubism 30000 40000 1000 10000 50 0.05 25
Watercolor art 10000 10000 200 0 100 0.05 25

Ukiyo-e 10000 20000 200 30000 200 0.3 30
Oil painting of flowers 20000 20000 1200 10000 10 0.05 25

Red bricks 20000 50000 1000 1000 10 0.05 25
Wooden 20000 30000 500 10000 100 0.05 25
Leather 20000 50000 1000 1000 10 0.05 25

Marbling 20000 20000 2000 20000 200 0.3 25
Autumn 20000 20000 700 10000 100 0.05 25
Snowy 20000 20000 700 10000 100 0.05 25

FFHQ

3d render in the style of Pixar 7000 7000 500 10000 100 0.3 25
Pop art 20000 30000 100 300 70 0.3 25
Ukiyo-e 20000 30000 800 3000 50 0.3 25

Stone wall 20000 40000 2000 10000 10 0.1 25
Red bricks 20000 20000 500 10000 100 0.05 25
Wooden 20000 20000 500 10000 100 0.05 25
Leather 20000 30000 500 10000 10 0.05 25

Clay 40000 40000 1000 10000 0 0.05 25
Stained glasses 20000 40000 1000 10000 10 0.3 25

Golden 10000 10000 500 0 100 0.05 15

Table 6: Examples of hyperparameters for various style prompts. Weights for CLIP-global loss,
CLIP-directional loss, CUT loss, MSE loss, and VGG loss are given. For patch-based CLIP guid-
ance, we control the patch size. The maximum size is given in the table with the minimum of 0.01.
t0 is the time step to which the source image is forwarded when T ′ = 50.
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Figure 13: Additional results on various style prompts.

Figure 14: Additional results on color style prompts.
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Figure 15: Additional results on various style prompts.
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Figure 16: Additional results on the comparative studies. (a), (b), (c), and (d) are the results on
styles of “golden”, “3d render in the style of Pixar”, “pop art”, and “clay”, respectively.
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Figure 17: Additional results on the comparative studies. Source images in (a) are from photo
domain and ones in (b) are from unseen domains such as portrait or painting.
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