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ABSTRACT

The past half-decade has seen unprecedented growth in machine learning with
deep neural networks (DNNs) that represent state-of-the-art in many real-world
applications. However, DNNs have substantial computational and memory re-
quirements, in which the compilation of its computational graphs has great im-
pact in resource-constrained (e.g., computation, I/O, and memory bounded) edge
computing systems. While efficient execution of its computational graph leads to
high-performance and energy-efficient execution, generating an optimal computa-
tional graph schedule is known as NP-hard problem. The complexity of schedul-
ing the DNNs computational graphs will further increase on pipelined multi-core
system considering memory communication cost, as well as the increasing size of
DNNs. This work presents a reinforcement learning based scheduling framework,
which imitates the behaviors of optimal optimization algorithms at the speed of
inference, and compiles arbitrary DNNs computational graphs without re-training.
Our framework has demonstrated up to ∼2.5× runtime speedups over the com-
mercial Edge TPU compiler, using ten popular ImageNet models, on physical
Google Edge TPUs system. More importantly, compared to the exact optimiza-
tion methods solved by heuristics and brute-force, the proposed RL scheduling
improves the scheduling runtime by several orders of magnitude.

1 INTRODUCTION

Deep neural networks (DNNs) represent state-of-the-art in many applications, but introduce sub-
stantial computational and memory requirements, which greatly limit their training and deployment
in resource-constrained (e.g., compute and memory resources) environments. To efficiently de-
ploy DNNs on the hardware platforms, it usually requires designated compilers that take in front-
end DNN models and map them to the platforms. As the size of DNN models rises, it becomes
more challenging to deploy the models onto edge devices with small on-chip buffer size using
static and heuristic-based execution scheduling methods, specifically for edge computing ecosys-
tems, such as Google Edge, Microsoft Azure ML, etc. To efficiently utilize those hardware plat-
forms, scheduling algorithms implemented in deep learning compilers are critical in deploying such
hyper-dimensional computationally-intensive workloads, which is a classical NP-hard combinato-
rial optimization problem (Lenté et al. (2014); Kuchcinski (2003)). Mostly, vendor-specific libraries
such as Nvidia cuBLAS, TVM, and TF-Lite (Chen et al. (2018); Abadi et al. (2016); Sanders &
Kandrot (2010)), rely on hand-crafted domain-specific heuristics to optimize the executions, which
trades the execution performance for scheduling runtime. Specifically, the limitations of existing
DNNs computational graph scheduling can be summarized as follows: (1) existing algorithms are
either heuristics that lack in quality of optimization, or exact/brute-force algorithms lack in scala-
bility. The challenges for large-scale deep learning executions are still rising up in particularly for
edge devices. (2) Hand-crafted heuristics can be efficient but the development process requires high
engineering efforts and domain knowledge in compilation and hardware systems. (3) There have re-
cently seen ML-based frameworks for scheduling. However, they are either limited to certain graph
structure/sizes, or requires online training or retraining(Mao et al. (2019); Chen & Shen (2019);
Sheng et al. (2021)).

This work presents a novel combinatorial reinforcement learning framework that imitates the behav-
iors of graph combinatorial algorithms for scheduling DNNs computational graphs. This framework
aims to perform near-optimum scheduling on edge computing platforms without retraining, while
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deploying arbitrary sized DNNs computational graphs. Specifically, the proposed framework imi-
tates the algorithmic behaviors of existing optimal scheduling algorithm, while the training process
is fully conducted on synthetic sampling. For experimental evaluations, we build a physical multi-
stage pipelining Edge TPU system (Yazdanbakhsh et al. (2021); Boroumand et al. (2021)). The
experimental results conducted on this physical computing platform demonstrates significant run-
time speedups over the commercial Edge TPU compiler with ten popular ImageNet DNNs.

2 BACKGROUND

Combinatorial optimization problems are fundamental to a wide range of research communities.
Many solutions to those problems rely on handcrafted heuristics, such as compiler optimizations and
scheduling, that guide their search procedures to find sub-optimal solutions efficiently. Similar to
many other combinatorial optimization problems, the development of efficient compiler optimiza-
tion heuristics requires extensive domain-specific knowledge in algorithm and targeted hardware
platform. In contrast, reinforcement learning methods are applicable across many tasks. They can
discover their own heuristics, thus requiring less hand-engineering, and more importantly, can break
through the inertia of traditional R&D methods. With the recent success in neural architectures
and optimization algorithms Kingma & Ba (2014); Vaswani et al. (2017); Wu et al. (2016); Ruder
(2016), RL has been successfully applied to explore and discover new heuristics and rules for many
classic combinatorial problems, such as mixed integer linear programming, traveling salesman prob-
lem (Song et al. (2019); Cappart et al. (2019); Gambardella & Dorigo (1995); Khalil et al. (2017);
Chen & Tian (2019); Nazari et al. (2018); Lodi & Zarpellon (2017); Hottung et al. (2020); Kara-
petyan et al. (2017)). However, there are few works that leverage RL in accelerating combinatorial
optimizations on directed graphs. Moreover, existing RL/ML based scheduling frameworks (Mao
et al. (2019); Chen & Shen (2019); Sheng et al. (2021)) are highly limited to domain-specific plat-
forms and specific upper bound of graph size, and have not demonstrated on real-world physical
computing platforms.

3 APPROACH

3.1 PRELIMINARIES

Computational Graphs of DNNs In the modern deep learning frameworks, machine learning al-
gorithms are represented as computational graphs, where each graph is a directed graph G(V,E)
with nodes V describing operations. The edges E represent the dataflows that connect the operators
and input/output tensors. In particular, while deploying DNNs on hardware accelerators, the compu-
tational graphs are mostly represented as directed acyclic graphs (DAG) while the acyclic paths are
unrolled to maximize the hardware performance. The computational graphs are mostly generated
with static compilation.

Specifically, the optimization objectives can be defined as follows: Given: (1) A DAG G(V,E)
where V represents the set of operations in the DNNs computational graphs, and E represents
the set of edges; (2) A set of scheduling constraints, which may include dependency constraints
(E), resource constraints, execution time, memory allocations, etc. Objective: Construct an exact
optimal schedule S = s0,s1,...sn, where V will be allocated to S (where n ≤ |V |) that satisfies
all scheduling constraints. For example, in a multi-stage pipelined Edge TPU system in Figure 1,
resulted schedule assigns computation nodeNi to s0 (Edge TPU:0), Nk to s1 (Edge TPU:1), Nl and
No to s2 (Edge TPU:2), Nj , Np and Nq to s3 (Edge TPU:3), etc.

DNNs Computational Graph Embedding For the favor of learning purpose, computational
graph has to be mapped into vector space. Considering the performance of scheduling on edge de-
vices, there are three critical attributes of the computational graphs should be included in the embed-
ding: (1) the connectivity of computational graphs (relative coordinates of vertices), (2) topological
order of operators (absolute coordinates), and (3) memory consumption for operator. Specifically, as
shown in Figure 1, absolute coordinates embedding represents the topological order of every node,
while relative position are encoded using both the absolute coordinates and node IDs. Intuitively,
relative coordinates maintain the dependency constraint, and absolute coordinates mimics the fea-
sible scheduling space for a given node. For example, in Figure 1, the dependency prerequisite for
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Figure 1: Overview of the proposed RL framework, including the DNNs computational graph em-
bedding, RL agent neural architecture, and inference and deployment illustration.

Np to operate is the complete scheduling of Nl and No while Nj and Np can be scheduled together
due to free of dependence if permitted computation resource, where all information are encoded in
the embedding vectors. Besides, the absolute coordinates of node Nj and its parent node Ni are
2 and 1, the available schedule locations for Nj can be calculated, i.e., any free locations between
the absolute coordinates of Ni and Nj {S0, S1, S2, S3}. Finally, cache and memory locality is one
of the most critical metric in DNNs acceleration (Jouppi et al. (2017)). Thus, we add the memory
consumption of each operator in the last embedding column.

Specifically, as shown in Figure 1, the embedding of computational graph consists of four compo-
nents: 1) absolute coordinates generated based on topological ordering. Note that there are many
variants topological orders of a given DAG. In this work, we use As-Soon-As-Possible (ASAP) or-
dering, where each node is ordered as close as to the source node; 2) relative coordinates consist
of parent nodes absolute coordinates and IDs. Note that the source nodes absolute coordinates are
set to 0, and their IDs are set to −1; 3) node IDs are unique integers generated by hashing all the
operator names; 4) memory consumption of the operator. This embedding vector of graphs will be
the input of the RL agent. While collecting real-world DNNs computational graphs execution data
is very time consuming, we propose to train the RL framework with full synthetic graphs.

3.2 FORMULATIONS AND NEURAL ARCHITECTURE

As discussed earlier, brute-force and exact methods scheduling algorithms can generate the best
scheduling solutions search(Lenté et al. (2014); Kuchcinski (2003)) at the cost of long runtime,
which fails in scaling up to large problems. While heuristic algorithms optimize the schedules more
efficiently at scale but suffers in quality of results. Thus, we aim to develop a RL framework that
imitates the algorithmic behaviors of any optimal scheduling algorithm (e.g., exact or brute-force),
such that it performs polynomial time scheduling with near-optimal quality of results at inference
runtime. Currently, Reinforcement Learning(RL) catches more and more attention in solving graph
combinatorial problems.

RL Formulation for DNNs Computational Graph Scheduling Given a computational graph as
DAG G(V,E), RL-agent is trained to develop a policy π, that picks computation node in the same
order as specific algorithm does. We define sequence order figured out by our method as π(i), i ∈
|V |, by some given deterministic scheduling method as γ(i), i ∈ |V |. Thus, the reward function is
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Algorithm 1: Pointing Mechanism Decoding Flow Illustration
Initialization: d←decoder input; C = {ctexti}ni=1; deci; {embi}ni=1; θ, ω, β (trainable parameters);
for i = 1 to n do

h, deci←− Dec(d, deci−1);
h←− glimpse(C∗θg , ωg·h+βg);
P i←− pointer(tanh(C∗θp, ωp· h + βp));

idxi←− argmax expP ii∑n
j=1 expP ij

;

d←− embidxi
end
S′←− ρ (π(i), si); S←− ρ(γ(i), si), i ∈ [1, n];
Loss←−

∑n
i=1 P

i · (1−
∑
S(i)·S′(i)

max(
√∑

S(i)2·
√∑

S′(i)2,ε)
− b(G))

designed as the similarity comparison between them:

R =

∑
π(i) · γ(i)

max(
√∑

π(i)2 ·
√∑

γ(i)2, ε)
(1)

Let Ni −→ si, i ∈ [1, n] be the solution of scheduling node Ni at si. Let S′ = {s0, si, ...sn} be the
sequence produced by our policy as π(i), i.e., the output of the RL agent for a given computational
graph. The targeted scheduling solution generated by given deterministic scheduling algorithm is
the ground truth label sequence, denoted as S.

S′ = ρ(π(i), si); S = ρ(γ(i), si), i ∈ [1, n] (2)

Thus, to optimize the RL agent to imitates the behaviors of the targeted deterministic algorithm, the
reward is designed using cosine similarity, with the generated label sequence S′ and the
ground truth sequence S as inputs (Equation 3).

R =

∑
S(i) · S′(i)

max(
√∑

S(i)2 ·
√∑

S′(i)2, ε)
, i ∈ [1, n] (3)

While maximizing the reward function R, parameters of the stochastic policy p(π|G) will be opti-
mized to assign high probabilities to sequence order closer to the target sequence. The chain rule
utilized to factorize the sequence probability distribution can be expressed as:

p(π|G) =
n∏
i=1

p(π(i)|π(< i), G) (4)

RL Agent Architecture Here, we extent pointer network (PtrNet) architecture (Bello et al. (2016))
as the RL agent. PtrNet excels in finding path with target objective to be optimized. It achieves huge
success in solving some combinatorial problem over graphs, such as Traveling Salesman Problem
(Bello et al. (2016)). With the advantage of attention mechanism (Vaswani et al. (2017)), PtrNet
reinforces the dependency constraints among nodes and overcomes the limitations of learning com-
binatorial graph algorithms with fixed size of graph inputs. However, there are two novel challenges
in scheduling DNNs computational graph: 1) scheduling computational graph is equivalent to gen-
erating node permutation in a directional fashion; 2) in order to fully evaluate the RL scheduling
performance on physical edge devices, the results need to satisfy domain-specific hardware execu-
tion requirements.

The RL agent architecture is an encoder-decoder based PtrNet, consisting of encoding and decoding
components, shown in Figure 1. Specifically, each component is configurable to either Long Short-
Term Memory (LSTM) (Hochreiter & Schmidhuber (1997)) or Transformer (Vaswani et al. (2017)).
The proposed architecture introduces four different configurations of encoding-decoding. Encoder
network – The encoder network digests the encoding input queue q of nodes and transforms it into
a sequence of context {ctext}ni=1 representing the information of each node, where ctexti ∈ Rd,
d is the hidden dimension of RNNs. The concatenation of all contexts will be used as reference
matrix C in nodes pickup during decoding step, C(i) = ctexti, i ∈ [1, n]. Up to this step, encoding
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process works the same for using either LSTM or Transformer as encoder. While using LSTM as
encoder, additionally, it produces a sequence of latent memory states {enci}ni=1 recording the prop-
agation encoding message from first node to current one along with the contexts, where the final
state encn is the initial latent memory state for decoding. Decoder network – While using LSTM
as decoder network, it generates its own latent memory state deci ∈ Rd at each decoding step i to
update the previous one. We illustrate the detailed decoding procedure in Algorithm 1. With con-
text reference matrix C from encoder, decoder will produce a selection probability distribution over
candidate computation nodes using pointing mechanism proposed in (Bello et al. (2016)). Once a
computation node is picked, its embedding will be passed as the input to LSTMs during the next
decoding step. The input to the first decoding step is a trainable parameter sharing same dimen-
sions of node embedding. For Transformer-based decoder, it generates its selection reference matrix
{Ki},Ki ∈ Rn×d, i ∈ [1, n] at each decoding step i. With selection reference matrix Ki, decoder
will produce a selection distribution probability over computation nodes using linear transformation.
Updated selection reference matrix Ki+1 will behave as input in next decoding step. The initial se-
lection reference matrix is the context reference matrix from encoder K1 = C. In Section 4.1,
we provide comprehensive empirical studies of the four configurations introduced by the proposed
architectures.

RL Training We use model-free policy-based RL training method to optimize the parameters of a
pointer network denoted as θ. The learning objective is the expected similarity of node distribution.
Given an input graphG, the optimization objective can be defined in Equation 5, where it maximizes
the cosine similarity reward.

J(θ|G) = Eπ∼pθ(·|G)(1−R(π|G)) (5)

In this work, we deploy policy gradient methods and stochastic gradient descent to optimize the
parameters (Williams (1992)). Reward as score to evaluate the resulted distribution probability is
applied as coefficient in gradient calculation, such that the gradient of (5) is constructed as follows:

∇θJ(θ|G) = Eπ∼pθ(·|G)[(1−R(π|G)− b(G))∇θ log pθ(π|G)] (6)

where b(G) represents a baseline recording the highest score in previous training, applied in loss
function to reduce the variance of the gradients. Note that unlike existing RL-based scheduling
works, our framework imitates the behaviors of any scheduling algorithm, such that the resulted
RL agent can perform as generic as the imitated deterministic algorithm. In addition, there is a
critical advantage to use synthetic data sampling during RL training: synthetic graph sampler has
full control of graph complexity, memory attributes of operators, which offers much better data
coverage over real-world DNN computation graphs. In this work, we integrate a DAG sampler in
our RL training framework, where we can control the complexity of the sampled graphs by limiting
the graph degrees, memory range of each operator, and total topological levels, which mimics the
structural and properties of DNNs computational graphs. Detailed settings of sampling are discussed
in result sections. In addition, an evaluation-only metric mismatch is introduced for evaluating
the performance of the RL agent at inference stage (Equation 7). Specifically, mismatch counts
the number of level distribution differing in generated label sequence and its ground truth one. In
other words, it measures the absolute similarity between the output of RL agent and ground truth,
where cosine similarity measures the normalized similarity. While it is possible to deploy
mismatch directly as the RL reward function, the training performance is much worse than using
the normalized similarity. Mismatch (M) can be defined as:

M =

n∑
i=1

[(S(i)− S′(i)) 6= 0] (7)

Post-Inference Processing Unlike algorithms such as TSP, DNNs computational graph schedul-
ing needs to satisfy domain-specific constraints to successfully deploy the scheduled graphs on hard-
ware platforms. Thus, a post-inference processing procedure is added in our RL framework, which
is executed at the deployment stage, which takes the inferenced output S′ as inputs. To be specific
for our evaluation Edge TPU platforms, this procedure corrects the dependency violation by simply
pushing the node involved forward, which is a deterministic step with minimum changes to the RL
solution. Besides, Edge TPU hardware requires children’s nodes of any node to be in same pipeline.
In this case, the post-inference procedure assigns these nodes to the earliest predicted stage among
theirs.
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4 EXPERIMENTAL RESULTS

In this section, we will first provide comprehensive studies of the proposed RL approaches from the
aspects of neural architecture, data preparation and embedding, and leveraging hardware domain-
specific knowledge in the training setups. Specifically, we analyze the approaches with various
configurations, including 1) architecture configurations of the encoding-decoding neural architec-
ture using Transformer and LSTMs, 2) variations and coverages of dataset and embedding, and 3)
comparisons of training w and w/o TPU accelerator domain-specific knowledge. Second, we experi-
mentally demonstrate the effectiveness of the proposed RL-based scheduling approaches on physical
computing platforms built with Google Edge TPUs. Specifically, we build a central-hosted pipelined
Edge TPU system to evaluate the real-world computation performance improvements, with options
of 4-stage, 5-stage, and 6-stage pipelining setup for DNNs inference execution. All runtime results
included in this section are obtained in this physical computing platforms and are compared to the
commercial Edge TPU compiler. The experimental results show that the proposed RL scheduler
can consistently outperforms commercial Edge TPU compiler in all three different pipeline settings.
Training, inference and explorations of the proposed RL methods are conducted on one Nvidia 2080
Ti with Intel Xeon Gold 6230 x20 CPUs.

4.1 EXPLORATIONS OF TRAINING AND NEURAL ARCHITECTURES

To optimize the performance of RL-based scheduling framework for deploying real-world DNNs
on edge devices, we find several critical empirical evidence that the training setups and architecture
configurations of PtrNet are critical. In this work, training setups specifically refer to the synthetic
training dataset constructions. Note that all the RL models used in this work are trained with syn-
thetic dataset only and testing computation graphs are generated with real-world DNNs models. As
discussed in Section 3, the main reason is that there is very limited number of computation graphs for
training the RL models, which restricts the generalizability of RL in solving graph-based combina-
torial optimization problems. Besides, to simultaneously minimize the training efforts, the training
dataset needs to balance between data coverage and graph size (i.e., |V | and |E| in G(V,E)). In this
work, our goal is to limit the training dataset with |V | ≤ 50 where |E| is constrained with |V | and
degree of graphs deg(V ) in training, such that the trained RL model is generalizable for scheduling
arbitrary DNNs computation graphs. Thus, in the rest of this section, all experiments conducted in
this section are trained with 100 epochs with learning rate a 10−4 and batch size as 128, using Adam
optimization algorithm if not specified.

Graph Complexity of Training Dataset While all the graphs in the training datasets with |V | = 30,
the complexity of the training graphs can vary with different graph degrees, i.e., deg(V ) is the max-
imum number of incoming edges connecting to the vertices V in graph G(V,E). In practice, DNNs
computation graphs can have very different graph structures, e.g., the TF-Lite compiled computation
graph of ResNet152 has |V | = 517 and deg(V ) = 2, and Inception-ResNet-V2 has |V | = 782 and
deg(V ) = 4. In order to train the RL model to be generalizable to wide range of DNNs models, the
model should be trained with awareness of various graph degree sizes. In Figure 2a, we evaluate the
testing performance with RL models trained with different degree sizes deg(V )={3,4,5,6}, while
testing graphs have deg(V ) = 6 and |V | = 50. Note that the number of graphs in the training
dataset are the same for all the four tests. The results have demonstrated the effectiveness of lever-
aging higher degree graphs in training dataset. For example, the testing mismatch obtained using
RL model trained with deg(V ) = 3 is about 50% higher than the training with deg(V ) = {4, 5, 6}.
However, there are two drawbacks if training graph degree increases: (a) the vector space embed-
ding dimension increases as the degree increases, which increases the connection/complexity of the
graph and training efforts; (b) as the upper bound degree of graphs increases, the number of all
possible graphs increases dramatically; thus, while fixing the number of graphs in training set, the
coverage/generalizability of the training dataset could decrease significantly. In practice, the popular
DNNs models mostly have computation graphs degrees deg(V ) ≤ 6, in particularly for the mod-
els prepared for Edge TPU devices1. Therefore, in Section 4.2, the RL model used for Edge TPU
scheduling is trained with deg(V ) = 6 dataset.

Directional Graph CO Learning Explorations There are two traditional scheduling or pipelining
formulations that solve the combinatorial problems in different directions of execution, namely as

1https://coral.ai/models/image-classification/
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Figure 2: Explorations of training setups and neural architecture configurations by measuring the
testing performance using mismatch and loss values, specifically covering aspects of training
graphs complexity, scheduling types, and encoder-decoder architectures.

soon as possible (ASAP) and as late as possible (ALAP) scheduling. ASAP scheduling firstly max-
imizes the number of pipeline stages that are allowed, and then schedules operations in the earliest
possible control step, subject to satisfying the hardware and data dependency (DAG dependency)
constrains. On the other hand, ALAP will schedule the operations in the latest possible control
steps with the same maximum pipeline stages. Mostly, the performance of classic ASAP and ALAP
scheduling algorithms differs in computation resource utilization. Here, we leverage the same con-
cepts in RL training, where the labels of “ASAP” and “ALAP” style learning approaches are in the
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Table 1: Statistics of DNNs models and their computational graphs used for evaluating inference
runtime on Pipelined Edge TPU Systems

Xception
Chollet (2017)

ResNet50
He et al. (2016a)

ResNet101
He et al. (2016a)

ResNet152
He et al. (2016a)

DenseNet201
Huang et al. (2017)

|V| 134 177 347 517 709
deg(V) 2 2 2 2 2
Depth 125 168 338 508 708

DenseNet121
Huang et al. (2017)

ResNet101v2
Yu et al. (2018)

ResNet152v2
He et al. (2016b)

DenseNet169
Huang et al. (2017)

InceptionResNetv2
Szegedy et al. (2017)

|V| 429 379 566 597 782
deg(V) 2 2 2 2 4
Depth 428 371 558 596 571

original ground truth order and its reversed order, respectively (Figures 2c and 2d). We can see that
the ALAP RL training setup does not converge, regardless of the graph complexity of the training
dataset (testing degree same as training). Thus, in the rest of this section, all models are trained w.r.t
ASAP algorithm.

Neural Architecture Configurations While PtrNet is mainly an encoder-decoder neural archi-
tecture that learns the behaviors of a given CO graph algorithm, the common architectures for en-
coder/decoder are attention-based networks such as Transformer (TF) and LSTMs. Specifically, the
TF configurations are: number of layers and heads for encoder as 1, for decoder as 2; and LSTMs
configurations are: hidden dimension as 256 with 1 glimpse. Embedding dimension for both is fixed
at 256. Here, we empirically evaluate the configurations by configuring the encoder/decoder using
either TF or LSTM. As shown in Figures 2e and 2f, in learning pipelining optimizations for edge
computing systems, we conclude that (1) decoder has to be built with LSTM, (2) if decoder is built
with LSTMs, both TF and LSTM encoders will converge, and (3) the best configuration of PtrNet
is having both encoder and decoder built with LSTMs since training and tuning TF based PtrNet is
more computational expensive.

4.2 EXPERIMENTAL STUDIES ON PIPELINED EDGE TPUS

Based on all experiments and discussed in Section 4.1, we train and deploy the RL model to our
Google Edge TPU system, trained with 1) dataset degrees deg(V ) = 6 with |V | = 30, 2) ground
truth labeling follows rules of ASAP scheduling algorithm, and 3) neural architecture with both
encoder and decoder built with LSTMs. Training is conducted on 300 epochs with learning rate as
10−4 and batch size as 128.

Experimental setups on Edge TPU runtime Our comparison baseline for computational graph
compilation is the commercial version of Edge TPU compiler2. The runtime comparisons are eval-
uated using ten medium-scale popular image classification models shown in Figure 3, including
ImageNet models listed in Table 1. While TPUs can only execute INT8 quantized neural networks,
we perform INT8 quantization using TF-Lite with Tensorflow embedded pre-trained models. These
models are the inputs to Edge TPU compiler and our RL scheduling framework.

To minimize the impacts of runtime variations in executing DNNs on Edge TPU system, the results
included in Figure 3 are the mean runtime of 10 rounds of 5,000 ImageNet inference, using the
ten models. In Figure 3, the horizontal axis represents the runtime results normalized w.r.t runtime
obtained with commercial Edge TPU Compiler, and vertical axis shows the deployed models. The
results have clearly demonstrated that the proposed RL scheduler can consistently outperform com-
mercial Edge TPU compiler. Specifically, our approach improves the runtime on 4, 5, and 6-stage
pipelining Edge TPU 5.5%, 5.8%, and 28.4%, on average. Moreover, we find that the improvements
of the same model are not consistent over different pipeline stages. In other words, the performance
of RL scheduler over Edge TPU compiler is not strictly caused by the graph structures, but also the
available computing resources in the system. For example, ResNet152 in 4-stage and 5-stage Edge
TPU, the RL improves the runtime by 1.42%, and improves 56.3% in 6-stage.

2https://coral.ai/docs/EdgeTPU/compiler/
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Figure 3: Multi-stage pipelined Edge TPUs inference runtime comparisons between the proposed
RL methods and commercial Edge TPU compiler (baseline scale=1). The runtime performance has
been consistently improved over commercial compiler with 4, 5, and 6-stage pipelined Edge TPU
system e.g., ResNet101v2 and ResNet152 execute ∼2.5× faster than Edge TPU compiler.

Explainable domain knowledge learned by RL To understand the runtime differences, we analyze
the post-compiled execution graphs to extract explainable knowledge learned by the reinforcement
process. Note that TPU architecture is a template-based machine learning accelerator including a
2D array of processing elements (PE), where all PEs share memory one dedicated over the core. In
other words, while deploying the computation graph operators to the cores, it is critical to balance
the memory and compute. In addition, for the multi-TPU pipelining with a central CPU host, the
communication from stage-to-stage could significantly dominate the runtime performance, since it
communicates via slow I/O interface (e.g., USB 3.0). These have been confirmed by the two obser-
vations by comparing the compilations between Edge TPU compiler and our RL scheduler: (1) our
RL model further optimizes the memory utilization for each stage, i.e., minimizing off-chip DRAM
utilization and maximizing cache locality; (2) with more compute and memory resources (e.g., 6-
stage), the communication cost becomes more critical since the models can be simply deployed with
cache-only computation.

Generalizability analysis Note that the entire training process is fully conducted on synthetic graph
sampling, where the training graph size is |V | = 30. The experimental results shown in Table 1
and Figure 3 also conclude the generalizability of the proposed approach. Specifically, as shown
in Table 1, the size of the DNNs computational graphs varies from 134 to 782, which are all far
beyond the training graph size |V | = 30. Besides, the degree size of the deployed DNNs models
varies as well, e.g., deg(V ) = 4 in InceptionResNetv2 and deg(V ) = 2 in other models. The
proposed RL framework consistently outperform commercial Edge TPU compiler in scheduling
large computational graphs, even with graph that is 26× larger than the synthetic training samples
(|V | = 782 in InceptionResNetv2 versus |V | = 30 in training).

5 CONCLUSION

This work presents a reinforcement learning based scheduling framework, which imitates the be-
haviors of optimal optimization algorithms in inference quality. Our framework has demonstrated
up to ∼2.5× runtime speedups over the commercial Edge TPU compiler, using ten popular Ima-
geNet models on three different physical pipelined Google Edge TPU systems. More importantly,
compared to the exact optimization methods solved by heuristics and brute-force, the proposed RL
scheduling improves the scheduling runtime by several orders of magnitude.
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A APPENDIX

CODE AND DATASET

5 folders: 4 for running code, 1 for dataset;

Folder:

LSTM-LSTM: encoder as LSTM, decoder as LSTM;
LSTM-Transformer: encoder as LSTM, decoder as Transformer;
Transformer-LSTM: encoder as Transformer, decoder as LSTM;
Transformer-Transformer: encoder as Transformer, decoder as Transformer

Running code:
Entering into each running folder:
run:

CUDA_VISIBLE_DEVICES=0 python run.py
--train_dataset_path

train.pt (generate training dataset in dataset folder)
--eval_dataset_path

eval.pt (generate testing dataset in dataset folder)

For other experiments, please generate related dataset using:

dataset/dataset_generator.py (ASAP)
dataset/dataset_generator_scheduling_reversed.py (ALAP)

The command in dataset generator is:

myDataset = TopoSortDataset(size=50, num_samples=10240, in_degree_fixed=3,
in_degree_total=6, resource_constraint_level=eval_lvl, level_range=[16, 40],
weight_multiply=5., weight_constraint=35.)

size: number of nodes;
num_samples: number of graphs in the dataset;
in_degree_fixed: incoming edges per node;
in_degree_total: maximum incoming edges embedding can hold;
resource_constraint_level: default
level_range: depth of graphs;
weight_multiply: memory for each node;
weight_constraint: pipeline memory constraint.

x
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