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Abstract

We introduce GeoDANO, a geometric vision-001
language model (VLM) with a domain-agnostic002
vision encoder, for solving plane geometry003
problems. Although VLMs have been em-004
ployed for solving geometry problems, their005
ability to recognize geometric features remains006
insufficiently analyzed. To address this gap,007
we propose a benchmark that evaluates the008
recognition of visual geometric features, includ-009
ing primitives such as dots and lines, and rela-010
tions such as orthogonality. Our preliminary011
study shows that vision encoders often used in012
general-purpose VLMs, e.g., OpenCLIP, fail013
to detect these features and struggle to gener-014
alize across domains. We develop GeoCLIP,015
a CLIP-based model trained on synthetic geo-016
metric diagram–caption pairs to overcome the017
limitation. Benchmark results show that Geo-018
CLIP outperforms existing vision encoders in019
recognizing geometric features. We then pro-020
pose our VLM, GeoDANO, which augments021
GeoCLIP with a domain adaptation strategy022
for unseen diagram styles. GeoDANO outper-023
forms specialized methods for plane geometry024
problems and GPT-4o on MathVerse.025

1 Introduction026

Large language models (LLMs) have achieved re-027

markable success in automated math problem solv-028

ing, particularly through code-generation capabil-029

ities integrated with proof assistants (Moura and030

Ullrich, 2021; Nipkow et al., 2002; Chen et al.,031

2023; Wu et al., 2022; Hendrycks et al., 2021). Al-032

though LLMs excel at generating solution steps033

and correct answers in algebra and calculus (Zhou034

et al., 2024), their unimodal nature limits perfor-035

mance in plane geometry, where solution depends036

on both diagram and text (Zhou et al., 2024).037

Specialized vision-language models (VLMs)038

have accordingly been developed for plane geom-039

etry problem solving (PGPS) (Chen et al., 2021,040

2022; Lu et al., 2021; Zhang et al., 2023; Zhang041

g_double N0

Solution steps:

As shown in the figure, points A, 
B, and C are all on ⊙O, ∠ACB 
= N0, then the ∠AOB is ()

Numerical variables:

N0:35

(a) GeoQA

Gougu N0 N1 N2 Get x

Solution steps:

AE ⊥ CA on A, CA = N0, AE = 
N1, EC = N2. Find N2.

Numerical variables:

N0:22, N1:20, N2:x

(b) PGPS9K

Figure 1: Examples of diagram-caption pairs and their
solution steps written in formal languages from GeoQA
and PGPS9k datasets. In the problem description, the
visual geometric premises and numerical variables are
highlighted in green and red, respectively. A significant
difference in the style of the diagram and formal lan-
guage can be observable.

and Moshfeghi, 2024; Li et al., 2024b; Xia et al., 042

2024). Yet, it remains unclear whether these mod- 043

els genuinely leverage diagrams or rely almost ex- 044

clusively on textual features. This ambiguity arises 045

because existing PGPS datasets typically embed 046

sufficient geometric details within problem state- 047

ments, potentially making the vision encoder un- 048

necessary (Zhang and Moshfeghi, 2024). Fig. 1 049

illustrates example questions from GeoQA and 050

PGPS9K, where solutions can be derived without 051

referencing the diagrams. 052

We propose a new benchmark created via a 053

synthetic data engine, which systematically evalu- 054

ates the ability of VLM vision encoders to recog- 055

nize geometric premises. Our empirical findings 056

reveal that previously suggested self-supervised 057

learning (SSL) approaches, e.g., vector quantized 058

variataional auto-encoder (VQ-VAE) (Liang et al., 059

2023) and masked auto-encoder (MAE) (Ning 060
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et al., 2023; Xia et al., 2024), and widely adopted061

encoders, e.g., OpenCLIP (Radford et al., 2021)062

and DinoV2 (Oquab et al., 2024), struggle to detect063

geometric features such as perpendicularity and064

degrees.065

To this end, we propose GeoCLIP, a model066

pre-trained on a large corpus of synthetic dia-067

gram–caption pairs. By varying diagram styles068

(e.g., color, font size, resolution, line width),069

GeoCLIP learns robust geometric representations070

and outperforms prior SSL-based methods on our071

benchmark. Building on GeoCLIP, we introduce072

a few-shot domain adaptation technique that ef-073

ficiently transfers the recognition ability to real-074

world diagrams. We further combine this domain-075

adapted GeoCLIP with an LLM, forming a domain-076

agnostic VLM for solving PGPS tasks in Math-077

Verse (Zhang et al., 2024a).078

In our experiments on MathVerse (Zhang et al.,079

2024a), which encompasses diverse plane geom-080

etry tasks and diagram styles, our VLM with081

a domain-adapted GeoCLIP consistently outper-082

forms both task-specific PGPS models and gener-083

alist VLMs. Ablation studies confirm the effec-084

tiveness of our domain adaptation strategy, show-085

ing improvements in optical character recognition086

(OCR)-based tasks and robust diagram embeddings087

across different styles.088

We summarize the contributions as follows:089

We propose a novel benchmark for systemati-090

cally assessing how well vision encoders recog-091

nize geometric premises in plane geometry dia-092

grams (§3); We introduce GeoCLIP, a vision en-093

coder capable of accurately detecting visual ge-094

ometric premises (§4.1), and a few-shot domain095

adaptation technique that efficiently transfers this096

capability across different diagram styles (§4.2);097

We show that our VLM, incorporating domain-098

adapted GeoCLIP, surpasses existing specialized099

PGPS VLMs and generalist VLMs on the Math-100

Verse benchmark (§5.2) and effectively interprets101

diverse diagram styles (§5.3).102

2 Related Work103

In this section, we summarize the studies related to104

the benchmarks proposed to evaluate plane geome-105

try problem solving (PGPS), the models trained for106

PGPS, and the contrastive learning methods used107

to enhance PGPS performance.108

2.1 PGPS benchmarks 109

Several studies have introduced benchmarks for 110

PGPS, including a set of diagrams and correspond- 111

ing problem and solution descriptions (Chen et al., 112

2021; Lu et al., 2021; Zhang et al., 2023; Chen 113

et al., 2022). The problem and solution descrip- 114

tions are provided in natural languages or formal 115

languages. Often, the solution steps are provided 116

in the form of formal language. Given the dataset, 117

the goal of PGPS is to train a model that produces 118

a valid solution as an executable program. 119

However, as recent work by Zhang et al. (2024a) 120

shows, the problem description contains too much 121

information such that the model produces a valid 122

solution program without having the diagram in- 123

formation as shown in Fig. 1. MathVerse (Zhang 124

et al., 2024a) introduces modifications to existing 125

PGPS benchmarks by directly encoding the geo- 126

metric properties and relations into the diagrams. 127

Therefore, it is impossible to produce a valid solu- 128

tion without recognizing the necessary information 129

from diagrams. Despite the effort, it is still unclear 130

to what extent the vision encoder recognizes the 131

geometric conditions in a diagram as models are 132

evaluated in an end-to-end fashion. 133

2.2 Program generation based PGPS 134

A core challenge in program generation-based 135

PGPS is processing both diagrams and text to inter- 136

pret geometric premises. One approach tackles the 137

challenge by converting a diagram into alternative 138

representations such as lists of geometric primitives 139

and relations that can be represented as text (Seo 140

et al., 2015; Sachan et al., 2017; Lu et al., 2021; 141

Zhang and Moshfeghi, 2024; Zhang et al., 2022; 142

Peng et al., 2023). Although reducing the prob- 143

lem to a single modality can be effective, building 144

such converters typically requires labeled diagrams, 145

which are expensive to collect and eventually limit 146

generalization across diverse diagram styles. 147

Another line of research typically employs 148

vision-language models (VLMs), where a VLM 149

comprises a vision encoder and a language 150

model (Zhang et al., 2023; Chen et al., 2021; Cao 151

and Xiao, 2022; Ning et al., 2023; Chen et al., 2022; 152

Liang et al., 2023; Xia et al., 2024; Li et al., 2024b). 153

The vision encoder produces a visual embedding 154

from the diagram, and the language model then gen- 155

erates solution steps in an autoregressive manner, 156

conditioned on the textual description and the vi- 157

sual embedding. While the VLMs apply to various 158
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diagram formats, the visual geometric premises per-159

ception of the VLMs remains underexplored due160

to the abundance of textual information in exist-161

ing benchmarks. Moreover, the VLMs are often162

fine-tuned and tested on a single benchmark, leav-163

ing their domain generalization capabilities across164

different diagram styles unexamined.165

2.3 Contrastive learning in PGPS166

Contrastive learning is applied in diverse domains167

such as computer vision (Schroff et al., 2015) and168

natural language processing (Gao et al., 2021).169

In the context of PGPS, contrastive learning is170

employed to address domain-specific challenges.171

GeoX (Xia et al., 2024) applies contrastive learn-172

ing to the adapter layer of the VLM to enhance173

formal language comprehension. Other approaches174

train the vision encoder itself using the contrastive175

language-image pre-training (CLIP) (Radford et al.,176

2021) objective: LANS (Li et al., 2024b) aligns177

patch embeddings from a vision Transformer (ViT)178

with text token embeddings if they describe the179

same point, and MAVIS (Zhang et al., 2024b) em-180

ploys diagram–caption pairs generated by a syn-181

thetic engine for CLIP. In this work, we examine182

how CLIP with varied caption styles influences the183

visual geometric premises recognition of the vision184

encoder. In addition, a contrastive learning frame-185

work is introduced to strengthen robustness against186

domain shifts in the styles of diagrams.187

3 Visual Geometric Premises Recognition188

Benchmark for Vision Encoders189

In this section, we first develop a benchmark for190

evaluating a vision encoder’s performance in rec-191

ognizing geometric features from a diagram. We192

then report the performance of well-known vision193

encoders on this benchmark.194

3.1 Benchmark preparation195

We design our benchmark as simple classification196

tasks. By investigating PGPS datasets, we iden-197

tify that recognizing geometric primitives, such as198

points and lines, and geometric properties repre-199

senting relations between primitives, such as per-200

pendicularity, is important for solving plane geom-201

etry problems. Recognized information forms geo-202

metric premises to solve the problem successfully.203

To this end, we carefully curate five classification204

tasks as follows:205

• Concyclic: A circle and four points are given.206

The task is to identify how many of those 207

points lie on the circle. 208

• TwoLines: Two lines, AB and BC, are given 209

alongside other geometric objects. The task is 210

to determine whether AB and BC are perpen- 211

dicular, collinear, or neither. 212

• ObjectShape: A given diagram includes one 213

of the following geometric objects: a segment, 214

triangle, square, or pentagon. The task is to 215

classify which object is present. 216

• SquareShape: A diagram including a square 217

ABCD and other geometric objects is given. 218

The task is to classify whether the square is a 219

trapezoid, parallelogram, or rectangle. 220

• AngleDetection: A diagram is given with at 221

least three points: A, B, and C. The task is 222

to classify the correct angle of ABC from 223

{15◦, 20◦, . . . , 75◦}. 224

An example of each task is provided in Fig. 2. 225

Our benchmark is built on top of AlphaGeome- 226

try (Trinh et al., 2024), which is designed to solve 227

IMO-style plane geometry problems. The program 228

provides useful functions such as formal language 229

describing plane diagrams. The language prede- 230

fines a set of geometric premises listed in Table 5, 231

including all necessary properties to define our 232

benchmark tasks. In addition, once a diagram 233

description is given in formal language, the pro- 234

gram renders a corresponding diagram with varying 235

fonts, colors, widths, orientations, and resolutions, 236

allowing us to have diagrams with diverse styles 237

often observed in a real-world scenario. 238

We create question-and-answer pairs based on 239

AlphaGeometry. To sample a diverse set of 240

question-and-answers, we first establish a founda- 241

tional geometric structure corresponding to the key 242

problem of the task and then repeatedly add new 243

points or lines with randomly selected geometric 244

relationships to the existing diagram with the help 245

of the formal language. The pseudo-code for the 246

random question generation is presented in Algo- 247

rithm 1. For each task, we generate 50,000, 10,000, 248

and 10,000 question-and-answer pairs for training, 249

validation, and testing, respectively. 250

3.2 Results 251

With the proposed benchmark, we evaluate four 252

widely adopted vision encoders for the open- 253

sourced VLMs: OpenCLIP (Radford et al., 2021), 254
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Q: How many points are
on the circle?

Choices:
(A) 0 (B) 1
(C) 2 (D) 3 (E) 4

(a) Concyclic

Q: How are AB and BC

related?

Choices:
(A) Perpendicular
(B) Collinear (C) Otherwise

(b) TwoLines

Q: What kind of object is
in the diagram?

Choices:
(A) Segment (B) Triangle
(C) Square (D) Pentagon

(c) ObjectShape

Q: What is the shape of
□ABCD?

Choices:
(A) Parallelogram
(B) Trapezoid (C) Rectangle

(d) SquareShape

Q: What is the degree of
∠ABC?

Choices:
(A) 15◦ (B) 20◦

(C) 25◦ · · · (N) 75◦

(e) AngleDetection

Figure 2: Illustration of the proposed visual feature perception benchmark. We introduce five different diagram
classification tasks that require visual feature perception to answer geometry-related questions.

Models
Object
Shape

Con
cyclic

Two
Lines

Square
Shape

Angle
Detection

B
as

el
in

e

OpenCLIP 100.00 99.13 86.57 85.20 64.81
SigLIP 100.00 99.71 89.26 89.31 76.86
DinoV2 100.00 98.01 85.30 91.24 22.43
ConvNeXT 100.00 99.20 89.39 88.13 61.84

SS
L

Jigsaw 86.11 63.85 49.98 61.88 11.44
MAE 93.99 72.25 71.73 82.70 13.08
VQ-VAE 63.05 60.97 48.10 57.35 9.22

G
eo

C
LI

P GeoCLIP (F ×) 99.52 98.61 88.33 86.76 65.68
GeoCLIP (2K) 99.32 98.73 94.73 89.22 74.95
GeoCLIP 99.21 99.24 96.05 95.95 78.56

Table 1: Results on the proposed visual feature bench-
mark. We report the test accuracy of the models with
the best validation performance.

SigLIP (Zhai et al., 2023), DinoV2 (Oquab et al.,255

2024), and ConvNeXT (Liu et al., 2022).256

To evaluate the vision encoder, we adopt a linear257

probing approach. Specifically, we add a linear258

layer on top of each encoder as a prediction head259

and train the linear layer from scratch while freez-260

ing the parameters of the vision encoder. We use a261

training set to train the prediction head and report262

the test accuracy with the best validation perfor-263

mance. The details for the hyper-parameters are264

described in Appendix B.1.265

As shown in Table 1, many existing vision en-266

coders well recognize the shape of objects but fail267

to recognize the correct angle between two lines.268

The encoders also show some difficulties in recog-269

nizing the shape of a square and the relationship270

between two lines. Although the result may seem271

satisfactory at a glance, these errors will propa-272

gate to the downstream tasks when combined with273

LLMs. Hence, it is important to improve the recog-274

nition performance of the vision encoder further.275

4 Improving the Vision Encoder 276

Geometric Premises Recognition 277

In this section, we first propose GeoCLIP, a new 278

vision encoder designed to recognize geometric 279

premises from diverse styles of diagrams. To trans- 280

fer the recognition to real-world PGPS benchmarks, 281

we then propose a domain adaptation technique 282

for GeoCLIP that leverages a small set of dia- 283

gram–caption pairs from the target domains. 284

4.1 GeoCLIP 285

To make a vision encoder recognize geometric dia- 286

grams better, we propose a GeoCLIP, a vision en- 287

coder trained with CLIP objective with a newly de- 288

veloped 200,000 diagram-caption examples. From 289

the random diagram generator developed in §3.1, 290

we additionally sample 200,000 diagrams written 291

in the formal language. Directly rendering these 292

samples can result in a diagram that may not pre- 293

serve the geometric properties. For example, the 294

perpendicularity between two lines cannot be ob- 295

served from the diagram without having the right 296

angle sign, i.e., . Therefore, we ensure to ren- 297

der the images containing all necessary geometric 298

premises from its visual illustration. 299

For the caption of a diagram, we filter out some 300

geometric properties from the original description 301

of a diagram used to render the image. Specifi- 302

cally, we only keep the following four properties, 303

concyclic, perpendicularity, angle measures, and 304

length measures, from the visual premises shown 305

in Table 5. After that, we convert the remaining 306

descriptions written in the formal language into nat- 307

ural language. We filter out some properties for two 308

reasons. First, some properties are not recogniz- 309

able from the rendered diagram without additional 310
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information, e.g., congruency. These properties311

are listed as non-visual premises in Table 5. Sec-312

ond, collinearity and parallelity occur so frequently313

that they can marginalize others. Some examples314

of generated captions after filtering and translating315

are provided in the right-most column of Fig. 4. We316

call the filtered caption as GeoCLIP-style caption.317

With this dataset, we fine-tune OpenCLIP (Rad-318

ford et al., 2021) according to the CLIP objective319

which is formulated as:320

LCLIP(D, g, h) :=321

ED

[
− log

exp
(
g(Di)

T h(Xi)/τ
)∑

X∈{Xi}i exp
(
g(Di)T h(X)/τ

)],
(1)

322

where D := {(Di, Xi)}Ni=1 is the diagram-caption323

pairs, g is the vision encoder, h is the text encoder,324

and τ is a temperature parameter. We named the re-325

sulting vision encoder as GeoCLIP. Appendix B.1326

provides the details, including hyper-parameters.327

We compare the performance of GeoCLIP to328

other self-supervised approaches trained with the329

same dataset. We test three self-supervised ap-330

proaches: Jigsaw (Chen et al., 2021; Cao and Xiao,331

2022), MAE (Ning et al., 2023; Xia et al., 2024),332

and VQ-VAE (Liang et al., 2023) used in previ-333

ous work to improve the recognition performance334

of plane diagrams. We use the same architecture335

used for GeoCLIP for Jigsaw and MAE with the336

hyper-parameters used in the previous works. For337

VQ-VAE, we follow the architecture of Liang et al.338

(2023). All model performances are measured339

through the linear probing used in §3.2.340

As shown in Table 1, GeoCLIP recognizes geo-341

metric features better than existing baselines and342

self-supervised methods. The self-supervised ap-343

proaches generally perform poorly for the bench-344

mark, justifying the choice of the objective. We345

also compare the performance of GeoCLIP against346

other encoders such as OpenCLIP. Note that al-347

though we outperform the other encoders in diffi-348

cult tasks such as SquareShape and AngleDetec-349

tion, these results might be unfair since the training350

set of GeoCLIP is similar to the diagrams in the351

benchmark. The t-SNE plots of the embeddings352

from the vision encoders are illustrated at Fig. 5.353

We further ablate the filtering process in Geo-354

CLIP. To this end, we compare GeoCLIP with its355

two variants: GeoCLIP (F ×), which uses the cap-356

tions generated without filtering. We also test Geo-357

CLIP (2K), which is trained on only 2,000 pairs,358

to see the effectiveness of the large-scale dataset. 359

The results in Table 1 imply both the filtering and 360

the training set size matter in enhancing geometric 361

properties recognition. 362

4.2 Domain adaptation of GeoCLIP 363

Although GeoCLIP enhances the geometric 364

premises recognition on the benchmark set, the 365

diagram styles in existing PGPS benchmarks differ, 366

necessitating further adaptation. To overcome this 367

challenge, we propose a domain adaptation method 368

for GeoCLIP. To this end, we propose a few-shot 369

domain adaptation method utilizing a few labeled 370

diagrams. 371

A domain-agnostic vision encoder must match 372

the same diagrams drawn in different styles. To 373

do so, we need a target domain diagram translated 374

into the source domain style or the source diagrams 375

translated into the target domain style. With these 376

translated images, we can guide the model to focus 377

on key geometric information instead of irrelevant 378

attributes, such as color and font family. However, 379

in practice, it is difficult to obtain the same dia- 380

grams with different styles. 381

We develop a way to translate the target dia- 382

grams into source style. Thankfully, since well- 383

known PGPS datasets come with diagram captions 384

written in formal languages (Lu et al., 2021), we 385

can easily convert them to the AlphaGeometry- 386

style descriptions. Given the translated descrip- 387

tions, we utilize the rendering engine of Alpha- 388

Geometry to translate the target domain images 389

into the source domain. With the translation, we 390

can generate the same diagram in the source do- 391

main style. Fig. 6 provides examples of the dia- 392

gram pairs with different styles. However, in some 393

cases, the original description contains geometric 394

premises that are unrecognizable from the diagram, 395

such as ∠ACB = 35.0 in Fig. 1a. Therefore, we 396

apply the same filtering process used in GeoCLIP 397

to translate the AlphaGeometry-style descriptions 398

into natural languages. 399

Formally, let DS := {(D(i)
S , X

(i)
S )}NS

i=1 be 400

the diagram-caption pairs from source domain 401

S, e.g., the synthetic diagrams, and let DTj := 402

{(D(i)
Tj
, X

(i)
Tj
)}

NTj

i=1 be the set of diagram-caption 403

pairs of target domain Tj , e.g., the PGPS bench- 404

marks. With the translation process described 405

above, we can synthesize a style-transferred 406

diagram-caption pair (D̂(i)
Tj
, X̂

(i)
Tj
) for each diagram 407

D
(i)
Tj

and caption X
(i)
Tj

in target domain Tj . 408
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We perform domain adaptation by fine-tuning409

the vision encoder through the style-transferred410

diagram-caption pairs. Let D̂Tj be a collection of411

the original diagram and style-transferred captions,412

i.e., D̂Tj = {(D(i)
Tj
, X̂

(i)
Tj
)}

NTj

i=1 , and let D̂TjS be a413

collection of the original and style transferred di-414

agram pairs, i.e., D̂TjS = {(D(i)
Tj
, D̂

(i)
Tj
)}

NTj

i=1 . The415

cross-domain adaptation objective is written as416

LCLIP-DA(DS , {DTj}j , g, h) := LCLIP(DS , g, h)+417

ΣjLCLIP(D̂Tj , g, h) + LCLIP(D̂TjS , g, g), (2)418

where g and h are the vision and text encoders of419

GeoCLIP, respectively. Note that we do not use420

the original captions from the target domain, since421

our goal is to adapt the vision encoder to the target422

domain, not the text encoder.423

5 Experiments424

In this section, we evaluate the PGPS performance425

of our VLM equipped with the domain adapted426

GeoCLIP on MathVerse (Zhang et al., 2024a). We427

compare its performance against established PGPS428

baselines. We also present ablation studies high-429

lighting our VLM’s strong visual feature recogni-430

tion and resilience to domain shifts, both of which431

are facilitated by the adapted vision encoder.432

5.1 Experimental settings and training details433

Datasets. We use MathVerse (Zhang et al.,434

2024a) to measure the performance of VLMs.435

MathVerse is a benchmark designed to evaluate436

both the reasoning and visual-feature recognition437

capabilities of VLMs, covering plane geometry,438

solid geometry, and function problems. It is439

constructed by compiling problems from various440

sources, including Geometry3K (Lu et al., 2021),441

GeoQA (Chen et al., 2021), and GEOS (Seo et al.,442

2015). Each problem is presented in five variants:443

text-dominant, which provides all essential tex-444

tual information for solving the problem; text-lite,445

which omits descriptive details, e.g., object shapes,446

from the text; vision-intensive, which removes cer-447

tain textual conditions that can be inferred from448

remaining information; vision-dominant, which re-449

locates numerical measurements, such as angles450

and lengths, from the text to the diagram; and451

vision-only, which offers only the diagram as input,452

embedding all text within the diagram. In the fol-453

lowing experiments, we focus on plane geometry454

problems and exclude the vision-only task.455

Training details. We describe the construction of 456

our geometric VLM with domain-agnostic vision 457

encoder, named GeoDANO. Based on GeoCLIP de- 458

veloped in §4.1, we apply the domain adaptation to 459

GeoQA and Geometry3K datasets. For the domain 460

adaptation, we randomly sample 50 diagrams and 461

translate the diagram and caption styles following 462

the procedure described in §4.2. Finally, GeoCLIP 463

is fine-tuned via Eq. (2). We name the GeoQA and 464

Geometry3K adapted GeoCLIP as GeoCLIP-DA. 465

We combine LLama-3-8b-Instruct (Dubey et al., 466

2024) and GeoCLIP-DA to construct a VLM. The 467

combined model is then fine-tuned again with the 468

training set of GeoQA and PGPS9K to predict the 469

solution program. For PGPS9K, we use the Ge- 470

ometry3K split. While previous works focusing 471

on PGPS do not consider optical character recog- 472

nition (OCR) from diagrams since the benchmark 473

datasets, GeoQA and PGPS9K, provide necessary 474

details in problem descriptions, numerical values 475

can appear within diagrams in real-world settings. 476

Therefore, we fine-tune GeoDANO with additional 477

OCR capability by modifying the problem state- 478

ments. Additional details about the modification 479

process with hyper-parameter configurations can 480

be found in Appendix D. 481

In addition, we unify the programming lan- 482

guages used in the solution programs of GeoQA 483

and PGPS9K by converting GeoQA language into 484

PGPS9K format. The unification makes the output 485

of VLM consistent since both datasets use different 486

types of formal languages. 487

Baselines. We use two different types of baseline 488

models for the experiments: PGPS specialist VLMs 489

and generalist VLMs. Specialist VLMs produce a 490

solution program as an output of a given problem, 491

and generalist VLMs produce a natural language 492

solution as an output. 493

For the specialist VLMs, we test PGP- 494

SNet (Zhang et al., 2023), NGS (Chen et al., 2021), 495

SCA-GPS (Ning et al., 2023), GeoFormer (Chen 496

et al., 2022), UniMath-Flan-T5 (Liang et al., 2023), 497

and GeoX (Xia et al., 2024). For GeoX, we use 498

the two variants GeoX-Geo3K and GeoX-GeoQA, 499

which are fine-tuned on Geometry3K and GeoQA, 500

respectively. 501

For the generalist VLMs, we test two GPT-4o 502

variants (Hurst et al., 2024): gpt-4o-2024-11-20 503

and gpt-4o-mini-2024-07-18, and the InternVL2.5 504

variants: 8B and 26B models (Chen et al., 2024). 505
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Models
Text Dominant Text Lite Vision Intensive Vision Dominant

Completion ↑ Top-10 ↑ Completion ↑ Top-10 ↑ Completion ↑ Top-10 ↑ Completion ↑ Top-10 ↑

PGPSNet 4.37 14.55 2.08 12.06 2.08 11.02 - -
NGS 6.45 34.57 6.64 28.52 5.86 26.37 - -
SCA-GPS 6.84 18.16 5.66 16.80 3.52 15.23 - -
GeoFormer 16.22 32.85 16.84 30.77 13.10 29.11 - -
UniMath-Flan-T5 17.88 32.43 16.42 30.56 13.93 28.27 - -
GeoX-Geo3K 5.41 9.98 4.16 6.86 3.53 5.61 - -
GeoX-GeoQA 24.32 37.42 17.26 32.43 13.51 16.25 - -

GeoDANO (OC) 19.13 40.12 16.63 34.72 13.31 31.81 1.25 8.12
GeoDANO (GC) 20.37 41.79 18.09 38.25 15.80 35.34 5.62 19.38
GeoDANO (GC-D) 22.66 43.45 21.00 38.46 18.30 35.76 6.67 20.42
GeoDANO 23.70 47.82 21.21 45.11 18.09 42.20 12.08 36.04

Table 2: PGPS accuracy on MathVerse benchmark. We compare the performance of GeoDANO against PGPS
specialist models, which generate a solution program as an output. GeoDANO-OC, -GC, and -GCD are three
variants of our model with different encoders. Further details about these variants can be found in §5.3.

Evaluation metric. For each plane geometry506

problem, both the specialist VLMs and GeoDANO507

generate 10 outputs via beam search. Following508

Zhang et al. (2023), we then use completion accu-509

racy and top-10 accuracy as our primary evaluation510

metrics. The completion accuracy assesses whether511

the first successfully executed solution from the512

beam is correct; the solutions are reviewed in beam513

order, and success is recorded if the first executable514

solution produces the correct answer. Top-10 ac-515

curacy examines all ten beam outputs, counting516

a success if any of these solutions yield the cor-517

rect result upon execution. Note that, as described518

before, the specialist VLMs do not have OCR ca-519

pability. For the evaluation, we feed the correct520

values to the outputs of these models by using the521

parser developed in Zhang et al. (2023). For the522

models that are trained in Chinese, i.e., NGS and523

SCA-GPS, we use problem descriptions translated524

by GPT-4o (Hurst et al., 2024).525

To measure the performance of the generalist526

VLMs, we use multiple-choice questions instead527

of open-ended questions due to the difficulty in528

parsing the final answer from free-form text. We529

use the multiple-choice question provided in Math-530

Verse as an additional input to each problem. We531

ask VLMs to produce the answer in a pre-specified532

form. We report the top-1 accuracy of these mod-533

els. To compare GeoDANO against the generalist534

models, we use the same protocol used in Zhang535

et al. (2023) to measure the accuracy.536

5.2 Results537

Performance against specialist VLMs. In Ta-538

ble 2, GeoDANO shows the best performance in539

almost all the problem variants and metrics except540

the completion accuracy in the text-dominant task.541

Text
Dominant

Text
Lite

Vision
Intensive

Vision
Dominant

GPT-4o 40.35 39.18 38.01 36.95
GPT-4o-mini 41.12 39.53 35.59 30.50
InternVL2.5-8B 38.30 36.26 35.09 21.99
InternVL2.5-26B 42.40 40.06 38.01 38.71
GeoX-GeoQA 52.05 45.91 37.43 -
GeoDANO 48.54 49.71 41.81 39.30

Table 3: Comparison between GeoDANO and generalist
VLMs on multiple choice questions. We report the
accuracy of GeoDANO and GeoX following the same
evaluation protocol suggested in Zhang et al. (2023).

Note that the specialist models cannot solve the 542

vision-dominant problems since these problems do 543

not contain variables representing numerical val- 544

ues, such as a length, in the problem description. 545

When comparing the performance between text and 546

vision-dominant tasks, the top-10 accuracy of Geo- 547

DANO on vision-dominant task is higher than the 548

top-10 accuracy of the specialist models on text- 549

dominant task except for GeoX-GeoQA. Given that 550

the two tasks use the same problem set, the re- 551

sult implies that GeoDANO performs better than 552

the specialist models without having the geomet- 553

ric premises in the problem description. In other 554

words, our vision encoder can extract geometric 555

premises accurately from the visual information. 556

Performance against generalist VLMs. Table 3 557

reports the performance of generalist VLMs and 558

GeoDANO on multiple choice questions. Geo- 559

DANO outperforms proprietary closed models, i.e., 560

GPT-4o variants, and open-sourced models, i.e., 561

the InternVL2.5 variants. Especially, the perfor- 562

mance gap between GeoDANO and InternVL2.5- 563

26B reflects the parameter efficiency of our VLM. 564

While GeoDANO shows impressive results among 565

the variants, the performance of GeoX-GeoQA 566
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Models
PGPS9K GeoQA

MR ↓ mAP ↑ MR ↓ mAP ↑

OpenCLIP 50.50 27.87 111.70 1.29
GeoCLIP 88.99 17.61 128.73 1.05
GeoCLIP-D 58.83 13.35 107.25 2.86
GeoCLIP-DA 12.88 41.13 35.60 33.25

Table 4: Domain adaptation analysis. We report the
mean rank (MR) and mean average precision (mAP) of
the test diagrams.

degrades dramatically as the visual information567

moves from the text to the diagram. Our work is568

the first to show that the specialist can compete569

with the generalist in MathVerse.570

5.3 Ablation studies571

Variation of GeoCLIP. We perform a detailed572

empirical analysis to evaluate how effectively the573

GeoCLIP-style captions and the proposed domain574

adaptation technique improve GeoDANO’s per-575

formance. Specifically, we compare GeoDANO576

against other VLMs trained on the GeoCLIP vari-577

ants, including OpenCLIP (Radford et al., 2021)578

and the GeoCLIP without domain adaptation. We579

also test a variant of GeoCLIP trained with addi-580

tional diagram-caption pairs from the target do-581

mains without having any filtering process. In this582

case, we utilize all the data in the training sets.583

We show the experimental result in Table 2.584

GeoDANO-OC and GeoDANO-GC represent the585

VLM with OpenCLIP and GeoCLIP without do-586

main adaptation, respectively. GeoDANO-GCD587

represents the GeoCLIP with additional unfiltered588

domain captions. GeoDANO outperforms other589

variants on most tasks, except the completion accu-590

racy on the vision-intensive task.591

OCR performance. We assess the accuracy of592

GeoDANO and its variants in OCR on the Math-593

Verse diagrams, focusing on the vision-dominant594

task. We evaluate the OCR performance of595

the first executable solution program in top-10596

VLM predictions. GeoDANO-OC, GeoDANO-GC,597

GeoDANO-GCD, and GeoDANO achieve 1.84%,598

20.26%, 13.95%, and 46.58% accuracy, respec-599

tively. The result explains the accuracy improve-600

ment of GeoDANO in the vision-dominant task601

against other variants.602

Domain adaptation analysis. We examine how603

effectively GeoCLIP-DA generalizes to new do-604

mains with different diagram styles. For this ex-605

periment, we compare the embedding similarity606

OpenCLIP GeoCLIP-DA

Figure 3: Visualization of OpenCLIP and GeoCLIP-DA
embeddings. The orange, green, and blue dots represent
PGPS9K, GeoQA, and synthetic diagrams, respectively.
In the top row, the three diagrams on the left and right
are those with the highest cosine similarities to the cen-
ter under OpenCLIP and GeoCLIP-DA, respectively.

between two diagrams representing the same struc- 607

ture in different styles. To create the paired dataset, 608

we use a similar process described in §4.2. Specifi- 609

cally, a total of 100 diagrams are sampled from the 610

test sets of GeoQA and PGPS9K, and these sam- 611

ples are rendered in AlphaGeometry style through 612

the diagram description. 613

For evaluation, we sample 100 diagrams from 614

each of the target domain’s training sets and com- 615

pare the similarity against the original diagram via 616

cosine similarity. We also compute the similar- 617

ity between the style transferred diagram and the 618

original diagram. We report two metrics for test di- 619

agrams: the mean rank (MR) and the mean average 620

precision (mAP) of the style-transferred diagram. 621

As reported in Table 4, GeoCLIP-DA produces 622

similar embeddings for structurally equivalent di- 623

agrams, regardless of their stylistic differences. 624

Fig. 3 visualizes the diagram embeddings of Open- 625

CLIP and GeoCLIP-DA. As one can observe, the 626

OpenCLIP embeddings are largely separated by 627

the domain of the diagrams, whereas those of 628

GeoCLIP-DA appear to capture and align with un- 629

derlying visual features more effectively. 630

6 Conclusion 631

In this work, we propose a domain-agnostic PGPS 632

method, GeoDANO, by implementing a synthetic 633

data engine and proposing a contrastive learning 634

framework with domain adaptation. We demon- 635

strate the effectiveness of GeoDANO in visual fea- 636

ture perception at both VLM and vision encoder 637

levels by evaluating on the MathVerse and through 638

a newly proposed geometric feature recognition 639

benchmark for vision encoders. Eventually, the 640

reasoning ability in plane geometry problems is en- 641

hanced with the improved perceptual capabilities. 642
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Limitations643

In this work, we present a domain-agnostic VLM644

for PGPS by refining the vision encoder. Although645

our VLM exhibits strong performance in recogniz-646

ing visual features, its coverage remains limited647

to geometric premises. Building on the success648

of the synthetic data engine and contrastive learn-649

ing, extending this combination to different kinds650

of visual features, e.g., sub-structures in molec-651

ular graphs (Kamoi et al., 2024), statistics from652

charts (Masry et al., 2022), and solid geometry,653

promises further improvements in recognition of654

VLM. Due to the limitations in the experimental en-655

vironment, we are unable to test LLMs with more656

than 30B parameters.657
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Visual premises Non-visual premises

• Perpendicularity • Middle point
• Collinearity • Congruency in degree
• Concyclicity • Congruency in length
• Parallelity • Congruency in ratio
• Angle measure • Triangle similarity
• Length measure • Triangle congruency

• Circumcenter
• Foot

Table 5: Geometric premises used in AlphaGeometry.
Visual premises denotes the geometric premises which
can be directly perceived from the diagram. Non-visual
premises requires reasoning to be recognized.

Algorithm 1 Sampling process of the synthetic
data engine
Input Geometric relations R, geometric objects O,
number of clauses nc

Output AlphaGeometry program c

1: Initialize points and clauses with the sampled
object: P,C ∼ O

2: for i← 1 to nc do
3: Generate points: Pnew
4: Sample relation and points: r, Pold ∼ R,P
5: Construct clause: Cnew = r(Pnew, Pold)
6: Update points and clauses: P,C ← P ∪

Pnew, C ∪ Cnew

7: Generate program with points and clauses:
c← Clauses2Program(P,C)

8: return c

Appendix887

A Synthetic Data Engine888

In this section, we provide the details of our889

synthetic data engine. Based on AlphaGeome-890

try (Trinh et al., 2024), we generate synthetic di-891

agram and caption pairs by randomly sampling a892

AlphaGeometry program with Algorithm 1.893

Examples for randomly sampled AlphaGeome-894

try problems and their corresponding diagrams and895

lists of geometric premises are described in Fig. 4.896

The types of geometric premises that appear in our897

synthetic data engine are listed in Table 5.898

B Details of Benchmark899

B.1 Training details900

To evaluate the visual feature perception of the vi-901

sion encoder, we utilize a linear probing approach,902

which involves freezing the vision encoder parame- 903

ters and training a simple linear classifier on top of 904

its features. 905

We train the linear classifier on the training set 906

of each task for 50 epochs with batch size 128 and 907

learning rate 1e-4. We use Adam optimizer for 908

optimization. 909

B.2 Visualization of the vision encoders 910

We visualize the embeddings of the vision encoders 911

used in §3.2 at Fig. 5. 912

C GeoCLIP-DA 913

C.1 Domain adaptation data 914

We adopt GeoCLIP to the two PGPS benchmarks: 915

GeoQA (Chen et al., 2021) and PGPS9K (Zhang 916

et al., 2023). For PGPS9K, we use the Geome- 917

try3K split. Fig. 6 shows the pairs used to adapt 918

the domain of GeoCLIP. 919

C.2 Training details 920

We start from OpenCLIP (Radford et al., 2021), 921

a pre-trained model where the architecture is 922

ViT-L/14 with image resolution 336 × 336. To 923

train OpenCLIP, we use total of 200,000 diagram- 924

caption pairs generated with our synthetic data en- 925

gine. For the domain adaptation to GeoQA and 926

Geometry3K datasets, we randomly sample 50 dia- 927

grams and translate the diagram and caption styles 928

following the procedure described in §4.2. Finally, 929

GeoCLIP is fine-tuned via Eq. (2). We name the 930

GeoQA and Geometry3K adopted GeoCLIP as 931

GeoCLIP-DA. 932

We set the batch size for the source domain 933

diagram-caption pairs to 256. For the domain adap- 934

tation parts, i.e., applying CLIP on the diagram- 935

caption pairs and the diagram pairs of target do- 936

mains, we vary the batch size to 32. We set weight 937

decay to 0.2. We optimize for 50 epochs using 938

Adam optimizer (Kingma, 2014) and a cosine an- 939

nealing scheduler with 2,000 warmup steps and the 940

maximum learning rate is set to be 1e-4. We train 941

the model with eight RTX3090 GPUs for approxi- 942

mately 24 hours. 943

D GeoDANO 944

D.1 Modification of training data 945

Our fine-tuning strategy differs slightly from previ- 946

ous works (Chen et al., 2022; Zhang et al., 2023; 947

Xia et al., 2024). Here, we clarify the difference 948

between our approach and previous approaches. 949
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x0 x1 = segment; 
x2 = s_angle x0 x1 x2 122; 
x3 x4 = square x1 x2; 
x5 x6 = square x0 x1

∠DHV	=	122°
DH	⟂ DX	.	HV	⟂HL
HD	=	DX	.	VH	=	HL
DH	∥	SX	.	HS	∥	DX	.	HV	∥	FL	.	FV	∥	HL

x0 x1 x2 x3 = rectangle; 
x4 x5 = square x2 x3; 
x6 = on_circle x1 x5

x0 x1 x2 = iso_triangle; 
x3 x4 = trisect x0 x1 x2; 
x5 = intersection_lt x0 x1 x2 x3 x4

DX	⟂ DZ
DX	∥	NZ	.	NX	∥	DZ	.	JN	∥	DZ.	NZ	∥	GJ	.	GZ	∥	JN	
DT	=	DG	.	ZN	=	NJ	
T,	J	are concyclic

NZ	⟂HJ
∠JXN	=	∠XNJ	.	∠NXJ	=	∠JNX	.	∠X =	∠HXK	.	
∠HXK	=	∠KXN	.	∠KXH	=	∠NXK	
JX	=	JN	.	
J,	H,	N	are collinear .	J,	H,	K are collinear .	J,	Z,	K	are collinear

AlphaGeometry problem: Diagram:Geometric premises:

∠DHV	=	122° .	DH	⟂DX	.	HV	⟂ HL

DX	⟂ DZ .	T,	G	are concyclic

NZ	⟂HJ

GeoCLIP-style caption:

Figure 4: Example of randomly sampled AlphaGeometry problems. For each row, the first element describes the
randomly sampled AlphaGeometry problem and the others are the geometric premises, diagram, and GeoCLIP-style
caption that can be obtained from the AlphaGeometry problem. Note that the GeoCLIP-style caption can be obtained
by filtering certain geometric properties, e.g., angle measure, perpendicularity, and concyclicity, from the geometric
premises.

(a) OpenCLIP (b) SigLIP (c) ConvNeXT

(d) DinoV2 (e) GeoCLIP

Figure 5: The embeddings of the vision encoders on
the diagrams of TwoLines task. We visualize the em-
beddings of the vision encoders on the diagrams of
TwoLines task. The blue, orange, and green dots are the
diagrams where the two lines AB and BC are collinear,
perpendicular, and otherwise, respectively.

Figure 6: Examples of diagram pairs curated for domain
adaptation. For each row, the first diagram is from the
target domain, and the remaining diagrams are from the
source domain. To generate source domain diagrams,
we translate the target diagram by our diagram generator
with the textual description of the target image.

In previous works, the VLM is trained to produce 950

the solution program given diagram and problem 951

description as shown in Fig. 1. An interesting ob- 952

servation from GeoQA and PGPS9K datasets is 953

that the numerical measurements, such as angles, 954

lengths, and volumes, are not written in the prob- 955

lem description but given as additional conditions, 956

and the numerals are substituted as a variable in 957

the problem description as shown in Fig. 1a. There- 958

fore, the VLM only needs to produce the solution 959

program without having optical character recogni- 960

tion (OCR) from the diagram. The variables are 961

automatically substituted by the actual numbers 962

when the program is executed. Therefore, the vi- 963

sion encoders do not need to learn OCR from the 964

image. 965

However, this approach cannot be generalized to 966

a wider class of problems where the numerals are 967

embedded in the diagram instead of written in the 968

problem description. Some variants of MathVerse, 969

such as the vision-dominant problems, fall into this 970

category as well. To incorporate OCR into the so- 971

lution of the problem, we modify some problem 972

statements in the training set, such that the numeri- 973

cal measurements are only shown in the diagram 974

and not in the statements. We further modify the 975

solution problem so that the solution contains OCR 976

results as a part of the final output. Finally, we 977

unify the language of the solution programs used 978

in GeoQA and PGPS9K by converting GeoQA pro- 979

grams into PGPS9K format. The unification makes 980

the output of VLM consistent since both datasets 981

use different types of formal languages. 982

Fig. 7 shows examples of the modified input 983

pairs and solutions, where the first problem state- 984
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Find the area of the shaded segment.

N0 = 7 , N1 = 300</num>
Sum N1 V0 C360 
ArcSeg_Area V0 N0 V1 Get V1</program>

As shown in the figure, BC is the
diameter of ⊙O, AD ⊥ BC, if ∠D = 36.0, 
then the degree of ∠BAD is ()

N0 = 36.0</num>
Sum N0 V0 C90 
Get V0</program>

Figure 7: Examples of the training data for GeoDANO.
While previous PGPS models require the only to predict
the solution steps and assume the numerical values are
explicitly given, GeoDANO is trained to predict both the
solution steps and the numerical values in the diagram
and text.

ment does not have numerical measurements and985

the OCR results are in the part of the output solu-986

tion program.987

D.2 Training details988

We begin by summarizing the architecture of our989

VLM, a combination of a vision encoder and a990

language model. For the vision encoder, we use991

GeoCLIP-DA, with a two-layer MLP of GeLU ac-992

tivation as the projection layers following LLaVA-993

OneVision (Li et al., 2024a). For the language994

model, we employ LLama-3-8B-Instruct (Dubey995

et al., 2024). For a given diagram and question pair996

in PGPS, we feed the vision encoder with the given997

diagram, and then the output of the encoder is used998

as an input token of LLM through the projection999

layer. The question text is then fed into the LLM,1000

followed by the diagram embedding.1001

With the modified training data, we apply su-1002

pervised fine-tuning on the VLM, i.e., the gradient1003

only flows through the prediction of numerical val-1004

ues and solution steps, not the diagram and text.1005

We train the VLM with AdamW opti-1006

mizer (Loshchilov and Hutter, 2019) and cosine1007

annealing scheduler with warmp up ratio 0.03 and1008

maximum learning rate 1e-5. We use LoRA (Hu1009

et al., 2022) with rank 128. We set the batch size1010

to 16 and train with 5 epochs. We train the VLM1011

with four A100-80GB GPUs for approximately 241012

hours.1013
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