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Abstract
Uplift modeling is crucial for identifying indi-
viduals likely to respond to a treatment in appli-
cations like marketing and customer retention,
but evaluating these models is challenging due
to the inaccessibility of counterfactual outcomes
in real-world settings. In this paper, we identify
a fundamental limitation in existing evaluation
metrics, such as the uplift and Qini curves, which
fail to rank individuals with binary negative out-
comes accurately. This can lead to biased evalua-
tions, where biased models receive higher curve
values than unbiased ones, resulting in subopti-
mal model selection. To address this, we propose
the Principled Uplift Curve (PUC), a novel eval-
uation metric that assigns equal curve values of
individuals with both positive and negative binary
outcomes, offering a more balanced and unbi-
ased assessment. We then derive the Principled
Uplift Loss (PUL) function from the PUC and
integrate it into a new uplift model, the Principled
Treatment and Outcome Network (PTONet), to
reduce bias during uplift model training. Experi-
ments on both simulated and real-world datasets
demonstrate that the PUC provides less biased
evaluations, while PTONet outperforms exist-
ing methods. The source code is available at:
https://github.com/euzmin/PUC.

1. Introduction
Uplift modeling is widely applied in fields such as market-
ing, advertising, and customer retention, where the goal
is to support personalized decision-making by identifying
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Figure 1. A balanced perspective analysis of conventional versus
principled curves in evaluating CATE-based principal strata.

individuals most likely to benefit from a treatment (Yamane
et al., 2018; Devriendt et al., 2020; Belbahri et al., 2021; Liu
et al., 2023). In these scenarios, uplift models estimate the
Conditional Average Treatment Effect (CATE) of a binary
treatment variable T on a binary outcome variable Y for
each individual with covariate X = x. The CATE τ(x)
represents the difference in expected outcomes for individu-
als with covariate X = x assigned to the treatment group
(T = 1) versus the control group (T = 0). Based on CATE
values, individuals are divided into two principal strata: per-
suadables (PE, where τ(x) > 0) and sleeping dogs (SD,
where τ(x) < 0). Each stratum can be further divided into
two subgroups according to the outcome value, as illustrated
in the principal strata analysis in Figure 1. Uplift modeling
aims to rank individuals based on CATE, prioritizing per-
suadables over others, particularly over sleeping dogs. This
indicates the core objective of uplift modeling lies in the
ranking of CATE values rather than their precise estimation.

However, CATE is a counterfactual quantity and cannot be
directly observed in real-world data, posing challenges in its
accurate ranking evaluation and using it to make informed
decisions (Morgan & Winship, 2015; Xiong et al., 2024).
Previous studies have proposed various methods to estimate
the CATE, commonly using uplift and Qini curves as evalua-
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tion metrics to assess model performance (Shalit et al., 2017;
Yamane et al., 2018; Künzel et al., 2019; Shi et al., 2019;
Ke et al., 2021; Zhang et al., 2021; Zhong et al., 2022; Liu
et al., 2023). These curves evaluate uplift models by quan-
tifying the cumulative gain among ranked individuals, but
crucially, only individuals with positive outcomes (Y = 1)
are explicitly included in the calculation of the uplift and
Qini curves. Specifically, these individuals are ranked in
descending order according to their estimated CATE, and
model performance is measured by calculating the cumula-
tive difference between the number of treated (T = 1) and
control (T = 0) individuals within this ranked subset.

In this paper, we argue that conventional uplift and Qini
curves fail to accurately measure the CATE ranking per-
formance of uplift models, largely because they overlook
individuals with negative outcomes in their calculations. As
illustrated in Figure 1, these metrics focus exclusively on
individuals with positive outcomes (PETP and SDCP ) in
the ranked data, while neglecting those with negative out-
comes (PECN and SDTN ). As a result, the distinction
between persuadables and sleeping dogs among individuals
with negative outcomes is overlooked, allowing sleeping
dogs in the treated group with negative outcomes (SDTN )
to be assigned equal or even higher priority than persuad-
ables in the control group with negative outcomes (PECN )
in the model ranking. This imbalance enables biased uplift
models to attain artificially inflated curve values simply by
ranking treated individuals with positive outcomes (TP )
above others, potentially surpassing unbiased models that
more accurately differentiate between these subgroups.

To address this limitation, we propose the Principled Uplift
Curve (PUC), a novel evaluation metric that assigns equal
importance to individuals with both positive and negative
outcomes. As shown in Figure 1, the PUC achieves a bal-
anced assessment by assigning equal value to PETP and
PECN , as well as to SDCP and SDTN . This can then pro-
vide a more accurate evaluation than conventional uplift and
Qini curves. To directly leverage the PUC in model training,
we introduce the Principled Uplift Loss (PUL) function and
incorporate it into our uplift modeling framework, the Prin-
cipled Treatment and Outcome Network (PTONet). Specif-
ically, PTONet employs a three-headed neural network as
its backbone and incorporates the targeted regularizer from
Shi et al. (2019) alongside our proposed principled uplift
loss function to enhance the model’s ability to rank CATEs
effectively. We conduct extensive experiments on simulated
data, real-world Criteo data, and real-world Lazada data
to demonstrate the superior performance of the Principled
Uplift Curve and PTONet.

Related Work. Recent research in uplift modeling includes
meta-learners (Künzel et al., 2019), tree-based methods
(Rzepakowski & Jaroszewicz, 2010; 2012), and deep learn-

ing methods (Shalit et al., 2017; Shi et al., 2019; Devriendt
et al., 2020; Ke et al., 2021; Zhong et al., 2022; Liu et al.,
2023). A notable study by Renaudin & Martin (2021) cau-
tions against using conventional uplift and Qini curves for
evaluating observational data, but suggests applying them
in randomized controlled trials (RCT). However, we demon-
strate that these curves can still produce biased evaluations
even with RCT data. To address this limitation, we propose
a novel evaluation metric to mitigate this concern. The most
relevant to ours is Devriendt et al. (2020), which designs an
uplift helper function to guide the uplift modeling. Building
on this, we propose novel loss functions to demonstrate how
uplift models optimized to maximize conventional curves
can lead to biased estimates. In contrast, our method elim-
inates these biases, providing a more accurate ranking of
CATE. A more detailed discussion of related work is pro-
vided in Appendix A.

2. Preliminaries
2.1. Problem Setup

In uplift modeling, particularly in the context of randomized
controlled trials (RCTs), we observe n units in the dataset
D = {(xi, ti, yi)}ni=1 where xi ∈ X ⊂ Rq represents base-
line covariates (e.g., product features), ti ∈ T = {0, 1}
denotes binary treatment assignment (e.g., whether an ad-
vertisement is delivered), and yi ∈ Y = {0, 1} indicates
the binary outcome (e.g., whether the product is purchased).
Here, q is the dimension of covariates.

Following the Neyman-Rubin potential outcome framework
(Rubin, 1974; Rosenbaum & Rubin, 1983), we denote Yi(t)
as the outcome for unit i under treatment T = t. The
individual treatment effect (ITE) is defined as τi = Yi(1)−
Yi(0). Since only one of the potential outcomes, Yi(1) and
Yi(0), can be observed, the ITE is unobservable. Instead,
uplift models estimate the Conditional Average Treatment
Effect (CATE), defined as: τ(x) = E[Yi(1)− Yi(0) | Xi =
x]. We adopt standard causal assumptions (Imbens & Rubin,
2015) to ensure the identifiability of the CATE. Based on the
CATE value, individuals can be classified into four strata:

- Persuadable (τ(x) > 0) : Y (1) = 1 and Y (0) = 0;

- Sure thing (τ(x) = 0): Y (1) = 1 and Y (0) = 1;

- Lost cause (τ(x) = 0) : Y (1) = 0 and Y (0) = 0;

- Sleeping dog (τ(x) < 0) : Y (0) = 1 and Y (1) = 0.

We denote the persuadable, sure thing, lost cause, and sleep-
ing dog strata as PE, ST , LC, and SD, respectively. As
shown in Figure 1, uplift modeling primarily focuses on the
PE and SD strata, as these groups have non-zero CATE val-
ues. Superscripts TP , TN , CP , and CN denote treatment
(T = 1) and control (T = 0) groups with positive (Y = 1)
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or negative (Y = 0) outcomes. For example, PETP rep-
resents the persuadable individuals in the treatment group
(T = 1) with positive outcomes (Y = 1).

After estimating the CATE for all individuals, we rank them
in descending order. An unbiased uplift model should rank
persuadable individuals above others, especially ahead of
sleeping dogs. Optimizing and evaluating this CATE rank-
ing is the primary objective of uplift modeling.

2.2. Definitions of Uplift and Qini Curves

Since the true CATE values are unknown in real-world
datasets, the evaluation of uplift models depends on user-
provided ranking rules. These rules can be formulated by
CATE estimates, hard-coded heuristics, or other methods
(Yadlowsky et al., 2024). We define the ranking rule as:

Definition 2.1. A ranking rule is defined by a score function
S : X×T ×Y → R, where samples i = 1, . . . , n are ranked
in descending order of S(Di). A higher value of S(Di)
indicates higher priority for treatment. Let i(j) denote the
sample corresponding to rank j, and π(k, S) = {i(j)}kj=1

represent the top k individuals based on ranking score S.

The uplift and Qini curves are commonly used to evaluate
the individual rankings π of uplift models. During evalua-
tion, three key ranking rules are considered:

- Model ranking rule: SModel(Di) = τ̂(xi), based on the
predicted CATE from the uplift model τ̂(xi);

- Random ranking rule: SRandom(Di) = Random(Di),
obtained by randomly permuting the dataset D;

- Max ranking rule: SMax(Di) = I(yi = 1)(I(ti = 1) −
I(ti = 0)), which assigns highest priority to individuals
who experienced a positive outcome under treatment and
penalizes those with positive outcomes under control.

Given the ranking rules, we define distinct value indices of
the uplift and Qini curves as follows:

I = {i | S(Di+1) ̸= S(Di), i ∈ π(n− 1, S)} ∪ {0, n}. (1)

The inclusion of {0, n} ensures full coverage of the curve’s
endpoints. The set I identifies the positions where the uplift
score changes (breakpoints), enabling efficient computation
of the curve’s cumulative values. We denote I(k) as the
index of the k-th district value.

Following Devriendt et al. (2020), we define the cumulative
number of individuals with positive outcomes in treatment
and control groups based on the ranking rule S as follows:

RT
S (D, k) =

∑I(k)

i=I(1)
I(ti = 1)I(yi = 1),

RC
S (D, k) =

∑I(k)

i=I(1)
I(ti = 0)I(yi = 1).

(2)

Based on this definition, the value function for the com-
monly used Separate Uplift Curve (SUC) (Diemert Eustache
et al., 2018) is defined as:

VSUC(k, S) =
RT

S (D, k)

|T |
− RC

S (D, k)

|C|
, (3)

where the notations |T | and |C| represent the total number of
individuals in the treatment and control groups, respectively.

Without loss of generality, we use SUC as the represen-
tative of the conventional curve. Other commonly used
metrics include the Separate Qini Curve (SQC) (Radcliffe,
2007; Radcliffe & Surry, 2011), Joint Uplift Curve (JUC)
(Gutierrez & Gérardy, 2017), and Joint Qini Curve (JQC)
(Devriendt et al., 2020), The specific formulations of these
metrics are provided in Appendix B.

To quantify the performance of uplift models, we further
define the Area metric as follows:

Area(S) =
∑|I|−1

k=1
(I(k+1)−I(k))

2 (V (k, S) + V (k + 1, S)), (4)

where |I| is the total number of indexes in I . This Area
metric represents the integral of the curve V (k, S) over
the intervals I(k). Then, we employ the Area Under the
Uplift or Qini Curve (AUUQC) (Gutierrez & Gérardy, 2017;
Zhang et al., 2021), defined as follows:

AUUQC(S) =
Area(SModel)−Area(SRandom)

Area(SMax)−Area(SRandom)
. (5)

AUUQC represents the ratio of the area enclosed by the
curves of the Model ranking rule and the Random ranking
rule to the area enclosed by the curves of the Max ranking
rule and the Random ranking rule.

3. Can Uplift and Qini Curves Truly Assess
Causal Effect Rankings?

Conventional uplift and Qini curves are commonly applied
in uplift model evaluation because they approximate the true
Average Treatment Effect (ATE) when the CATE ranking
is accurate (Yadlowsky et al., 2024). In the absence of true
ATE, the magnitude of these curves is commonly used as a
proxy for the true ATE, with higher curve values interpreted
as indicative of better CATE ranking performance.

Despite their widespread use, a key question arises: Do
higher values on conventional uplift and Qini curves truly re-
flect more accurate CATE rankings? To explore this, we em-
ploy simulated data with known individual treatment effects
to compare rankings produced by SModel, SRandom, and
SMax, evaluating these rankings with conventional curves.

As shown in Figure 2, the worst and best cases emerge when
ranking PECN and SDTN using SMax from SUC, where
these two strata are assigned equal priority and thus appear
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Table 1. The contribution of different individuals to the value functions of various uplift and Qini curves. Columns T and C represent the
total contributions from the treatment and control groups, respectively. The contribution of PETP exceeds that of PECN , and SDTN

contributes more than SDCP . Additionally, the T column has a greater impact than the C column.

Curve PETP PECN STTP STCP LCTN LCCN SDTN SDCP T C

SUC 1
|T | 0 1

|T | − 1
|C| 0 0 0 − 1

|C|
2
|T | − 2

|C|
PUC 1 1 1 −1 −1 1 -1 -1 0 0

Worst ranking case 2.𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃1. 𝑆𝑆𝑇𝑇𝑇𝑇𝑃𝑃 5. 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶
6.𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶

3. 𝑆𝑆𝑆𝑆𝑇𝑇𝐶𝐶

4. 𝐿𝐿𝐿𝐿𝑇𝑇𝐶𝐶 7. 𝑆𝑆𝑆𝑆𝐶𝐶𝑃𝑃8. 𝑆𝑆𝑇𝑇𝐶𝐶𝑃𝑃

Best ranking case 1.𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃2. 𝑆𝑆𝑇𝑇𝑇𝑇𝑃𝑃 5. 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶
6. 𝑆𝑆𝑆𝑆𝑇𝑇𝐶𝐶

3.𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶
4. 𝐿𝐿𝐿𝐿𝑇𝑇𝐶𝐶 8. 𝑆𝑆𝑆𝑆𝐶𝐶𝑃𝑃7. 𝑆𝑆𝑇𝑇𝐶𝐶𝑃𝑃
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(index represents the ranking order)

Max Curve 
Evaluation
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(a) Regular curve value
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Figure 2. The worst and best cases for individual ranking using
SMax in SUC, which arise from the randomness in ranking equally
prioritized individuals and reflect the lowest and highest consis-
tency with the true CATE ranking. The axes show individual index
and curve values. The blue, yellow, and green lines represent
the Model curve (based on SModel), the Random curve (based on
SRandom), and the Max curve (based on SMax).

in random order. The ranking most consistent with the true
CATE, which represents the best case, is achieved when all
PECN individuals are placed ahead of SDTN , whereas the
least consistent case, representing the worst case, occurs
when this order is reversed. Results show that even in the
best case, the conventional curves fail to achieve the correct
ranking, and in the worst case, they may rank sleeping dogs
ahead of persuadable individuals.

To further validate the phenomenon illustrated in Figure 2,
we conduct a case study using two uplift models. Table 2
presents the estimated CATE values for eight individuals,
labeled D1 through D8, each drawn from a different stratum.
Here, τ̂ (1) serves as an unbiased estimator, whereas τ̂ (2) is
biased–it captures incorrect causal effects but coincidentally
aligns with the ranking rule SMax of conventional curves.
Table 3 displays the AUUQC values of the conventional
curves (SUC, SQC, JUC and JQC) and the principled uplift
curve (PUC, which will be formally introduced in the next

section). The results show that the AUUQC values for the
biased model, τ̂ (2), surpass those of the unbiased model,
τ̂ (1), across all conventional curves.1

To understand why the conventional curves fail, we quan-
tify the contribution of individuals to each curve’s value
function. For example, in the SUC value function, the con-
tribution of a treatment group individual i with a positive
outcome is dVSUC(k,S)

di = 1
|T | × 1− 1

|C| × 0 = 1
|T | , and the

total treatment group contribution and control groups are
2
|T | and − 2

|C| . A similar approach applies to SQC, JUC,
JQC and PUC.2 As shown in Table 1, in the SUC row, the

Table 2. Case study of two uplift models, τ̂ (1) and τ̂ (2), with their
estimated CATE values for eight individuals, labeled D1 to D8,
each drawn from different subgroups.

Uplift
Model

D1 D2 D3 D4 D5 D6 D7 D8

PETP PECN STTP STCP LCTN LCCN SDTN SDCP

τ̂ (1) 1 1 0 0 0 0 -1 -1
τ̂ (2) 1 0 1 -1 0 0 0 -1

Table 3. AUUQC values for different curves across eight samples
ranked by two uplift models. Bold indicates optimal performance,
while underlined values denote suboptimal performance. The
symbol (↑) indicates that higher AUUQC values are desirable.

Uplift Model SUC (↑) SQC (↑) JUC (↑) JQC (↑) PUC (↑)

τ̂ (1) 0.500 0.500 0.667 0.500 0.613
τ̂ (2) 1.000 1.000 0.833 1.000 0.484

TP individuals contribute more to the conventional curves
than others, while CP individuals contribute least. This
focus on individuals with positive outcomes undervalues the
PECN relative to PETP while overvaluing SDTN relative
to SDCP , ultimately making the value of PECN compara-
ble to that of SDTN . This imbalance even leads to a higher
overall contribution from the individuals in the treatment
group compared to those in the control group. Thus, an up-
lift model that maximizes conventional curves will rank TP
individuals at the top, CP individuals at the bottom, and all
other individuals in between. This ranking strategy can lead

1For detailed calculation process of the conventional and prin-
cipled curves, please refer to Appendix C.

2For the details, please refer to Appendix D.
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to incorrect rankings, such as placing PECN individuals
below SDTN individuals.

This leads to an important conclusion: an incorrect ranking
can cause the AUUQC of conventional curves to exceed that
of a correct ranking. In some cases, it may even produce the
maximum AUUC value. Beyond the case studies, this con-
clusion is further supported by analyzing the conventional
curve value functions. For sufficiently large RCT sample
sizes, the shared components ∆(D, k) of conventional curve
value functions can be expressed as:

∆(D, k) = RT
S (D, k)−RC

S (D, k)

=

I(k)∑
i=I(1)

P(ti = 1, yi = 1)− P(ti = 0, yi = 1).
(6)

Although this difference in probabilities is related to the
true ATE, it is important to note that in the context of CATE
ranking, a large value of

∑I(k)
i=I(1) P(ti = 1, yi = 1) leads to

an increase in the conventional curve value. Consequently,
ranking STTP and PETP ahead of other individuals cre-
ates an incorrect but inflated

∑I(k)
i=I(1) P(ti = 1, yi = 1)

in the top I(k) individuals, thus exaggerating the conven-
tional curve value. Similarly, ranking all treatment group
individuals above control group individuals also inflates the
conventional curve value. This inflation effect is further
amplified when calculating the AUUQC.

This reveals a fundamental limitation of conventional curves:
they are susceptible to manipulation by suboptimal ranking
strategies, inflating the performance of biased uplift models.
Although the inclusion of denominators such as |T | and |C|
in the conventional curve value function partially mitigates
this issue, Table 1 shows that it remains insufficient. This
explains why the biased model τ̂ (2) shows a higher AUUQC
than the unbiased model τ̂ (1) in Tables 2 and 3. In τ̂ (2), the
higher ranking of STTP and PETP increases the treatment
group’s contribution, inflating the conventional curve value.

4. Principled Uplift Curve and PTONet
Based on the above analysis, we conclude that conventional
uplift and Qini curves primarily focus on individuals with
positive outcomes, while undervaluing the potential value
of individuals with negative outcomes in both the treatment
and control groups. The two terms can be formulated as:

NRT
S (D, k) =

∑I(k)

i=I(1)
I(ti = 1)I(yi = 0),

NRC
S (D, k) =

∑I(k)

i=I(1)
I(ti = 0)I(yi = 0).

(7)

This undervaluation leads to an imbalance in the contribu-
tions of individuals from different strata to the curve values,
resulting in biased evaluations of existing metrics. For in-
stance, the value of PETP exceeds that of PECN .

Worst ranking case 1. 𝑆𝑆𝑇𝑇𝑇𝑇𝑃𝑃
2. 𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶

3.𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃
4.𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶

5. 𝑆𝑆𝑆𝑆𝑇𝑇𝐶𝐶

6. 𝑆𝑆𝑆𝑆𝐶𝐶𝑃𝑃
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Figure 3. The worst case and best case for individual ranking of
SMax in PUC. The meaning of the coordinates, legends and table
headers is similar to that in Figure 2.

To address this imbalance, we propose the Principled Uplift
Curve (PUC), which assigns equal curve values to individ-
uals with both positive and negative outcomes, ensuring a
more balanced evaluation. The ranking rule that maximizing
PUC value is defined as follows:

SMax(Di) = I(yi = 1)(I(ti = 1)− I(ti = 0))

+ I(yi = 0)(I(ti = 0)− I(ti = 1)).
(8)

This ranking rule achieves optimality when all samples be-
longing to the TP and CN groups are ranked ahead of
those belonging to the TN and CP groups.

Correspondingly, the value function of the principled uplift
curve is formulated as follows3:

VPUC(k, S) = RT
S (D, k) +NRC

S (D, k)

−RC
S (D, k)−NRT

S (D, k).
(9)

The intuition behind this formulation is that persuadable
individuals are primarily found in the TP and CN groups,
whereas sleeping dogs are mostly in the TN and CP . Con-
sequently, TP and CN are ranked above TN and CP , with
both pairs having equal priority.

The above ranking rule and value function ensure accurate
evaluation of uplift models by equitably valuing individuals
with positive and negative outcomes.

Proposition 4.1 (Properties of PUC). The principled uplift
curve exhibits the following properties: 1) It differentiates

3We explore the relationship of PUC and conventional curves
in Appendix F and detail eight PUC variants in Appendix G.
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Figure 4. The architecture of PTONet. Circles represent random
variables; trapezoids denote functions; square rectangles depict
function outputs; and rounded rectangles denote losses.

persuadable individuals from sleeping dogs. 2) Within each
of these two strata, individuals from the treatment and con-
trol groups contribute equally to the curve value.

For proof of Proposition 4.1, please see Appendix E.

We can better understand Proposition 4.1 by referring to
the earlier examples. As demonstrated in Table 1, although
the PUC does not fully distinguish among all four strata,
it effectively separates the persuadable and sleeping dog
groups by incorporating the value function for individuals
with negative outcomes. Furthermore, it ensures consistent
value assignment within the treatment and control groups
across these strata. As shown in Table 3, the PUC assigns
a higher AUUQC score to the unbiased model τ̂ (1) than
to the biased model τ̂ (2), demonstrating its ability to more
accurately evaluate uplift models. Furthermore, a compar-
ison between Figure 2 and Figure 3 reveals that the PUC
consistently ranks persuadable individuals above sleeping
dogs, even under the worst-case scenario.

Next, we propose a helper function to guide the uplift mod-
eling. Based on Proposition 4.1, the principled uplift curve
suggests that an effective uplift model should satisfy the
following principles: 1) rank persuadable individuals above
sleeping dogs, and 2) minimize treatment assignment bias.

To address the first principle, inspired by SMax in the PUC,
we design a helper function as follows4:

g(ti, yi) = I(yi = ti), (10)

which assigns a value of 1 to samples in the TP and CN
groups, and a value of 0 to those in the TN and CP groups.

Using g(ti, yi) as a proxy label, we can train a binary classi-
fier to regularize the estimated causal effect τ̂(xi) produced

4To adapt the design of the BCE loss, we set g(ti, yi) = 0
instead of g(ti, yi) = −1 for TN and CP individuals.

by uplift models. This encourages the model to assign
higher values of τ̂(x) to samples in the TP and CN groups,
and lower values to those in the TN and CP groups.

We propose the Principled Uplift Loss (PUL) function to
implement this idea, defined as follows:

LPU (D) =
1

n

∑n

i=1
BCE(g(ti, yi), σ(xi)). (11)

Here, BCE(·, ·) is a binary cross entropy loss function, and
σ(x) = 1

1+exp(−τ̂(x)) is the sigmoid function of the esti-
mated CATE τ̂(x). The PUL function guides the model
to assign higher CATE values to persuadable individuals
(comprising PETP and PECN ) than to sleeping dog indi-
viduals (comprising SDTN and SDCP ), thereby ranking
persuadable individuals ahead of sleeping dogs.

To address the second principle, we design the treatment
and outcome loss function LTO, which simultaneously han-
dles treatment and outcome prediction as well as treatment
assignment bias. It is formulated as follows:

LTO(Di) = LT (xi, ti) + LO(xi, ti, yi)

+ LB(xi, ti) + αLTR(xi, ti, yi).
(12)

The treatment loss function, LT (xi, ti) = BCE(ti, hT (xi

, ti)), aims to reconstruct the treatment assignment, preserv-
ing treatment information even in high-dimensional covari-
ate spaces. The outcome loss function, LO(xi, ti, yi) =
BCE(yi, hY (xi, ti)), models the outcome given treatment
and covariates. The balance loss function, LB(xi, ti) =
BCE(ti, e(xi)), estimates the propensity score. Finally,
the targeted regularizer is defined as LTR(xi, ti, yi) =
BCE(yi, hY (xi, ti)+ ϵ( ti

e(xi)
− 1−ti

1−e(xi)
)), which addresses

treatment assignment bias and enhances model scalability.5

Here, ϵ is a learnable parameter, and α is a hyperparameter.

Building upon the loss LTO, we design a three-headed
learner named Principled Treatment and Outcome Network
(PTONet). The architecture of PTONet is presented in Fig-
ure 4. The final loss of the PTONet is defined as:

LPTO(D) = LTO(D) + βLPU (D), (13)

where β is a hyperparameter.

We emphasize that the core contribution of PTONet lies in
the introduction of the PUL function. PTONet is specifically
designed as an illustrative uplift model tailored to the PUL
function LPU , with its backbone based on a variant of Drag-
onNet (Shi et al., 2019). In particular, we adapt DragonNet
by replacing its original two outcome heads with a single
head for treatment reconstruction and another for outcome
prediction. Detailed descriptions of each module in PTONet
are provided in Table 6 and Appendices H and I.

5For a detailed discussion of treatment assignment bias and
targeted regularizer, please refer to Appendix H and Section 3 in
Shi et al. (2019).
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Table 4. Performance comparison (mean±std) on synthetic data. SUC, SQC, JUC, JQC, and PUC denote their AUUQC values. The
symbol (↓) indicates lower is better; (↑) indicates higher is better. The ”TRUE” row represents the results of the true CATE. Compared to
conventional curves, PUC values more closely approximate AUTGC. Moreover, models guided by PUC, including S-Learner (PU) and
PTONet, consistently demonstrate superior performance on both PUC and AUTGC.

Uplift Model Unbalanced Conventional Evaluation Metric Balanced Evaluation Metric

PEHE (↓) SUC (↑) SQC (↑) JUC (↑) JQC (↑) PUC (↑) AUTGC (↑)

TRUE 0.000 0.835 0.586 0.779 0.581 1.000 1.000

T-Learner 1.230±0.17 0.502±0.31 0.352±0.22 0.506±0.29 0.356±0.21 0.614±0.37 0.704±0.28

TARNet 1.293±0.18 0.343±0.30 0.241±0.21 0.344±0.30 0.243±0.21 0.431±0.35 0.565±0.27

CFRNet 1.246±0.30 0.320±0.38 0.224±0.27 0.301±0.36 0.222±0.26 0.384±0.45 0.528±0.35

DragonNet 1.055±0.85 0.570±0.25 0.519±0.18 0.570±0.25 0.519±0.18 0.636±0.30 0.739±0.23

EUEN 1.117±0.04 0.407±0.35 0.285±0.24 0.381±0.36 0.269±0.25 0.472±0.43 0.603±0.33

DESCN 1.251±0.23 0.491±0.44 0.404±0.31 0.494±0.43 0.404±0.31 0.418±0.54 0.569±0.41

EFIN 1.868±0.28 0.463±0.29 0.414±0.20 0.428±0.27 0.402±0.20 0.448±0.34 0.648±0.26

S-Learner 1.209±0.25 0.495±0.36 0.347±0.25 0.476±0.34 0.345±0.25 0.609±0.42 0.700±0.32

S-Learner (U) 1.009±0.25 0.667±0.31 0.468±0.22 0.631±0.29 0.467±0.21 0.800±0.37 0.847±0.28

S-Learner (PS) 1.019±0.23 0.690±0.29 0.484±0.20 0.654±0.27 0.484±0.20 0.828±0.34 0.868±0.26

S-Learner (PU) 0.879±0.16 0.786±0.16 0.552±0.11 0.738±0.15 0.548±0.11 0.943±0.19 0.957±0.15

PTONet 0.883±0.13 0.780±0.14 0.547±0.10 0.746±0.13 0.546±0.10 0.948±0.15 0.961±0.11

5. Experiments
We conduct experiments to address the following three key
research questions:

- RQ1) Does the principled uplift curve yield results closer
to the true CATE than other metrics?

- RQ2) Does the principled uplift loss function effectively
improve the CATE ranking ability of uplift models?

- RQ3) How does the performance of PTONet compare to
existing methods?

5.1. Experimental Setup

We compare the performance of uplift models and their
evaluation curves using a synthetic dataset and a real-world
Criteo dataset (Diemert Eustache et al., 2018; Diemert et al.,
2021). In Appendix I, we present experimental results on
the Lazada dataset (Zhong et al., 2022) to validate the scala-
bility of the proposed method on higher-dimensional data.
For all datasets, we conducted 50 performance comparison
experiments, changing the random seed from 0 to 49.

Dataset Description. The synthetic dataset contains n =
10,000 units with q = 10 different covariates. The real-
world Criteo dataset (Diemert Eustache et al., 2018; Diemert
et al., 2021), open sourced by Criteo AI Labs, is utilized
for uplift modeling in a large-scale advertising scenario. It
includes 25,309,483 instances with 11 continuous features,
a binary treatment, and 2 candidate outcomes (visits and
conversions). For our analysis, we specifically consider the
visits variable as the outcome. We split the two datasets into

SUC

SQC

JUC

JQC

PUC

0.2
0.4

0.6
0.8

1.0

S-Learner
T-Learner
TARNet
CFRNet
DragonNet
EUEN
DESCN
EFIN

Kendall correlation

Figure 5. The Kendall (higher values are desirable) between AU-
UQC and AUTGC sequences of uplift models on synthetic data,
evaluated for SUC, SQC, JUC, JQC, and PUC. PUC achieves the
highest Kendall, followed by SUC and JUC.

training, validation, and test sets in an 8/1/1 ratio.

Evaluation Metrics. In addition to the uplift and Qini
curves discussed in Table 7, we introduce three metrics for
the model evaluation and curve evaluation.

The first is the expected Precision in Estimation of Hetero-
geneous Effect (PEHE, (Shalit et al., 2017)), defined as:

PEHE = E[(τ̂(X)− τ(X))2]. (14)

This metric does not account for prioritization, making it an
unbalanced conventional evaluation metric.

The second metric is the Area Under True Gain Curve
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Table 5. Performance comparison (mean±std of AUUQC) on Criteo data. PTONet achieves superior performance on PUC.

Uplift Model Unbalanced Conventional Evaluation Metric Balanced Metric

SUC (↑) SQC (↑) JUC (↑) JQC (↑) PUC (↑)

S-Learner 0.508±0.01 0.105±0.01 0.033±0.01 0.085±0.01 0.141±0.02

T-Learner 0.356±0.32 0.073±0.07 0.022±0.02 0.057±0.06 0.085±0.11

TARNet 0.512±0.04 0.103±0.01 0.036±0.01 0.091±0.01 0.104±0.05

CFRNet 0.276±0.29 0.057±0.06 0.034±0.02 0.044±0.05 0.105±0.11

DragonNet 0.518±0.02 0.107±0.01 0.034±0.01 0.087±0.01 0.137±0.05

EUEN 0.509±0.01 0.105±0.01 0.033±0.01 0.085±0.01 0.186±0.01

DESCN 0.556±0.06 0.09±0.04 0.029±0.01 0.076±0.02 0.072±0.05

EFIN 0.504±0.05 0.104±0.01 0.033±0.05 0.084±0.01 0.127±0.04

PTONet 0.502±0.01 0.103±0.01 0.034±0.01 0.086±0.01 0.191±0.01

Table 6. Ablation studies (mean±std) of PTONet modules on synthetic data. All modules enhance PTONet’s performance.

Uplift Model Unbalanced Conventional Evaluation Metric Balanced Evaluation Metric

PEHE (↓) SUC (↑) SQC (↑) JUC (↑) JQC (↑) PUC (↑) AUTGC (↑)

TRUE 0.000 0.835 0.586 0.779 0.581 1.000 1.000

PTONet 0.883±0.13 0.780±0.14 0.547±0.10 0.746±0.13 0.546±0.09 0.948±0.15 0.961±0.11

w/o LPU 1.138±0.36 0.524±0.38 0.368±0.27 0.532±0.34 0.377±0.25 0.659±0.45 0.739±0.35

w/o LTR 0.846±0.15 0.760±0.20 0.533±0.14 0.737±0.17 0.533±0.13 0.936±0.22 0.951±0.17

w/o LB 1.059±0.34 0.533±0.38 0.374±0.26 0.545±0.36 0.380±0.26 0.678±0.46 0.753±0.35

w/o LT 1.012±0.33 0.604±0.35 0.424±0.25 0.601±0.32 0.429±0.24 0.756±0.41 0.813±0.31

(AUTGC), which is formulated as follows:

AUTGC(S) =
Area (SModel )−Area (SRandom )

Arca (STrue )−Arca (SRandom )
, (15)

where STrue(x) = τ(x) represents the true CATE ranking.

To assess the alignment between curves and true CATE
rankings, the Kendall correlation (Kendall, 1938) between
the AUUQC values of m models and their AUTGC values
is calculated as follows:

Kendall =
2

m(m− 1)

∑m

i=1

∑i−1

j=1
I(AUTGCi

−AUTGCj) · I(AUUQCi −AUUQCj).

(16)

A higher Kendall value indicates a closer alignment of the
uplift and Qini curve with the true CATE ranking.

Baseline Implementations. We evaluate eight uplift models
as baselines, including S-Learner (Künzel et al., 2019), T-
Learner (Künzel et al., 2019), TARNet (Shalit et al., 2017),
CFRNet (Shalit et al., 2017), DragonNet (Shi et al., 2019),
EUEN (Ke et al., 2021), DESCN (Zhong et al., 2022) and
EFIN (Liu et al., 2023). All baselines follow the same
parameter tuning process, please see Appendix I for details.

5.2. Experimental Results

Comparing Evaluation Metrics through Simulation. To
address RQ1, we assess uplift and Qini curve effectiveness

by evaluating their correlation with AUTGC.

Since AUTGC is unobservable in real-world settings, we
use synthetic data. We compute the AUUQC and AUTGC
metrics for uplift models trained on synthetic data over
m = 50 epochs and quantify the rank correlation between
these sequences using the Kendall coefficient.

As shown in Figure 5, all AUUQC sequences positively
correlate with AUTGC. However, except for the PUC, other
metrics fail to fully align with AUTGC trends (Kendall <
1), indicating that high values of conventional curves do
not reliably reflect strong CATE ranking performance. In
contrast, the PUC achieves perfect alignment with AUTGC
(Kendall = 1), making it a reliable metric for evaluating
CATE ranking in uplift models.

In addition to the results shown in Figure 5, all subsequent
experiments based on synthetic data (including Tables 4 to 6)
further validate the alignment between PUC and AUTGC.
Notably, some models that perform well on conventional
metrics but fail to achieve comparable results on AUTGC.
In contrast, models that perform well on the PUC metric
consistently exhibit strong performance on AUTGC as well.

Comparing Loss Functions through Simulation. To ad-
dress RQ2, we first verify that uplift models guided by the
PUC outperform conventional curves and other metrics. Fol-
lowing Devriendt et al. (2020), we establish an uplift loss
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function LU to prioritize individuals in the treatment group
with positive outcomes over others, and a propensity score
loss function LPS to guide the CATE for treatment group
individuals exceeds that of control group individuals. The
loss functions are formulated as follows:

LU (Di) = BCE(I(ti = 1)I(yi = 1), σ(xi)),

LPS(Di) = BCE(I(ti = 1), σ(xi)).
(17)

For a fair performance comparison, we augment the S-
Learner with LU , LPS , and LPU as S-Learner (U), S-
Learner (PS), and S-Learner (PU).

As shown in Table 4, although the S-Learner (PU) does not
outperform the S-Learner (U) in terms of AUUQC for SUC,
SQC, and JQC, it achieves the highest scores for both AU-
UQC of PUC and AUTGC. Furthermore, when compared
to other uplift models, introducing the PUL function solely
into the S-Learner allows it to outperform all models ex-
cept PTONet on PUC and AUTGC. These findings suggest
that models guided by the PUC metric produce results that
are more robust and better aligned with the ground truth.
The experimental results in Table 11 of Appendix I provide
further empirical evidence supporting this conclusion.

Additionally, we report the best performance of each model
across multiple experiment rounds, as shown in Table 12 in
Appendix I. The uplift models optimized with LU and LPS

outperform the TRUE row in SUC, SQC, JUC, and JQC
but underperform in PUC and AUTGC. This confirms that
maximizing conventional curve values can introduce bias,
leading to an inflated conventional curve value in a biased
model. In contrast, our balanced evaluation metric, PUC,
remains unaffected by this issue, even when the model is
directly trained with the PUL function LPU .

Comparing the Performance of Uplift Models. To address
RQ3, we report the performance comparison results on the
synthetic dataset in Table 4, the Criteo dataset in Table 5
and the Lazada dataset in Table 13.

The results on synthetic data show that PTONet outper-
forms other uplift models on PEHE, AUUQC of PUC, and
AUTGC. For the real-world Criteo and Lazada dataset, de-
spite the absence of the true CATE, the results indicate that
PTONet outperforms others on the AUUQC of PUC.

To investigate the function of each module in PTONet, we
conduct ablation studies as summarized in Table 6. The
results show that LPU , LT , and LB significantly improve
PTONet’s performance on both PUC and AUTGC. Since
LTR is specifically designed to address implicit treatment
assignment bias, its limited effect on RCT data is expected.
Among all components, the PUL objective function remains
the most critical factor driving PTONet’s effectiveness.

6. Conclusion
This paper reveals the limitations of previous uplift and Qini
curves in evaluating uplift models, showing that they are
vulnerable to manipulation by suboptimal ranking strategies,
which can inflate the performance of biased models. We
propose the Principled Uplift Curve (PUC), a new metric
that balances the value of individuals with both positive and
negative outcomes, providing a more accurate evaluation
of uplift models. We also propose PTONet, a PUC-guided
uplift model that directly optimizes the uplift model by max-
imizing the PUC value. Extensive experiments demonstrate
the effectiveness of the PUC for uplift model evaluation and
of the PTONet for uplift model optimization.
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A. Detailed Related Work Discussion
Uplift Modeling Methods. Uplift modeling is widely applied in fields such as marketing, advertising, and customer
retention (Xu et al., 2023; Zheng et al., 2024; Zhao et al., 2024a;b; Wu et al., 2024; Wang et al., 2024; Sun et al., 2025;
Wu et al., 2025). Uplift modeling methods target persuadable individuals while minimizing unnecessary interventions for
others, mainly sleeping dog customers (Gutierrez & Gérardy, 2017; Zhang et al., 2021). Current research in uplift modeling
primarily encompasses two distinct approaches: One branch focuses on minimizing the estimation error of causal effects.
It includes meta-learners (Künzel et al., 2019), which employ existing machine learning techniques to model individuals’
responses; tree-based methods (Radcliffe, 2007; Rzepakowski & Jaroszewicz, 2010; Radcliffe & Surry, 2011; Rzepakowski
& Jaroszewicz, 2012), which deploy specialized tree or forest structures, employing a variety of metrics for splitting criteria;
and deep methods (Shalit et al., 2017; Shi et al., 2019; Devriendt et al., 2020; Ke et al., 2021; Zhong et al., 2022; Liu et al.,
2023), which leverage the strengths of neural networks to incorporate more intricate and adaptable architectures in modeling
the response to treatment, aiming for improved accuracy in CATE estimation.

The second branch of approaches seeks to directly maximize the uplift and Qini curve while concurrently regressing on
observed outcomes. It includes methods that set the objective function based on maximizing the Qini coefficient directly
(Belbahri et al., 2021; Betlei et al., 2021), or employing learning-to-rank techniques with constraints aimed at maximizing
the Qini measure (Devriendt et al., 2020). The most relevant to our methodology is Devriendt et al. (2020), which designs an
uplift helper function to guide the uplift modeling. Inspired by this work, we design distinct helper functions to demonstrate
that helper functions that maximize the uplift and Qini curve can lead to biased estimates. Contrarily, our method avoids
such biases, offering a more accurate ranking of CATE.

Evaluation Metrics for Uplift Model. In evaluating uplift models on real-world data, the uplift and Qini curves are
commonly employed, categorized as separate uplift curve (Rzepakowski & Jaroszewicz, 2010; 2012), separate Qini curve
(Radcliffe, 2007; Radcliffe & Surry, 2011), joint uplift curve (Gutierrez & Gérardy, 2017), and joint Qini curve (Radcliffe,
2007; Devriendt et al., 2020). A notable study is Renaudin & Martin (2021), which discourages using uplift/Qini curves for
observational data evaluation but suggests their applicability for randomized controlled trials (RCT) data. However, we
highlight that conventional uplift/Qini curves may yield biased evaluations even when employing RCT data. The curve most
similar to ours is the ROCini presented in Verbeken et al. (2022). However, it lacks theoretical foundation and performs
poorly in experiments (please refer to Table 9).

In addition, the recently proposed TOC/AUTOC metric by Yadlowsky et al. (2024) has attracted significant attention in the
community, as it may help alleviate some of the known limitations associated with conventional uplift modeling metrics.
TOC/AUTOC can be interpreted as an extension of the conventional uplift and Qini curves by introducing a threshold u and
applying a logarithmic transformation. Specifically, this metric places greater emphasis on the top-ranked individuals. As
illustrated in Figure 2 of Yadlowsky et al. (2024), when only the top 10% of the population is considered, the cumulative
gain measured by AUTOC exceeds that of the Qini curve. In other words, this approach further amplifies the inherent
imbalance issue in conventional uplift and Qini metrics.

Consequently, we propose a novel evaluation metric to mitigate above concerns.

B. Definitions of Uplift and Qini Curves

Table 7. Definitions of commonly applied uplift and Qini curves for uplift model evaluation and selection. The notations |T | and |C|
represent the total number of individuals in the treatment and control groups, respectively.

Curve Type Formula (Value Function)

Separate Uplift Curve (SUC) VSUC(k, S) =
RT

S (D,k)
|T | − RC

S (D,k)
|C|

Separate Qini Curve (SQC) VSQC(k, S) = RT
S (D, k)−RC

S (D, k) |T |
|C|

Joint Uplift Curve (JUC) VJUC(k, S) =
(

RT
S (D,k)

NT
S (D,k)

− RC
S (D,k)

NC
S (D,k)

)
·
(
NT

S (D, k) +NC
S (D, k)

)
Joint Qini Curve (JQC) VJQC(k, S) = RT

S (D, k)−RC
S (D, k)

NT
S (D,k)

NC
S (D,k)

The uplift and Qini curves are employed to evaluate the CATE rankings of uplift models (Gutierrez & Gérardy, 2017; Zhang
et al., 2021). In addition to the metrics defined in the main text, we define the cumulative number of treatment and control
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group individuals in the RCT data D as follows:

NT
S (D, k) =

I(k)∑
i=I(1)

I(ti = 1),

NC
S (D, k) =

I(k)∑
i=I(1)

I(ti = 0),

(18)

where I(·) is an indicator function.

Based on the above definition, we present the value functions for four commonly used implementations of uplift and Qini
curves: Separate Uplift Curve (SUC) (Rzepakowski & Jaroszewicz, 2010; 2012), Separate Qini Curve (SQC) (Radcliffe,
2007; Radcliffe & Surry, 2011), Joint Uplift Curve (JUC) (Gutierrez & Gérardy, 2017), and Joint Qini Curve (JQC)
(Devriendt et al., 2020) in Table 7.

These four curves share the same SMax ranking rule, and therefore, they exhibit the same limitations: they tend to
underestimate the value of negative outcome individuals, potentially leading to incorrect evaluations. Although they attempt
to address this issue using |T |, |C|, or NT

S and NC
S , as shown in Table 8, these problems remain significant.

Table 8. The contribution of different individuals to the value functions of various uplift and Qini curves. Columns T and C represent the
total contributions from the treatment and control groups, respectively.

Curve PETP PECN STTP STCP LCTN LCCN SDTN SDCP T C

SUC 1
|T | 0 1

|T | − 1
|C| 0 0 0 − 1

|C|
2
|T | − 2

|C|
SQC 1 0 1 − |T |

|C| 0 0 0 − |T |
|C| 2 −2 |T |

|C|
JUC 1/0 1 1/0 0/-1 -1 1 -1 0/-1 0/-1/-2 2/1/0
JQC 3 2 3 0 1 2 1 0 8 4

PUC 1 1 1 −1 −1 1 -1 -1 0 0

C. AUUQC Value Calculation Process
The specific code of these curves is provided in the utils file of the source code. For instance, the calculation formula for the
SUC is as follows:

First, we sort the eight samples in descending order based on the value of τ̂ (1), resulting in the order {2, 1, 6, 5, 4, 3, 8, 7}. Us-
ing the district value index formula in Equation (1), we obtain I = {0, 2, 6, 8}. The corresponding RT

S (D, k) and RC
S (D, k)

values are {0, 1, 2, 2} and {0, 0,−1,−2}, respectively. Consequently, the VSUC(k, S) values are {0, 0.25, 0.25, 0}. The
Model value for this set of valid values, computed using the area function, is given by:

Area(SModel) = 1.5. (19)

Next, we calculate the Max curve value as {0, 0.5, 0.5, 0.5, 0} and the corresponding district value indexes are {0, 2, 4, 6, 8},
yielding an curve value of 3.

For the Random curve, the curve value is calculated as 0, with valid values ranging from [0, 0] to [4, ATE = 0].

Finally, the SUC is computed as:

AUUQC =
1.5− 0

3− 0
= 0.5. (20)

Similarly, we sort the eight samples in descending order based on the value of τ̂ (1), resulting in the order {3, 1, 7, 6, 5, 2, 8, 4}.

The VSUC(k, S) values obtained are {0, 0.5, 0.5, 0}, and the corresponding district value indexes are {0, 2, 6, 8}. The
AUUQC value for this set is 3.
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Next, we calculate the Max curve values as {0, 0.5, 0.5, 0.5, 0} and the corresponding district value indexes are {0, 2, 4, 6, 8},
yielding an curve value of 3.

For the Random curve, the curve value is calculated as 0, with valid values ranging from [0, 0] to [4, ATE = 0].

Finally, the AUUQC is computed as:

AUUQC =
3− 0

3− 0
= 1. (21)

D. Detailed Derivation of Individual Contributions
Let’s compute the derivative of VSUC(k, S) with respect to an individual i where T = 1 and Y = 1:

dVSUC(k, S)

di
=

d

di

(
RT

S (D, k)

|T |
− RC

S (D, k)

|C|

)
. (22)

By applying the derivative to both terms:

dVSUC(k, S)

di
=

1

|T |
d

di

(
RT

S (D, k)
)
− 1

|C|
d

di

(
RC

S (D, k)
)
. (23)

So, the derivative of RT
S (D, k) is:

d

di
RT

S (D, k) = I(ti = 1)I(yi = 1). (24)

Similarly, the derivative of RC
S (D, k) is:

d

di
RC

S (D, k) = I(ti = 0)I(yi = 1). (25)

Substituting the derivatives into the expression for dVSUC(k,S)
di , we get:

dVSUC(k, S)

di
=

1

|T |
I(ti = 1)I(yi = 1)− 1

|C|
I(ti = 0)I(yi = 1). (26)

For the specific case where T = 1 and Y = 1 (treatment group, positive outcome), the indicator functions will be:
I(ti = 1) = 1, I(yi = 1) = 1, I(ti = 0) = 0 and I(yi = 1) = 1.

Thus, the derivative simplifies to:

dVSUC(k, S)

di
=

1

|T |
× 1− 1

|C|
× 0 =

1

|T |
. (27)

So, for T = 1 and Y = 1, the derivative of the uplift function VSUC(k, S) with respect to i is:

dVSUC(k, S)

di
=

1

|T |
. (28)

This derivative indicates that the inclusion of an individual from the treatment group with a positive outcome contributes 1
|T |

to the rate of change of the uplift value, which is proportional to the number of treated individuals in the dataset.

A similar approach applies to the SQC. For JUC and JQC, where the value functions depend on NT
S (D, k) and NC

S (D, k),
we simplify the contribution calculation by considering their relative magnitudes, as outlined by Devriendt et al. (2020).

As shown in Table 8, the TP individuals contribute more to the conventional curves than others, while CP individuals
contribute least. This focus on individuals with positive outcomes undervalues the PECN individuals relative to PETP
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individuals while overvaluing SDTN individuals relative to SDCP individuals, ultimately making the value of PECN

individuals comparable to that of SDTN individuals. This imbalance even leads to a higher overall contribution from the
individuals in the treatment group compared to those in the control group. Thus, an uplift model that maximizes conventional
curves will rank TP individuals at the top, CP individuals at the bottom, and all other individuals in between.6 This ranking
strategy can lead to incorrect rankings, such as placing PECN below SDTN .

E. Proof of Proposition 1
The theoretical guarantee of the PUC and PUL stems from Proposition 4.1 of the original paper, which states that the CATE
for the persuadable group should be greater than the CATE for the sleeping dog group. Specifically, PUL influences the
PTONet in two ways: it directly balances the value of the positive outcome (Y = 1) and negative outcome (Y = 0) groups,
and it focuses not only on the accuracy of the CATE effect size estimation but also on the comparison of CATE magnitudes
corresponding to different individuals.

Following the distributional treatment effect theorem in Kallus (2022; 2023), we define the persuadable stratum and sleeping
dog stratum as P(Y (1) = 1, Y (0) = 0|X = x) and P(Y (1) = 0, Y (0) = 1|X = x). According to the properties of joint
probability, we can deduce the bounds that P(Y (1) = 1, Y (0) = 0|X = x) ≤ P(Y (1) = 1|X = x)+P(Y (0) = 0|X = x)
and P(Y (1) = 0, Y (0) = 1|X = x) ≤ P(Y (1) = 0|X = x) + P(Y (0) = 1|X = x).

Applying the two equations in data D, we define the number of persuadable individuals in total k samples as NP (k)
and the number of sleeping dog individuals in total k samples as NS(k), then we have the two bounds that NP (k) ≤
RT (D, k) +NRC(D, k) and NS(k) ≤ RC(D, k) +NRT (D, k).

The difference between the two bounds is the value function of principled uplift curve. In other words, the principle uplift
measures the difference between the total number of samples that may be in the persuadable stratum and the total number
of samples that may be in the sleeping dog stratum. Thus, the proof of Proposition 1.1 is done that the principled uplift
becomes larger as the persuadable individuals increase, and becomes smaller as the sleeping dog individuals increase.

As demonstrated by the analysis in Tables 1 to 3, the principled uplift curve value associated with the number of treatment
group samples that may be in the persuadable stratum equals the number of control group samples within the same stratum.
Similarly, the value corresponding to the number of treatment group samples that could belong to the sleeping dog stratum
equates to the value for the number of control group samples in the sleeping dog stratum. Consequently, the ranking of
treatment and control groups does not affect the curve value of the principled uplift. The proof of proposition 1.2 is done.

F. Principled Uplift Curve versus Conventional Curves
In this section, we transform the PUC into a form similar to the conventional curves to explore the differences between the
two.

First, by substituting NT
S and NC

S into the PUC, we obtain:

VPUC(k, S) = RT
S (D, k) +NC

S (D, k)−RC
S (D, k)−RC

S (D, k)−NT
S (D, k) +RT

S (D, k)

= NC
S (D, k)−NT

S (D, k) + 2(RT
S (D, k)−RC

S (D, k)).
(29)

Based on this equation, the PUC can be interpreted as incorporating NT
S and NC

S to balance the number of individuals
across different strata, with the key distinction being that it assigns weights differently compared to conventional curves.

We can also compare conventional metrics with the PUC metric from the perspective of the ranking rule SMax.

For conventional curves, including SUC, SQC, JUC, and JQC, SMax is defined as:

SMax(Di) = I(yi = 1)
(
I(ti = 1)− I(ti = 0)

)
, (30)

whereas for PUC, the SMax is given by:

SMax(Di) = I(yi = 1)
(
I(ti = 1)− I(ti = 0)

)
+ I(yi = 0)

(
I(ti = 0)− I(ti = 1)

)
. (31)

6The joint uplift curve is an exception, where dynamically changing numbers NT
S (D, k) and NC

S (D, k) may lead to catastrophic
misrankings that intermix TP and CP subgroups.
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It is evident that maximizing the PUC value requires a ranking rule that builds upon the conventional curve by prioritizing
individuals with T = 0, Y = 0 and T = 1, Y = 1 at the top, while placing individuals with T = 1, Y = 0 and T = 0, Y = 1
at the bottom.

G. The Variants of Principled Uplift Curve
The value function of the principled uplift curve in Equation (9) is formulated as follows:

V (k, S) =RT
S (D, k) +NRC

S (D, k)

−RC
S (D, k)−NRT

S (D, k).
(32)

The principled uplift curve (v1) is defined as follows:

V (k, S) =min(
RT

S (D, k)

NT
S (D, k)

,
NRC

S (D, k)

NC
S (D, k)

)

−min(
NRT

S (D, k)

NT
S (D, k)

,
RC

S (D, k)

NC
S (D, k)

).

(33)

The principled uplift curve (v2) is defined as follows:

V (k, S) =min(
RT

S (D, k)

|T |
,
NRC

S (D, k)

|C|
)

−min(
NRT

S (D, k)

|T |
,
RC

S (D, k)

|C|
),

(34)

where |T | and |C| represent the total number of individuals in the treatment group and the control group, respectively.

The principled uplift curve (v3) is defined as follows:

V (k, S) =max(
RT

S (D, k)

|T |
,
NRC

S (D, k)

|C|
)

−min(
NRT

S (D, k)

|T |
,
RC

S (D, k)

|C|
).

(35)

The principled uplift curve (v4) is defined as follows:

V (k, S) =max(
RT

S (D, k)

|T |
,
NRC

S (D, k)

|C|
)

−max(
NRT

S (D, k)

|T |
,
RC

S (D, k)

|C|
).

(36)

The principled uplift curve (v5) is defined as follows:

V (k, S) =min(
RT

S (D, k)

|T |
,
NRC

S (D, k)

|C|
)

−max(
NRT

S (D, k)

|T |
,
RC

S (D, k)

|C|
).

(37)

The principled uplift curve (v6) is defined as follows:

V (k, S) =(
RT

S (D, k)

|T |
,
NRC

S (D, k)

|C|
)

− (
NRT

S (D, k)

|T |
,
RC

S (D, k)

|C|
).

(38)
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Table 9. The Kendall between AUUQC and AUTGC sequences of S-Learner on synthetic data. The symbol (↑) signifies that higher values
are desirable. The SUC, SQC, JUC, JQC, and PUC denote their AUUQC values.

Kendall (↑) S-Learner

SUC 0.776
SQC 0.776
JUC 0.812
JQC 0.765

PUC (v1) 0.158
PUC (v2) 0.552
PUC (v3) 0.560
PUC (v4) 0.601
PUC (v5) 0.688
PUC (v6) 0.616
PUC (v7) 0.514
PUC (v8) 0.545
PUC 1.000

This version is similar to the ROCini in Verbeken et al. (2022).

The principled uplift curve (v7) is defined as follows:

V (k, S) =(
RT

S (D, k)

NT
S (D, k)

,
NRC

S (D, k)

NC
S (D, k)

)

− (
NRT

S (D, k)

NT
S (D, k)

,
RC

S (D, k)

NC
S (D, k)

).

(39)

The principled uplift curve (v8) is defined as follows:

V (k, S) =(RT
S (D, k) +NRC

S (D, k))

− (NRT
S (D, k) +RC

S (D, k)).
(40)

Following Figure 5, we apply the Kendall coefficient between AUUQC and AUTGC to quantify the rank correlation between
the sequences of these two metrics. As Table 9 shown, according to their performance, we select the value function of the
principled uplift as V (k, S) = RT

S (D, k) +NRC
S (D, k)−RC

S (D, k)−NRT
S (D, k).

H. Analysis of PTONet
Next, we conduct a comprehensive analysis of PTONet from perspectives including computational complexity, scalability,
potential overfitting issues, and detailed function of PTONet.

Computational Complexity. Based on the parameter tuning range we used, the number of parameters for PTONet ranges
from 22,323 to 30,556,160, with floating point operations ranging from 1,578 to 29,090.

Scalability. Our study uses both a synthetic dataset and the real-world Criteo dataset, Lazada dataset to represent small and
large-scale scenarios. As shown in Tables 4, 5 and 13, PTONet consistently outperforms other models on the PUC metric.
As detailed in Table 10, the synthetic data, Criteo data, and Lazada data each present unique treatment and control ratios,
positive outcome ratios, and varying numbers of covariates, allowing us to evaluate scalability.

Potential Overfitting Issues. The propensity estimator, treatment reconstructor, and outcome estimator modules of PTONet
each help prevent the loss of CATE information due to overfitting. Additionally, we employ early stopping on the validation
set to further prevent overfitting. As shown in Table 13, it can be observed that our method still outperforms other methods
on the PUC metric even in high-dimensional real-world data.
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Detailed Function of PTONet. The role of PTONet is to serve as a feasible model guided by the PUC metric. The novelty
of its structure is not the focus of our paper, as its backbone is merely a variant of DragonNet (Shi et al., 2019). As shown in
Table 4 of our paper, evaluates the S-Learner, S-Learner (PU), and PTONet, highlighting the performance impact of PUL
and PTONet’s backbone. Further detailed results are provided in Table 6. The PUL, treatment loss and balance loss notably
boost the model’s performance. As targeted regularizer loss is intended to improve model scalability on observational data,
its lesser impact on RCT data is expected. Specifically, ’treatment assignment bias’ refers to the potential bias that arises
when the assignment of treatments is influenced by certain factors or variables, rather than being random. The most common
methods to mitigate this bias include the use of propensity score matching, weighted regression, or doubly robust learning.
The principle of the ’targeted regularizer’ lies in its ability to eliminate treatment assignment bias through the introduction
of propensity scores, while also ensuring doubly robust learning based on semi-parametric estimation theory. This module,
not an original contribution of this paper, was first proposed in Shi et al. (2019).

We have not extensively discussed the concepts of treatment assignment bias and the targeted regularizer because, while the
former is a common issue in causal inference, it is not the primary focus of this paper. We introduced these concepts mainly
to ensure the scalability of our model, which can adapt whether or not treatment assignment bias exists.

I. Experimental Details
Dataset Description. The synthetic dataset contains n = 10, 000 units with q = 10 different covariates. For each
unit i, the covariates are initially independently and identically sampled from a normal distribution Xij ∼ N (0, 1) for
j ∈ {1, 2, · · · , q}. We generate the treatment assignment Ti using Ti ∼ Binomial(1, 0.1), denoting the binomial distribution
in a single trial with success probability 0.1. It is designed to simulate the real-world scenario in our business data, where
the number of treated samples is significantly smaller than the number of control samples. This also ensures differentiation
from the Criteo and Lazada datasets.

We simulate potential outcomes based on the covariates as follows:

Yi(0) = 0.5 sin(

q∑
j

Xj
i + 1) + ϵ0i ,

Yi(1) = 0.1(

5∑
j

cos(Xj
i ) + 2) + ϵ1i ,

(41)

where the noise terms ϵ0i , ϵ
1
i ∼ N (0, 0.1). Here, the sine and cosine functions are introduced to incorporate nonlinearity,

while the different coefficients are used to adjust the proportion of samples with τ(x) > 0. This adjustment helps simulate
the real-world business scenario where positive outcomes are relatively rare.

The true ITE τi = Yi(1)− Yi(0) and CATE τ(x) = E[Yi(1)− Yi(0)|X = x]. The final observed outcome is generated as
follows:

Yi = TiI(τi > 0) + (1− Ti)I(τi < 0) + ϵyi I(τi = 0), (42)

where ϵyi ∼ Binomial(1, 0.5). The first term represents the observed outcome for the persuadable group, the second term
corresponds to the sleeping dogs, and the third term accounts for the observed outcome of sure things and lost causes. For
details on the proportion of the treated group and the positive outcome rate, please refer to Table 10.

The real-world Criteo dataset (Diemert Eustache et al., 2018; Diemert et al., 2021), open sourced by Criteo AI Labs, is
utilized for uplift modeling in a large-scale advertising scenario. It includes 25,309,483 instances with 11 continuous
features, a binary treatment, and 2 candidate outcomes (visits and conversions).

The real-world Lazada data is large-scale production dataset from the real voucher distribution business scenario in Lazada,
a leading South-East Asia (SEA) E-commerce platform of Alibaba Group. Our data processing follows Zhong et al. (2022).

The synthetic data, Criteo data, and Lazada data each present unique treatment and control ratios, positive outcome ratios,
and varying numbers of covariates, allowing us to evaluate scalability.

Hyperparameters Tuning. The range of values for hyperparameters shared by all methods is presented as follows:
the representation dimension hdim ∈ {24, 25, 26}, the batch size bs ∈ {28, 29, 210, 211} and the learning rate lr ∈
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Table 10. Statistics of the synthetic dataset, Criteo dataset and Lazada dataset.

Dataset Covariates Training Data Testing Data
Treated Positive Outcome Total Treated Positive Outcome Total(percentage) (percentage) (percentage) (percentage)

Synthetic 10 910 (10.1%) 3,913 (43.5%) 9,000 92 (9.2%) 447 (44.7%) 1,000
Criteo 12 10.7M (85.0%) 5.92K (4.70%) 12.6M 1.19M (85.0%) 65.4K (4.68%) 1.40M
Lazada 83 0.92M (22.1%) 83.0K (2.00%) 4.17M 0.47M (51.6%) 31.9K (3.54%) 0.91M

{1e−4, 1e−3, 1e−2, 1e−1}. Furthermore, for the hyperparameters α in CFRNet, DragonNet, DESCN, and PTONet, β
in DragonNet and PTONet, and β0, β1, γ0, γ1 in DESCN, they are all confined to the range of {0.1, 0.5, 1, 5, 10}. We
utilize an Adam optimizer with a maximum of 20 epochs and employ joint Qini as the primary evaluation metric. We
implement an early stopping mechanism with patience of 5 for all baselines, as suggested by (Liu et al., 2023). Based on the
parameter tuning range we used, the number of parameters for PTONet ranges from 22,323 to 30,556,160, with floating
point operations ranging from 1,578 to 29,090.

Implementation Details. All experiments are conducted on an Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz. We used the
scikit-uplift package to conduct all AUUQC in this paper. The Kendall coefficient was computed using the ’kendalltau’
function from the scipy.stats module.

More Ablation Studies. In addition to applying PUL directly to the S-Learner in Table 4, we further incorporate PUL into
T-Learner, TARNet, and EUEN to more comprehensively validate its effectiveness. As Table 11 shown, The performance
of these three models after incorporating the Principled Uplift loss function is comparable to that of S-Learner (PU) and
PTONet, with significant improvement observed across all metrics. Furthermore, comparing the performance of the five
models across various metrics reveals that, except for the PUC metric, the results of the other metrics are inconsistent with
AUTGC, highlighting the advantage of PUC in aligning with ground truth. Notably, PTONet achieves the best performance
on both the PUC and AUTGC metrics, further demonstrating its effectiveness.

Table 11. Ablation studies of different backbones on synthetic data. SUC, SQC, JUC, JQC, and PUC denote their AUUQC values. The
symbol (↓) indicates that lower values are preferable, while (↑) signifies that higher values are desirable. ”TRUE” represents the results of
the ground truth CATE.

Uplift Model Unbalanced Conventional Evaluation Metric Balanced Evaluation Metric

PEHE (↓) SUC (↑) SQC (↑) JUC (↑) JQC (↑) PUC (↑) AUTGC (↑)

TRUE 0.000 0.835 0.586 0.779 0.581 1.000 1.000

S-Learner (PU) 0.879 ± 0.16 0.786 ± 0.16 0.552 ± 0.11 0.738 ± 0.15 0.548 ± 0.11 0.943 ± 0.19 0.957 ± 0.15
T-Learner (PU) 0.867 ± 0.14 0.763 ± 0.17 0.536 ± 0.12 0.748 ± 0.15 0.537 ± 0.11 0.937 ± 0.20 0.952 ± 0.15
TARNet (PU) 0.893 ± 0.08 0.759 ± 0.12 0.533 ± 0.09 0.754 ± 0.11 0.534 ± 0.08 0.944 ± 0.14 0.957 ± 0.11
EUEN (PU) 0.781 ± 0.15 0.767 ± 0.16 0.538 ± 0.11 0.742 ± 0.15 0.538 ± 0.11 0.932 ± 0.19 0.948 ± 0.15
PTONet 0.883 ± 0.13 0.780 ± 0.14 0.547 ± 0.10 0.746 ± 0.13 0.546 ± 0.10 0.948 ± 0.15 0.961 ± 0.11

More Case Studies. To further explore potential issues in uplift modeling guided by either conventional curves or propensity
score, we conduct an experiment comparing the performance of various models under same conditions, using a fixed random
seed of zero. We observe several notable phenomena from the results presented in Table 12.

From an evaluation standpoint, firstly, when comparing the S-Learner (U) and the S-Learner (PS), we find that a low PEHE
does not necessarily imply an accurate CATE ranking, highlighting the disparity between estimation and ranking issues
in causal inference. Secondly, apart from PUC, the magnitudes of AUUQC for other curves do not align with AUTGC.
Notably, in the case of S-Learner (U) and S-Learner (PS), the AUUQC values of SUC, SQC, and JQC are even larger than
the the value of TRUE.

From a modeling perspective, S-Learner (PS) achieves higher AUUQC values of conventional curves than S-Learner. These
phenomena suggest that models with higher AUUQC values of conventional curves may have learned biased treatment
assignments. Conversely, S-Learner (PU) performs better than S-Learner (U) and S-Learner (PS) on the AUUQC of PUC
and AUTGC, showing the feasibility of involving principled uplift to guide uplift modeling. Compared to Table 4, we find
that although the best performance of the S-Learner (PU) is not better than the S-Learner (U) in the AUUQC of SUC, SQC,
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Table 12. Performance comparison of different uplift models on synthetic data. SUC, SQC, JUC, JQC, and PUC denote their AUUQC
values. The symbol (↓) indicates that lower values are preferable, while (↑) signifies that higher values are desirable. ”TRUE” represents
the results of the ground truth CATE. The symbol ∗ indicates that the uplift model’s evaluation result exceeds the ground truth result.

Uplift Model Unbalanced Conventional Evaluation Metric Balanced Evaluation Metric

PEHE (↓) SUC (↑) SQC (↑) JUC (↑) JQC (↑) PUC (↑) AUTGC (↑)

TRUE 0.000 0.835 0.586 0.779 0.581 1.000 1.000

S-Learner 1.392 0.297 0.208 0.332 0.210 0.371 0.519
S-Learner (U) 1.133 0.847∗ 0.594∗ 0.677 0.580 0.892 0.918
S-Learner (PS) 1.350 0.847∗ 0.594∗ 0.755 0.595∗ 0.915 0.935
S-Learner (PU) 1.158 0.783 0.549 0.752 0.547 0.946 0.959

T-Learner 1.254 0.596 0.418 0.631 0.426 0.680 0.755
TARNet 1.164 0.683 0.479 0.713 0.485 0.864 0.896
CFRNet 1.445 -0.034 -0.024 0.018 0.001 0.060 0.281
DragonNet 1.036 0.732 0.513 0.693 0.510 0.897 0.921
EUEN 1.177 0.602 0.422 0.526 0.410 0.688 0.761
DESCN 1.090 0.780 0.547 0.748 0.547 0.949 0.961
EFIN 1.751 0.619 0.434 0.599 0.431 0.744 0.804

PTONet 0.963 0.770 0.540 0.747 0.536 0.959 0.969

JUC, and JQC, the mean performance of S-Learner (PU) surpasses that of S-Learner (U). This indicates that models guided
by the principled uplift curve yield more robust results.

Results on Lazada Dataset. We include results from the high-dimensional Lazada dataset (Zhong et al., 2022) in Table 13.
Due to the small curve values in the dataset, we retain an additional decimal place when presenting the results for improved
precision. We observe that although DESCN performs best on SUC, SQC, JUC, and JQC, PTONet consistently outperforms
other models on the PUC metric in the Lazada dataset.

Table 13. Performance comparison (mean±std) on Lazada dataset. PTONet achieves superior performance on PUC.

Uplift Model Unbalanced Conventional Evaluation Metric Balanced Metric

SUC (↑) SQC (↑) JUC (↑) JQC (↑) PUC (↑)

S-Learner 0.0875±0.005 0.0256±0.001 0.0035±0.001 0.0247±0.001 0.0052±0.001

T-Learner 0.0684±0.017 0.0200±0.005 0.0031±0.001 0.0219±0.004 0.0066±0.001

TARNet 0.0822±0.015 0.0241±0.004 0.0033±0.001 0.0232±0.005 0.0044±0.001

CFRNet 0.0628±0.029 0.0184±0.009 0.0025±0.001 0.0176±0.008 0.0038±0.002

DragonNet 0.0745±0.003 0.0218±0.001 0.0035±0.001 0.0249±0.002 0.0082±0.001

EUEN 0.0893±0.012 0.0262±0.003 0.0036±0.001 0.0253±0.003 0.0050±0.001

DESCN 0.1160±0.007 0.0340±0.002 0.0041±0.001 0.0295±0.002 0.0007±0.001

EFIN 0.0645±0.013 0.0189±0.004 0.0023±0.001 0.0164±0.002 0.0025±0.003

PTONet 0.0424±0.015 0.0124±0.004 0.0025±0.001 0.0174±0.005 0.0108±0.001

J. Limitations and Future Work
There are several directions for further exploration. Firstly, this paper only addresses the conventional setting of uplift
modeling, precisely the scenario of binary treatment and binary outcome in RCT data. The performance of the principled
uplift curve and PTONet in scenarios involving multi-valued or continuous treatment or outcome, and even in observational
data settings, remains to be explored. Furthermore, the performance of the principled uplift curve relies on the assumption of
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unconfoundedness. The extent of the presence of unobserved confounders remains a crucial question. Finally, the principled
uplift curve in this paper only achieves the division of the persuadable and sleeping dog groups without the capability to
identify sure things and lost causes. The presence of sure things and lost causes can also affect the performance of the
principled uplift curve. Although one way to mitigate this effect is to filter out samples with estimated CATEs of 0 using an
uplift model beforehand and then evaluate the remaining samples uniformly, we still anticipate the emergence of a new
metric in the future that can address this issue more comprehensively.
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