
Latent Neural PDE Solver for
Time-dependent Systems

Zijie Li†, Saurabh Patil†, Dule Shu, Amir Barati Farimani
Carnegie Mellon University

Mechanical Engineering Department
{zijieli, ssp2, dules}@andrew.cmu.edu & barati@cmu.edu

Abstract

Neural networks have shown promising potential in accelerating the numerical
simulation of systems governed by partial differential equations (PDEs). Different
from many existing neural network surrogates operating on the high-dimensional
discretized field, we propose to learn the dynamics of the system in the latent
space with much coarser discretization. In our proposed framework, a non-linear
autoencoder is first trained to project the full-order representation of the system
onto the mesh-reduced space, then a temporal model is trained to predict the future
state in this mesh-reduced space. This reduction process simplifies the training
of the temporal model by greatly reducing the computational cost with a fine
discretization. We study the capability of the proposed framework on 2D/3D fluid
flows and showcase that it has competitive performance compared to the model
that operates on full-order space.

1 Introduction

Many intricate physical processes, from the interaction of protein dynamics to the movement of
a celestial body, can be described by time-dependent partial differential equations (PDEs). The
simulation of these processes is often conducted by solving these equations numerically, which
requires fine discretization to resolve the necessary spatiotemporal domain to reach convergence.
Deep neural network surrogates [5, 42, 48, 61, 65, 71] recently emerged as a computationally less-
expensive alternative, with the potential to improve the efficiency of simulation by relaxing the
requirement for fine discretization and attaining a higher accuracy on coarser grids compared to
classical numerical solver [5, 42, 75].

For time-dependent systems, many neural-network-based models address the problem by approx-
imating the solution operator G that maps the state ut to ut+∆t, where the input and output are
sampled on discretization grid {Di, Dh} respectively. The input discretization grid can either remain
unchanged between every layer inside the network [5, 9, 42], or fit into a hierarchical structure
[19, 44, 58, 64, 79, 87] that resembles the V-Cycle in classical multi-grid method. Hierarchical
network structures have been a common model architectural choice in the field of image segmentation
[70] and generation [25] given their capability for utilizing multi-scale information.

In contrast to the aforementioned approaches especially those that utilize a hierarchical grid structure,
our work studies the effect of decoupling dynamics prediction from upsampling/downsampling
processes. Specifically, the neural network for predicting the forward dynamics (which we defined as
a propagator) only operates on the coarsest resolution, while a deep autoencoder is pre-trained to
compress the data from the original discretization grid Di to the coarse grid Dl (e.g. from a 64× 64
grid to an 8× 8 grid). As the propagator network operates on a lower dimensional space, the training
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cost is greatly reduced and can be potentially adapted to unrolled training with a longer rollout,
which is often observed to be helpful to long-term stability [14, 21]. We parameterize the model
with a convolutional neural network along with several other components that are popular in neural
PDE solvers, including spectral convolution and several variants of attention. We test the proposed
framework on 2D and 3D time-dependent PDEs with uniform grids and showcase that the model can
achieve efficient data compression and accurate prediction of forward dynamics.

2 Related works

Neural PDE solver Neural PDE solvers can be categorized into the following groups based on
their model design. The first group employs neural networks with mesh-specific architectures, such
as convolutional layers for uniform meshes or graph layers for irregular meshes. These networks
learn spatiotemporal correlations within PDE data without the knowledge of the underlying equations
[5, 19, 28, 36, 38, 47, 58, 62, 63, 72, 75, 79, 82, 86]. Such a data-driven approach is useful for systems
with unknown or partially known physics, such as large-scale climate modeling [33, 53, 59, 66]. The
second group, known as Physics-Informed Neural Networks (PINNs) [8, 9, 20, 22, 30, 40, 41, 49, 56,
65, 76, 93], treats neural networks as a representation of the solution function. PINNs incorporate
knowledge of governing equations into the loss function, including PDE residuals and consistency
with boundary and initial conditions. Unlike the first group, PINNs can be trained solely on equation
loss and do not necessarily require input-target data pairs. The third group, known as the neural
operators[1, 3, 4, 9, 17, 22, 29, 31, 32, 42, 44, 45, 48, 50, 54], is designed to learn the mapping
between function spaces. For a certain family of PDEs, neural operators can generalize and adapt
to multiple discretizations without retraining. DeepONet [48] presents a pragmatic implementation
of the universal operator approximation theorem[10]. Meanwhile, the concurrent research [43]
in the form of the graph neural operator proposes a trainable kernel integral for approximating
solution operators in parametric PDEs. Their follow-up work, Fourier Neural Operator (FNO) [42],
has demonstrated high accuracy and efficiency in solving specific types of problems. Different
function bases such as Fourier[15, 42, 80, 89] / wavelet bases[17], the column vectors from attention
layers[9, 40], or Green’s function approximation[2, 78], have been be used for operator learning. For
more physically consistent predictions[46, 88], neural operator training can be combined with PINN
principles.

Two-stage model for image compression and synthesis The utilization of a two-stage model
for image synthesis has gained significant attention in the field of computer vision in recent years.
VQ-VAEs[67] adopts a two-stage approach for generating images within a latent space. In the initial
stage, the approach compresses images into this latent space, using model components such as an
encoder, a codebook, and a decoder. Subsequently, in the second stage, a latent model is introduced to
predict the latent characteristics of the compressed images, and the decoder from the first stage is used
to transform the predicted latent representation back into image pixels. VQ-GANs[13] is developed to
scale autoregressive transformers to large image generation by employing adversarial and perceptual
objectives for first-stage training. Most recently, several works have developed latent diffusion models
with promising results ranging from image[68], point clouds[92] to text generation[35]. Within the
domain of neural PDE solvers, the widely employed Encoder-Process-Decoder (EPD) scheme, used
to map the input solution at time t to the subsequent time step, stands as a conventional and direct
method [6, 27, 57, 61, 71, 74]. As an alternative, researchers have explored propagating the system
dynamics in the latent space, aiming to diminish computational complexity and minimize memory
usage [34, 90]. Evolving the system dynamics in latent space can involve utilization of recurrent
neural networks like LSTM [90], linear propagators grounded in the assumptions of the Koopman
operator [37, 51, 52, 55, 77], attention mechanism [24], recurrent MLPs [39] or state-space model
[60]. In this work, we propose to use an autoencoder to embed inputs into the latent space, and a
simple yet effective convolutional propagator is employed to learn the dynamics of the time-dependent
system within this latent space.
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Figure 1: (a) An autoencoder is trained to project the input field to latent field with much coarser
discretization. (b) A neural network is trained to predict the latent field at different time steps.

3 Methodology

3.1 Problem definition

We are interested in solving time-dependent PDEs of the following form:

∂u(x, t)

∂t
= F (u(x, t), t), x ∈ Ω, t ∈ [0, T ] (1)

u(x, 0) = u0(x), x ∈ Ω, (2)

where T denotes the time horizon and some boundary condition for x ∈ ∂Ω is provided a priori. To
solve this initial value problem, a neural network is trained to approximate the following mapping:

u(x, t+∆t) = A(u(x, t)), (3)

with a fixed ∆t, and the system is assumed to be Markovian such that u(x, t+2∆t) = A(A(u(x, t))).

In practice, the function of interest at a particular time step u(·, t) is sampled on a m-point discretiza-
tion grid D. For a hierarchical model like U-Net, the grid will be altered internally between different
layers and the mapping A is a composition of a sequence of mapping {A0, . . . ,Al} which operates
on grids {D0, . . . , Dl} with D0 = D and the number of grid points ml < ml−1 < · · · < m0. In
contrast to the aforementioned hierarchical model, we propose to learn A on the coarsest grid Dl.

3.2 Autoencoder for dimension reduction

One of the most straightforward ways to project the function from the original grid to a coarser grid is
interpolation (e.g., bicubic interpolation). However, interpolation can result in significant information
loss about the function, as a coarser grid can only evaluate a limited bandwidth and cannot distinguish
frequencies that are higher than the Nyquist frequency. To achieve a less lossy compression of the
input, we train an encoder network ϕ to project the input into latent space when coarsening its spatial
grid. In the meantime, we train the decoder network ψ to recover the input from the latent embedding
that are represented on the coarse grid. The goal of training these two networks is to achieve data
compression without too much loss of information such that their composition approximates an
identity mapping: I ≈ ϕ ◦ ψ.

In this work, we exploit the fact that the grid structure we are dealing with is uniform and that the
majority part of the autoencoder is parameterized with convolutional neural networks (CNN) which
are effective for compressing imagery data [13, 69, 84]. On top of the CNNs modules, we also
introduced several other modules that have been shown to be effective for PDE surrogate modeling.

Spectral convolution Spectral convolution layer is first proposed in Fourier Neural Operator [42]
as a parameterization of the learnable kernel integral [32]. It applies a discrete Fourier transform
to the input and then multiplies the k-lowest modes with learnable complex weights. Given input
function ul, the spectral convolution computes the kernel integral as follows:

ul+1(x) =

∫
Ω

κ(x, y)ul(y)dy =

ξmax
1∑

ξ1=0

. . .

ξmax
n∑

ξn=0

Wjcjfj(x), j = ξ1ξ2 . . . ξn (4)
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where W ∈ C(ξmax
1 ×ξmax

2 ×...ξmax
n )×dc×dc is the learnable weight, fj is the j-th Fourier basis function:

exp (2iπ
∑

d
xdξd
md

) with md being the resolution along the d-th dimension, xd being the coordinate
for d-th dimension, and cj =< ul, fj > denotes the channel-wise inner product between input
function and Fourier series. Unlike the CNN layer, spectral convolution is able to capture multi-scale
features that correspond to different frequencies within a single layer. It is also computationally
efficient on a uniform grid as the cj can be efficiently computed via fast Fourier Transformation
(FFT). In addition, Gupta and Brandstetter [19] hypothesized that suppressing high-frequency modes
with spectral convolution before downsampling can further improve the performance of the network.

Attention Scaled-dot product attention [85] has become the state-of-the-art models for natural
language processing [7, 11] and computer vision tasks [12] with its capability to capture non-local
interactions and compute data-dependent weights. Attention is also closely related to the kernel
integral [32] defined in the previous subsection, with its theoretical property on specific PDE problems
analyzed in several prior works[9, 16, 31]. Given the i-th input feature vector ui with channel size
dc, the (self-)attention can be defined as:

zi =

m∑
j=1

αijvj , αij =
exp

(
qi · kj/

√
dc
)∑m

s=1 exp
(
qi · ks/

√
dc)

) , (5)

where: qi = Wqui,ki = Wkui,vi = Wvui respectively, and {Wq,Wk,Wv} ∈ Rdc×dc are
learnable weights. We plug the self-attention layer into the decoder and investigate its effect on
learning the latent embedding.

4 Experiments

We test out the proposed model on two time-dependent fluid problems and compared our model to a
state-of-the-art neural PDE solver Fourier Neural Operator [42]. For all the problems we sample the
data on a spatial grid of resolution 64 along each axis.

4.1 Datasets

2D incompressible flow The 2D incompressible flow we considered here is the 2D flow dataset
proposed in Li et al. [42], which is based on 2D Navier-Stokes equation under vorticity formulation.
The voriticity form reads as:

∂ω(x, t)

∂t
+ u(x, t) · ∇ω(x, t) = ν∇2ω(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ],

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ],

ω(x, 0) = ω0(x), x ∈ (0, 1)2,

(6)

where ω denotes vorticity: ω := ∇×u, the initial condition ω0 is sampled from the Gaussian random
field, the boundary condition is periodic, the viscosity coefficient ν is 1e− 4 and the forcing term
is defined as: f(x) = 0.1(sin 2π(x1 + x2) + cos 2π(x1 + x2)). We are interested in learning to
simulate the system (by predicting vorticity) from t = 5 to t = 35 with 30 seconds of time duration.
The reference numerical simulation data is generated via the pseudo-spectral method. The dataset
contains 1000 trajectories where we use 900 for training and 100 for testing.

3D smoke buoyancy The second benchmark problem is 3D Navier-Stokes equation coupled with
advection equation proposed in Li et al. [41] and similar 2D cases have been studied in prior works
[3, 18, 81]. The equation describes the motion of rising smoke in a closed box,
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) = ν∇2u(x, t)− 1

ρ
∇p(x, t) + f(x, t), x ∈ (0, L)3, t ∈ (0, T ],

∂d(x, t)

∂t
+ u(x, t) · ∇d(x, t) = 0, x ∈ (0, L)3, t ∈ (0, T ],

∇ · u(x, t) = 0, x ∈ (0, L)3, t ∈ [0, T ],

u(x, 0) = 0, d(x, 0) = d0(x), x ∈ (0, L)3,
(7)
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where d depicts a marker field for smoke and is subjects to the Neumann boundary condition:
∂d/∂n = 0, the velocity field u is under Dirichlet boundary condition: u(x, t) = 0,x ∈ ∂Ω, the
initial condition of the marker field d is sampled from a random field, the forcing term is based on the
Bousinessq model f(x, t) = [0, 0, ηd(x, t)] with η being the buoyancy factor. We study the case with
viscosity coefficient ν = 0.003 and buoyancy factor η = 0.50. The goal is to predict the marker field
and velocity field from t = 0 to t = 12, with domain size L = 8. The reference simulation data is
generated using phiflow [26] with pressure projection and Maccormack advection scheme [73]. The
dataset contains 2200 trajectories amoung which we use 2000 for training and 200 for testing.

4.2 Implementation

Autoencoder The encoder and decoder are mainly built upon convolutional layers. Internally they
comprise a stack of downsampling/upsampling blocks, where each block downsamples/upsamples
the spatial resolution by a factor of 2. Each block contains a residual convolution block and a
downsampling/upsampling layer. The residual convolution block consists of group normalization
[91] and two 3× 3 convolution layers. The downsampling layer uses a 3× 3 convolution layer with a
stride of 2, and the upsampling layer upsamples the resolution by using nearest interpolation followed
by a 3× 3 convolution layer. We also investigate the influence of inserting spectral convolution layers
into each downsampling block and add self-attention layers to the lowest resolution following prior
works on image synthesis [13, 68]. For the 2D problem, we set the latent resolution to 8 × 8 and
the latent dimension to 16. For the 3D problem, we set the latent resolution to 16 × 16 × 16 and
the latent dimension to 64. In addition, on the 3D problem, we use the multi-dimensional factorized
attention [41] instead of standard attention to reduce the computational cost.

Propagator We use a simple residual convolution network [23] to forecast the forward dynamics in
the latent space, where each residual block contains a group normalization layer and three convolution
layers with 3× 3 convolution kernels. We also employ dilated convolution for the middle convolution
layer to capture longer-range interaction. For the 2D problem, we use 3 residual blocks with network
width 128. For the 3D problem, we use 4 residual blocks.

Baseline On the 2D problem, we tested out two versions of the FNO. The first version is based on
the hyperparameter provided in the original paper [42], where the model width is 32 and 8 lowest
modes are used at each spectral convolution layer. We also test out a larger version with a width of
64 and use a mode number of 16. On the 3D problem, we use a width of 64 and a mode number of
12 as increasing the mode number for 3D spectral convolution will drastically increase the model
parameter (by cubic).

Training We first train the autoencoder by minimizing the relative L2 reconstruction loss for around
150k iterations with constant learning rate 3e− 5 using batch size of 64/16 respectively for 2D/3D.
We then train the propagator by minimizing the mean squared error between predicted embeddings
and embedding of reference data for another 150k iteration with a learning rate of 5e − 4 and a
cosine annealing schedule. For FNO we train it with a learning rate 5e− 4 and a cosine annealing
scheduling to minimize the relative L2 prediction loss. The total training iterations are also set to
150k. Different from the original FNO paper, we do not use full rollout during training as we observe
reducing the rollout steps during training can significantly improve the performance on NS2D. * We
rollout for 2 steps for all models unless stated otherwise.

4.3 Results

In this section, we present the comparison between the proposed framework and other models. We
observe that the proposed model consistently outperforms FNO which operates on the full mesh
space and for lower-dimensional problems like 2D fluid flow the performance gap is more significant.
On more complex 3D flow, the model is able to compress the original data to a much coarser (4 times
coarser) resolution and learns to predict with accuracy on par with full-order models. Furthermore, as
the temporal model operates on a much coarser discretization, we can afford longer rollout training to
allow gradient propagated from farther future which can further improve the model’s performance on

*On 2D Navier-Stokes, FNO (8 modes) has a prediction error of 0.2596 if using fully rollout training,
whereas rolling out for 2 steps yields an error of 0.1689.
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(a) Comparison of different models on
2D Navier-Stokes

(b) Ablation on different training strategies on
2D Navier-Stokes

(c) Comparison of different models on 3D smoke
buoyancy

(d) Ablation on different architectural design on
2D Navier-Stokes

Figure 2: Quantitative study on model’s performance. Latent-PDE denotes our proposed latent neural
PDE solver. "Base" model contains only residual convolutional blocks and fully-connected layers.
"CoarseAttn" means we add self-attention to the bottleneck part of the model. "Full-Fourier" means
we add spectral convolution layers at the top two downsampling blocks in the encoder and decoder of
"CoarseAttn" model. "Res" means we replace spectral convolution layer with residual convolutional
blocks. x-step models are rollout for x steps during the training.

predicting the equilibriuim state of the smoke marker field (Figure 2c). (Sample visualization of the
best model’s prediction are presented in Appendix A)
We also study how different training strategies will influence the model’s performance (Figure
2b). We maintain consistent hyperparameters and explore three training strategies: the two-stage
method discussed in the previous subsection (referred to as "two-stage"), training the autoencoder and
propagator simultaneously by minimizing both reconstruction and prediction loss jointly (referred
to as "combined"), and considering the autoencoder and propagator as an unified entity to predict
the subsequent step (referred to as "autoregressive"). We also compare two-stage training to Dilated-
ResNet [74] that employs a Encode-Process-Decode (EPD) scheme [6, 61, 71] . We find that
two-stage training yields the best performance compared to other strategies, which indicates the
advantage of two-stage training in obtaining high-quality coarse-graining of the system.

FNO2D Latent-PDE 2D FNO3D Latent-PDE 3D

Autoencoder Propagator Autoencoder Propagator

Fwd + Bwd time (sec) 0.067 0.103 0.013 2.223 1.375 0.372
Memory (GB) 1.87 2.54 0.25 33.33 37.15 8.10

# of params (M) 16.8 9.7 1.4 226.5 38.8 5.4

Table 1: Computational cost of different models’ training. 2D benchmark is carried out on RTX 3090,
using a batch size of 64. 3D benchmark is carried out on A6000, using a batch size of 16.
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Compared to FNO that has log-linear complexity with respect to the grid size, the training of the
proposed model is relatively slower when combining the time cost for autoencoder training and
temporal model training. However, since the temporal model training is much more efficient in
latent-pde solver, its training can be less costly on system that requires rolling out for more steps
during training.

5 Conclusion

In this work, we study a straightforward yet effective data-driven framework for predicting time-
dependent PDEs. We show that training the temporal model in the mesh-reduced space improves the
computation efficiency and is beneficial for problems that feature latent dynamics distributed on a
low-dimensional manifold. The observation in this study is also in alignment with the recent success
of a series of image synthesis models that learn the generative model in the latent space instead of
pixel space [13, 68, 83]. As this work only considers uniform mesh, an interesting future direction
would be the extension to arbitrary meshes and geometries.
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A Sample visualization
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Figure 3: Visualization of model’s prediction on 2D Navier-Stokes equation
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Figure 4: Visualization of model’s prediction on 3D smoke buoyancy at cross-section plane x = 4m
and time t = 9s.
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