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Abstract

We address a generalization of the bandit with knapsacks problem, where a learner
aims to maximize rewards while satisfying an arbitrary set of long-term constraints.
Our goal is to design best-of-both-worlds algorithms that perform optimally under
both stochastic and adversarial constraints. Previous works address this problem
via primal-dual methods, and require some stringent assumptions, namely the
Slater’s condition, and in adversarial settings, they either assume knowledge of
a lower bound on the Slater’s parameter, or impose strong requirements on the
primal and dual regret minimizers such as requiring weak adaptivity. We propose
an alternative and more natural approach based on optimistic estimations of the
constraints. Surprisingly, we show that estimating the constraints with an UCB-
like approach guarantees optimal performances. Our algorithm consists of two
main components: (i) a regret minimizer working on moving strategy sets and
(ii) an estimate of the feasible set as an optimistic weighted empirical mean of
previous samples. The key challenge in this approach is designing adaptive weights
that meet the different requirements for stochastic and adversarial constraints.
Our algorithm is significantly simpler than previous approaches, and has a cleaner
analysis. Moreover, ours is the first best-of-both-worlds algorithm providing bounds
logarithmic in the number of constraints. Additionally, in stochastic settings, it
provides Õ(

√
T ) regret without Slater’s condition.

1 Introduction

We address the problem faced by a decision maker who aims to maximize its cumulative reward over
a time horizon T , while satisfying an arbitrary set of m long-term constraints. At each round t, the
learner selects an action at from a finite set of K actions, and then observes a reward ft(at) and
some costs gt(at) ∈ [−1, 1]m. The goal is to design best-of-both-worlds algorithms for this problem
that perform optimally under both stochastic and adversarial constraints. We always assume rewards
are generated adversarially. This is because the real complexity of the problem is captured by the
nature of the constraints, so that transitioning from adversarial to stochastic rewards under the same
type of constraints does not affect our results.

The first works on bandits with constraints focus on budget constraints, a.k.a bandit with knapsack
(BwK) [7] study the settings in which both rewards and constraints are i.i.d. and propose an UCB-
based approach, combined with primal-dual method. Agrawal and Devanur [2] provide an UCB-like
approach for more general rewards and costs. Immorlica et al. [21], Kesselheim and Singla [22]
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analyse settings with adversarial constraints and rewards, providing a primal-dual algorithm to tackle
the problem. Castiglioni et al. [15] show that a similar primal-dual approach provides best-of-both-
worlds guarantees. Many subsequent works extend the setting to more general constraints, mostly
employing primal-dual methods [16, 17, 28, 11, 13, 10, 18]. Primal-dual methods have been the
only effective method that provides best-of-both-worlds guarantees for bandits with constraints
[16, 17, 11, 13, 10]. However, such methods require assumptions that are particularly stringent in
settings beyond knapsack constraints. First, they require the existence of a strictly feasible solution
(i.e., Slater’s condition) to avoid a regret of order O(T 3/4) [16, 28]. While this assumption always
holds in bandits with knapsack setting (where “doing nothing” incurs in a negative cost equal to
the per-round budget), this assumption is far more stringent with general constraints. Moreover,
some works require the knowledge of a lower bound on the Slater’s parameter [16, 28]. Subsequent
works circumvent this assumption at the expense of strong requirements on the primal and dual regret
minimizers [17, 11, 13, 1]. In particular, such approaches require weakly-adaptive primal and dual
regret minimizers. The challenge of applying such primal-dual algorithms to bandit beyond knapsack
constraint is reflected in regret bounds that exhibit non-optimal dependencies on some parameters. For
instance, a polynomial (instead of logarithmic) dependence on the number of constraints [17, 11, 13].
For further pointers to the literature, we refer to Appendix A.

1.1 Our contribution

We propose an alternative and insightful approach to design best-of-both-worlds algorithms for
bandit with long-term constraints. Our method relies on optimistic estimations of the constraints
through a weighted empirical mean of past samples. Surprisingly, we demonstrate that using a
UCB-based approach to estimate the constraints ensures optimal performance under both stochastic
and adversarial constraints. Our algorithm differs significantly from previous UCB-based approaches.
For instance, it guarantees no-regret even with adversarial rewards and stochastic constraints, unlike
previous works [2, 7, 23]. Moreover, it is the first UCB-like approach that provides an optimal
competitive ratio of 1 + 1/ρ with adversarial constraints, where ρ is the unknown Slater’s parameter.

Our algorithm consists of two simple components. The first is an adversarial regret minimizer
working on moving strategy sets. In particular, at each round, the regret minimizer chooses a strategy
in the current optimistic estimation of the feasible set, and is required to achieve no-regret with
respect to any strategy in the intersection of all feasibility set estimations. The second component is
a tool for estimating the feasible set using an optimistic weighted mean of previous samples. The
key challenge in this approach is designing adaptive weights that meet the different requirements
for stochastic and adversarial constraints. Intuitively, in stochastic settings, we aim to converge to
the (unweighted) empirical mean of the observed constraints. Conversely, in adversarial settings, we
should assign larger weights to recent samples to address time-dependent constraints.

Not only is our algorithm significantly simpler than previous approaches, with a clean and insightful
analysis, but it also provides better theoretical performance than primal-dual methods. Indeed, it is
the first best-of-both-worlds algorithm to provide bounds logarithmic in the number of constraints.
Moreover, in stochastic settings, it is the first algorithm to provide Õ(

√
T ) regret without requiring

Slater’s condition. Finally, it guarantees that the expected violation in the current round converges to
zero, making our algorithm “converge" to strategies that are feasible in expectation. This provides a
more stable and consistent control on the violations.

2 Model and Preliminaries

We address the problem faced by an agent aiming at maximizing its cumulative reward over a time
horizon T , while satisfying JmK long-term constraints.1 The agent has a set JKK of available actions
and, at each round t ∈ JT K, selects at ∈ JKK. The agent then observes the corresponding reward
ft(at) ∈ [0, 1] and a cost g(i)

t (at) ∈ [−1, 1], for each constraint i ∈ JmK. We define the cumulative
violation of the ith constraint as

V
(i)
T :=

∑
t∈JT K g

(i)
t (at),

1For any N ∈ N, we use JNK to denote the set {1, . . . , N}.
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while VT := maxi∈JmK V
(i)
T is the maximum violation across all constraints. At a high level, we

want to minimize the regret while keeping the violation of each constraint V (i)
T sublinear in T .

The focus of this paper is on handling both stochastic and adversarial constraints. Conversely, we
always assume the rewards to be generated up-front by an adversary; we do not treat explicitly the
situation where the rewards are generated i.i.d. because our guarantees are already tight for the harder
case of adversarial rewards.2 In the stochastic setting, we assume that gt = {g(i)

t }i∈JmK is drawn
i.i.d. from a fixed but unknown distribution G, and we let ḡ(i)(a) = Eg∼G [g(i)(a)] be the expected
cost of action a for the ith constraint. On the other hand, in the adversarial setting {gt}t∈JT K is an
arbitrary sequence of cost functions.

Let ∆K to be the set of discrete probability distributions over the set JKK. Then, at round t ∈ JT K,
given a randomized strategy xt ∈ ∆K , the expected learner reward is

∑
a∈JKK ft(a)xt(a) = 〈xt, ft〉.

Similarly, 〈xt, g(i)
t 〉 denotes the expected cost of the ith constraint. Finally, we use nt(a) to denote

the number of times arm a was played up to time t, i.e., nt(a) =
∑t
τ=1 I(aτ = a).

We want to design algorithms which achieve good performances in both the adversarial and the
stochastic setting. As it is customary in the literature, we compare our learning algorithm with
different benchmarks according to the setting.

Stochastic Benchmark In the stochastic setting, the constraints g(i)
t are i.i.d. samples with mean

ḡ(i) and thus we consider as benchmark the best fixed randomized strategy that satisfies the constraints
in expectation, which is a standard choice in bandits with constraints [11, 28, 16]. Formally, in the
stochastic setting, we can define the feasible sets X ?i and X ? as follows:

X ?i :=
{
x ∈ ∆K : 〈x, ḡ(i)〉 ≤ 0

}
and X ? := ∩i∈JmKX ?i .

Then, we can define the stochastic baseline as:

OPTS := max
x∈X?

∑
t∈JT K

〈x, ft〉.

We naturally assume the existence of safe mixed strategies, i.e., that X ? 6= ∅. This is equivalent to
assume the existence of a randomized strategy x∅ such that 〈x∅, ḡ(i)〉 ≤ 0 for all i. Notice that this
is a weaker assumption than the one commonly assumed by best-of-both-worlds algorithms in which
〈x∅, ḡ(i)〉 ≤ −ρ, where ρ is a strictly positive constant (see, e.g., [16, 11, 10]).

Adversarial Benchmark In the adversarial setting, {gt}t∈JT K is an arbitrary sequence of con-
straints. We consider as benchmark the best unconstrained strategy:

OPTA := max
x∈∆K

∑
t∈JT K

〈x, ft〉.

While this baseline has already been used [e.g., 11, 13]), other works on adversarial bandit with
constraints employ weaker baselines [e.g., 21, 16]. For instance, Castiglioni et al. [16] consider the
best fixed strategy which is feasible on average. However, we show that, despite using a stronger
baseline, we obtain a competitive ratio that is optimal even for the weaker baselines commonly
adopted in the literature [16, 10, 9].

2.1 Best-Of-Both-Worlds Guarantees

Our goal is to design learning algorithms that exhibit optimal guarantees both in the stochastic
and adversarial settings. In the stochastic setting, we are interested in minimizing the regret RT
w.r.t. OPTS:

RT = OPTS −
∑
t∈JT K ft(at),

2Indeed, when the constraints are stochastic, we obtain the state-of-the-art Õ(
√
T ) regret even with adversar-

ial rewards.
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Algorithm 1

Require: bonuses bt(a), weights w(i)
t,a and parameter β

1: Initialize regret minimizerR with β
2: for each step t = 1, . . . , T do
3: Estimation:
4: ĝ

(i)
t (a)←

∑
τ∈Tt−1,a

w
(i)
t,a(τ)g

(i)
τ (a) for all a ∈ JKK and i ∈ JmK

5: X̂ (i)
t ← {x ∈ ∆K : 〈x, ĝ(i)

t − bt〉 ≤ 0}
6: X̂t ← ∩i∈JmKX̂

(i)
t

7: Regret minimization:
8: Get prediction fromR on set X̂t: xt ← R(X̂t)
9: Sample at ∼ xt and receive {g(i)

t (at)}i∈JmK and ft(at)

and specifically we require both RT and VT to be in Õ(
√
T ) with high probability. This clearly

matches the standard Ω(
√
T ) lower bound that holds even without constraints [5].

In the (harder) adversarial setting, we pose the less ambitious goal of achieving a constant competitive
ratio with respect to OPTA, or equivalently sublinear α-regret with constant α. Formally, given an
α < 1, we define the α-regret as:

α-RT = α ·OPTA −
∑
t∈JT K ft(at).

As it is customary in the literature [15], the competitive ratio α obtained by our algorithms depends
on the following Slater’s parameter ρ:

ρ = − inf
a∈JKK

max
t∈JT K,i∈JmK

g
(i)
t (a). (1)

The parameter ρ is related to the existence of strictly-feasible actions, and only depends on the
constraints. Our definition is slightly stronger than the one in most previous works where the inf is
over randomized strategies. To guarantee the existence of a feasible strategy we assume that ρ ≥ 0.
Then, our goal is to guarantee that both VT and the α-regret, with α = ρ/ρ+1, belong to Õ(

√
T ) with

high probability. Note that this matches the lower bound of Bernasconi et al. [11].

3 Our Approach

In this section, we present the main components of our algorithm, while the following sections will
describe the specific components in details. We refer to Algorithm 1 for the pseudocode. At each
step t, the algorithm works in two phases: i) it estimates the feasible set, and ii) it plays a strategy in
the estimated set. Each phase requires a specific ingredient:

i) An estimator ĝ(i)
t of the costs functions g(i)

t that is used together with the optimistic bonus
bt to define the estimation of the feasible set defined as X̂t := ∩i∈JmKX̂

(i)
t . In the stochastic

case, we would like X̂t ⊇ X ?, while in the adversarial case our goal is to maintain a
sequence of sets that always contains a version of the action set X , properly scaled around
a∅ (see Equation (2) for a formal definition).

ii) A regret minimizer R for adversarial linear reward function that, at each round, takes in
input a convex set of feasible strategies X̂t ⊆ ∆K , and then selects a strategy xt ∈ X̂t. We
require the regret minimizer to achieve Õ(

√
KT ) regret with respect to any x ∈ ∩t∈JT KX̂t;

In the following we define the two phases more in details. Let Tt,a := {τ ≤ t : at = a} be the set
of rounds in which the algorithm plays action a. Then, at each round t, Algorithm 1 computes the
estimate

ĝ
(i)
t (a) =

∑
τ∈Tt−1,a

w
(i)
t,a(τ)gτ (a) ∀a ∈ JKK and i ∈ JmK
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Algorithm 2 No Regret on Moving Sets
Require: Parameter β > 0

1: Set γ = β/2
2: for each step t = 1, . . . , T do
3: Receive X̂t
4: x̂t(a)← xt−1(a)eβ(f̂t−1(a)−1) for all a ∈ JKK
5: xt ← ΠX̂t(x̂t) := arg minx∈X̂t B(x||x̂t)
6: Sample at ∼ xt
7: Observe ft(at) and set f̂t(a)← 1 for all a 6= at and f̂t(at)← 1− 1−ft(at)

xt(at)+γ

as the weighted mean of available past observations {g(i)
τ (a)}τ∈Jt−1K for each actions a ∈ JKK and

constraint i ∈ JmK, for some weights w(i)
t,a.3 Then, the estimates together with the optimistic bonus

{bt(a)}a∈JKK are used to define the moving sets X̂t, which are fed to the regret minimizerR which
in turn selects a point xt ∈ X̂t.

One crucial property that is required for the execution of the regret minimizerR is that all the sets X̂t
are non-empty (as otherwise the regret minimizer has no feasible strategies). To simplify exposition,
in the following sections we assume that the clean event C :=

{
X̂t 6= {∅} ∀t ∈ JT K

}
holds. In

Corollary 6.3, we prove that this event holds with high probability in the stochastic setting, while in
Theorem 5.2 we argue that it holds deterministically in the adversarial one.

In Algorithm 1 we left unspecified two crucial parts of our approach. The first is how to build the
regret minimizerR, and the second concerns how to actually generate the sets X̂t, i.e., the weights
w

(i)
t,a and the bonus bt(a). We delve into these details in Section 4 and Section 5, respectively.

4 No-regret on moving sets

We describe the regret minimizer R that exhibits no-regret with respect to any x ∈ ∩t∈JT KX̂t.
We achieve this via a simple modification to the EXP-IX algorithm of Neu [25] that provides
high probability results for multi-armed bandits via implicit exploration. More specifically, our
algorithm maintains a randomized strategy xt ∈ ∆K which is updated using the biased reward
estimate f̂t(a) as in Neu [25] and then projected onto X̂t according to the negative entropy Bregman
divergence B(x||y) =

∑
a∈JKK [x(a) log (x(a)/y(a))− x(a) + y(a)]. We refer to Algorithm 2 for the

pseudocode, and present here the main result of the Section.
Theorem 4.1. Let xt be selected accordingly to Algorithm 2 run with arbitrary sequence of convex

sets X̂t ⊆ ∆K with γ = β
2 and β =

√
log(K/δ1)
KT . Then, with probability at least 1− δ1 it holds that∑

t∈JT K

〈ft, x〉 − ft(at) ≤ 4
√
KT log(K/δ1), ∀x ∈

⋂
t∈JT K

X̂t.

This result establishes no-regret in the case of moving sets, taking as benchmark the optimal strategy
in the intersection of all sets. To exploit this result in Algorithm 1, we have to make sure that in both
the stochastic and adversarial setting the intersection of the sets X̂t contains “good” strategies. In the
stochastic setting, we show that with high probability it includes X ?, while, in the adversarial setting,
it includes a strategy with utility ρ/1+ρ ·OPTA.

5 How to build the sets X̂t

In this section, we show how to design estimations X̂t of the feasible sets that, surprisingly, are
effective both in stochastic and adversarial settings. Indeed, the main challenge is to design sets X̂t

3If a given action has been played at least once, we require
∑
τ∈Tt−1,a

w
(i)
t,a(τ) = 1, i.e., that ĝ(i)t (a) is

actually a weighted mean. Otherwise, the estimation is simply set to 0.
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that accommodate the different requirements of the two settings. First, in Section 5.1, we discuss
how to set the optimistic bonuses bt and then in Section 5.2 we focus on how to set the weights w(i)

t,a.

5.1 How to set the optimistic bonus

The optimistic bonuses have the main purpose of balancing the estimation error in the stochastic
setting. As the following lemma show, we simply need that |ĝ(i)

t (a) − ḡ(i)(a)| ≤ bt(a) with high
probability. Indeed, this is sufficient to show that X ? ⊆ ∩t∈JT KX̂t in the stochastic setting.

Theorem 5.1. Consider the stochastic setting. Given any δ > 0, let bt(a) be such that with probability
at least 1− δ it holds:

|ĝ(i)
t (a)− ḡ(i)(a)| ≤ bt(a) ∀t ∈ JT K, i ∈ JmK, a ∈ JKK.

Then, it holds X ? ⊆ ∩t∈JT KX̂t with probability at least 1− δ.

Even tough it is crucial in the stochastic setting, it turns out that in the adversarial setting the optimistic
bonus bt is not really needed. Indeed, as we will show in the following, we are interested in obtaining
no-regret with respect to the set X ?∅ which is obtained via interpolation of points in X and the strictly
feasible actions a∅. Let x∅ be such that x∅(a∅) = 1 and x∅(a) = 0 for all a 6= a∅. Formally:

X ?∅ :=
1

1 + ρ
{x∅}+

ρ

1 + ρ
X , (2)

where A+B is the Minkowski sum between sets and αA indicates the set that contains each element
of A multiplied by α.4 The following theorem proves that X ?∅ ⊆ X̂t for all t.

Theorem 5.2. In the adversarial setting, it holds X ?∅ ⊆ X̂t for all t ∈ JT K.

Notice that having no-regret with respect to the set X ?∅ is not sufficient to achieve no-regret in the
adversarial setting. Nonetheless, we will show that this is sufficient to guarantee no-α-regret, for
α = ρ/1+ρ with respect to any strategy x ∈ ∆K .

5.2 How to set the weights

We focus on the design of estimators ĝ(i)
t that are good approximations of the real functions g(i)

t .
Algorithm 1 computes the estimators ĝ(i)

t by using a weighted mean of all past observations:

ĝ
(i)
t (a) =

∑
τ∈Tt−1,a

w
(i)
t,a(τ)g

(i)
τ (a) ∀t ∈ JT K, a ∈ JKK, i ∈ JMK.

However, to simplify the exposition, we use the following equivalence between online gradient

descent (OGD) on quadratic losses ĝ(i)
t (at) 7→ 1

2

(
g

(i)
t (at)− ĝ(i)

t (at)
)2

and weighted means. In

particular this equivalence is realized by observing that such loss has gradient g(i)
t (at)− ĝ(i)

t (at).
Lemma 5.3. Given any sequence {yt}t∈JT K such that y1 = 0 and any sequence of learning rates
{ηt}t∈JT K such that η1 = 1, let {ŷt}t∈JT K be the estimator updated as:

ŷt+1 = ŷt + ηt(yt − ŷt).

Then, it holds that ŷt =
∑t−1
τ=1 yτwt(τ) where wt(τ) = ητ

∏t−1
k=τ+1(1 − ηk). Moreover,∑t−1

τ=1 wt(τ) = 1 for any t ≥ 2.

Clearly, in the OGD interpretation of our update, we only update ĝ(i)
t (a) only when at = a, and thus

we only need to define learning rates for action a for the times t in which at = a. Based on this
observation, we are going to update ĝ(i)

t (a) as{
ĝ

(i)
t+1(at) = ĝit(at) + η

(i)
t (at)

(
g

(i)
t (at)− ĝit(at)

)
ĝ

(i)
t+1(a) = ĝ

(i)
t (a) ∀a 6= at.

4Formally Minkowski sum between sets A+B is defined as A+B := {a+ b : a ∈ A, b ∈ B}.
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Thus, given an action a ∈ JKK and a time t ∈ JT K the corresponding weights {w(i)
t,a(τ)}τ∈Tt−1,a

are:

w
(i)
t,a(τ) = η(i)

τ (a)
∏

k∈Tt−1,a:k>τ

(1− η(i)
k (a)) ∀τ ∈ Tt−1,a

We now proceed to give two notable examples on how to instantiate the learning rates and recover
commonly used estimators such as the empirical mean and the exponentially weighted mean.5

Proposition 5.4. If η(i)
t (at) = 1

nt(at)
for each τ ∈ Tt−1,a, then w(i)

t,a(τ) = 1
nt−1(a) and we recover

the empirical mean estimator for ĝ(i)
t (a) = 1

nt−1(a)

∑
τ∈Tt−1,a

g
(i)
τ (a).

Proposition 5.5. If η(i)
t (at) = η then

w
(i)
t,a(τ) = η(1− η)|{k∈Tt−1,a:k>τ}|

for each τ ∈ Tt−1,a and we recover an exponentially weighted average estimator for ĝ(i)
t (a).

As it will turns out, these are the two extreme cases that we want to interpolate between. Indeed,
the empirical mean estimator is particularly effective in the stochastic case but ineffective in the
adversarial case, while the converse happens with the exponentially weighted estimator.

Now, we show that the OGD interpretation is particularly useful to bounds the violations suffered by
the algorithm. First, we define the violations in an interval [t1, t2] := {t ∈ JT K : t1 ≤ t ≤ t2} as:

V
(i)
[t1,t2] =

t2∑
t=t1

g
(i)
t (at).

Then, in the following lemma we show that the violations in the interval are related to the variation of
the estimates ĝ(i)

t (a).
Theorem 5.6. Given an interval [t1, t2] ⊆ JT K, an i ∈ JmK, and a δ > 0, with probability at least
1− δ it holds:

V
(i)
[t1,t2] ≤

∑
a∈JKK

∑
τ∈Tt2,a∩[t1,t2]

1

η
(i)
τ (a)

(
ĝ

(i)
τ+1(a)− ĝ(i)

τ (a)
)

+

t2∑
τ=t1

〈xτ , bτ 〉+ 4
√

(t2 − t1) log(1/δ).

By a simple telescoping argument, we have the following corollary, which holds whenever the
learning rates are non-increasing within a time interval. Let `(a, [t1, t2]) be the last rounds in the
interval [t1, t2] in which action a is played.
Corollary 5.7. Given an interval [t1, t2] ⊆ JT K, a i ∈ JmK, and a δ > 0, assume that for any
a ∈ JKK it holds η(i)

τ (a) ≥ η(i)
τ ′ (a) ∀τ < τ ′ ∈ Tt2,a ∩ [t1, t2]. Then, with probability at least 1− δ it

holds:

V
(i)
[t1,t2] ≤

∑
a∈JKK

2

η
(i)
`(a,[t1,t2])(a)

+

t2∑
τ=t1

〈xτ , bτ 〉+ 4
√

(t2 − t1) log(1/δ).

Corollary 5.7 shows how to bound the violation as a function of the learning rates η(i)
t and the bonus

terms bτ . The following lemma shows how to bound the second term of the violations depending on
the structure of the bonus terms.
Lemma 5.8. Given a c > 0, an α ∈ (0, 1), a t ∈ JT K, and a δ > 0, let bt(a) = c

nt(a)α for all
a ∈ JKK. Then, with probability at least 1− δ, it holds:

t∑
τ=1

〈xτ , bτ 〉 ≤
c

1− α
Kαt1−α + 4

√
t log(1/δ).

In this section, we saw how the choice of the learning rates of the estimator affects the estimators. In
the following section, we will see how to adaptively set those learning rates to handle both stochastic
and adversarial settings.

5The proof of the first proposition can be found in Appendix D, while the proof of the second is straightforward
and thus it is omitted.
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6 Adaptive learning rates

The previous section highlights the main difficulties of obtaining best-of-both-world algorithms: we
need to set the weights w(i)

t,a (or equivalently - by Lemma 5.3 - the learning rates η(i)
t (at)) and the

optimistic bonuses bt so that they meet, at the same time, the requirements needed by the stochastic
and the adversarial settings.

We start presenting two possible choices and show that they fail either in the stochastic or the
adversarial setting. Then, we show how adaptive learning rates combine the strengths of both
approaches. The first, natural, choice of setting the learning rate is to use an exponentially weighted
estimator, i.e., choose η(i)

t (at) = 1/
√
T . With this choice, we can apply a weighted version of Azuma-

Hoeffding inequality and find that |ĝ(i)
t (a)− ḡ(i)(a)| ∈ Õ

(
nt(a)−1/4

)
, with high probability. Thus,

as discussed in Section 5.1, we would need to define bt(a) ∈ Õ
(
nt(a)−1/4

)
, which, by Corollary 5.7

and Lemma 5.8 would imply a suboptimal Õ(T 3/4) rate for the violations.

The second option is to set η(i)
t (at) = 1/nt(at). In the stochastic setting, we have an optimal rate

of concentration of the terms |ĝ(i)
t (a) − ḡ(i)(a)| ∈ Õ

(
nt(a)−1/2

)
as, by Proposition 5.4, this is

equivalent to compute the empirical mean. However, this second option fails disastrously in the
adversarial setting as highlighted in Corollary 5.7, where the first component of the violations
becomes linear in T . Intuitively, a learning rate of order 1/nt(a) makes the update of the estimates too
slow when the underlying constraints change, as it does happen in the adversarial setting.

This trade-off forces us to employ adaptive learning rates. Our idea is to use learning rates of
the order 1/nt(a) with an adaptive multiplicative term that depends on the current violation of the
constraint. Formally, we use learning rates:

η
(i)
t (at) :=

1

nt(a)

(
1 + Γ

(i)
t

)
,

where Γ
(i)
t is a bonus term defined as

Γ
(i)
t :=

[
V

(i)
t−1 − 21

√
Kt log(1/δ2)

]21
√
Kt log(1/δ2)

0
,

and [x]ba := min(max(x, a), b) is the clipping of x between a and b. Moreover, we set the exploration
bonus as

bt(a) =

√
2 log(2/δ2)

nt−1(a)
.

The following theorem shows that such approach guarantees Õ(
√
KT ) violations in both adversarial

and stochastic settings.
Theorem 6.1. Both in the stochastic and the adversarial setting, with probability at least 1−2mT 2δ2
it holds that

Vt ≤ 53
√
Kt log(2/δ2) ∀t ∈ JT K.

The previous theorem shows that this choice of learning rates is sufficient to guarantee optimal
bounds on the violations. However, to achieve this result we are setting bt(a) ∈ Õ(nt(a)−1/2). As we
showed in theorem 5.1, this requires a concentration on the estimates |ĝ(i)

t (a)− ḡ(i)
t (a)| of the same

magnitude (in the stochastic setting). This is crucially needed to ensure that the regret minimizerR
provides the desired guarantees and that the event C defined in Section 3 actually holds with high
probability.
Lemma 6.2. In the stochastic setting, with probability at least 1− 5mKTδ2, it holds that:

|ĝ(i)
t (a)− ḡ(i)

t (a)| ≤ bt(a) ∀a ∈ JKK, t ∈ JT K, i ∈ JmK

The proof of the previous result relies on the fact that in the stochastic case the bonus Γ
(i)
t does not

“kick in” ensuring that η(i)
t (a) = 1/nt(a). Thus, ĝ(i)

t is the empirical average of past observations. The
previous result, together with Theorem 5.1 proves the following corollary.
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Corollary 6.3. In the stochastic setting, with probability at least 1−5mKTδ2, it holds that X ? ∈ X̂t
for all t ∈ JT K.

This proves that the clean event C holds with high probability, as promised in Section 3.

7 Putting everything together

Now, we have everything in place to easily prove the our main theorems. First, we define the
parameters δ1 = δ1(ε) and δ2 = δ2(ε) in order to guarantee that our theorems hold with probability
at least 1− ε. In particular, we set δ1(ε) = ε/2, where we recall that δ1 is the parameter used to set
β and γ in Algorithm 2, and δ2(ε) = ε/(14mKT 2), where δ2 is used to set the optimistic bonus and
learning rate of Algorithm 1.

In the stochastic setting, the violation guarantees directly follow from Theorem 6.1, while the regret
guarantee follows by combining Theorem 4.1 and Corollary 6.3. Formally:

Theorem 7.1. In the stochastic setting, for any ε > 0 Algorithm 1 guarantees that with probability at
least 1− ε:

RT ≤ 4
√
KT log(2K/ε) and Vt ≤ 53

√
Kt log(28mKT 2/ε) ∀t ∈ JT K.

Now, we turn to the adversarial setting. Theorem 6.1 guarantee Õ(
√
T ) violations even with

adversarial constraint, while the regret guarantees follows by combining Theorem 5.2 and Theorem 4.1

Theorem 7.2. In the adversarial setting, for any ε > 0 Algorithm 1 guarantees that with probability
at least 1− ε:

α-RT ≤ 4
√
KT log(2K/ε) and Vt ≤ 53

√
Kt log(28mKT 2/ε) ∀t ∈ JT K,

where α = ρ/(1+ρ).

Note that in both settings, the regret upper bound is of order Õ(
√
KT ) and it is independent from

the number of constraints m, while the violations are of order Õ(
√
KT log(m)) and depend only

logarithmically on m. This is in contrast to the other best-of-both-world algorithms for bandits with
long term constraints, based on primal-dual methods, in which both the regret and the violations
depends polynomially in m.

Another interesting characteristic of our methodology is that we guarantee an anytime bound on the
constraint violation. Indeed, this matches the guarantees provided by the most recent primal-dual
methods [11, 1] that, however, require weakly-adaptive underlying regret minimizers.

7.1 Convergence rate in the stochastic setting

To conclude, we point to a nice byproduct of our analysis. In the stochastic setting, we can easily
prove a sort of “convergence rate” of xt to the set X ?. Formally, we can prove that positive
violations are bounded by Õ(

√
Kt logm) as long as we consider expected violations. Let us define

x+ := max(x, 0) and

V+
t := max

i∈JmK

t∑
τ=1

[
〈xτ , ḡ(i)

τ 〉
]+
.

Then, we can state the following theorem:

Theorem 7.3. Algorithm 1, in the stochastic setting, guarantees that with probability at least 1− ε,
it holds that:

V+
t ≤ 16

√
Kt log(28mKT 2/ε) ∀t ∈ JT K.

Intuitively, our result shows that our algorithm plays only a sublinear number of times “far” from the
set X ?, or that our algorithm plays a linear number of times “close” to the set X ?. This is a much
stronger result then just guaranteeing that VT is sublinear, as in that case it might be a linear number
of times the algorithm plays “far” from X ? as long as it plays strictly inside of X ? often enough.
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A Further Related Works

Best-of-Both-Worlds. A long line of work has investigated Best-of-Both-Worlds algorithms for
bandits without constraints. These algorithms aim to achieve an instance-dependent logarithmic
regret bound in stochastic environments, while also ensuring the worst-case Θ(

√
T ) regret bound that

characterizes the adversarial settings [14, 4, 27, 26, 29, 30]. Although our focus is on the generation
model of the constraints, our motivation in this paper is affine: retaining the best of the stochastic
(sublinear regret with respect to the optimal dynamic policy) and adversarial world (tight competitive
ratio with respect to the adversarial benchamrk). Furthermore, our idea of setting an adaptive learning
rate that forces the learning algorithm to interpolate between an adversarial and a stochastic routine is
reminescent of some of the techniques adopted in, e.g., Bubeck and Slivkins [14].

Bandits with Knapsacks. The (stochastic) BwK problem, where the rewards ft as well as the git
are drawn i.i.d. from a non-negative distribution (so that the budget available for each resource
can only decrease over time) is formally introduced and solved in Badanidiyuru et al. [6] (see also
its journal version [7]). Agrawal and Devanur [2] studies a more general stochastic setting, which
subsumes knapsack and exhibit optimal guarantees via optimism in the face of uncertainty [see also
3]. Moving to the adversarial BwK problem (which corresponds to our model when the git are all
non-negative), an optimal solution is proposed in Immorlica et al. [20] [see also 21]; there, the authors
propose the LagrangeBwK framework, which has a natural interpretation: arms can be thought of
as primal variables, and resources as dual variables. The framework works by setting up a repeated
two-player zero-sum game between a primal and a dual player, and by showing convergence to a
Nash equilibrium of the expected Lagrangian game. Differently from the stochastic version, the
adversarial BwK does not admit no-regret algorithms, but Θ(log T ) competitive ratio. In a subsequent
work, [22] provides a new analysis obtaining a O(logm log T ) competitive ratio, which is optimal
both in the time horizon T and in the number of resources m (and improves on the O(m log T ) of
Immorlica et al. [20, 21]). In the special case in which budgets are Ω(T ), Castiglioni et al. [15]
further improves the competitive ratio to 1/ρ where ρ is the per-iteration budget.

More general constraints. Castiglioni et al. [15] studies a setting with general constraints, and
show how to adapt the LagrangeBwK framework to obtain best-of-both-worlds guarantees when
Slater’s parameter is known a priori. Similar guarantees are also provided, in the stochastic setting,
by Slivkins et al. [28], which then extend the results to the contextual model. Finally, Castiglioni et al.
[17] introduces the use of weakly adaptive regret minimizers within the LagrangeBwK framework,
and provides guarantees in the specific case of one budget constraint and one return-on-investments
constraint.

Other related works. In an effort to bridge the results for adversarial and stochastic BwK, Fikioris
and Tardos [18] investigates a data generation model that interpolate between the fully stochastic and
the fully adversarial setting, depending on the magnitude of fluctuations in expected rewards and
resources consumption across rounds. A similar effort is undertaken in Liu et al. [24], that study a
non-stationary setting and provide no-regret guarantees against the best dynamic policy through a
UCB-based algorithm. A recent line of work also investigates the natural situation where resources
can be replenished in certain rounds (as also captured in our model) [23, 13, 12]. Finally, a related
line of works is the one on online allocation problems with fixed per-iteration budget, where the input
pair of reward and costs is observed before the learner makes a decision [10, 8].

B Proofs omitted from Section 4

Theorem 4.1. Let xt be selected accordingly to Algorithm 2 run with arbitrary sequence of convex

sets X̂t ⊆ ∆K with γ = β
2 and β =

√
log(K/δ1)
KT . Then, with probability at least 1− δ1 it holds that

∑
t∈JT K

〈ft, x〉 − ft(at) ≤ 4
√
KT log(K/δ1), ∀x ∈

⋂
t∈JT K

X̂t.
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Proof. Let us define the negative entropy for a vector x ∈ RK≥0 as:

Ψ(x) :=
∑
a∈JKK

x(a) (log(x(a))− 1)

and the Bregman divergence using Ψ can be written as

B(x||y) := Ψ(x)−Ψ(y)− 〈∇Ψ(y), x− y〉.

For the Bregman divergence it holds the following:

Claim B.1 ([19]). For any z1, z2, and z3, it holds:

B(z1||z2) +B(z2||z3)−B(z1||z3) = 〈z1 − z2,∇Ψ(z3)−∇Ψ(z2)〉.

Moreover, given z, define z′ = arg minz̄∈KB(z̄||z). Then:

B(z̃||z′) ≤ B(z′||z) +B(z̃||z′) ≤ B(z̃||z) ∀z̃ ∈ K.

At this point, is more convenient to work with losses rather then rewards. Define `t(a) := 1− ft(a)

and ˆ̀
t(a) := 1− f̂t(a). Note that:

ˆ̀
t(a) = 1− f̂t(a) =

{
0 if a 6= at
1−ft(a)
xt(a)+γ if a = at.

Then, it is easy to verify that ∇Ψ(x) = log(x) in which log(x) has to be interpreted to be applied
entry-wise. Simple calculations also show that β ˆ̀

t = log(xt) − log(x̂t+1). Thus, we can apply
Claim B.1 with z1 = x, z2 = xt and z3 = x̂t+1 and this gives us the following:

β〈xt − x, ˆ̀
t〉 = B(x||xt) +B(xt||x̂t+1)−B(x||x̂t+1). (3)

Moreover using the second part of Claim B.1 in which z = x̂, z′ = xt, z̃ = x, and K = X̂t, we can
conclude that B(x||xt) ≤ B(x||x̂t). Notice that here we use x ∈ X̂t for each t. Then, we have the
following chain of inequalities:

β
∑
t∈JT K

〈xt − x, ˆ̀
t〉 =

∑
t∈JT K

B(x||xt) +B(xt||x̂t+1)−B(x||x̂t+1) (By Equation (3))

= B(x||x1)−B(x||x̂T+1) +

T−1∑
t=2

(B(x||xt)−B(x||x̂t)) +
∑
t∈JT K

B(xt||x̂t+1)

≤ B(x||x1) +
∑
t∈JT K

B(xt||x̂t+1) (B is non-negative and B(·||xt)≤B(·||x̂t))

= B(x||x1) +
∑

t∈JT−1K

B(xt||x̂t+1)

Combining the two we can find that:

β
∑
t∈JT K

〈xt − x, ˆ̀
t〉 ≤

∑
t∈JT K

[B(x||x̂t) +B(xt||x̂t+1)−B(x||x̂t+1)] (4)

≤ B(x||x1) +
∑
t∈JT K

B(xt||x̂t+1) (5)
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Now we analyze the term B(xt||x̂t+1).
B(xt||x̂t+1) ≤ B(xt||x̂t+1) +B(x̂t+1||xt)

= 〈xt − x̂t+1,∇Ψ(xt)−∇Ψ(x̂t+1)〉 (Definition of B(·||·))

= β〈xt − x̂t+1, ˆ̀
t〉 (∇Ψ(x) = log(x) and β ˆ̀

t = log(xt)− log(x̂t+1))

= β
∑
a∈JKK

xt(a)(1− e−β ˆ̀
t(a))ˆ̀

t(a)

≤ β2
∑
a∈JKK

xt(a)ˆ̀
t(a)2 (1− e−x ≤ x)

≤ β2
∑
a∈JKK

1− ft(a)

xt(a) + γ
xt(a)ˆ̀

t(a)

≤ β2
∑
a∈JKK

ˆ̀
t(a),

where, in the last inequality, we use that xt(a)/(xt(a)+γ) is at most 1. Thus, by choosing x1(a) = 1/K
for all a, we have that B(x||x1) ≤ log(K) and thus:∑

t∈JT K

〈xt − x, ˆ̀
t〉 ≤

log(K)

β
+ β

∑
t∈JT K

∑
a∈JKK

ˆ̀
t(a) (6)

Form [25, Corollary 1] we know that with probability at least 1− δ1 we have:∑
t∈JT K

ˆ̀
t(a)− (1− ft(a)) ≤ log(K/δ1)

2γ
∀a ∈ JKK. (7)

Moreover, it is easy to verify that:

1− ft(at) =
∑
a∈JKK

I(at = a)(1− ft(a))
xt(a) + γ

xt(a) + γ

=
∑
a∈JKK

ˆ̀
t(a)xt(a) + γ

∑
a∈JKK

`t(a)I(at = a)

xt(a) + γ

= 〈xt, ˆ̀
t〉+ γ

∑
a∈JKK

ˆ̀
t(a) (8)

The regret is with probability at least 1− δ1:∑
t∈JT K

[〈x, ft〉 − ft(at)]

=
∑
t∈JT K

[(1− ft(at))− (1− 〈x, ft〉)]

=
∑
t∈JT K

[(1− ft(at))− 〈x, ˆ̀
t〉] +

∑
t∈JT K

[〈x, ˆ̀
t〉 − (1− 〈x, ft〉)]

≤
∑
t∈JT K

〈xt − x, ˆ̀
t〉+

∑
t∈JT K

[〈x, ˆ̀
t〉 − (1− 〈x, ft〉)] + γ

∑
t∈JT K

∑
a∈JKK

ˆ̀
t(a) (Equation (8))

≤ log(K)

β
+

log(K/δ1)

2γ
+ (γ + β)

∑
t∈JT K

∑
a∈JKK

ˆ̀
t(a) (Equation (6) and Equation (7))

≤ log(K)

β
+

log(K/δ1)

2γ
+ (γ + β)

 ∑
t∈JT K

∑
a∈JKK

(1− ft(a)) +K
log(K/δ1)

2γ


≤ log(K)

β
+

log(K/δ1)

2γ
+ (γ + β)KT + (γ + β)K

log(K/δ1)

2γ

=
log(K)

β
+

log(K/δ1)

β
+ 2βKT + 2Klog(K/δ1)

14



where in the last inequality we used that β = 2γ. By taking β =
√

log(K/δ1)
KT we obtain, that with

probability at least 1− δ1: ∑
t∈JT K

[〈x, ft〉 − ft(at)] ≤ 4
√
KT log(K/δ1),

as desired.

C Proofs omitted from Section 5.1: How to set the optimistic bonus

Theorem 5.1. Consider the stochastic setting. Given any δ > 0, let bt(a) be such that with probability
at least 1− δ it holds:

|ĝ(i)
t (a)− ḡ(i)(a)| ≤ bt(a) ∀t ∈ JT K, i ∈ JmK, a ∈ JKK.

Then, it holds X ? ⊆ ∩t∈JT KX̂t with probability at least 1− δ.

Proof. In the following, we assume that the condition in the statement of the theorem holds. Hence,
our result with hold with probability 1 − δ as promised. Let x ∈ X ?i . Consider a t ∈ JT K and an
i ∈ JmK. Then, consider the following inequalities:

〈x, ĝ(i)
t 〉 = 〈x, ĝ(i)

t − ḡ(i)〉+ 〈x, ḡ(i)〉

≤ 〈x, ĝ(i)
t − ḡ(i)〉 (x ∈ X ?i )

=
∑
a∈JKK

x(a)(ĝ
(i)
t (a)− ḡ(i)(a))

≤ 〈x, bt〉.

Thus, 〈x, ĝ(i)
t − bt〉 ≤ 0 which, by definition, proves that x ∈ X̂ (i)

t . This concludes the proof.

Theorem 5.2. In the adversarial setting, it holds X ?∅ ⊆ X̂t for all t ∈ JT K.

Proof. In the adversarial setting, by Equation (1) we have that

g
(i)
t (a∅) ≤ −ρ,

for all t ∈ JT K and constraint i ∈ JmK. Moreover, for each t ∈ JT K, i ∈ JmK, and a ∈ JKK, it holds

ĝ
(i)
t (a) =

∑
τ∈Tt−1,a

w
(i)
t,a(τ) g(i)

τ (a)

and
∑
τ∈Tt−1,a

w
(i)
t,a(τ) = 1. Then, for all t ∈ JT K and constraint i ∈ JmK, ĝ(i)

t (a∅) ≤ −ρ and

ĝ
(i)
t (a) ≤ 1 for each a 6= a∅. 6 Thus, we can consider the following inequalities for any x̃ ∈ X ?∅:

〈x̃, ĝ(i)
t 〉 =

1

1 + ρ
ĝ

(i)
t (a∅) +

ρ

1 + ρ
〈x, ĝ(i)

t 〉

≤ 1

1 + ρ
(−ρ) +

ρ

1 + ρ

≤ 0,

thus proving that x̃ ∈ X̂t.
6Notice that these inequalities hold only for action played at least one time. Otherwise, similar inequalities

continue to be true thanks to the optimistic bonus bt.
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D Proofs omitted from Section 5.2: How to set the weights

Lemma 5.3. Given any sequence {yt}t∈JT K such that y1 = 0 and any sequence of learning rates
{ηt}t∈JT K such that η1 = 1, let {ŷt}t∈JT K be the estimator updated as:

ŷt+1 = ŷt + ηt(yt − ŷt).

Then, it holds that ŷt =
∑t−1
τ=1 yτwt(τ) where wt(τ) = ητ

∏t−1
k=τ+1(1 − ηk). Moreover,∑t−1

τ=1 wt(τ) = 1 for any t ≥ 2.

Proof. The first part of the statement is trivial as it can be easily checked that:

ŷt =

t−1∑
τ=1

yτ

(
ητ

t−1∏
k=τ+1

(1− ηk)

)
.

Then, we prove the second part of the lemma by induction on t. The base case holds trivially as
w2(1) = η1 = 1. Moreover, assuming

∑t−2
τ=1 w

t
τ = 1, it holds:

t−1∑
τ=1

wt(τ) =

t−2∑
τ=1

wt−1(τ)(1− ηt−1) + wt(t− 1) = (1− ηt−1) + ηt−1 = 1,

where in the second-to-last equality we use the inductive hypothesis. This concludes the proof.

Proposition 5.4. If η(i)
t (at) = 1

nt(at)
for each τ ∈ Tt−1,a, then w(i)

t,a(τ) = 1
nt−1(a) and we recover

the empirical mean estimator for ĝ(i)
t (a) = 1

nt−1(a)

∑
τ∈Tt−1,a

g
(i)
τ (a).

Proof. Consider an a ∈ JKK, an i ∈ JmK, and a t ∈ JT K. Then, by applying Lemma 5.3 to the set of
rounds Tt−1,a we have that:

w
(i)
t,a(τ) =

1

nτ (a)

∏
k∈Tt−1,a:k>τ

(
1− 1

nk(a)

)
∀τ ∈ Tt−1,a.

Now, we show that ∏
k∈Tt−1,a:k>τ

(
1− 1

nk(a)

)
=

∏
k∈Tt−1,a:k>τ

nk(a)− 1

nk(a)

=

nt−1(a)∏
j=nτ (a)+1

j − 1

j

=
nτ (a)

nt−1(a)
,

and thus w(i)
t,a(τ) = 1

nt−1(a) , as desired.

Theorem 5.6. Given an interval [t1, t2] ⊆ JT K, an i ∈ JmK, and a δ > 0, with probability at least
1− δ it holds:

V
(i)
[t1,t2] ≤

∑
a∈JKK

∑
τ∈Tt2,a∩[t1,t2]

1

η
(i)
τ (a)

(
ĝ

(i)
τ+1(a)− ĝ(i)

τ (a)
)

+

t2∑
τ=t1

〈xτ , bτ 〉+ 4
√

(t2 − t1) log(1/δ).

Proof. First, applying Lemma G.1, we have that with probability 1− δ it holds:

t2∑
τ=t1

〈g(i)
τ , xτ 〉 ≥

t2∑
τ=t1

g(i)
τ (aτ )− 4

√
(t2 − t1) log(1/δ) (9)
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Consider the following chain of inequalities:

V
(i)
[t1,t2] =

t2∑
τ=t1

g(i)
τ (aτ )

≤
t2∑

τ=t1

g(i)
τ (aτ )−

t2∑
τ=t1

〈ĝ(i)
τ , xτ 〉+

t2∑
τ=t1

〈xτ , bτ 〉 (xτ ∈ X̂τ )

≤
t2∑

τ=t1

(
g(i)
τ (aτ )− ĝ(i)

τ (aτ )
)

+

t2∑
τ=t1

〈xτ , bτ 〉+ 4
√

(t2 − t1) log(1/δ) (Equation (9))

=
∑
a∈JKK

∑
τ∈Tt2,a∩[t1,t2]

(g(i)
τ (a)− ĝ(i)

τ (a)) +

t2∑
τ=t1

〈xτ , bτ 〉+ 4
√

(t2 − t1) log(1/δ)

=
∑
a∈JKK

∑
τ∈Tt2,a∩[t1,t2]

ĝ
(i)
τ+1(a)− ĝ(i)

τ (a)

η
(i)
τ (a)

+

t2∑
τ=t1

〈xτ , bτ 〉+ 4
√

(t2 − t1) log(1/δ),

where the last equality follows by the definition of the update:

ĝ
(i)
τ+1(a) =

(
1− η(i)

τ (a)
)
ĝ(i)
τ (a) + η(i)

τ (a)g(i)
τ (a) for a = aτ .

This concludes the proof.

Corollary 5.7. Given an interval [t1, t2] ⊆ JT K, a i ∈ JmK, and a δ > 0, assume that for any
a ∈ JKK it holds η(i)

τ (a) ≥ η(i)
τ ′ (a) ∀τ < τ ′ ∈ Tt2,a ∩ [t1, t2]. Then, with probability at least 1− δ it

holds:

V
(i)
[t1,t2] ≤

∑
a∈JKK

2

η
(i)
`(a,[t1,t2])(a)

+

t2∑
τ=t1

〈xτ , bτ 〉+ 4
√

(t2 − t1) log(1/δ).

Proof. We assume that Theorem 5.6 holds, and hence our statement holds with probability 1 − δ.
Then, to prove the statement it is sufficient to show that∑

a∈JKK

∑
τ∈Tt2,a∩[t1,t2]

1

η
(i)
τ (a)

(
ĝ

(i)
τ+1(a)− ĝ(i)

τ (a)
)
≤
∑
a∈JKK

∑
τ∈Tt2,a∩[t1,t2]

1

η
(i)
t2 (a)

.

Fix any a ∈ JKK, and let k = |Tt2,a ∩ [t1, t2]| be the number of times action a is played in the
interval [t1, t2]. Moreover, let τ(j) be the rounds in which action a is played the j-th time in the
interval [t1, t2]. Then:∑
τ∈Tt2,a∩[t1,t2]

1

η
(i)
τ (a)

(
ĝ

(i)
τ+1(a)− ĝ(i)

τ (a)
)

=
∑

j∈Jk−1K

1

η
(i)
τ(j)(a)

(
ĝ

(i)
τ(j+1)(a)− ĝ(i)

τ(j)(a)
)

+
1

η
(i)
τ(k)(a)

(
ĝ

(i)
τ(k)+1(a)− ĝ(i)

τ(k)(a)
)

≤
∑

j∈Jk−1K

 1

η
(i)
τ(j+1)(a)

ĝ
(i)
τ(j+1)(a)− 1

η
(i)
τ(j)(a)

ĝ
(i)
τ(j)(a)

+
1

η
(i)
τ(k)(a)

(
ĝ

(i)
τ(k)+1(a)− ĝ(i)

τ(k)(a)
)

=
1

η
(i)
τ(k)(a)

ĝ
(i)
τ(k)+1(a)− 1

η
(i)
τ(1)(a)

ĝ
(i)
τ(1)(a)

≤ 2

η
(i)
τ(k)(a)

=
2

η
(i)
`(a,[t1,t2])(a)

Summing over all the actions we obtain the desired inequality.
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Lemma 5.8. Given a c > 0, an α ∈ (0, 1), a t ∈ JT K, and a δ > 0, let bt(a) = c
nt(a)α for all

a ∈ JKK. Then, with probability at least 1− δ, it holds:

t∑
τ=1

〈xτ , bτ 〉 ≤
c

1− α
Kαt1−α + 4

√
t log(1/δ).

Proof. Consider the following inequalities:

t∑
τ=1

bτ (aτ ) = c
∑
a∈JKK

∑
τ∈JtK

1

nτ (a)α
I(aτ = a)

= c
∑
a∈JKK

nt(a)∑
k=1

1

kα

≤ c

1− α
∑
a∈JKK

nt(a)1−α (
∑N
k=1 k

−α ≤
∫ N

0
x−αdx)

≤ c

1− α
Kαt1−α (Jensen’s inequality)

The proof is concluded by using Lemma G.1.

E Proofs omitted from Section 6

Theorem 6.1. Both in the stochastic and the adversarial setting, with probability at least 1−2mT 2δ2
it holds that

Vt ≤ 53
√
Kt log(2/δ2) ∀t ∈ JT K.

Proof. We prove that given an i ∈ JmK, it holds:

V
(i)
t ≤ 53

√
Kt log(2/δ2) ∀t ∈ JT K

with probability 1− 2T 2δ2. Then, a union bound over i completes the proof.

Given an i ∈ JmK, we first assume some high-probability events. In particular, we assume that
Corollary 5.7 with δ = δ2 holds for any interval, and that Lemma 5.8 with δ = δ2 holds for all t ∈ JT K.
This happens with probability at least 1−2T 2δ2. We consider two cases. If V (i)

t ≤ 53
√
KT log(2/δ2)

for all t ∈ JT K, then the statement it is trivially satisfied. Otherwise, there exists an a time t̄ for
which V (i)

t̄ ≥ 53
√
Kt log(1/δ2). Clearly, this implies that there exists a t < t̄ such that V (i)

t ≥
42
√
Kt log(2/δ2) for all t ∈ [t, t̄] and V (i)

t−1
≤ 42

√
Kt log(1/δ2). Since V (i)

t ≥ 42
√
Kt log(1/δ2) for

all t ∈ [t, t̄] we have that:

V
(i)
t − 21

√
Kt log(1/δ2) ≥ 42

√
Kt log(1/δ2)− 21

√
Kt log(1/δ2) ≥ 21

√
Kt log(1/δ2)

and thus Γ
(i)
t = 21

√
Kt log(1/δ2) for all t ∈ [t, t̄]. Hence, on the interval t ∈ [t, t̄] we known that the

learning rate can be lower bounded by a non-increasing function of time as

η
(i)
t (at) =

1 + 21
√
Kt log(1/δ2)

nt(at)
≥ 21

√
K log(1/δ2)

nt(at)
.
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This let us use Corollary 5.7 (that we assumed to hold) to show that:

V
(i)

[t,t̄] ≤
2

21
√
K log(1/δ2)

∑
a∈JKK

√
nt̄(a) +

t̄∑
τ=t

〈xτ , bτ 〉+ 4
√
t log(1/δ2)

≤ 2
√
Kt̄

21
√
K log(1/δ2)

+

t̄∑
τ=t

〈xτ , bτ 〉+ 4
√
t log(1/δ2) (Jensen’s inequality)

≤ 2
√
Kt̄

21
√
K log(1/δ2)

+ 2
√

2Kt log(2/δ2) + 8
√
t log(1/δ2) (Lemma 5.8)

≤ (1/10 + 10)
√
Kt log(2/δ2).

Now, V (i)
t̄ ≤ Vt + V

(i)

[t,t̄] ≤ (42 + 1/10 + 10)
√
Kt log(2/δ) < 53

√
Kt log(2/δ). We thus reached a

contradiction and there is no such a t̄. The union bound on all i ∈ JmK concludes the proof.

Lemma 6.2. In the stochastic setting, with probability at least 1− 5mKTδ2, it holds that:

|ĝ(i)
t (a)− ḡ(i)

t (a)| ≤ bt(a) ∀a ∈ JKK, t ∈ JT K, i ∈ JmK

Proof. First, we show some concentration inequalities that will be useful in the following. By an
Hoeffding’s inequality and an union bound with probability at least 1−mKTδ2, it holds:∣∣∣∣∣∣ 1

nt−1(a)

∑
τ∈Tt−1,a

g(i)
τ (a)− ḡ(i)a

∣∣∣∣∣∣ ≤
√

2 log(2/δ2)

nt(a)
∀t ∈ JT K, k ∈ JKK, i ∈ JmK. (10)

Moreover, by Lemma Lemma G.1 and an union bound, with probability at least 1−mTδ2, it holds:

V
(i)
t ≤

t−1∑
τ=1

〈xτ , g(i)
τ 〉+ 4

√
t log(1/δ2) ∀t ∈ JT K, i ∈ JmK (11)

Similarly, by Lemma Lemma G.1 and an union bound, with probability at least 1−mTδ2, it holds:
t∑

τ=1

〈xτ , ḡ(i)
τ 〉 ≤

t∑
τ=1

ḡ(i)(aτ ) + 4
√
t log(1/δ2) ∀t ∈ JT K, i ∈ JmK (12)

By Lemma G.2 and an union bound, with probability at least 1−mTδ2
t∑

τ=1

〈xτ , g(i)
τ 〉 ≤

t∑
τ=1

〈xτ , ḡ(i)〉+ 4
√
t log(1/δ2) ∀t ∈ JT K, i ∈ JmK (13)

Finally, by Lemma 5.8 and an union bound, with probability 1− Tδ2, it holds:
t∑

τ=1

〈xτ , bτ 〉 ≤ 2
√

2Kt log(2/δ2) + 4
√
t log(1/δ2) ∀t ∈ JT K (14)

In the following, we will assume the the previous events hold, and hence our result holds with
probability at least 1− 5mKTδ2.

First, we show that V it ≤ 21
√
Kt log(2/δ2) for each t and i. Our proof works by induction on

t. Clearly, the inequality holds for t = 1. Now, assume that it holds for all τ ≤ t − 1. By the
definition of Γ

(i)
τ , the induction assumption implies that η(i)

τ (a) = 1
nτ (a) for all a ∈ JKK, i ∈ JmK

and τ ≤ t− 1. Then, thanks to Proposition 5.4 we have that:

ĝ(i)
τ (a) =

1

nτ−1(a)

∑
t̂∈Tτ−1,a

g
(i)

t̂
(a) ∀τ ≤ t− 1. (15)
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Hence, by Equation (10), it holds that:∣∣∣ĝ(i)
τ (a)− ḡ(i)(a)

∣∣∣ ≤√2 log(2/δ2)

nτ (a)
∀τ ≤ t− 1.

and thus that X̂ (i)
τ 6= {∅} for all τ ≤ t− 1. Assuming that the events above holds, consider now the

following inequalities:

V
(i)
t = V

(i)
t−1 + g

(i)
t (at)

≤
t−1∑
τ=1

〈xτ , g(i)
τ 〉+ g

(i)
t (at) + 4

√
t log(1/δ2) (Equation (11))

≤
t−1∑
τ=1

〈xτ , g(i)
τ − ĝ(i)

τ 〉+

t−1∑
τ=1

〈xτ , bτ 〉+ g
(i)
t (at) + 4

√
t log(1/δ2) (xτ ∈ X̂ (i)

τ )

≤
t−1∑
τ=1

〈xτ , g(i)
τ − ĝ(i)

τ 〉+ 2
√

2Kt log(2/δ2) + g
(i)
t (at) + 8

√
t log(1/δ2) (Equation (14))

≤
t−1∑
τ=1

〈xτ , g(i)
τ − ĝ(i)

τ 〉+ 2
√

2Kt log(2/δ2) + 1 + 8
√
t log(1/δ2) (g(i)

t (a) ≤ 1)

≤
t−1∑
τ=1

〈xτ , ḡ(i) − ĝ(i)
τ 〉+ 2

√
2Kt log(2/δ2) + 1 + 12

√
t log(1/δ2) (Equation (13))

≤
t−1∑
τ=1

(ḡ(i)(aτ )− ĝ(i)
τ (aτ )) + 2

√
2Kt log(2/δ2) + 1 + 12

√
t log(1/δ2) (Equation (12))

=
∑
a∈JKK

t−1∑
τ=1

(ḡ(i)(a)− ĝ(i)
τ (a))I(aτ = a) + 2

√
2Kt log(2/δ2) + 1 + 12

√
t log(1/δ2)

≤
√

2 log(2/δ2)
∑
a∈JKK

t−1∑
τ=1

1√
nτ (a)

I(aτ = a) + 2
√

2Kt log(2/δ2) + 1 + 12
√
t log(1/δ2)

≤ 2
√

2Kt log(2/δ2) + 2
√

2Kt log(2/δ2) + 1 + 12
√
t log(1/δ2)

and thus V (i)
t ≤ 21

√
Kt log(2/δ2).

Thus Γ
(i)
t = 0 and ĝ(i)

t (a) is the empirical mean of past observations. This concludes the induction
step, showing that V it ≤ 21

√
Kt log(1/δ2) for all t ∈ JT K, and Γ

(i)
t = 0 for all t ∈ JT K and i ∈ JmK.

Now, we proved that with probability 1− 3mKTδ2, all Γ
(i)
t = 0, and hence by Equation (10) we

have that: ∣∣∣ĝ(i)
t (a)− ḡ(i)(a)

∣∣∣ ≤√2 log(2/δ2)

nt(a)
∀i ∈ JmK, t ∈ JT K, a ∈ JKK

as desired.

F Proofs omitted from Section 7

Theorem 7.1. In the stochastic setting, for any ε > 0 Algorithm 1 guarantees that with probability at
least 1− ε:

RT ≤ 4
√
KT log(2K/ε) and Vt ≤ 53

√
Kt log(28mKT 2/ε) ∀t ∈ JT K.

Proof. To prove the upper bound on the regret, we simply have to combine Corollary 6.3 with
Theorem 4.1. By Corollary 6.3 which probability at least 1 − 5mKTδ, it holds X ? ⊆ ∩t∈JT KX̂t.
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Moreover, by Theorem 4.1, we have that for each x ∈ X ? with probability at least 1− δ1:∑
t∈JT K

〈ft, x〉 − ft(at) ≤ 4
√
KT log(K/δ1).

Let x? = arg maxx∈X?
∑
t∈JT K〈x, ft〉. Then, by union bound we have that with probability at least

1− 5mKTδ2 − δ1 it holds:∑
t∈JT K

〈ft, x?〉 − ft(at) ≤ 4
√
KT log(K/δ1),

proving the bound on the regret. The bound on the violations holds with probability at least 1 −
2mT 2δ2 by Theorem 6.1, and guarantees:

Vt ≤ 53
√
Kt log(2/δ2).

By an union bounds on all events, the guarantees hold with probability at least 1− 7mKT 2δ2 − δ1.
Thus by taking δ1 = ε/2 and δ2 = ε/(14mKT 2) we obtain the desired result.

Theorem 7.2. In the adversarial setting, for any ε > 0 Algorithm 1 guarantees that with probability
at least 1− ε:

α-RT ≤ 4
√
KT log(2K/ε) and Vt ≤ 53

√
Kt log(28mKT 2/ε) ∀t ∈ JT K,

where α = ρ/(1+ρ).

Proof. Combining Theorem 5.2 and Theorem 4.1 readily proves that with probability at least 1− δ1
we have that for all x̃ ∈ X ?∅ ⊆ X̂t, we have:∑

t∈JT K

〈ft, x̃〉 − ft(at) ≤ 4
√
KT log(K/δ1).

Let x? = arg maxx∈∆K

∑
t∈JT K〈x, ft〉. Then, observe that x̄ = 1

1+ρx
∅ + ρ

1+ρx
∗ ∈ X∅, where

x∅(a∅) = 1 and x∅(a) = 0 for each a 6= a∅. Then, we have that:∑
t∈JT K

〈x̄, ft〉 =
∑
t∈JT K

〈
1

1 + ρ
x∅ +

ρ

1 + ρ
x?, ft

〉
≥ ρ

1 + ρ

∑
t∈JT K

〈x?, ft〉.

since ft(a∅) ≥ 0. This proves that with probability at least 1− δ1:(
ρ

1+ρ

)
-RT ≤ 4

√
KT log(K/δ1).

Similarly to the proof of Theorem 7.1, we can prove that the bound on the violations holds with
probability at least 1− 2mT 2δ2 by Theorem 6.1, and give:

Vt ≤ 53
√
Kt log(2/δ2).

Overall these events hold with probability at least 1 − 2mT 2δ2 − δ1. By defining δ1 = ε/2 and
δ2 = ε/(14mKT 2) we have that the desired results hold with probability at least 1− ε.

Theorem 7.3. Algorithm 1, in the stochastic setting, guarantees that with probability at least 1− ε,
it holds that:

V+
t ≤ 16

√
Kt log(28mKT 2/ε) ∀t ∈ JT K.

Proof. Define for each i ∈ JmK and t ∈ JT K

Vi,+t :=

t∑
τ=1

[
〈xτ , ḡ(i)

τ 〉
]+

.
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Then, given an i and a t consider the following chain of inequalities:

Vi,+t =

t∑
τ=1

[
〈xτ , ḡ(i)

τ 〉
]+

=

t∑
τ=1

[
〈xτ , ḡ(i)

τ − ĝ(i)
τ + ĝ(i)

τ 〉
]+

=

t∑
τ=1

[
〈xτ , ḡ(i)

τ − ĝ(i)
τ 〉+ 〈xτ , ĝ(i)

τ 〉
]+

≤
t∑

τ=1

[
〈xτ , ḡ(i)

τ − ĝ(i)
τ 〉+ 〈xτ , bτ 〉

]+
(xτ ∈ X̂τ )

≤
t∑

τ=1

[
〈xτ , ḡ(i)

τ − ĝ(i)
τ 〉
]+

+ 〈xτ , bτ 〉]+

≤ 2

t∑
τ=1

〈xτ , bτ 〉+ (Lemma 6.2)

where last inequality both hold with probability 1− 5mKTδ2 jointly for each i and t.

Since bt =
√

2 log(2/δ2)
nt−1(a) we can apply Lemma 5.8 and an union bound on all t to find that with

probability at least 1− Tδ2 − 5mKTδ2:

Vi,+t ≤ 4
√

2Kt log(2/δ2) + 8
√
t log(1/δ2) ∀i ∈ JmK, t ∈ JT K.

Thus, we can conclude that:

V+
t ≤ 16

√
Kt log(2/δ2) ∀i ∈ JmK, t ∈ JT K

with probability at least 1− 6mKTδ2. Recalling that δ2 = ε/(14mKT 2) we obtain the result.

G Further technical lemmas

Lemma G.1. For any sequence of function rt : JKK→ [−1, 1] which is t− 1 predictable and any
sequence of randomized strategy xt ∈ ∆K , it holds that with probability at least 1− δ:∣∣∣∣∣∣

∑
t∈JT K

〈xt, rt〉 −
∑
t∈JT K

rt(at)

∣∣∣∣∣∣ ≤ 4
√
T log(1/δ).

Proof. By definition Ea∼xt [rt(a)] =
∑
a∈JKK rt(a)xt(a) = 〈xt, rt〉. Thus the sequence Xt =∑t

τ=1[rτ (aτ )−〈xτ , rτ 〉] is a martingale and |Xt−Xt−1| ≤ 2. Thus we can apply Azuma inequality
and find that with probability at least 1− δ:∣∣∣∣∣∣

∑
t∈JT K

〈xt, rt〉 −
∑
t∈JT K

rt(at)

∣∣∣∣∣∣ ≤ 4
√
T log(1/δ).

Lemma G.2. For any sequence of randomized strategy xt ∈ ∆K and any function r̄(a) such that
rt(a) are sampled from a distribution with mean r̄(a), i.e., E[rt(a)] = r̄(a) and P(|rt(a)| ≤ 1) = 1,
it holds that with probability at least 1− δ:∣∣∣∣∣∣

∑
t∈JT K

〈xt, rt〉 −
∑
t∈JT K

〈xt, r̄〉

∣∣∣∣∣∣ ≤ 4
√
T log(1/δ).

Proof. This holds by simple application of Azuma’s inequality, similarly to the proof of Lemma G.1.
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Answer: [Yes]

Justification: Yes, the paper discusses limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Assumptions are explicitly discussed and all the proofs are provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper is theoretical and we do not have any experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The paper is theoretical and we do not have any experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper is theoretical and we do not have any experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper is theoretical and we do not have any experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper is theoretical and we do not have any experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is theoretical without any immediate societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data has been used in this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: No data has been used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: No new assets have been introduced in this paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing have been used in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing have been used in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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