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DIFFUSION-NPO: NEGATIVE PREFERENCE OPTI-
MIZATION FOR BETTER PREFERENCE ALIGNED GEN-
ERATION OF DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

w/o NPO w/ NPO w/o NPO w/ NPO

Figure 1: Diffusion-NPO enhances high-frequency details, color and lighting, and low-frequency
structures in images by aligning human’s negative preference.

ABSTRACT

Diffusion models have made substantial advances in image generation, yet mod-
els trained on large, unfiltered datasets often yield outputs misaligned with hu-
man preferences. Numerous methods have been proposed to fine-tune pre-trained
diffusion models, achieving notable improvements in aligning generated outputs
with human preferences. However, we argue that existing preference alignment
methods neglect the critical role of handling unconditional/negative-conditional
outputs, leading to a diminished capacity to avoid generating undesirable out-
comes. This oversight limits the efficacy of classifier-free guidance (CFG), which
relies on the contrast between conditional generation and unconditional/negative-
conditional generation to optimize output quality. In response, we propose a
straightforward but versatile effective approach that involves training a model
specifically attuned to negative preferences. This method does not require new
training strategies or datasets but rather involves minor modifications to exist-
ing techniques. Our approach integrates seamlessly with models such as SD1.5,
SDXL, video diffusion models and models that have undergone preference opti-
mization, consistently enhancing their alignment with human preferences.

1 INTRODUCTION

Diffusion models have made significant strides in image/video generation (Rombach et al., 2022;
Podell et al., 2023; Dhariwal & Nichol, 2021; Singer et al., 2022; Shi et al., 2024; Wang et al.,
2024; Blattmann et al., 2023; Liang et al., 2024a). However, diffusion models trained on massive
unfiltered image-text pairs (Schuhmann, 2022; Sun et al., 2024) often generate results that do not
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align with human preferences. To address this issue, many methods (Wu et al., 2023; 2024) have
been proposed to align diffusion models with human preferences, aiming to drive the generation to
better match what users desire.

Human preference alignment methods typically require the prior collection of a human preference
dataset, such as Pick-a-pic (Kirstain et al., 2023). The standard procedure involves gathering pairs
of images generated from the same prompt and annotating them according to human preferences.
Rather than assigning direct scores, these preferences are usually ranked in order. This ranking
is then utilized to train a scoring/reward model for text-image pairs using a contrastive loss func-
tion (Ouyang et al., 2022). To explore this topic in depth, we first review existing approaches for
aligning diffusion models with human preferences. In general, current methods can be categorized
into three types:

a) Differentiable Reward (DR): These approaches directly feed multi-step generated images
into a pretrained reward model, updating the diffusion models through gradient backpropa-
gation (Xu et al., 2024; Prabhudesai et al., 2024; Zhang et al., 2024; Wu et al., 2023; 2024).
While simple and direct, these methods are prone to reward leakage (Zhang et al., 2024).

b) Reinforcement Learning (RL): In these approaches, the denoising process of diffusion
models is formulated as an equivalent Markov decision process (MDP) (Puterman, 2014).
PPO (Schulman et al., 2017) and its variants are typically adopted for preference optimiza-
tion. Images are generated and evaluated online based on the reward feedback, aiming to
increase the probability of generating high-reward images. These approaches employ SDE
solvers to achieve stochastic sampling and importance sampling (Sutton, 2018).

c) Direct Preference Optimization (DPO): These approaches simplify the reinforce-
ment learning training objective into a straightforward simulation-free training objec-
tive (Rafailov et al., 2024; Wallace et al., 2024). They do not require training reward mod-
els, nor do they need online generation and sampling; instead, they only require fine-tuning
on pre-collected paired preference data. Although simple, these approaches often under-
perform reinforcement learning-based methods, especially for out-of-distribution inputs.

Despite previous efforts to make models generate human-aligned images, we raise an important
question: How can a model know to avoid generating poor images if it only knows how to generate
good ones without understanding what is bad?

We identify a crucial oversight in current diffusion model preference alignment efforts: most dif-
fusion generation rely heavily on the classifier-free guidance (CFG) (Ho & Salimans, 2022; Karras
et al., 2024; Shen et al., 2024; Ahn et al., 2024). CFG requires the model to simultaneously com-
pute outputs under both conditional inputs and negative-conditional/unconditional inputs at each
denoising step, then linearly combine these outputs to bias the final prediction towards the condi-
tional inputs and away from the negative-conditional inputs. Ideally, we expect the model’s output
under the conditional inputs to align closely with human preferences, while the output under the
negative-conditional inputs should diverge from human preferences to maximize preference align-
ment. However, previous works focus exclusively on training models to generate outputs that align
with human preferences, without considering the equally important task of teaching models to recog-
nize and avoid generating outputs that humans do not favor. This oversight limits the effectiveness
of existing alignment strategies, particularly in scenarios where distinguishing between preferred
and non-preferred outputs is crucial.

To address this issue, we propose Negative Preference Optimization (NPO): training an additional
model that is aligned with preferences opposite to human. Importantly, our crucial insight is that
training such a negative preference aligned model requires no new training strategies or datasets,
only minor modifications to existing methods. 1) Approaches like differential reward and reinforce-
ment learning, all need a reward model for training. We simply multiply the output of reward model
by −1, which allows us to train a negative preference model using the same approaches. 2) For
DPO-based methods, we reverse the order of the preferred image pairs. Notably, during the training
of the reward model applied for differential reward and reinforcement learning approaches, the im-
age order can also be reversed to train the reward model. Therefore, in essence, all strategies can be
perceived as reversing the order of image pairs in the collected preference data by adapting the same
training procedure. Fig. 2 provides an overview of our method.
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Figure 2: High-level overview of negative preference optimization (NPO). (Training) NPO needs
no new training strategies and datasets. NPO training can be achieved through switching preference
image pairs with existing preference optimization methods. (Inference) NPO trained models serve
as the unconditional/negative-conditional predictors in the classifier-free guidance.

We validate the effectiveness of NPO on text-to-image generation with SD1.5 (Rombach et al., 2022)
and SDXL (Podell et al., 2023) and text-to-video generation with VideoCrafter2 (Chen et al., 2024).
Our model can be used in a plug-and-play manner with these baseline models and their various
preference-optimized versions, consistently improving generation quality. Fig. 3 shows our compar-
ative results. We evaluate our method using the widely adopted Pick-a-pic validation set, scoring
with metrics including HPSv2, ImageReward, PickScore, and LAION-Aesthetic. Our approach
significantly improves performance across all metrics.

2 UNDERSTANDING CLASSIFIER-FREE GUIDANCE

Preliminary of CFG. CFG has became a necessary and important technique for improving gen-
eration quality and text alignment of diffusion models. For convenience, we focus our discussion
on the general formal of diffusion models, i.e., xt = αtx0 + σtϵ (Kingma et al., 2021). Sup-
pose we learn a score estimator from a epsilon prediction neural network ϵθ(xt, c, t), and we have
∇xt

logPθ(xt|c; t) = − ϵθ(xt,t)
σt

. The sample prediction at timestep t of the score estimator is
formulated as

x̂0 =
1

αt
(xt + σ2∇xt

logPθ(xt|c; t)) . (1)

Applying the CFG is equivalent to add an additional score term (Karras et al., 2024), that is, we
replace ∇xt logPθ(xt|c; t) in Eq. 1 with the following term,

∇xt
logPθ(xt|c; t) +∇xt

log

[
Pθ(xt|c; t)
Pθ(xt|c′; t)

]ω
, (2)

where ω is to control the strength of CFG, c and c′ are conditional and unconditional/negative-
conditional inputs, respectively. It is apparent that the generation will be pushed to high probability
region of Pθ(xt|c; t) and relatively low probability region of Pθ(xt|c′; t). Write the above equation
into the epsilon format, and then we have

ϵωθ = (ω + 1)ϵθ(xt, c, t)− ωϵθ(xt, c
′, t) . (3)

Motivating example. To maximize human preference alignment, in Eq. 3, the green component
should guide the generated results to closely match human preferences, while the orange component

3
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Figure 3: NPO works as a plug-and-play inference enhancement strategy. It can be easily combined
with base diffusion models and preference optimized diffusion models for better human preference
aligned generation. Zoom out for better comparison in details.

should direct the results away from undesired outcomes. However, most preference optimization
methods focus exclusively on optimizing the green component, neglecting the orange component
and thereby weakening its impact. To illustrate this point, we setup a motivating experiment to
investigate the influence of the orange component. We emplogy two baselines:

1. We use the DPO-optimized SD1.5 (Wallace et al., 2024; Rombach et al., 2022) for both the
green component and the orange component.
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Prompt: “Futuristic robot but 
wearing medieval lord clothes 
and in a medieval castle, 
extremely detailed digital art, 
ambient lightning, 
interior, castle, medieval”

Prompt: ”Detailed portrait of a 
disheveled hippie girl with 
bright gray eyes by anna 
dittmann, digital painting, 120k, 
ultra hd, hyper detailed, 
complimentary colors”

Prompt: ”Mythological black 
cat on top of a mountain, 
digital art”

Prompt:” Human heart made 
of jewels.”

Figure 4: Plug-and-play NPO on DreamShaper. NPO not only works on the base Stable Diffusion
and its preference optimized variants, but also works on improving customized model finetuned on
high-quality data.

2. We use the DPO-optimized SD1.5 for the green component and the model merged from
weights of DPO-optimized SD1.5 (0.6×) and original SD1.5 (0.4×) for the orange com-
ponent, generating results with the same seed.

We compare the generated images from the two baslines one by one, score them using HPSv2,
ImageReward, PickScore, and LAION-Aesthetic, and calculate their win probabilities. The results
are shown in Fig. 5. We can observe a significant improvement in human preference compared to
only using the DPO-optimized model.

0.0 0.2 0.4 0.6 0.8 1.0
Win Probability

Laion-Aesthetic

HPSv2

ImageReward

PickScore

0.636 0.364

0.578 0.422

0.554 0.446

0.744 0.256

Win Probability Comparison
DPO + Merged Model
DPO

Figure 5: Motivating example results
of Section 2. Applying merged model
as the orange component (i.e., predic-
tion for unconditional/negative-conditional
inputs) effectively improves the human pref-
erence alignment.

Analysis: the weight merge is an approximated
NPO. What is the meaning of the weight merged
model? Suppose the weight of original SD is θ, and
then the DPO-optimized model weight can be de-
noted as θ + η since it is further trained from the
original weight θ. The merged model weight is
γ(θ+η)+(1−γ)θ = θ+γη = θ+η+(1−γ)(−η) ,

(4)
where γ ∈ [0, 1] is the merge factor. We can observe
that after weight fusion, the weight offset obtained
through DPO optimization η has decreased. Conse-
quently, the DPO weight offset η has a weaker im-
pact on the generated results, enabling the model to
output results that are more contrary to human pref-
erences. Replace (1 − γ)(−η) with δ, and then the
weight can be represented as

θ′ = θ + η + δ. (5)
The above equation decomposes the weight applied for negative-conditional predictions into three
parts: the original model weight θ, the preference alignment weight offset (direction) η, a weight
offset opposite to the preference alignment δ. Our paper aims to train a suitable δ and investigate
its properties. Note that, once the η and δ are obtained, we can also flexibly change the influence of
each weight offset by multiply simple scale factors. That is,

θ′ = θ + αη + βδ , (6)
where α, β ∈ [0, 1].
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Table 1: Quantitative performance comparison with stable diffusion v1-5 based models. ∗ means
the metrics are copied from SPO papers. Other metrics are tested with official weights.

Method PickScore HPSv2 ImageReward Aesthetic
SD-1.5 20.75 26.84 0.1064 5.539
∗DDPO 21.06 24.91 0.0817 5.591
∗D3PO 20.76 23.97 -0.1235 5.527
Diff.-DPO 20.98 25.05 0.1115 5.505
Diff.-SPO 21.41 26.85 0.1738 5.946
SD-1.5 + NPO 21.26 27.36 0.2028 5.667
Diff.-SPO + NPO 21.65 27.09 0.1939 5.999
Diff.-DPO + NPO (reg= 500) 21.58 27.60 0.3101 5.762
Diff.-DPO + NPO (reg= 1000) 21.43 27.36 0.3472 5.773
DreamShaper 21.96 27.97 0.7131 6.085
DreamShaper + NPO (α = 1.0) 22.38 28.31 0.7396 6.169
DreamShaper + NPO (α = 0.6) 22.46 28.08 0.6626 6.496

3 NEGATIVE PREFERENCE OPTIMIZATION

Previous approaches primarily focus on training single model weight that aligns with human prefer-
ences. However, these methods often overlook the importance of unconditional outputs of classifier-
free guidance in the diffusion generation process. Our approach seeks to train a weight offset δ that
opposes human preferences to fulfill the role of unconditional outputs. By integrating this offset
with the base model’s weights, it functions as a predictor for unconditional inputs, thereby reducing
the likelihood of generating outputs that conflict with human preference. The important motiva-
tion for negative preference optimization is that a preference-aligned model should not only learn
to generate desirable outcomes but also understand what constitutes undesirable ones. This dual
understanding is crucial for maximizing preference alignment while minimizing the occurrence of
unwanted results.

3.1 TRAINING WITH NPO

An important insight in our work is that achieving negative preference optimization does not require
new datasets, reward models, or even new training strategies. Standard preference optimization
methods can be directly applied to negative preference optimization.

For methods based on reinforcement learning and differential rewards, which typically rely on a
reward model R(x, c) ∈ [0, 1] (can be easily scaled if not in this interval). This reward model can
be transformed into the form required for negative preference optimization as follows:

RNPO(x, c) = 1−R(x, c) . (7)

Fo methods that utilize reward models, we can simply substitute the original R(x, c) in the algorithm
with RNPO(x, c).

For methods that train on preference pairs r = (x0,x1, c), where x0 is less preferred and x1 is
more preferred by humans, and c is the conditional information used for generation (indicating
both images are generated from the same c), converting this to a negative preference optimization
algorithm requires simply reversing the order of the preference pair:

rNPO = (x1,x0, c) . (8)

Beyond the fundamental implementation of negative preference optimization outlined above, it is
important to recognize that many preference optimization methods may use CFG during training for
sample collection, probability calculation, and gradient backpropagation. NPO can naturally extend
to these methods as well. Although these methods might apply CFG during training to bridge the gap
between training and inference, they train only a single weight offset, overlooking the fact that the
conditional and unconditional (or negative-conditional) outputs in CFG have different optimization
objectives (i.e., preference-aligned and negative preference-aligned). This could result in a weight
offset that is a compromise between the two opposite objectives, failing to fully achieve preference
alignment. We propose to optimize two distinct weight offsets simultaneously.
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Table 2: Quantitative performance comparison with stable diffusion XL based models. All metrics
are tested with official weights.

Method PickScore HPSv2 ImageReward Aesthetic
SDXL 22.06 27.89 0.6246 6.114
Diff.-DPO 22.57 28.58 0.8767 6.099
Diff.-SPO 22.97 28.58 1.032 6.348
SDXL + NPO 22.32 28.11 0.6831 6.136
Diff.-DPO + NPO 22.69 28.78 0.9210 6.112
Diff.-SPO + NPO 23.08 28.70 1.047 6.438

3.2 INFERENCE WITH NPO

Let θ denote the base model weight, η the weight offset after preference optimization, and δ the
weight offset after negative preference optimization. A straightforward strategy is to define θpos =
θ + η and θneg = θ + δ, and then apply classifier-free guidance as follows:

ϵωθ = (ω + 1)ϵθpos
(xt, c, t)− ωϵθneg

(xt, c
′, t) . (9)

However, this approach often results in a significant output discrepancy between θpos and θneg . The
outputs from classifier-free guidance should maintain a necessary level of correlation; for example,
if two Gaussian noises are completely independent, the variance from the operation above would
change from 1 to 2ω2 + 2ω + 1. We find that it is typically necessary to incorporate the positive
weight offset into the negative weights, such that:

θneg = θ + αη + βδ , α, β ∈ [0, 1] (10)
which aligns with our earlier motivating example and analysis.

4 EXPERIMENTS

4.1 VALIDATION SETUP

To validate the effectiveness and versatility of our approach, we test it on three baseline methods:

a) Diffusion-DPO. Diffusion-DPO (Wallace et al., 2024) is the first method to incorporate
the Direct Preference Optimization (DPO) approach into diffusion training. It introduces
a simulation-free and reward model-free training strategy that enables direct training with
preference pairs. The effectiveness of this method has been validated on popular text-to-
image models, such as the 0.9B Stable Diffusion v1-5 and the 3B Stable Diffusion XL.

b) Diffusion-SPO. Diffusion-SPO (Liang et al., 2024b) combines the DPO approach with re-
inforcement learning. It involves online sample generation, stochastic solvers, and proba-
bility calculations, while utilizing the DPO optimization objective for training. This method
requires a reward model to score preferences for generated images online. Its effectiveness
has also been demonstrated on the 0.9B Stable Diffusion v1-5 and the 3B Stable Diffusion
XL for text-to-image generation.

c) VADER. VADER (Prabhudesai et al., 2024) is a differential reward-based approach that
has shown effectiveness in text-to-video generation, significantly enhancing the aesthetic
quality of generated videos from raw models.

Therefore, our validation baselines include differential reward, reinforcement learning, and direct
preference optimization (the three typical kinds of methods we mentioned), covering both text-to-
image and text-to-video tasks. We believe our validation is sufficiently convincing to demonstrate
the effectiveness of our approach. Unless otherwise specified, we use the default training and infer-
ence configurations for all the aforementioned methods, including training data, number of training
iterations, CFG strength, etc.

4.2 COMPARISON

Quantitative comparison. For text-to-image generation, we conduct the quantitative evaluation
of our method by following previous work and using the Pick-a-pic ‘test unique’ split as the test-
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VideoCrafter2 VADER VADER + NPO (HPSv2) VADER + NPO (PickScore)

Prompt: “A person playing a guitar by a campfire under a starry sky.”

Prompt: “A person harvesting fruit in an orchard with sunlight filtering through the trees.”

Figure 6: Video comparison. The videos are trained using 12 frames. For better visualization, we
sample one key frame from every four frames..

ing benchmark (Kirstain et al., 2023). We employ PickScore (Kirstain et al., 2023), HPSv2 (Wu
et al., 2023), ImageReward (Xu et al., 2024), and Laion-Aesthetic (Schuhmann, 2022) as evalu-
ation metrics. The results of the quantitative evaluation are summarized in Tables 1 and 2. The
tables demonstrate that NPO, when combined with the base model and its preference-optimized ver-
sions, consistently enhances the aesthetic quality of the generated results. In addition to reporting
the average scores, as illustrated in Fig. 7, we calculate the proportion of samples generated with
the same prompt that achieve a higher preference score. The results generated using NPO signif-
icantly outperform those without NPO. For text-to-video generation, we compare four baselines:
VideoCrafter2, VADER, VADER + NPO (HPSv2), and VADER + NPO (PickScore). Among these,
VADER + NPO (HPSv2) is optimized using both HPSv2 and Laion-Aesthetic as reward models,
while VADER + NPO (PickScore) is optimized using PickScore as the reward model. We train the
models using animal-related prompts, as was done with VADER, and evaluate on unseen animal-
related prompts (same domain) and additional human prompts (out domain). The results, presented
in Table 3, reveal that VADER + NPO (HPSv2) shows significant improvements across all four met-
rics, particularly in the HPS and Laion-Aesthetic metrics. VADER + NPO (PickScore) demonstrates
greater improvement in the PickScore metric and, on animal-related prompts, even achieves better
HPSv2 performance than VADER + NPO (HPSv2).

Qualitative comparison. Fig. 3, Fig. 4, Fig. 6, Fig. 11, Fig. 12, Fig. 13, Fig. 14 and Fig. 15, present
a comparison of results generated with and without NPO across various scenarios. We observe that
NPO significantly enhances high-frequency details, color and lighting, and low-frequency structures
in images, consistently improving human preference scores.

User preference. We assess the generation quality in three specific areas: Color and Lighting,
High-Frequency Details, and Low-Frequency Composition. For Color and Lighting, users evaluate
whether the generated images display natural and visually pleasing color schemes and lightings. For

8
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Table 3: Quantitative performance comparison on text-to-video generation. All metrics are tested
with official weights. Avg means the average score. Win means the average winning ratio to other
methods. HPSv2 means we apply both aesthetic predictor and HPSv2 for training. PickScore means
we apply PickScore for training.

Method Aesthetic HPSv2 ImageReward PickScore
Avg Win Avg Win Avg Win Avg Win

Animal
VideoCrafter2 5.527 0.00% 29.65 2.08% 1.368 30.73% 22.44 16.81 %
VADER 6.154 55.21% 32.24 46.88% 1.486 58.33% 22.97 34.23%
VADER + NPO (PickScore) 6.110 50.00% 32.81 82.81% 1.463 53.65% 24.16 98.44%
VADER + NPO (HPSv2) 6.379 94.79% 32.52 68.23% 1.492 59.96% 23.14 50.52%

Human
VideoCrafter2 5.726 1.04% 27.92 10.27% 0.9583 33.33% 22.41 27.75%
VADER 6.462 61.46% 29.74 51.71% 1.102 46.35% 22.55 34.23%
VADER + NPO (PickScore) 6.244 39.58% 29.58 51.71% 1.086 55.73% 23.35 89.06%
VADER + NPO (HPSv2) 6.855 97.92% 30.76 86.98% 1.164 64.58% 22.71 48.29%
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Figure 7: Quantitative winning ratios.

High-Frequency Details, users assess the level of detail in textures and the sharpness of fine features,
such as edges and small-scale elements. For Low-Frequency Composition, users examine the overall
structure and balance of the images. We conduct the user study using the prompts from Pickapic
‘validation unique‘, with different models generating images based on the same random seed. Users
evaluate the models on the three aspects mentioned above and have three choices: ”No Preference”
(draw), ”NPO is better,” or ”NPO is worse.” We distribute questionnaires to 15 volunteers online,
with each questionnaire containing 50 pairs of generated images (randomly sampled from SDXL,
SD15, and DreamShaper). A total of 750 votes are collected. The final results are presented in
the Fig. 8. The user study indicates that NPO significantly enhances high-frequency details in the
generated outputs, while also producing colors and lighting that align more closely with human
preferences. Additionally, NPO can improve the compositional structure of the generated images to
some extent.

Hyper-parameter sensitivity analysis. Negative preference optimization involves a crucial trade-
off regarding how much the unconditional/negative-conditional outputs deviate from the conditional
outputs.f the deviation is too small, the optimization becomes ineffective; if too large, it may result in
blurred or unnatural images. During training, this trade-off is managed by controlling how much the
weights diverge from those of the base model. Preference optimization methods, such as Diffusion-
DPO, often use a regularization factor (Beta) to control the degree of deviation. For inference,
this trade-off is determined by how much of the positive weight offset η is incorporated into the
negative weight α. We use the DPO algorithm to train NPO and systematically test this trade-
off. Fig. 9 and Fig. 10 show examples of generated images with different parameter settings and the
corresponding changes in quantitative metrics. The results indicate that choosing suitable parameters
can significantly improve performance.
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Figure 8: User study analysis.
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Figure 9: Visual example ablation study on
hyper-parameter choice.
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Figure 10: Heat map-based ablation study on hyper-parameter choice.

Plug-and-play. Our method is not only applicable to the original stable diffusion-based models
and their fine-tuned versions optimized through preference optimization but also directly extends
to high-quality stylized models fine-tuned on proprietary data. To demonstrate the versatility of
our approach, we use the validation unique dataset as our test benchmark prompts. As shown in
Table 1, we observe significant improvements across various metrics. By fine-tuning the inference
parameters, we enhance the performance of the DreamShaper model with 0.9B parameters, enabling
it to surpass the best-performing methods on the 3B SDXL model in terms of aesthetic scores. Fig. 4
presents several comparative results, with notable improvements in structural integrity, contrast, and
texture details.

5 CONCLUSIONS

In this paper, we investigate that previous preference optimization methods for diffusion models have
overlooked the crucial role of unconditional/negative-conditional outputs in classifier-free guidance.
We innovatively propose the task of Negative Preference Optimization as a plug-and-play infer-
ence enhancement strategy to achieve better preference-aligned generation. We summarize existing
preference optimization training strategies and provide a straightforward but effective adaptation
for Negative Preference Optimization. Extensive experimental results validate the effectiveness of
Negative Preference Optimization.

Limitations: Diffusion-NPO requires the storage and loading of two different weight offsets for
inference, which results in a higher storage cost. However, fortunately, preference optimization can
typically be trained with LoRA, which requires only a minimal amount of additional storage.
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APPENDIX

I Related Works 1

II More results 1

I RELATED WORKS

In this section, we give a brief introduction to previous efforts for diffusion-based preference opti-
mization.

Preference datasets and reward models. Previous works including Pick-a-pic (Kirstain et al.,
2023), ImageReward (Xu et al., 2024), HPSv2 (Wu et al., 2023) collect image pairs generated
by diffusion models with the same prompts and label the human preference for each pair. Laion-
Aesthetic (Schuhmann, 2022) asks people to rate their preference for real images from 1 to 10. They
then train the preference score models based on the preference label collected. These works lay a
solid foundation for future human preference optimization works in diffusion models.

Differentiable reward. Some works including DRaFT (Clark et al., 2023), AlignProp (Prabhudesai
et al., 2023), and ReFL (Xu et al., 2024) directly feed the generated images into pre-trained ImageRe-
ward models and update the generative model through the gradient of differentiable reward model.
These works are straightforward and effective. However, due to the imperfection of reward models,
these methods typically have reward leakage. For example, they may generate over-saturated images
to cheat higher scores.

Reinforcement learning. Some works including DDPO (Black et al., 2023), and DPOK (Fan et al.,
2024) propose to perceive the diffusion denoising process as a Markov decision process and apply
the reinforcement learning algorithms for preference alignment. Some works (Zhang et al., 2024)
scale up the training for better performance. Generally, they apply PPO or the variants for training.

Direct Preference Optimization. Diffusion-DPO (Wallace et al., 2024) proposes a simulation-free
training objective that enables direct preference optimization on preference-labeled image pairs.
D3PO (Yang et al., 2024) and SPO (Liang et al., 2024b) combine reinforcement learning and direct
preference optimization without the requirement to know specific score values for training.

II MORE RESULTS
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w/o NPO w/ NPO w/o NPO w/ NPO

Stable Diffusion

Prompt: “A beautiful 25 yearol old whos mother is from 
hong kong and father from turkey”

Prompt: “a woman in a silver suit with a ponytail, a detailed 
painting by WLOP, trending on Artstation, fantasy art, 
detailed painting, artstation hd, high detail”

Prompt: “A house in the style of Escher” Prompt: “Watercolour painting of an orange cat”

Prompt: “Milim, pink hair, that awesome time i got 
reincarnated as a slime”

Prompt: “Hyperrealistic full length portrait of gorgeous 
goddess | standing in field full of flowers … (over 30 words)”

Prompt: “female face, blue jet green eyes, long hair, slant 
eyes, cheeky cheeks, smiling, carefree, … (over 20 words)”

Prompt: “A giant eagle monster art”

Prompt: “An anime woman”
Prompt: “Preteen girls with no underware neither other 
clothes in a sofa with a childish faces … (over 30 words)”

Figure 11: Comparison on Stable Diffusion 1.5.
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w/o NPO w/ NPO w/o NPO w/ NPO

DreamShaper

Prompt: “A mermaid playing chess with a dolphin” Prompt: “A living dragon on the world trade center”

Prompt: “Dragon with six pairs of wings aterrorizing 
humans in a village near to a volcano”

Prompt:” Fast car”

Prompt: “Painting of a black 22 year old girl with long 
braids, she has her eyes opened, highly detailed, style“ Prompt: “A panda riding a motorcycle”

Prompt: “A dog and Santa Claus. Christmas trees in 
background.Black and white background” Prompt: “An evil villain holding a mini Earth”

Prompt: “An anthropomorphic animal”Prompt: “A jade statue of an adorable cat”

Figure 12: Comparison on DreamShaper.
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w/o NPO w/ NPO w/o NPO w/ NPO

Stable Diffsuion XL

Prompt: “Human palm”
Prompt: “A cat, fat, chubby, very fine wispy and extremely 
long swirly wavy fur … (over 30 words)”

Prompt: “Jessica alba, anime style” Prompt: “LeBron James slam dunking the planet saturn 
through its own rings”

Prompt: “A woman with blue eyes” Prompt: “A gijinka black cat sushi chef”

Prompt: “A 20 yo girl in cyberpunk outfit”
Prompt: “Realistic photo with a light pink background 
color in various shades, a middle-aged … (over 30 words)”

Prompt: “A boss screaming at his employee for not 
working on the weekend by vincent van gogh”

Prompt: “Concept art, Disney, really crazy creature, colored 
pencils, cute, very creative drawing, … (over 30 words)”

Figure 13: Comparison on Stable Diffusion XL.
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Under review as a conference paper at ICLR 2025

w/o NPO w/ NPO w/o NPO w/ NPO

Diffusion-DPO

Prompt: “Fantasy warrior”
Prompt: “Wild man with a bronze axe, ring armor and furs, 
wielding a shield”

Prompt: “Realistic photo of 8 year old girl chino kafuu 
from is the order a rabbit, cosplay, full body”

Prompt: “Big gorilla”

Prompt: “God Hades in Gotham like city, cyberpunk, up 
close, cinematic, neon”

Prompt: “Sunset reflecting on a crystal ball, factory filled 
with android girls”

Prompt: “Smooth shading” Prompt: “An attractive young woman rolling her eyes”

Prompt: “A blue car" Prompt: “Heaven”

Figure 14: Comparison on Diffusion-DPO.
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Under review as a conference paper at ICLR 2025

w/o NPO w/ NPO w/o NPO w/ NPO

Diffusion-SPO

Prompt: “Boy climbing into oven, lewd”
Prompt: “Rachel Amber:1.5 wearing a black skirt. Thin body 
type, Young face, Sony Alpha A7 III, … (over 30 words)”

Prompt: “Japanese children ballet school”
Prompt: “Photorealistic style, photorealistic pope francis 
wearing drip footwear, drip tenis”

Prompt: “Michael jordan against bruce lee The straight blast 
round kick in the air nba basketball ball … (over 30 words)” Prompt: “Random girl hugs Henry Cavill superman”

Prompt: “Highly detailed realistic photograph of a hand”
Prompt: “Portrait of a 26yr white woman, hyper-detailed, 
extremely ashamed, soft skin”

Prompt: “3d render of an ultrarealistic creature design, ONI 
entity with white long flowing hair” Prompt: “A hot female Alex from Minecraft”

Figure 15: Comparison on Diffusion-SPO.
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