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ABSTRACT

Transformers have achieved remarkable success across a wide range of applica-
tions, a feat often attributed to their scalability. Yet training them without residual
(skip) connections remains notoriously difficult. While skips stabilize optimiza-
tion, they also disrupt the hierarchical structure of representations, raising the
long-standing question of whether transformers can be trained efficiently without
them. In this work, we address this problem by analyzing the Jacobian of a skip-
less transformer block, showing why residuals improve conditioning and revealing
that their stabilization benefits can be recovered through a principled initialization
strategy. Building on this insight, we introduce the first method that enables stable
and efficient training of skipless transformers without altering the standard archi-
tecture. We validate our approach on Vision Transformers (ViTs) in both super-
vised and self-supervised settings, demonstrating that skipless ViTs trained with
our initialization overcome the usual optimization barriers, learn richer hierarchi-
cal representations, and outperform strong residual baselines on dense prediction
benchmarks. These results show that skip connections are not a fundamental re-
quirement for training ViTs and open new avenues for hierarchical representation
learning in vision models.

1 INTRODUCTION

Over the past decade, large transformer-based models have achieved remarkable success, demon-
strating strong zero-shot and generalization capabilities across tasks and domains through a single,
reusable model (Caron et al., 2021; Comanici et al., 2025; Wang et al., 2025). Their ability to be
trained at great depth relies heavily on skip connections (He et al., 2016), which have become a
cornerstone of modern deep learning models. This unprecedented scalability in depth is widely
regarded as a key factor behind the astonishing performance of transformer-based architectures.

However, the reliance on skip connections raises an important question: do such networks truly
operate at the depth implied by their architecture? Prior work (Veit et al., 2016; Gromov et al.,
2025) suggests that residual connections make networks behave as if they are much shallower than
their nominal depth. An earlier study (He et al., 2023) was the first to investigate “skipless trans-
formers”, introducing a modified self-attention block to preserve well-behaved forward kernels. Al-
though this modification improved trainability, the resulting models still converged significantly
more slowly than their residual counterparts. This paper addresses this gap by introducing a theo-
retically grounded initialization scheme that does not require architectural changes. Combined with
a second-order optimizer (Vyas et al., 2025), our approach enables skipless Vision Transformers to
achieve training speeds comparable to residual-based models.

The concept of skip connections dates back to the 1960s: Rosenblatt et al. (1962) described a three-
layer multilayer perceptron referred to as a cross-coupled system, where skip-like couplings were
already present. Decades later, skip connections were popularized in ResNets (He et al., 2016) and
subsequently adopted in transformers (Vaswani et al., 2017), and they are now considered crucial for
training very deep networks. One proposed explanation for their effectiveness is that they improve
the conditioning of the network Jacobian, thereby facilitating gradient flow and enabling faster,
more stable convergence (Ji et al., 2025b). Empirical evidence also suggests that self-attention
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tends to be disproportionately ill-conditioned—acting as an optimization bottleneck—compared to
other components such as feed-forward networks, underscoring the stabilizing role that residual
connections can play within transformers.

While skip connections are vital for optimizing modern neural networks, they also change how
architectural depth is functionally expressed. Deep networks are intended to form compositional hi-
erarchies in which representations become progressively more abstract layer by layer (LeCun et al.,
2015). However, skip connections disrupt this hierarchy by continually reintroducing information
from earlier layers into later ones. This shortcutting interrupts the intended progression of abstrac-
tion (Zhang et al., 2024) and can limit the network’s ability to learn rich, deeply composed features.
As a result, networks with skips often behave as if they are effectively shallower than their nominal
depth suggests. Prior studies have shown that in ResNets, skip connections reduce the role of deep
compositions, making networks behave like ensembles of shallower subnetworks (Veit et al., 2016).
In modern transformers, this effect is even more pronounced: after convergence, many deeper lay-
ers contribute so little to the final prediction that they can be pruned with minimal loss (Gromov
et al., 2025). Together, these findings suggest that while skip connections are indispensable for op-
timization, they may obscure the true representational benefits of depth — motivating our goal of
designing transformers without shortcuts.

To the best of our knowledge, the only prior work to train skipless transformers is that of He et al.
(2023), who modified the self-attention block to maintain well-behaved forward kernels and pre-
vent the kernel matrix from collapsing toward rank 1. Although their method successfully removes
residual connections, it does so by altering the standard transformer architecture, and the modified
attention blocks are not compatible with widely used optimizations such as Flash Attention (Dao,
2024). In contrast, our approach requires no architectural changes: we retain the standard trans-
former block design and achieve stable training of skipless transformers solely through a principled
initialization strategy.

Guided by the first principle of gradient-based optimization—good network conditioning (see Sec-
tion 4.1)—we analyze the Jacobian of transformers and use this insight to design a principled ini-
tialization strategy that enables stable training of skipless models. Our main contributions are:

• Jacobian analysis: We provide a theoretical study of the transformer Jacobian and show
that skip connections stabilize optimization by improving its conditioning.

• Initialization without architectural changes: Guided by this analysis, we introduce a
simple, theoretically grounded initialization scheme that requires no changes to the trans-
former block, remains fully compatible with FlashAttention, and enables stable end-to-end
training of skipless transformers.

• Supervised training at parity with residuals: On image classification benchmarks, skip-
less models trained with a second-order optimizer converge as quickly as standard residual
transformers and achieve comparable accuracy.

• Improved self-supervised representations: In self-supervised learning, skipless models
outperform residual transformers in dense prediction tasks, while being parameter-efficient,
training faster and producing more semantically coherent representations.

• Enabling depth studies: Our approach makes it possible— for the first time— to system-
atically study truly deep (skipless) Vision Transformers, offering new insights into hierar-
chical representation learning in vision.

2 TRANSFORMERS: TERMINOLOGY AND NOTATION

A standard transformer begins with a token embedding X0 ∈ Rn×d, where n is the number of
tokens and d is the embedding dimension. This embedding is then passed through a stack of L
transformer blocks. Each block consists of two main components: a Self-Attention Block (SAB)
and a Feed-Forward Network (FFN), as defined in Eqs. 1 and 2, respectively. The SAB applies
Self-Attention (SA) together with a residual (skip) connection, while the FFN applies a multilayer
perceptron (MLP), also with a residual connection. We denote by Xℓ the output embedding after
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the ℓ-th transformer block. In summary, we have

Xℓ = X̂ℓ−1 + SA(X̂ℓ−1) and (1)

X̂ℓ = Xl + MLP(Xl), (2)

Self-attention allows the network to selectively attend to relevant parts of the input and is core
component of modern transformers.

Omitting ℓ for clarity, the self-attention operation is defined as

SA(X) = AVWO, (3)

where Q = XWQ,K = XWK,V = XWV, and the attention matrix is A = η
(
QK⊤).

Here, Q,K,V are the queries, keys, and values, respectively. The parameter matrices
WQ,WK,WV,WO ∈ Rd×d are learnable, and η(·) is typically the softmax function.

In practice, multi-head attention is used. The projection matrices are divided across h heads, such
that

WQ
i , W

K
i , W

V
i ∈ Rd×dh , dh = d

h .

For head i, we compute
Ai = η

(
QiK

⊤
i

)
,

and the final output is obtained by concatenating across heads:

SA(X) = Concat
(
A1V1, . . . ,AhVh

)
WO. (4)

3 RELATED WORK ON SKIPLESS ARCHITECTURES

Many works have successfully removed skip connections in CNN architectures, overcoming op-
timization challenges and achieving competitive performance (Zhang et al., 2022; Zagoruyko &
Komodakis, 2017; Martens et al., 2021). In contrast, in the transformer domain, to the best of our
knowledge, only one paper has investigated training skipless language transformers (He et al., 2023)
by modifying the Self-Attention Block. Based on the observation that skipless transformers are suf-
fering from rank collapse (Noci et al., 2022), where the kernel matrix converges in depth to have
rank 1, they modified the self-attention block to maintain well-behaved kernels at initialization. Our
work differs from this previous attempt in that we focus on the conditioning of the network Jacobian
instead of the properties of the kernel, our modifications are purely to the initialization of the weight
matrices, and our experiments consider vision models instead of text.

4 NETWORK JACOBIAN ANALYSIS

4.1 PRELIMINARIES

Throughout this paper, when analysing the network Jacobian, we denote the transformer network
as f(x; θ) ∈ Rnd, where x = vec[X] is the vectorized token embedding, n is the number of tokens,
d is the feature dimension, and θ denotes all learnable network parameters such that p = dim(θ).
Importantly, f(x; θ) deliberately omits the token embedding and output-head so that we can focus
on the internal interactions of the transformer blocks; for this reason the network output is of size
nd.

For a batch of m input examples, we define the stacked output

F (θ) :=
[
f(x1; θ); · · · ; f(xm; θ)

]
∈ Rmnd. (5)

The network Jacobian is then J = ∂F
∂θ ∈ Rmnd×p, and its conditioning provides a key indicator

of the network’s training dynamics. We define the condition number as the ratio of the largest to
smallest singular value κ(J) = smax · s−1

min.

Prior research has shown that improved transformer conditioning leads to more stable training and
stronger results. For example, Ji et al. (2025a) improved the conditioning of low-rank matrices
using sinusoidal activations, thereby enhancing low-rank learning without additional parameters.
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Similarly, Saratchandran & Lucey (2025) introduced conditioned embedded tokens, strengthening
conditioning with minimal overhead. More recently, Ji et al. (2025b) argued that the primary role
of skip connections—particularly within the self-attention block—is to improve conditioning, and
demonstrated that transformers fail to train in their absence.

A central hypothesis of this work is that residual (skip) connections, while essential for optimiza-
tion, violate the hierarchical principle of deep networks by continually injecting shallow features
into deeper layers. Removing these shortcuts makes training challenging because the Jacobian of
skipless transformers is poorly conditioned at random initialization (Ji et al., 2025b). Building on
a theoretical analysis of the network Jacobian, we propose a principled initialization strategy that
directly improves conditioning. This enables training completely skipless transformers at speeds
comparable to standard residual models while learning richer, more semantically coherent internal
representations.

4.2 DECOMPOSITION OF THE NETWORK JACOBIAN

The Jacobian of the transformer network F can be decomposed into block columns:

J =
∂F

∂θ
=

[
J1, Ĵ1, . . . , JL, ĴL

]
,

where
Jℓ =

∂F

∂θ(ℓ)
∈ Rmnd×pℓ , Ĵℓ =

∂F

∂θ̂(ℓ)
∈ Rmnd×p̂ℓ .

Here, Jℓ and Ĵℓ are the Jacobians of the final output with respect to the parameters of the ℓ-th SAB
and FFN sub-blocks, respectively, and

∑L
ℓ=1

(
pℓ + p̂ℓ

)
= dim(θ) = p.

Following Ji et al. (2025b), we adopt the simplifying assumption that the conditioning of the full
Jacobian is controlled by its worst-conditioned sub-blocks. In particular we write

κ(J) ≤ max
ℓ

{
κ(Jℓ), κ(Ĵℓ)

}
. (6)

That is, the spectral condition number of the entire network Jacobian is assumed to be no larger than
the worst condition number among all SAB and FFN sub-block Jacobians.

This assumption does not hold universally, but we provide justification for it under mild block-
incoherence conditions with balanced blocks (see Section A.4.4). Ji et al. demonstrated both theo-
retically and empirically that SAB sub-block Jacobians are significantly less well-conditioned than
their FFN counterparts. For this reason our focus on this paper is around the condition of the SAB
sub-block Jacobian Jℓ.

4.3 DIVING INTO SUB-BLOCKS: SKIP CONNECTIONS IMPROVE CONDITIONING

With skip connections, the vectorized SAB and FFN sub-block updates at layer ℓ are

x(ℓ) = fSA(x̂
(ℓ−1); θ(ℓ)) + x̂(ℓ−1) ∈ Rnd, x̂(ℓ) = fMLP(x

(ℓ); θ̂(ℓ)) + x(ℓ) ∈ Rnd.

Denoting the derivative of the SA and MLP output with respect to the corresponding inputs by

Kℓ =
∂fSA(x̂

(ℓ−1); θ(ℓ))

∂x̂(ℓ−1)
∈ Rnd×nd, K̂ℓ =

∂fMLP(x
(ℓ); θ̂(ℓ))

∂x(ℓ)
∈ Rnd×nd, (7)

we have the derivative of the network output with respect to the SA parameters at layer ℓ is:

∂f(x; θ)

∂θ(ℓ)
=

ℓ+1∏
i=L

{(
K̂i + Ind

)
(Ki + Ind)

}(
K̂ℓ + Ind

) ∂fSA(x̂
(ℓ−1); θ(ℓ))

∂θ(ℓ)
∈ Rnd×pℓ . (8)

If skip connections are not present, we have:

∂f(x; θ)

∂θ(ℓ)
=

ℓ+1∏
i=L

(
K̂iKi

)
K̂ℓ

∂fSA(x̂
(ℓ−1); θ(ℓ))

∂θ(ℓ)
∈ Rnd×pℓ . (9)
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From Eq. (5), the Jacobian Jℓ ∈ Rmnd×pℓ is the concatenation of ∂f(x;θ)
∂θ(ℓ) ∈ Rnd×pℓ for m sam-

ples. By assumption i), we have κ(Jℓ) is bounded by the largest κ(∂f(x;θ)
∂θ(ℓ) ) for m samples. Thus,

comparing Eqs. (8) and (9), we can see clearly how the skip connections (Ind term) help network
conditioning. As we stated before in assumption ii), compared to the conditioning of the MLP K̂ℓ,
the conditioning of the SA Kℓ is much worse (explored in Section 5.1 under default truncated nor-
mal initialization with Proposition 1). The addition of the identity matrix Ind in Eq. (8) shifts the
spectrum of Kℓ from zero, regularizing the smallest singular values.

These observations invite the question: is there an alternative way to maintain the good conditioning
of Kℓ such that κ(Kℓ) ≈ κ(Kℓ + Ind) in a skipless transformer?

5 A NEW INITIALIZATION TO ENABLE SKIPLESS TRANSFORMERS

Based on the previous analysis, our goal is to improve the conditioning of κ(Kℓ). To this end, we
first give an expression Kℓ at layer ℓ:

Kℓ = (X̂ℓ−1W
V
ℓ W

O
ℓ ⊗ In)

⊤A′
ℓ + (WV

ℓ W
O
ℓ )

⊤ ⊗Aℓ, (10)

where Aℓ ∈ Rn×n is the attention matrix, and A′
ℓ ∈ Rn2×nd is the derivative of the attention matrix

with respect to the input x̂(ℓ−1) = vec(X̂ℓ−1) (vectorized when forming the derivative matrix) 1.

Using this expression we will proceed to derive a principled initialization for the weight matrices
WQ

ℓ ,W
K
ℓ ,W

V
ℓ and, WO

ℓ to improve the conditioning of Kℓ. WV
ℓ W

O
ℓ appears in both term and

WQ
ℓ W

K
ℓ appears in the Aℓ and A′

ℓ.

5.1 INITIALIZATION FOR WV
ℓ W

O
ℓ

A key observation (see Eq. 10) is that the product WV
ℓ W

O
ℓ appears in both terms of the Jacobian.

For training to be stable, this product must be well-conditioned in order to improve the condition
of Kℓ. The best-case scenario is when it is a (scaled) orthonormal matrix, because in that case
all of its singular values are equal, so that κ(WV

ℓ W
O
ℓ ) = 1. To achieve this, we first initialize a

random square matrix Q ∈ Rd×d with zero-mean, unit-variance entries. Then we perform an SVD
decomposition such that Q = USV⊤ and we assign WV

ℓ = c ·U and WO
ℓ = c ·V⊤, where c is a

scaling constant. This ensures the matrix WV
ℓ W

O
ℓ is scaled orthonormal.

5.2 INITIALIZATION FOR WQ
ℓ W

K⊤

ℓ

Recall the attention Aℓ = softmax(Mℓ), where Mℓ = X̂ℓ−1W
Q
ℓ W

K
ℓ
⊤
X̂⊤

ℓ−1. The conditioning of
Aℓ critically depends on the structure of its logits Mℓ.

Proposition 1 (Softmax conditioning: diagonal dominance vs. diffuse rows). Let Sτ (Mℓ) ∈ Rn×n

denote the row-wise softmax with temperature τ > 0.

(Diffuse rows). If each row of Mℓ has a small range (difference between maximum and
minimum)∆≪τ , then Sτ (Mℓ) is close to the uniform matrix 1

n11
⊤, which has rank 1. In this

case κ(Sτ (Mℓ)) ≳ τ
∆ , and the conditioning worsens as n grows.

(Diagonal dominance). If Mℓ is diagonal dominant, i.e. Mii − maxj ̸=i Mij ≥ γ > 0, then
Sτ (Mℓ) is close to an identity matrix, and

κ(Sτ (Mℓ)) ≤ 1 + ε(γ/τ)

1− ε(γ/τ)
,

with ε(γ/τ)→0 as γ/τ→∞. Hence Sτ (Mℓ) is well-conditioned when diagonal logits are dominant.

1ℓ is defined as head index in the previous section but in the following sections we redefine the ℓ as the
block index

5
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An illustration of this proposition is in Section A.4.1. This proposition highlights the key insight:
at random initialization, the logits M are “diffuse”, hence, the attention matrix A is close to the
uniform matrix and thus ill-conditioned (see Section A.4.1), which is the main cause of the ill-
conditioned κ(Kℓ).

To address this, we initialize the query and key projections WQ
ℓ and WK

ℓ such that

WQ
ℓ W

K
ℓ

⊤
= αZ + βI, (11)

where the entries of Z are sampled as Zij ∼ N
(
0, 1

d

)
, d is the weight dimension, I is the identity ma-

trix, and α, β are scalar constants. This scheme—sometimes called mimetic initialization (Trockman
& Kolter, 2023)—has been shown empirically to improve both convergence and final performance
in transformers.

Our contribution is to provide a theoretical motivation: the identity term βI encourages diago-
nal dominance in WQ

ℓ W
K
ℓ

⊤, which in turn helps ensure that the initial attention operator is well-
conditioned at the start of training. However, we emphasize that diagonal dominance of WQ

ℓ W
K
ℓ

⊤

does not automatically imply that the transformed matrix X⊤WQ
ℓ W

K
ℓ

⊤
X is also diagonally domi-

nant. In Section A.4.1 we detail the conditions under which this property carries over after projection
by the token embeddings X.

A scaled orthonormal WV
ℓ W

O
ℓ and diagonal dominant attention map Aℓ guarantees that the second

term of Kℓ, namely (WV
ℓ W

O
ℓ )

⊤ ⊗Aℓ, is well-conditioned. The remaining question is whether this
also ensures a well-conditioned Kℓ overall.
Proposition 2. (Conditioning of Kℓ) Let Kℓ = Bℓ + Eℓ, where Eℓ = (X̂ℓ−1W

V
ℓW

O
ℓ ⊗ In)

⊤A′
ℓ

(the “perturbation term”), and Bℓ = WO
l

⊤
WV

l
⊤ ⊗Aℓ (the “dominant term”). With above ini-

tialization (which ensures diagonal dominance of WQ
ℓ W

K⊤

ℓ ), Kℓ is well-conditioned.

The detailed proof is provided in Section A.4.3. The intuition behind this proposition is that if
the largest singular value of perturbation term Eℓ is smaller than the smallest singular value of the
dominant term Bℓ, then κ(Kℓ) ≈ κ(Bℓ).

Takeaway
By initializing WV

ℓ W
O
ℓ to be scaled orthonormal and WQ

ℓ W
K⊤

ℓ to be a diagonally dominant
structure, we improve the conditioning of the network Jacobian, addressing the main barrier
that has historically prevented the training of completely skipless transformers.

6 EXPERIMENTS

We evaluate our methods in supervised learning and self-supervised learning settings. All of our
experiments will be on Vision Transformers (ViTs) (Dosovitskiy et al., 2020), which have emerged
as powerful models in the field of computer vision, demonstrating remarkable performance across
various tasks.

6.1 SUPERVISED LEARNING WITH SKIPLESS VIT

We first validate our skipless ViTs on supervised learning image classification tasks. The model in
this subsection is ViT-Base (12 layers, 12 heads, head dimension 64, token dimension 768). The
skip models are standard ViT-Base, while in the skipless models we remove all skip connections
(from both the SABs and FFNs), and use the proposed initialization for the SA weights (choosing
α = 2, β = 0.6 and c = 3)2. The scaled-corrected uniform orthogonal initialization (Martens et al.,
2021) is used for the MLP parameters. Our implementation follows the setup in (Xu et al., 2024),
except that for a fair comparison we disable the drop path, which is not applicable in skipelss models.
All experiments are conducted on the ImageNet-1k (Russakovsky et al., 2015) dataset. We further
compare the performance when using AdamW (Loshchilov & Hutter, 2019) and SOAP (Vyas et al.,
2025) optimizers.

2We observed that our initialization hyperparameters (α, β, c) are not highly sensitive.
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Figure 1: Supervised training loss of ViT-Base using AdamW (Left) and SOAP (Right) optimizers.

Table 1: Validation accuracy of ViT-Base on ImageNet-1k using AdamW and SOAP optimizers.

Model Accuracy

skip ViT-Base + AdamW 80.3%
ViT-Base + SOAP 80.1%

skipless ViT-Base + AdamW 61.4%
ViT-Base + SOAP 77.0%

skipless + our init ViT-Base + AdamW 78.1%
ViT-Base + SOAP 80.8%

Results and Analysis. As shown in Table 1, the removal of skip connections severally hampers the
convergence of ViT-Base when trained with AdamW. This is evident both in the substantial accuracy
drop (61.4% vs. 80.3%), and the high training loss with slow convergence illustrated in Fig. 1 (left).
Using SOAP can partially alleviate this issue, enabling skipless models to converge more reliably
and recover much of the lost performance, while they still underperform standard ViTs with skip
connections. Incorporating our proposed initialization significantly mitigates these issues. When
trained with AdamW, skipless ViT-Base recovers most of the lost performance. Moreover, when
combined with SOAP, skipless models can converge as fast as vanilla ViT-based at the standard 300
epochs and achieve 80.8% accuracy, surpassing the skip-based ViT-Base baseline by 0.5%. These
results demonstrate that the proposed initialization is essential for enabling competitive training of
skipless ViTs across optimizers.

6.2 SELF-SUPERVISED LEARNING WITH SKIPLESS VIT

We further evaluate our skipless ViT model in the self-supervised setting. Specifically, we adopt
DINO (Caron et al., 2021), a widely used self-supervised framework based on self-distillation with-
out annotations. Here we use ViT-Small (12 layers, 6 heads, head dimension 64, token dimension
384), and α = 1.8, β = 1, c = 3 for the initialization parameters, and otherwise follow similar
model recipe to the previous subsection. We compare results under both AdamW and SOAP opti-
mizers. For quantitative evaluation, we extract representations from individual or multiple blocks
of frozen pre-trained models, and assess them on two downstream tasks: dense linear probing seg-
mentation (in Section 6.2.1) and object discovery (in Section 6.2.2). For qualitative evaluation (in
Section 6.3), we use Principle Component Analysis (PCA) (Abdi & Williams, 2010) to project the
learned representations into 3-channel feature maps, visualized as RGB images.

6.2.1 DENSE LINEAR PROBING SEGMENTATION

We evaluate linear probing on dense features for the semantic segmentation task. A linear classifier
is trained on top of the representation, with performance measured by mean intersection-over-union
(mIoU) on PASCAL VOC2012 (Everingham et al., 2015), ADE20K (Zhou et al., 2019), and COCO-
Stuff (Caesar et al., 2018) datasets. We sweep over learning rates and train for 30 epochs. For
ADE20k and COCO-Stuff, we randomly sample 3,000 training images due to resource constraints.

Results and Analysis. As shown in Table 2, our skipless DINO ViT-Small models trained with the
AdamW optimizer achieve higher performance than their skip-based counterparts on the VOC2012
and COCOStuff benchmarks when evaluated with the representation extracted from the single layer.

7
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Table 2: Pretrained DINO ViT-Small models for 300 epochs. We also evaluate the checkpoint at 200
epochs for skipless models. Performance on linear probing segmentation tasks on different datasets.

VOC2012 COCOStuff ADE20K
Epochs → 300 300 200 300 300 200 300 300 200

skip skipless skipless skip skipless skipless skip skipless skipless
single feature
AdamW 56.3 62.3 62.1 24.6 24.9 28.3 23.7 22.5 22.8
SOAP 51.3 57.6 63.4 21.3 23.5 27.6 20.5 21.3 22.5
multiscale
AdamW 61.6 65.4 65.0 26.7 28.0 28.2 26.0 26.3 27.0
SOAP 61.3 59.5 64.8 25.9 25.1 27.6 25.3 23.7 25.6
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Figure 2: Performance of dense linear probing segmentation results using skip and skipless DINO
ViT-Small models with AdamW and SOAP optimizers throughout the pretraining. The range of
y-axis is the same for per column.

In contrast, these models show reduced accuracy on the ADE20K dataset under the same single-layer
setting. We attribute this to the greater scene complexity in ADE20K, where multi-scale information
is critical. The skip-based models can implicitly mix representations across layers, providing a
form of multi-scale context. However, our skipless models enforce a stricter hierarchical structure,
yielding more abstract features at each layer. Based on this, when multiscale layer features are
explicitly aggregated at evaluation time, skipless models once again surpass their skip-connected
counterparts. While training with SOAP, overall we observe the performance drops for both skip
and skipless models and we conjecture that is due to the inductive bias of optimizers (Pascanu et al.,
2025). Further, we demonstrate the depth analysis in Table 3. We train our models using the AdamW
optimizer with different depths for 300 epochs and evaluate using the checkpoint at 200 epochs. Our
models with 10 blocks perform comparably with skip models.

6.2.2 OBJECT DISCOVERY

Detecting salient objects is a fundamental problem in computer vision with applications in real-
world vision systems. Traditional methods rely on supervised learning using large-scale high-quality
annotated data, which is expensive and time-consuming to obtain these annotations (Loshchilov &
Hutter, 2019). To address this challenge, recent works (Siméoni et al., 2021; Wang et al., 2023) have
explored self-supervised pre-trained models, which produce high-quality and abstraction feature
representations without requiring manual labels. In this subsection, we validate our pretrained DINO
models using TokenCuT (Wang et al., 2023), a graph-based algorithm that leverages self-supervised
transformer features for salient object detection. Following prior observations (Amir et al., 2022)
that positional information gradually diminishes across layers, we compare representations from
different transformer blocks and report the best-performing results. We use VOC2012 (Everingham
et al., 2015) and COCO20k (Lin et al., 2014) as the evaluation datasets.

Results and Analysis. As shown in Fig. 3, our skipless models consistently outperform their skip-
connected counterparts by a substantial margin on both the VOC2012 and COCO20K datasets under
both AdamW and SOAP optimization, indicating that the representations from skipless models are

8
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Figure 3: Pretrained DINO ViT-Small models for 300 epochs. For skipless models, we also evalu-
ated checkpoint at 200 epochs. Performance on object discovery tasks using TokenCut on VOC2012
and COCO20k datasets.

VOC2012 COCO20k
Epoch → 300 300 200 300 300 200
Optimizer ↓ skip skipless skipless skip skipless skipless
AdamW 32.3 53.5 54.0 21.2 36.5 38.5
SOAP 49.4 63.2 68.1 27.5 46.7 54.1

O
ri
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n
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S
k
ip

S
k
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ss

Figure 4: Visualize learned representations from pretrained DINO models without cherry-picking.

abstract and high-quality. Furthermore, in Table 4, we evaluate end-to-end trained models of varying
depths and find that skipless ViTs with only 9 layers surpass skip-based 12 layer ViTs on both
datasets, highlighting the efficiency of the skipless design.

6.3 QUALITATIVE EVALUATION

To deeply analyze the effectiveness of our skipless ViTs, we visualize representations of pre-trained
models. Here, we choose the features from 11-th blocks. As shown in Fig. 4, we select the first
40 images from the COCO validation set without cherry-picking. Ten examples are shown in the
main paper, and the rest are shown in Fig. 7. PCA is applied to project the representations into three
channels and render them as RGB images. The figure clearly demonstrates that in models with skip
connections, the features appear patchy and noisy, as shallow information is repeatedly injected into
deeper layers, hindering the learning of high-level semantic representations. In contrast, skipless
models yield clearer object boundaries between different semantic regions with more consistent
colors within the same object. These results suggest that skipless ViTs capture more abstract and
semantically coherent features.

7 DISCUSSION AND LIMITATION

Our experiments focus on Vision Transformers, as they offer a well-understood and widely used
backbone for analysis, visualization, and controlled experimentation. The inherently compositional
structure of vision tasks also makes this domain particularly suitable for examining how skipless
models form hierarchical representations. Due to computational constraints, our evaluations are
limited to ViT models in the 100M-parameter range. We expect that extending these insights to
larger-scale architectures, such as billion-parameter models, will provide further understanding of
skipless training at scale and represents an exciting direction for future work.

Although our conditioning analysis relies on a mild block incoherence assumption that we do not
explicitly verify. The strong and consistent empirical performance of our initialization across dif-
ferent model depths and dense prediction tasks suggests that this theoretical simplification remains
practically meaningful.

8 CONCLUSION

In this paper, we present a theoretical analysis of the transformer Jacobian and, building on this first
principle, propose a theoretically grounded initialization scheme that requires no architectural mod-

9
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ifications. This scheme enables efficient training of skipless Vision Transformers. Furthermore, our
skipless models outperform their residual-based counterparts on dense prediction tasks, suggesting
that they learn more abstract and higher-quality internal representations. We hope our work provides
new insights into hierarchical representation learning in vision.

10
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A APPENDIX

A.1 USE OF LLMS

Large language models (LLMs) were used to assist with proofreading, formatting, and improving
the clarity of writing. All technical contributions, experiments, and analyses were designed and
conducted by the authors

A.2 END-TO-END TRAINING WITH LESS DEPTH

In this section, we train end-to-end skipless DINO ViT-Small models for 300 epochs with varied
depth using AdamW optimizer and evaluate on linear probing semantic segmentation and object
discovery tasks. We use the checkpoint at 200 epochs.

Table 3: End-to-end training performance on dense linear probing segmentation on our models with
varied depth (AdamW).

depth VOC2012 COCOStuff ADE20K

skip 12 61.6 26.7 26.0

skipless

12 65.0 28.2 27.0
11 66.2 28.0 26.7
10 64.1 27.1 25.2
9 61.1 26.0 24.4

Table 4: End-to-end training performance on object discovery on our models with varied depth
(AdamW).

depth VOC2012 COCO20k

skip 12 32.3 21.2

skipless

12 53.5 36.5
11 47.4 31.9
10 43.9 25.4
9 34.8 24.0

A.3 JACOBIAN

In this section, we provide the derivation of Kℓ.

The derivative of the SA output with respect to the input is

∂vec
(

SAℓ(X̂ℓ−1)
)

∂x̂(ℓ−1)
=

∂vec
(
Aℓ(X̂ℓ−1)Vℓ

)
∂x̂(ℓ−1)

= (Vℓ
⊤ ⊗ In)A

′
ℓ + (Id ⊗Aℓ)

∂vec (Vℓ)

∂x̂(ℓ−1)

= (Vℓ
⊤ ⊗ In)A

′
ℓ + (Id ⊗Aℓ)(W

V
ℓ

⊤ ⊗ In×n)

= (Vℓ
⊤ ⊗ In)A

′
ℓ +WV

ℓ

⊤ ⊗Aℓ

(12)

The Jacobian of the attention matrix to the input is
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Kl =
∂fSA(x̂
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(13)

A.4 PROOF

A.4.1 SOFTMAX CONDITIONING

In this section, we provide the empirical demonstration of the Proposition 1. We conduct a simple
simulation experiment and the result is shown in Fig. 5. We choose a square matrix M ∈ R10×10

and set α = 0.1, β = 5 for the ”peak” case and α = 0.1, β = 0 for the ”diffuse” case. Empirically,
we can see that when choosing large β (ensuring diagonal dominance), the softmax produces a near
identity matrix with κ ≈ 1.1. However, if M is truncated normal initialized, each row of the softmax
output is near uniform and the output is ill-conditioned with κ ≈ 730.1.

Distribution of XX⊤ and XZX⊤

Given X ∈ Rn×d ∼ N (0, I), we have the mean and varicance of A = XX⊤ as follows,

- Diagonal entries (i = j):

Aii ∼ χ2
d, E[Aii] = d, Var(Aii) = 2d, (14)

where χ is Wishart distribution.

- Off-diagonal entries (i ̸= j):

E[Aij ] = 0, Var(Aij) = d, (15)

Then given Z ∼ N (0, 1
dI), we have the mean and variance of B = XZX⊤ as follows,

Peaked rows (   1.1) Diffuse rows (   730.1)

0.2

0.4

0.6

0.8

0.096

0.098

0.100

0.102

0.104

Softmax of Peaked vs Diffuse Matrices

Figure 5: Left: We choose α = 0.1, β = 5 to ensure diagonal dominance. Right: We choose
α = 0.1, β = 0.
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- Diagonal entries (i = j):

E[Bii] = 0, Var(Bii) ≈ d+ 2. (16)

- Off-diagonal entries (i ̸= j):

E[Bij ] = 0, Var(Bij) ≈ 1. (17)

For the combined matrix (attention map) C = αB+ βA, we have

- Diagonal entries (i = j):

E[Cii] = βd, Var(Cii) ≈ α2(d+ 2) + β2(2d). (18)

- Off-diagonal entries (i ̸= j):

E[Cij ] = 0, Var(Cij) ≈ α2 + β2d. (19)

The default initialization is equivalent to β = 0 (no diagonal dominance in weight initialization) and
α = O( 1d ) (usually around 0.04). All the values in the attention map are mean 0 with a variance
much smaller than 1, which satisfy the diffuse condition.

When β > 0, the difference between the diagonal elements and an off-diagonal element γ = Cii −
Cij follows

γ ∼ N (βd, α2(d+ 3) + β2(3d)) (20)
(The covariance between Cii and Cij is close to 0 when d is large.), which satisfy the diagonal
dominent condition with a proper β.

To justify our assumption that the token embeddings X ∈ Rn×d ∼ N (0, I), we show that their
empirical distribution closely matches a zero-mean, approximately isotropic Gaussian (shown in
Fig. 6).

A.4.2 PROOF OF PROPOSED INITIALIZATION

Lemma 1. (Jacobian of the softmax function) Let A = softmax(M), where M = XWQWK⊤
X⊤.

With the proposed initialization (see in Eq. (11)), we can show that the 2-norm of the derivative
scales,

∥∥∥∂vec(A)
∂vec(X)

∥∥∥
2
= O

(
αe−β

)
Proof. See the derivation in Eq. (12), we have the bound:∥∥∥∥∂vec(A)

∂vec(X)

∥∥∥∥
2

≤
∥∥∥∥ ∂vec(A)

∂vec(M)

∥∥∥∥
2

(21)

Since softmax is a row normalization, the Jacobian JA = ∂vec(A)
∂vec(M) ∈ Rn2×n2

is a block diagonal
matrix. For each block i, we have:

(JA,i)jk = Aij(δjk − Aik), (22)

where Aij is the i-th row and j-th column entry of A.

Obviously, using our proposed initialization (laerger β leads to more diagonally dominant), we have:

Aii = 1−O(αe−β) and Aij = O(αe−β) (23)

Based on this, we analyze the order of magnitude of the elements in (JA,i). In the case of j = k:

(JA,i)ii = Aii(1− Aii) = O(αe−β), if i = j (24)

(JA,i)ii = Aii(1− Aii) = O(αe−β), if i ̸= j (25)
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Figure 6: Distribution of token embeddings after the pre-layer norm throughout the blocks using
proposed initialization.
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In the case of j ̸= k:

(JA,i)jk = −AijAik = O(αe−β) (26)

Then we have the bound for ∥JA,i∥:

∥JA,i∥F =

√√√√ d∑
j,k=1

((JA,i)jk)2 = d · O(αe−β) (27)

Therefore, the 2-norm is:

∥JA,i∥2 ≤ ∥JA,i∥F = O(αe−β) (28)

Then we have :

∥∥∥∥∂vec(A)

∂vec(X)

∥∥∥∥
2

= max
i

∥JA,i∥2 = O(αe−β) (29)

A.4.3 CONDITIONING OF Kℓ

In this section we provide the proof for Proposition 2

Proof. We show that, with proposed initialization, A is well conditioned such that κ(A) ≈ 1

Next step, we show that the term E is a small perturbation of Jacobian J.

Bound ∥E∥2 using norm submultiplicativity:

∥E∥2 ≤ ∥WO
ℓ ∥2∥WV

ℓ ∥2∥Xℓ−1∥2
∥∥∥∥∂(vec(Aℓ(Xℓ−1)))

∂xℓ−1

∥∥∥∥
2

(30)

Since ∥WO
ℓ W

V
ℓ ∥2 ≤ ∥WO

ℓ ∥2∥WV
ℓ ∥2 = 1 and ∥X∥2 is bounded, using Lemma 1, we have:

∥WO
ℓ W

V
ℓ ∥2 ≤ O(αe−β) (31)

Combine the bound ∥B∥2 ≈ 1 and ∥E∥2 ≤ O(αe−β), and there exists α and β such that
∥E∥2 ≪ ∥B∥2. Therefore E is a small perturbation of B and J is well-conditioned κ(J) ≈ 1.

A.4.4 CONDITION OF MATRIX CONCATENATION

Let M = [A B] ∈ Rn×(d1+d2).

Denote the spectral norms and minimal singular values by

smax = max{σmax(A), σmax(B)}, smin = min{σmin(A), σmin(B)},

and the mutual coherence parameter measuring alignment between A and B and a balanced condi-
tion τ measuring the norm difference of the matrices:

ρ := ∥A⊤B∥2, (32)

τ :=
max{∥A∥2, ∥B∥2}
min{∥A∥2, ∥B∥2}

=
max{σmax(A), σmax(B)}
min{σmax(A), σmax(B)}

. (33)
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For any nonzero vectors x ∈ Rd1 ,y ∈ Rd2 we have

∥M
[
x
y

]
∥2

∥
[
x
y

]
∥2

=

[
x
y

]⊤
M⊤M

[
x
y

]
∥x∥2 + ∥y∥2

=
∥Ax∥2 + ∥By∥2 + 2⟨Ax,By⟩

∥x∥2 + ∥y∥2
. (34)

Hence the largest singular value of M is

σmax(M)2 = max
x,y ̸=0

∥Ax∥2 + ∥By∥2 + 2⟨Ax,By⟩
∥x∥2 + ∥y∥2

≤ max
x,y ̸=0

σmax(A)2∥x∥2 + σmax(B)2∥y∥2 + 2ρ∥x∥∥y∥
∥x∥2 + ∥y∥2

≤ max{σmax(A)2, σmax(B)2}+ max
x,y ̸=0

2ρ∥x∥∥y∥
∥x∥2 + ∥y∥2

≤ s2max + ρ.

(35)

The smallest singular value of M is

σmin(M)2 = min
x,y ̸=0

∥Ax∥2 + ∥By∥2 + 2⟨Ax,By⟩
∥x∥2 + ∥y∥2

≥ min
x,y ̸=0

σmin(A)2∥x∥2 + σmin(B)2∥y∥2 − 2ρ∥x∥∥y∥
∥x∥2 + ∥y∥2

≥ min{σmin(A)2, σmin(B)2}+ min
x,y ̸=0

−2ρ∥x∥∥y∥
∥x∥2 + ∥y∥2

≥ s2min − ρ.

(36)

Therefore

κ(M) =
σmax(M)

σmin(M)
≤

√
s2max + ρ

s2min − ρ
≤

√√√√1 + ρ
s2max

1− ρ
s2min

· smax

smin
≤ τ

√√√√1 + ρ
s2max

1− ρ
s2min

κmax, (37)

where κmax is the largest condition number of the component matrices.

Under a mild block-incoherence condition (i.e., ρ → 0), and balanced blocks (τ → 1), the concate-
nated condition number is controlled by the worst block condition number κmax.

A.5 VISUALIZATION

As shown in Fig. 7, the skipless DINO ViT-Small produces representations that form much more
semantically coherent clusters. Moreover, Fig. 8 reveals a clear hierarchical progression: earlier
layers capture meaningful subparts and mid-level structures, while deeper layers focus on complete
objects. Such hierarchical patterns are weaker and diffuse in the residual baselines.

A.6 DINO PRETRAINING LOSS

In Fig. 9, we demonstrate the DINO pretraining loss for both skip DINO ViT-Small and skipless
DINO ViT-Small with proposed method.

A.7 JACOBIAN CONDITIONING DURING TRAINING

We tracked the condition numbers of the full Jacobian (κ(JJ⊤)) as well as the per-layer Jacobian
kernels during DINO ViT-Small training. As shown in Table 5, the standard skipless baseline di-
verges early in training, resulting in numerical overflow. In contrast, our skipless + init variant main-
tains a condition number of the same order of magnitude as the residual (skip) baseline throughout
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Figure 7: PCA visualization of representation
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Figure 8: PCA visualization of representation from multiple layers
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Figure 9: DINO ViT-Small Pretraining Loss
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Table 5: Condition number of the full Jacobian κ(JJ⊤) during DINO ViT-S training.
Epoch 20 Epoch 60 Epoch 120 Epoch 180 Epoch 240 Epoch 300

skip 127 72 82 93 113 144
skipless ∞ ∞ ∞ ∞ ∞ ∞
skipless + init 195 340 261 160 176 207

the entire optimization trajectory. This demonstrates that our initialization successfully mitigates the
optimization pathologies that typically arise in skipless architectures.

We also analyzed the conditioning of the layer-wise Jacobian kernels, computing κ(KℓK
⊤
ℓ ) for

skipless models and κ((Kℓ + I)(Kℓ + I)⊤) for residual models. Table 6 shows results across depth
and training epochs.

Table 6: Layer-wise Jacobian condition numbers across layers. We report κ(KℓK
⊤
ℓ ) for skipless,

and κ((Kℓ + I)(Kℓ + I)⊤) for skip.

Epoch 20

L0 L4 L7 L11

skip 1.05 1.49 1.35 1.04
skipless ∞ ∞ ∞ ∞
skipless + init 10 2.7 7.5 12.5

Epoch 100

L0 L4 L7 L11

skip 1.06 1.54 1.25 1.25
skipless ∞ ∞ ∞ ∞
skipless + init 6.25 3.7 8.54 19.2

Epoch 200

L0 L4 L7 L11

skip 1.03 1.57 1.21 1.37
skipless ∞ ∞ ∞ ∞
skipless + init 6.25 3.84 11.1 21.7

Epoch 300

L0 L4 L7 L11

skip 1.02 1.38 1.28 1.51
skipless ∞ ∞ ∞ ∞
skipless + init 3.44 3.57 14.3 20.2

A.8 LANGUAGE MODELING

We extended our evaluation to Language Transformers. We pretrained a 110M parameter model on
the C4 dataset for 20k steps (using AdamW) and evaluated zero-shot performance on five common-
sense reasoning tasks following (He et al., 2023). We use a batch size of 256k tokens and ablate
learning rate of {1, 3, 5, 7} × e−n. We use α = 0, β = 0.5 for our initialization. The zero-shot per-
formance on 5 downstream tasks are shown in Table 7. We use the flash-linear-attention
codebase (Yang & Zhang, 2024).
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Table 7: Zero-shot performance on downstream tasks.
Architecture BoolQ HellaSwag Winogrande PIQA SIQA Average

skip 57.3 29.7 50.9 63.9 36.5 47.7
skipless - - - - - -
skipless + α=0, β=0.5 61.2 28.2 52.2 62.7 36.5 48.2

Without our initialization, the standard skipless Transformer diverges immediately. With our
method, it achieves comparable performance with the residual baseline. Crucially, while prior work
(He et al., 2023) can train skipless Transformers, it requires 5 times more training steps to match
residual performance. In contrast, our method achieves this at the same training speed (1× steps) as
the baseline, demonstrating significantly superior efficiency.
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