

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CUTTING THE SKIP: TRAINING RESIDUAL-FREE TRANSFORMERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformers have achieved remarkable success across a wide range of applications, a feat often attributed to their scalability. Yet training them without residual (skip) connections remains notoriously difficult. While skips stabilize optimization, they also disrupt the hierarchical structure of representations, raising the long-standing question of whether transformers can be trained efficiently *without* them. In this work, we address this problem by analyzing the Jacobian of a skipless transformer block, showing why residuals improve conditioning and revealing that their stabilization benefits can be recovered through a principled initialization strategy. Building on this insight, we introduce the first method that enables stable and efficient training of *skipless transformers* without altering the standard architecture. We validate our approach on Vision Transformers (ViTs) in both supervised and self-supervised settings, demonstrating that skipless ViTs trained with our initialization overcome the usual optimization barriers, learn richer hierarchical representations, and outperform strong residual baselines on dense prediction benchmarks. These results show that skip connections are not a fundamental requirement for training ViTs and open new avenues for hierarchical representation learning in vision models.

1 INTRODUCTION

Over the past decade, large transformer-based models have achieved remarkable success, demonstrating strong zero-shot and generalization capabilities across tasks and domains through a single, reusable model (Caron et al., 2021; Comanici et al., 2025; Wang et al., 2025). Their ability to be trained at great depth relies heavily on skip connections (He et al., 2016), which have become a cornerstone of modern deep learning models. This unprecedented scalability in depth is widely regarded as a key factor behind the astonishing performance of transformer-based architectures.

However, the reliance on skip connections raises an important question: do such networks truly operate at the depth implied by their architecture? Prior work (Veit et al., 2016; Gromov et al., 2025) suggests that residual connections make networks behave as if they are much shallower than their nominal depth. An earlier study (He et al., 2023) was the first to investigate “skipless transformers”, introducing a modified self-attention block to preserve well-behaved forward kernels. Although this modification improved trainability, the resulting models still converged significantly more slowly than their residual counterparts. This paper addresses this gap by introducing a theoretically grounded initialization scheme that does not require architectural changes. Combined with a second-order optimizer (Vyas et al., 2025), our approach enables skipless Vision Transformers to achieve training speeds comparable to residual-based models.

The concept of skip connections dates back to the 1960s: Rosenblatt et al. (1962) described a three-layer multilayer perceptron referred to as a cross-coupled system, where skip-like couplings were already present. Decades later, skip connections were popularized in ResNets (He et al., 2016) and subsequently adopted in transformers (Vaswani et al., 2017), and they are now considered crucial for training very deep networks. One proposed explanation for their effectiveness is that they improve the conditioning of the network Jacobian, thereby facilitating gradient flow and enabling faster, more stable convergence (Ji et al., 2025b). Empirical evidence also suggests that self-attention

054 tends to be disproportionately ill-conditioned—acting as an optimization bottleneck—compared to
 055 other components such as feed-forward networks, underscoring the stabilizing role that residual
 056 connections can play within transformers.

057 While skip connections are vital for optimizing modern neural networks, they also change how
 058 architectural depth is functionally expressed. Deep networks are intended to form compositional hi-
 059 erarchies in which representations become progressively more abstract layer by layer (LeCun et al.,
 060 2015). However, skip connections disrupt this hierarchy by continually reintroducing information
 061 from earlier layers into later ones. This shortcircuiting interrupts the intended progression of abstrac-
 062 tion (Zhang et al., 2024) and can limit the network’s ability to learn rich, deeply composed features.
 063 As a result, networks with skips often behave as if they are effectively shallower than their nominal
 064 depth suggests. Prior studies have shown that in ResNets, skip connections reduce the role of deep
 065 compositions, making networks behave like ensembles of shallower subnetworks (Veit et al., 2016).
 066 In modern transformers, this effect is even more pronounced: after convergence, many deeper lay-
 067 ers contribute so little to the final prediction that they can be pruned with minimal loss (Gromov
 068 et al., 2025). Together, these findings suggest that while skip connections are indispensable for op-
 069 timization, they may obscure the true representational benefits of depth — motivating our goal of
 070 designing transformers without shortcuts.

071 To the best of our knowledge, the only prior work to train skipless transformers is that of He et al.
 072 (2023), who modified the self-attention block to maintain well-behaved forward kernels and pre-
 073 vent the kernel matrix from collapsing toward rank 1. Although their method successfully removes
 074 residual connections, it does so by altering the standard transformer architecture, and the modified
 075 attention blocks are not compatible with widely used optimizations such as Flash Attention (Dao,
 076 2024). In contrast, our approach requires *no architectural changes*: we retain the standard trans-
 077 former block design and achieve stable training of skipless transformers solely through a principled
 078 initialization strategy.

079 Guided by the first principle of gradient-based optimization—good network conditioning (see Sec-
 080 tion 4.1)—we analyze the Jacobian of transformers and use this insight to design a principled ini-
 081 tialization strategy that enables stable training of skipless models. Our main contributions are:

- 083 • **Jacobian analysis:** We provide a theoretical study of the transformer Jacobian and show
 084 that skip connections stabilize optimization by improving its conditioning.
- 085 • **Initialization without architectural changes:** Guided by this analysis, we introduce a
 086 simple, theoretically grounded initialization scheme that requires *no* changes to the trans-
 087 former block, remains fully compatible with FlashAttention, and enables stable end-to-end
 088 training of skipless transformers.
- 089 • **Supervised training at parity with residuals:** On image classification benchmarks, skip-
 090 less models trained with a second-order optimizer converge as quickly as standard residual
 091 transformers and achieve comparable accuracy.
- 092 • **Improved self-supervised representations:** In self-supervised learning, skipless models
 093 outperform residual transformers in dense prediction tasks, while being parameter-efficient,
 094 training faster and producing more semantically coherent representations.
- 095 • **Enabling depth studies:** Our approach makes it possible—for the first time—to system-
 096 atically study *truly deep* (skipless) Vision Transformers, offering new insights into hierar-
 097 chical representation learning in vision.

100 2 TRANSFORMERS: TERMINOLOGY AND NOTATION

103 A standard transformer begins with a token embedding $\mathbf{X}_0 \in \mathbb{R}^{n \times d}$, where n is the number of
 104 tokens and d is the embedding dimension. This embedding is then passed through a stack of L
 105 transformer blocks. Each block consists of two main components: a *Self-Attention Block* (SAB)
 106 and a *Feed-Forward Network* (FFN), as defined in Eqs. 1 and 2, respectively. The SAB applies
 107 Self-Attention (SA) together with a residual (skip) connection, while the FFN applies a multilayer
 108 perceptron (MLP), also with a residual connection. We denote by \mathbf{X}_ℓ the output embedding after

108 the ℓ -th transformer block. In summary, we have
 109

$$\mathbf{X}_\ell = \hat{\mathbf{X}}_{\ell-1} + \text{SA}(\hat{\mathbf{X}}_{\ell-1}) \quad \text{and} \quad (1)$$

$$\hat{\mathbf{X}}_\ell = \mathbf{X}_\ell + \text{MLP}(\mathbf{X}_\ell), \quad (2)$$

113 Self-attention allows the network to selectively attend to relevant parts of the input and is core
 114 component of modern transformers.

115 Omitting ℓ for clarity, the self-attention operation is defined as
 116

$$\text{SA}(\mathbf{X}) = \mathbf{AVW}^O, \quad (3)$$

118 where $\mathbf{Q} = \mathbf{XW}^Q$, $\mathbf{K} = \mathbf{XW}^K$, $\mathbf{V} = \mathbf{XW}^V$, and the attention matrix is $\mathbf{A} = \eta(\mathbf{QK}^\top)$.
 119 Here, \mathbf{Q} , \mathbf{K} , \mathbf{V} are the *queries*, *keys*, and *values*, respectively. The parameter matrices
 120 $\mathbf{W}^Q, \mathbf{W}^K, \mathbf{W}^V, \mathbf{W}^O \in \mathbb{R}^{d \times d}$ are learnable, and $\eta(\cdot)$ is typically the softmax function.

121 In practice, *multi-head attention* is used. The projection matrices are divided across h heads, such
 122 that

$$\mathbf{W}_i^Q, \mathbf{W}_i^K, \mathbf{W}_i^V \in \mathbb{R}^{d \times d_h}, \quad d_h = \frac{d}{h}.$$

123 For head i , we compute
 124

$$\mathbf{A}_i = \eta(\mathbf{Q}_i \mathbf{K}_i^\top),$$

125 and the final output is obtained by concatenating across heads:
 126

$$\text{SA}(\mathbf{X}) = \text{Concat}(\mathbf{A}_1 \mathbf{V}_1, \dots, \mathbf{A}_h \mathbf{V}_h) \mathbf{W}^O. \quad (4)$$

130 3 RELATED WORK ON SKIPLESS ARCHITECTURES

132 Many works have successfully removed skip connections in CNN architectures, overcoming op-
 133 timization challenges and achieving competitive performance (Zhang et al., 2022; Zagoruyko &
 134 Komodakis, 2017; Martens et al., 2021). In contrast, in the transformer domain, to the best of our
 135 knowledge, only one paper has investigated training skipless language transformers (He et al., 2023)
 136 by modifying the Self-Attention Block. Based on the observation that skipless transformers are suf-
 137 fering from rank collapse (Noci et al., 2022), where the kernel matrix converges in depth to have
 138 rank 1, they modified the self-attention block to maintain well-behaved kernels at initialization. Our
 139 work differs from this previous attempt in that we focus on the conditioning of the network Jacobian
 140 instead of the properties of the kernel, our modifications are purely to the initialization of the weight
 141 matrices, and our experiments consider vision models instead of text.
 142

143 4 NETWORK JACOBIAN ANALYSIS

145 4.1 PRELIMINARIES

147 Throughout this paper, when analysing the network Jacobian, we denote the transformer network
 148 as $f(\mathbf{x}; \theta) \in \mathbb{R}^{nd}$, where $\mathbf{x} = \text{vec}[\mathbf{X}]$ is the vectorized token embedding, n is the number of tokens,
 149 d is the feature dimension, and θ denotes all learnable network parameters such that $p = \dim(\theta)$.
 150 Importantly, $f(\mathbf{x}; \theta)$ deliberately omits the token embedding and output-head so that we can focus
 151 on the internal interactions of the transformer blocks; for this reason the network output is of size
 152 nd .

153 For a batch of m input examples, we define the stacked output

$$F(\theta) := [f(\mathbf{x}_1; \theta); \dots; f(\mathbf{x}_m; \theta)] \in \mathbb{R}^{mnd}. \quad (5)$$

156 The network Jacobian is then $\mathbf{J} = \frac{\partial F}{\partial \theta} \in \mathbb{R}^{mnd \times p}$, and its conditioning provides a key indicator
 157 of the network’s training dynamics. We define the condition number as the ratio of the largest to
 158 smallest singular value $\kappa(\mathbf{J}) = s_{\max} \cdot s_{\min}^{-1}$.
 159

160 Prior research has shown that improved transformer conditioning leads to more stable training and
 161 stronger results. For example, Ji et al. (2025a) improved the conditioning of low-rank matrices
 162 using sinusoidal activations, thereby enhancing low-rank learning without additional parameters.

162 Similarly, Saratchandran & Lucey (2025) introduced conditioned embedded tokens, strengthening
 163 conditioning with minimal overhead. More recently, Ji et al. (2025b) argued that the primary role
 164 of skip connections—particularly within the self-attention block—is to improve conditioning, and
 165 demonstrated that transformers fail to train in their absence.

166 A central hypothesis of this work is that residual (skip) connections, while essential for optimization,
 167 violate the hierarchical principle of deep networks by continually injecting shallow features
 168 into deeper layers. Removing these shortcuts makes training challenging because the Jacobian of
 169 skipless transformers is poorly conditioned at random initialization (Ji et al., 2025b). Building on
 170 a theoretical analysis of the network Jacobian, we propose a principled initialization strategy that
 171 directly improves conditioning. This enables training *completely skipless transformers* at speeds
 172 comparable to standard residual models while learning richer, more semantically coherent internal
 173 representations.

175 4.2 DECOMPOSITION OF THE NETWORK JACOBIAN

176 The Jacobian of the transformer network F can be decomposed into block columns:

$$178 \mathbf{J} = \frac{\partial F}{\partial \theta} = [\mathbf{J}_1, \hat{\mathbf{J}}_1, \dots, \mathbf{J}_L, \hat{\mathbf{J}}_L],$$

180 where

$$181 \mathbf{J}_\ell = \frac{\partial F}{\partial \theta^{(\ell)}} \in \mathbb{R}^{mnd \times p_\ell}, \quad \hat{\mathbf{J}}_\ell = \frac{\partial F}{\partial \hat{\theta}^{(\ell)}} \in \mathbb{R}^{mnd \times \hat{p}_\ell}.$$

184 Here, \mathbf{J}_ℓ and $\hat{\mathbf{J}}_\ell$ are the Jacobians of the final output with respect to the parameters of the ℓ -th SAB
 185 and FFN sub-blocks, respectively, and $\sum_{\ell=1}^L (p_\ell + \hat{p}_\ell) = \dim(\theta) = p$.

186 Following Ji et al. (2025b), we adopt the simplifying assumption that the conditioning of the full
 187 Jacobian is controlled by its worst-conditioned sub-blocks. In particular we write

$$189 \kappa(\mathbf{J}) \leq \max_\ell \{\kappa(\mathbf{J}_\ell), \kappa(\hat{\mathbf{J}}_\ell)\}. \quad (6)$$

190 That is, the spectral condition number of the entire network Jacobian is assumed to be no larger than
 191 the worst condition number among all SAB and FFN sub-block Jacobians.

193 This assumption does not hold universally, but we provide justification for it under mild block-
 194 incoherence conditions with balanced blocks (see Section A.4.4). Ji et al. demonstrated both theo-
 195 retically and empirically that SAB sub-block Jacobians are significantly less well-conditioned than
 196 their FFN counterparts. For this reason our focus on this paper is around the condition of the SAB
 197 sub-block Jacobian \mathbf{J}_ℓ .

198 4.3 DIVING INTO SUB-BLOCKS: SKIP CONNECTIONS IMPROVE CONDITIONING

200 With skip connections, the vectorized SAB and FFN sub-block updates at layer ℓ are

$$202 \mathbf{x}^{(\ell)} = f_{\text{SA}}(\hat{\mathbf{x}}^{(\ell-1)}; \theta^{(\ell)}) + \hat{\mathbf{x}}^{(\ell-1)} \in \mathbb{R}^{nd}, \quad \hat{\mathbf{x}}^{(\ell)} = f_{\text{MLP}}(\mathbf{x}^{(\ell)}; \hat{\theta}^{(\ell)}) + \mathbf{x}^{(\ell)} \in \mathbb{R}^{nd}.$$

203 Denoting the derivative of the SA and MLP output with respect to the corresponding inputs by

$$205 \mathbf{K}_\ell = \frac{\partial f_{\text{SA}}(\hat{\mathbf{x}}^{(\ell-1)}; \theta^{(\ell)})}{\partial \hat{\mathbf{x}}^{(\ell-1)}} \in \mathbb{R}^{nd \times nd}, \quad \hat{\mathbf{K}}_\ell = \frac{\partial f_{\text{MLP}}(\mathbf{x}^{(\ell)}; \hat{\theta}^{(\ell)})}{\partial \mathbf{x}^{(\ell)}} \in \mathbb{R}^{nd \times nd}, \quad (7)$$

207 we have the derivative of the network output with respect to the SA parameters at layer ℓ is:

$$209 \frac{\partial f(\mathbf{x}; \theta)}{\partial \theta^{(\ell)}} = \prod_{i=L}^{\ell+1} \left\{ (\hat{\mathbf{K}}_i + \mathbf{I}_{nd}) (\mathbf{K}_i + \mathbf{I}_{nd}) \right\} (\hat{\mathbf{K}}_\ell + \mathbf{I}_{nd}) \frac{\partial f_{\text{SA}}(\hat{\mathbf{x}}^{(\ell-1)}; \theta^{(\ell)})}{\partial \theta^{(\ell)}} \in \mathbb{R}^{nd \times p_\ell}. \quad (8)$$

212 If skip connections are not present, we have:

$$214 \frac{\partial f(\mathbf{x}; \theta)}{\partial \theta^{(\ell)}} = \prod_{i=L}^{\ell+1} (\hat{\mathbf{K}}_i \mathbf{K}_i) \hat{\mathbf{K}}_\ell \frac{\partial f_{\text{SA}}(\hat{\mathbf{x}}^{(\ell-1)}; \theta^{(\ell)})}{\partial \theta^{(\ell)}} \in \mathbb{R}^{nd \times p_\ell}. \quad (9)$$

From Eq. (5), the Jacobian $\mathbf{J}_\ell \in \mathbb{R}^{mnd \times p_\ell}$ is the concatenation of $\frac{\partial f(\mathbf{x}; \theta)}{\partial \theta^{(\ell)}} \in \mathbb{R}^{nd \times p_\ell}$ for m samples. By assumption i), we have $\kappa(\mathbf{J}_\ell)$ is bounded by the largest $\kappa(\frac{\partial f(\mathbf{x}; \theta)}{\partial \theta^{(\ell)}})$ for m samples. Thus, comparing Eqs. (8) and (9), we can see clearly how the skip connections (\mathbf{I}_{nd} term) help network conditioning. As we stated before in assumption ii), compared to the conditioning of the MLP $\hat{\mathbf{K}}_\ell$, the conditioning of the SA \mathbf{K}_ℓ is much worse (explored in Section 5.1 under default truncated normal initialization with Proposition 1). The addition of the identity matrix \mathbf{I}_{nd} in Eq. (8) shifts the spectrum of \mathbf{K}_ℓ from zero, regularizing the smallest singular values.

These observations invite the question: is there an alternative way to maintain the good conditioning of \mathbf{K}_ℓ such that $\kappa(\mathbf{K}_\ell) \approx \kappa(\mathbf{K}_\ell + \mathbf{I}_{nd})$ in a skipless transformer?

5 A NEW INITIALIZATION TO ENABLE SKIPLESS TRANSFORMERS

Based on the previous analysis, our goal is to improve the conditioning of $\kappa(\mathbf{K}_\ell)$. To this end, we first give an expression \mathbf{K}_ℓ at layer ℓ :

$$\mathbf{K}_\ell = (\hat{\mathbf{X}}_{\ell-1} \mathbf{W}_\ell^V \mathbf{W}_\ell^O \otimes \mathbf{I}_n)^\top \mathbf{A}'_\ell + (\mathbf{W}_\ell^V \mathbf{W}_\ell^O)^\top \otimes \mathbf{A}_\ell, \quad (10)$$

where $\mathbf{A}_\ell \in \mathbb{R}^{n \times n}$ is the attention matrix, and $\mathbf{A}'_\ell \in \mathbb{R}^{n^2 \times nd}$ is the derivative of the attention matrix with respect to the input $\hat{\mathbf{x}}^{(\ell-1)} = \text{vec}(\hat{\mathbf{X}}_{\ell-1})$ (vectorized when forming the derivative matrix)¹.

Using this expression we will proceed to derive a principled initialization for the weight matrices $\mathbf{W}_\ell^Q, \mathbf{W}_\ell^K, \mathbf{W}_\ell^V$ and, \mathbf{W}_ℓ^O to improve the conditioning of \mathbf{K}_ℓ . $\mathbf{W}_\ell^V \mathbf{W}_\ell^O$ appears in both term and $\mathbf{W}_\ell^Q \mathbf{W}_\ell^K$ appears in the \mathbf{A}_ℓ and \mathbf{A}'_ℓ .

5.1 INITIALIZATION FOR $\mathbf{W}_\ell^V \mathbf{W}_\ell^O$

A key observation (see Eq. 10) is that the product $\mathbf{W}_\ell^V \mathbf{W}_\ell^O$ appears in both terms of the Jacobian. For training to be stable, this product must be well-conditioned in order to improve the condition of \mathbf{K}_ℓ . The best-case scenario is when it is a (scaled) orthonormal matrix, because in that case all of its singular values are equal, so that $\kappa(\mathbf{W}_\ell^V \mathbf{W}_\ell^O) = 1$. To achieve this, we first initialize a random square matrix $\mathbf{Q} \in \mathbb{R}^{d \times d}$ with zero-mean, unit-variance entries. Then we perform an SVD decomposition such that $\mathbf{Q} = \mathbf{U} \mathbf{S} \mathbf{V}^\top$ and we assign $\mathbf{W}_\ell^V = c \cdot \mathbf{U}$ and $\mathbf{W}_\ell^O = c \cdot \mathbf{V}^\top$, where c is a scaling constant. This ensures the matrix $\mathbf{W}_\ell^V \mathbf{W}_\ell^O$ is scaled orthonormal.

5.2 INITIALIZATION FOR $\mathbf{W}_\ell^Q \mathbf{W}_\ell^{K^\top}$

Recall the attention $\mathbf{A}_\ell = \text{softmax}(\mathbf{M}_\ell)$, where $\mathbf{M}_\ell = \hat{\mathbf{X}}_{\ell-1} \mathbf{W}_\ell^Q \mathbf{W}_\ell^{K^\top} \hat{\mathbf{X}}_{\ell-1}^\top$. The conditioning of \mathbf{A}_ℓ critically depends on the structure of its logits \mathbf{M}_ℓ .

Proposition 1 (Softmax conditioning: diagonal dominance vs. diffuse rows). *Let $S_\tau(\mathbf{M}_\ell) \in \mathbb{R}^{n \times n}$ denote the row-wise softmax with temperature $\tau > 0$.*

(Diffuse rows). *If each row of \mathbf{M}_ℓ has a small range (difference between maximum and minimum) $\Delta \ll \tau$, then $S_\tau(\mathbf{M}_\ell)$ is close to the uniform matrix $\frac{1}{n} \mathbf{1} \mathbf{1}^\top$, which has rank 1. In this case $\kappa(S_\tau(\mathbf{M}_\ell)) \gtrsim \frac{\tau}{\Delta}$, and the conditioning worsens as n grows.*

(Diagonal dominance). *If \mathbf{M}_ℓ is diagonal dominant, i.e. $\mathbf{M}_{ii} - \max_{j \neq i} \mathbf{M}_{ij} \geq \gamma > 0$, then $S_\tau(\mathbf{M}_\ell)$ is close to an identity matrix, and*

$$\kappa(S_\tau(\mathbf{M}_\ell)) \leq \frac{1 + \varepsilon(\gamma/\tau)}{1 - \varepsilon(\gamma/\tau)},$$

with $\varepsilon(\gamma/\tau) \rightarrow 0$ as $\gamma/\tau \rightarrow \infty$. Hence $S_\tau(\mathbf{M}_\ell)$ is well-conditioned when diagonal logits are dominant.

¹ ℓ is defined as head index in the previous section but in the following sections we redefine the ℓ as the block index

270 An illustration of this proposition is in Section A.4.1. This proposition highlights the key insight:
 271 at random initialization, the logits \mathbf{M} are “diffuse”, hence, the attention matrix \mathbf{A} is close to the
 272 uniform matrix and thus ill-conditioned (see Section A.4.1), which is the main cause of the ill-
 273 conditioned $\kappa(\mathbf{K}_\ell)$.

274 To address this, we initialize the query and key projections \mathbf{W}_ℓ^Q and \mathbf{W}_ℓ^K such that

$$276 \quad \mathbf{W}_\ell^Q \mathbf{W}_\ell^{K^\top} = \alpha \mathbf{Z} + \beta \mathbf{I}, \quad (11)$$

277 where the entries of \mathbf{Z} are sampled as $\mathbf{Z}_{ij} \sim \mathcal{N}(0, \frac{1}{d})$, d is the weight dimension, \mathbf{I} is the identity matrix,
 278 and α, β are scalar constants. This scheme—sometimes called *mimetic initialization* (Trockman
 279 & Kolter, 2023)—has been shown empirically to improve both convergence and final performance
 280 in transformers.

281 Our contribution is to provide a theoretical motivation: the identity term $\beta \mathbf{I}$ encourages diagonal
 282 dominance in $\mathbf{W}_\ell^Q \mathbf{W}_\ell^{K^\top}$, which in turn helps ensure that the initial attention operator is well-
 283 conditioned at the start of training. However, we emphasize that diagonal dominance of $\mathbf{W}_\ell^Q \mathbf{W}_\ell^{K^\top}$
 284 *does not automatically imply* that the transformed matrix $\mathbf{X}^\top \mathbf{W}_\ell^Q \mathbf{W}_\ell^{K^\top} \mathbf{X}$ is also diagonally dominant.
 285 In Section A.4.1 we detail the conditions under which this property carries over after projection
 286 by the token embeddings \mathbf{X} .

287 A scaled orthonormal $\mathbf{W}_\ell^V \mathbf{W}_\ell^O$ and diagonal dominant attention map \mathbf{A}_ℓ guarantees that the second
 288 term of \mathbf{K}_ℓ , namely $(\mathbf{W}_\ell^V \mathbf{W}_\ell^O)^\top \otimes \mathbf{A}_\ell$, is well-conditioned. The remaining question is whether this
 289 also ensures a well-conditioned \mathbf{K}_ℓ overall.

290 **Proposition 2.** (*Conditioning of \mathbf{K}_ℓ*) Let $\mathbf{K}_\ell = \mathbf{B}_\ell + \mathbf{E}_\ell$, where $\mathbf{E}_\ell = (\hat{\mathbf{X}}_{\ell-1} \mathbf{W}_\ell^V \mathbf{W}_\ell^O \otimes \mathbf{I}_n)^\top \mathbf{A}'_\ell$
 291 (the “*perturbation term*”), and $\mathbf{B}_\ell = \mathbf{W}_\ell^{O^\top} \mathbf{W}_\ell^V \otimes \mathbf{A}_\ell$ (the “*dominant term*”). With above initialization
 292 (which ensures diagonal dominance of $\mathbf{W}_\ell^Q \mathbf{W}_\ell^{K^\top}$), \mathbf{K}_ℓ is well-conditioned.

293 The detailed proof is provided in Section A.4.3. The intuition behind this proposition is that if
 294 the largest singular value of perturbation term \mathbf{E}_ℓ is smaller than the smallest singular value of the
 295 dominant term \mathbf{B}_ℓ , then $\kappa(\mathbf{K}_\ell) \approx \kappa(\mathbf{B}_\ell)$.

296 **Takeaway**

297 By initializing $\mathbf{W}_\ell^V \mathbf{W}_\ell^O$ to be scaled orthonormal and $\mathbf{W}_\ell^Q \mathbf{W}_\ell^{K^\top}$ to be a diagonally dominant
 298 structure, we improve the conditioning of the network Jacobian, addressing the main barrier
 299 that has historically prevented the training of completely skipless transformers.

300 **6 EXPERIMENTS**

301 We evaluate our methods in supervised learning and self-supervised learning settings. All of our
 302 experiments will be on Vision Transformers (ViTs) (Dosovitskiy et al., 2020), which have emerged
 303 as powerful models in the field of computer vision, demonstrating remarkable performance across
 304 various tasks.

305 **6.1 SUPERVISED LEARNING WITH SKIPLESS ViT**

306 We first validate our skipless ViTs on supervised learning image classification tasks. The model in
 307 this subsection is ViT-Base (12 layers, 12 heads, head dimension 64, token dimension 768). The
 308 skip models are standard ViT-Base, while in the skipless models we remove all skip connections
 309 (from both the SABs and FFNs), and use the proposed initialization for the SA weights (choosing
 310 $\alpha = 2, \beta = 0.6$ and $c = 3$)². The scaled-corrected uniform orthogonal initialization (Martens et al.,
 311 2021) is used for the MLP parameters. Our implementation follows the setup in (Xu et al., 2024),
 312 except that for a fair comparison we disable the drop path, which is not applicable in skipless models.
 313 All experiments are conducted on the ImageNet-1k (Russakovsky et al., 2015) dataset. We further
 314 compare the performance when using AdamW (Loshchilov & Hutter, 2019) and SOAP (Vyas et al.,
 315 2025) optimizers.

316 ²We observed that our initialization hyperparameters (α, β, c) are not highly sensitive.

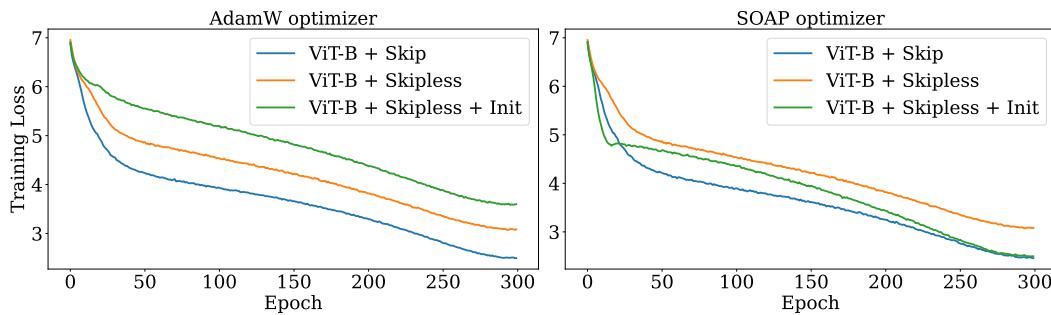
Figure 1: Supervised training loss of ViT-Base using AdamW (**Left**) and SOAP (**Right**) optimizers.

Table 1: Validation accuracy of ViT-Base on ImageNet-1k using AdamW and SOAP optimizers.

	Model	Accuracy
skip	ViT-Base + AdamW	80.3%
	ViT-Base + SOAP	80.1%
skipless	ViT-Base + AdamW	61.4%
	ViT-Base + SOAP	77.0%
skipless + our init	ViT-Base + AdamW	78.1%
	ViT-Base + SOAP	80.8%

Results and Analysis. As shown in Table 1, the removal of skip connections severely hampers the convergence of ViT-Base when trained with AdamW. This is evident both in the substantial accuracy drop (61.4% *vs.* 80.3%), and the high training loss with slow convergence illustrated in Fig. 1 (left). Using SOAP can partially alleviate this issue, enabling skipless models to converge more reliably and recover much of the lost performance, while they still underperform standard ViTs with skip connections. Incorporating our proposed initialization significantly mitigates these issues. When trained with AdamW, skipless ViT-Base recovers most of the lost performance. Moreover, when combined with SOAP, skipless models can converge as fast as vanilla ViT-based at the standard 300 epochs and achieve 80.8% accuracy, surpassing the skip-based ViT-Base baseline by 0.5%. These results demonstrate that the proposed initialization is essential for enabling competitive training of skipless ViTs across optimizers.

6.2 SELF-SUPERVISED LEARNING WITH SKIPLESS ViT

We further evaluate our skipless ViT model in the self-supervised setting. Specifically, we adopt DINO (Caron et al., 2021), a widely used self-supervised framework based on self-distillation without annotations. Here we use ViT-Small (12 layers, 6 heads, head dimension 64, token dimension 384), and $\alpha = 1.8$, $\beta = 1$, $c = 3$ for the initialization parameters, and otherwise follow similar model recipe to the previous subsection. We compare results under both AdamW and SOAP optimizers. For quantitative evaluation, we extract representations from individual or multiple blocks of frozen pre-trained models, and assess them on two downstream tasks: dense linear probing segmentation (in Section 6.2.1) and object discovery (in Section 6.2.2). For qualitative evaluation (in Section 6.3), we use Principle Component Analysis (PCA) (Abdi & Williams, 2010) to project the learned representations into 3-channel feature maps, visualized as RGB images.

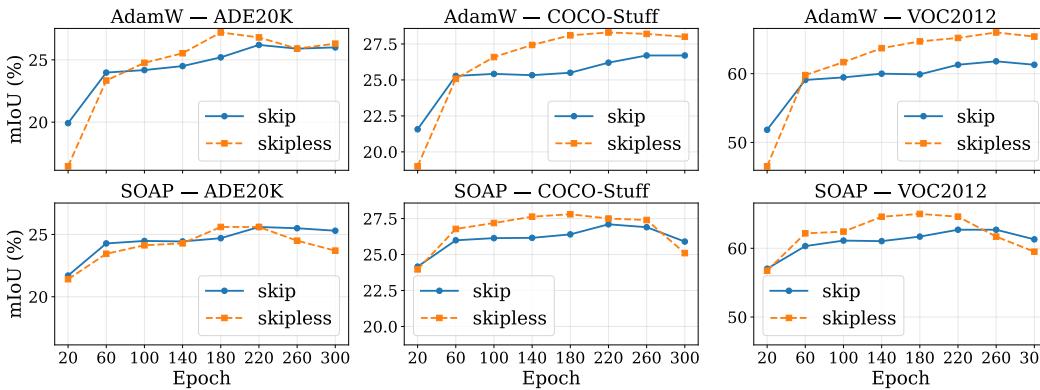
6.2.1 DENSE LINEAR PROBING SEGMENTATION

We evaluate linear probing on dense features for the semantic segmentation task. A linear classifier is trained on top of the representation, with performance measured by mean intersection-over-union (mIoU) on PASCAL VOC2012 (Everingham et al., 2015), ADE20K (Zhou et al., 2019), and COCO-Stuff (Caesar et al., 2018) datasets. We sweep over learning rates and train for 30 epochs. For ADE20k and COCO-Stuff, we randomly sample 3,000 training images due to resource constraints.

Results and Analysis. As shown in Table 2, our skipless DINO ViT-Small models trained with the AdamW optimizer achieve higher performance than their skip-based counterparts on the VOC2012 and COCOSTuff benchmarks when evaluated with the representation extracted from the single layer.

378 Table 2: Pretrained DINO ViT-Small models for 300 epochs. We also evaluate the checkpoint at 200
 379 epochs for skipless models. Performance on linear probing segmentation tasks on different datasets.
 380

381	382 VOC2012			383 COCOSuff			384 ADE20K		
	385 Epochs →			300	300	200	300	300	200
	386 skip	skipless	skipless	387 skip	skipless	skipless	388 skip	skipless	skipless
<i>single feature</i>									
385 AdamW	56.3	62.3	62.1	24.6	24.9	28.3	23.7	22.5	22.8
386 SOAP	51.3	57.6	63.4	21.3	23.5	27.6	20.5	21.3	22.5
<i>multiscale</i>									
385 AdamW	61.6	65.4	65.0	26.7	28.0	28.2	26.0	26.3	27.0
386 SOAP	61.3	59.5	64.8	25.9	25.1	27.6	25.3	23.7	25.6



402 Figure 2: Performance of dense linear probing segmentation results using skip and skipless DINO
 403 ViT-Small models with AdamW and SOAP optimizers throughout the pretraining. The range of
 404 y-axis is the same for per column.
 405

406 In contrast, these models show reduced accuracy on the ADE20K dataset under the same single-layer
 407 setting. We attribute this to the greater scene complexity in ADE20K, where multi-scale information
 408 is critical. The skip-based models can implicitly mix representations across layers, providing a
 409 form of multi-scale context. However, our skipless models enforce a stricter hierarchical structure,
 410 yielding more abstract features at each layer. Based on this, when multiscale layer features are
 411 explicitly aggregated at evaluation time, skipless models once again surpass their skip-connected
 412 counterparts. While training with SOAP, overall we observe the performance drops for both skip
 413 and skipless models and we conjecture that is due to the inductive bias of optimizers (Pascanu et al.,
 414 2025). Further, we demonstrate the depth analysis in Table 3. We train our models using the AdamW
 415 optimizer with different depths for 300 epochs and evaluate using the checkpoint at 200 epochs. Our
 416 models with 10 blocks perform comparably with skip models.

417 6.2.2 OBJECT DISCOVERY

419 Detecting salient objects is a fundamental problem in computer vision with applications in real-
 420 world vision systems. Traditional methods rely on supervised learning using large-scale high-quality
 421 annotated data, which is expensive and time-consuming to obtain these annotations (Loshchilov &
 422 Hutter, 2019). To address this challenge, recent works (Siméoni et al., 2021; Wang et al., 2023) have
 423 explored self-supervised pre-trained models, which produce high-quality and abstraction feature
 424 representations without requiring manual labels. In this subsection, we validate our pretrained DINO
 425 models using TokenCuT (Wang et al., 2023), a graph-based algorithm that leverages self-supervised
 426 transformer features for salient object detection. Following prior observations (Amir et al., 2022)
 427 that positional information gradually diminishes across layers, we compare representations from
 428 different transformer blocks and report the best-performing results. We use VOC2012 (Everingham
 429 et al., 2015) and COCO20k (Lin et al., 2014) as the evaluation datasets.

430 **Results and Analysis.** As shown in Fig. 3, our skipless models consistently outperform their skip-
 431 connected counterparts by a substantial margin on both the VOC2012 and COCO20K datasets under
 432 both AdamW and SOAP optimization, indicating that the representations from skipless models are

432
433
434
Figure 3: Pretrained DINO ViT-Small models for 300 epochs. For skipless models, we also eval-
uated checkpoint at 200 epochs. Performance on object discovery tasks using TokenCut on VOC2012
and COCO20k datasets.

435 436 437 438 Epoch → Optimizer ↓	439 VOC2012			440 COCO20k		
	441 300 skip	442 300 skipless	443 200 skipless	444 300 skip	445 300 skipless	446 200 skipless
447 AdamW	448 32.3	449 53.5	450 54.0	451 21.2	452 36.5	453 38.5
454 SOAP	455 49.4	456 63.2	457 68.1	458 27.5	459 46.7	460 54.1

452
453
Figure 4: Visualize learned representations from pretrained DINO models **without cherry-picking**.

454
455
456
abstract and high-quality. Furthermore, in Table 4, we evaluate end-to-end trained models of varying
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
154

486 ifications. This scheme enables efficient training of skipless Vision Transformers. Furthermore, our
487 skipless models outperform their residual-based counterparts on dense prediction tasks, suggesting
488 that they learn more abstract and higher-quality internal representations. We hope our work provides
489 new insights into hierarchical representation learning in vision.
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 ETHICS STATEMENT
541542 This work uses only publicly available benchmark datasets and does not involve human subjects,
543 personally identifiable information, or sensitive data. Our methods are intended for advancing fun-
544 damental research in machine learning.546 REPRODUCIBILITY STATEMENT
547548 We have taken care to ensure the reproducibility of all results presented in this paper. Where external
549 code was used, explicit references are provided. We will release the code upon publication.
550551 REFERENCES
552553 Hervé Abdi and Lynne J Williams. Principal component analysis. *Wiley interdisciplinary reviews:*
554 *computational statistics*, 2(4):433–459, 2010.555 Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep vit features as dense visual de-
556 scriptors. *ECCVW What is Motion For?*, 2022.558 Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context.
559 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1209–
560 1218, 2018.561 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
562 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of*
563 *the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.565 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
566 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
567 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
568 bilities. *arXiv preprint arXiv:2507.06261*, 2025.569 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In *Inter-
570 national Conference on Learning Representations (ICLR)*, 2024.571 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
572 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
573 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
574 *arXiv:2010.11929*, 2020.576 Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
577 Zisserman. The pascal visual object classes challenge: A retrospective. *International journal of*
578 *computer vision*, 111(1):98–136, 2015.579 Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Dan Roberts. The
580 unreasonable ineffectiveness of the deeper layers. In *The Thirteenth International Confer-
581 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ngmEcEer8a>.583 Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L Smith,
584 and Yee Whye Teh. Deep transformers without shortcuts: Modifying self-attention for faithful
585 signal propagation. In *The Eleventh International Conference on Learning Representations*, 2023.
586 URL <https://openreview.net/forum?id=NPrsUQgMjKK>.587 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
588 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
589 770–778, 2016.591 Yiping Ji, Hemanth Saratchandran, Cameron Gordon, Zeyu Zhang, and Simon Lucey. Effi-
592 cient learning with sine-activated low-rank matrices. In *The Thirteenth International Confer-
593 ence on Learning Representations*, 2025a. URL <https://openreview.net/forum?id=cWGCKd7mCp>.

594 Yiping Ji, Hemanth Saratchandran, Peyman Moghadam, and Simon Lucey. Always skip attention.
 595 *arXiv preprint arXiv:2505.01996*, 2025b.
 596

597 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 598 2015.

599 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 600 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 601 conference on computer vision*, pp. 740–755. Springer, 2014.

602 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 603 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.
 604

605 James Martens, Andy Ballard, Guillaume Desjardins, Grzegorz Swirszcz, Valentin Dalibard, Jascha
 606 Sohl-Dickstein, and Samuel S Schoenholz. Rapid training of deep neural networks without skip
 607 connections or normalization layers using deep kernel shaping. *arXiv preprint arXiv:2110.01765*,
 608 2021.

609 Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Aurelien
 610 Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of rank collapse.
 611 *Advances in Neural Information Processing Systems*, 35:27198–27211, 2022.

612 Razvan Pascanu, Clare Lyle, Ionut-Vlad Modoranu, Naima Elosegui Borras, Dan Alistarh, Petar
 613 Velickovic, Sarah Chandar, Soham De, and James Martens. Optimizers qualitatively alter solu-
 614 tions and we should leverage this. *arXiv preprint arXiv:2507.12224*, 2025.

615 Frank Rosenblatt et al. *Principles of neurodynamics: Perceptrons and the theory of brain mecha-
 616 nisms*, volume 55. Spartan books Washington, DC, 1962.

617 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 618 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
 619 ImageNet Large Scale Visual Recognition Challenge. *International Journal of Computer Vision
 (IJCV)*, 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

620 Hemanth Saratchandran and Simon Lucey. Enhancing transformers through conditioned embedded
 621 tokens. *arXiv preprint arXiv:2505.12789*, 2025.

622 Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc, Patrick
 623 Pérez, Renaud Marlet, and Jean Ponce. Localizing objects with self-supervised transformers and
 624 no labels. *arXiv preprint arXiv:2109.14279*, 2021.

625 Asher Trockman and J Zico Kolter. Mimetic initialization of self-attention layers. In *International
 626 Conference on Machine Learning*, pp. 34456–34468. PMLR, 2023.

627 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 628 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 629 tion processing systems*, 30, 2017.

630 Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
 631 relatively shallow networks. *Advances in neural information processing systems*, 29, 2016.

632 Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
 633 Sham M. Kakade. SOAP: Improving and stabilizing shampoo using adam for language modeling.
 634 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=IDxZhXrpNf>.

635 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 636 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision
 637 and Pattern Recognition Conference*, pp. 5294–5306, 2025.

638 Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Maomao Li, Shell Xu Hu, James L Crowley, and
 639 Dominique Vaufreydaz. Tokencut: Segmenting objects in images and videos with self-supervised
 640 transformer and normalized cut. *IEEE transactions on pattern analysis and machine intelligence*,
 641 45(12):15790–15801, 2023.

648 Zhiqiu Xu, Yanjie Chen, Kirill Vishniakov, Yida Yin, Zhiqiang Shen, Trevor Darrell, Lingjie Liu,
649 and Zhuang Liu. Initializing models with larger ones. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=dyrGMhicMw>.
650

651

652 Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations
653 of linear attention mechanism, January 2024. URL <https://github.com/fla-org/flash-linear-attention>.
654

655

656 Sergey Zagoruyko and Nikos Komodakis. Diracnets: Training very deep neural networks without
657 skip-connections. *arXiv preprint arXiv:1706.00388*, 2017.
658

659

660 Guodong Zhang, Aleksandar Botev, and James Martens. Deep learning without shortcuts: Shaping
661 the kernel with tailored rectifiers. In *International Conference on Learning Representations*, 2022.
662 URL <https://openreview.net/forum?id=U0k7XNTiFEq>.
663

664 Xiao Zhang, Ruoxi Jiang, William Gao, Rebecca Willett, and Michael Maire. Residual connections
665 harm generative representation learning. *arXiv preprint arXiv:2404.10947*, 2024.
666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703 A APPENDIX704
705 A.1 USE OF LLMs706
707 Large language models (LLMs) were used to assist with proofreading, formatting, and improving
708 the clarity of writing. All technical contributions, experiments, and analyses were designed and
709 conducted by the authors710
711 A.2 END-TO-END TRAINING WITH LESS DEPTH712
713 In this section, we train end-to-end skipless DINO ViT-Small models for 300 epochs with varied
714 depth using AdamW optimizer and evaluate on linear probing semantic segmentation and object
715 discovery tasks. We use the checkpoint at 200 epochs.716
717 Table 3: End-to-end training performance on dense linear probing segmentation on our models with
718 varied depth (AdamW).719
720
721
722
723
724
725
726

	depth	VOC2012	COCOStuff	ADE20K
skip	12	61.6	26.7	26.0
	12	65.0	28.2	27.0
skipless	11	66.2	28.0	26.7
	10	64.1	27.1	25.2
	9	61.1	26.0	24.4

727
728
729
730 Table 4: End-to-end training performance on object discovery on our models with varied depth
731 (AdamW).732
733
734
735
736
737
738

	depth	VOC2012	COCO20k
skip	12	32.3	21.2
	12	53.5	36.5
skipless	11	47.4	31.9
	10	43.9	25.4
	9	34.8	24.0

740
741 A.3 JACOBIAN742
743 In this section, we provide the derivation of \mathbf{K}_ℓ .744
745 The derivative of the SA output with respect to the input is

746
747
748
749
$$\frac{\partial \text{vec} \left(\text{SA}_\ell(\hat{\mathbf{X}}_{\ell-1}) \right)}{\partial \hat{\mathbf{x}}^{(\ell-1)}} = \frac{\partial \text{vec} \left(\mathbf{A}_\ell(\hat{\mathbf{X}}_{\ell-1}) \mathbf{V}_\ell \right)}{\partial \hat{\mathbf{x}}^{(\ell-1)}}$$

$$= (\mathbf{V}_\ell^\top \otimes \mathbf{I}_n) \mathbf{A}'_\ell + (\mathbf{I}_d \otimes \mathbf{A}_\ell) \frac{\partial \text{vec}(\mathbf{V}_\ell)}{\partial \hat{\mathbf{x}}^{(\ell-1)}} \quad (12)$$

$$= (\mathbf{V}_\ell^\top \otimes \mathbf{I}_n) \mathbf{A}'_\ell + (\mathbf{I}_d \otimes \mathbf{A}_\ell) (\mathbf{W}_\ell^{\text{V}\top} \otimes \mathbf{I}_{n \times n})$$

$$= (\mathbf{V}_\ell^\top \otimes \mathbf{I}_n) \mathbf{A}'_\ell + \mathbf{W}_\ell^{\text{V}\top} \otimes \mathbf{A}_\ell$$

750
751
752
753
754
755 The Jacobian of the attention matrix to the input is

$$\begin{aligned}
756 \quad & \mathbf{K}_l = \frac{\partial f_{\text{SA}}(\hat{\mathbf{x}}^{(\ell-1)}; \theta^{(\ell)})}{\partial \hat{\mathbf{x}}^{(\ell-1)}} \in \mathbb{R}^{nd \times nd}, \\
757 \quad & = \frac{\partial \text{vec}(\text{SA}_\ell(\mathbf{X}_{\ell-1}) \mathbf{W}_\ell^O)}{\partial \hat{\mathbf{x}}^{(\ell-1)}} \\
758 \quad & = \frac{\partial \text{vec}(\text{SA}_\ell(\mathbf{X}_{\ell-1}) \mathbf{W}_\ell^O)}{\partial \text{vec}(\text{SA}_\ell(\mathbf{X}_{\ell-1}))} \frac{\partial \text{vec}(\text{SA}_\ell(\mathbf{X}_{\ell-1}))}{\partial \hat{\mathbf{x}}^{(\ell-1)}} \\
759 \quad & = (\mathbf{W}_\ell^O \otimes \mathbf{I}_n) \frac{\partial \text{vec}(\text{SA}_\ell(\mathbf{X}_{\ell-1}))}{\partial \hat{\mathbf{x}}^{(\ell-1)}} \\
760 \quad & = (\mathbf{W}_\ell^O \otimes \mathbf{I}_n) \left((\mathbf{V}_\ell^\top \otimes \mathbf{I}_n) \mathbf{A}'_\ell + \mathbf{W}_\ell^V \otimes \mathbf{A}_\ell \right) \\
761 \quad & = ((\mathbf{W}_\ell^O \otimes \mathbf{V}_\ell^\top \otimes \mathbf{I}_n) \mathbf{A}'_\ell + \mathbf{W}_\ell^O \otimes \mathbf{W}_\ell^V \otimes \mathbf{A}_\ell) \\
762 \quad & = (\hat{\mathbf{X}}_{\ell-1} \mathbf{W}_\ell^V \mathbf{W}_\ell^O \otimes \mathbf{I}_n)^\top \mathbf{A}'_\ell + (\mathbf{W}_\ell^V \mathbf{W}_\ell^O)^\top \otimes \mathbf{A}_\ell
\end{aligned} \tag{13}$$

771 **A.4 PROOF**

772 **A.4.1 SOFTMAX CONDITIONING**

773 In this section, we provide the empirical demonstration of the Proposition 1. We conduct a simple
774 simulation experiment and the result is shown in Fig. 5. We choose a square matrix $\mathbf{M} \in \mathbb{R}^{10 \times 10}$
775 and set $\alpha = 0.1, \beta = 5$ for the "peak" case and $\alpha = 0.1, \beta = 0$ for the "diffuse" case. Empirically,
776 we can see that when choosing large β (ensuring diagonal dominance), the softmax produces a near
777 identity matrix with $\kappa \approx 1.1$. However, if \mathbf{M} is truncated normal initialized, each row of the softmax
778 output is near uniform and the output is ill-conditioned with $\kappa \approx 730.1$.

779 **Distribution of $\mathbf{X}\mathbf{X}^\top$ and $\mathbf{X}\mathbf{Z}\mathbf{X}^\top$**

780 Given $\mathbf{X} \in \mathbb{R}^{n \times d} \sim \mathcal{N}(0, \mathbf{I})$, we have the mean and variance of $\mathbf{A} = \mathbf{X}\mathbf{X}^\top$ as follows,

781 - Diagonal entries ($i = j$):

$$782 \quad \mathbf{A}_{ii} \sim \chi_d^2, \quad \mathbb{E}[\mathbf{A}_{ii}] = d, \quad \text{Var}(\mathbf{A}_{ii}) = 2d, \tag{14}$$

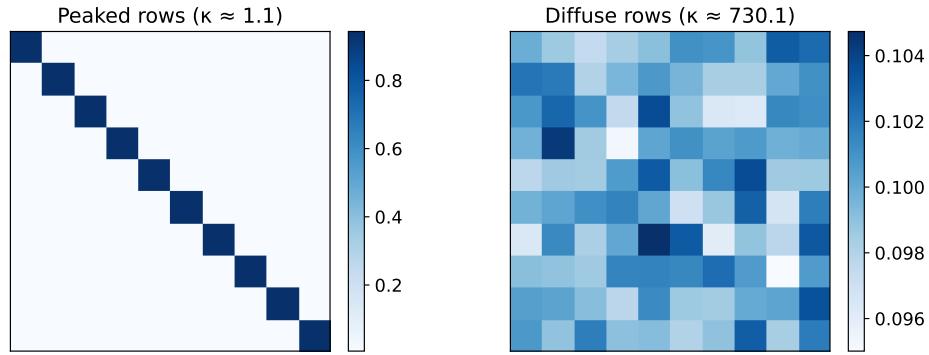
783 where χ is Wishart distribution.

784 - Off-diagonal entries ($i \neq j$):

$$785 \quad \mathbb{E}[\mathbf{A}_{ij}] = 0, \quad \text{Var}(\mathbf{A}_{ij}) = d, \tag{15}$$

786 Then given $\mathbf{Z} \sim \mathcal{N}(0, \frac{1}{d}\mathbf{I})$, we have the mean and variance of $\mathbf{B} = \mathbf{X}\mathbf{Z}\mathbf{X}^\top$ as follows,

787 **Softmax of Peaked vs Diffuse Matrices**



800 **Figure 5: Left:** We choose $\alpha = 0.1, \beta = 5$ to ensure diagonal dominance. **Right:** We choose
801 $\alpha = 0.1, \beta = 0$.

810 - Diagonal entries ($i = j$):
 811

$$812 \quad \mathbb{E}[\mathbf{B}_{ii}] = 0, \quad \text{Var}(\mathbf{B}_{ii}) \approx d + 2. \quad (16)$$

813 - Off-diagonal entries ($i \neq j$):
 814

$$815 \quad \mathbb{E}[\mathbf{B}_{ij}] = 0, \quad \text{Var}(\mathbf{B}_{ij}) \approx 1. \quad (17)$$

817 For the combined matrix (attention map) $\mathbf{C} = \alpha\mathbf{B} + \beta\mathbf{A}$, we have
 818

819 - Diagonal entries ($i = j$):

$$820 \quad \mathbb{E}[\mathbf{C}_{ii}] = \beta d, \quad \text{Var}(\mathbf{C}_{ii}) \approx \alpha^2(d + 2) + \beta^2(2d). \quad (18)$$

822 - Off-diagonal entries ($i \neq j$):
 823

$$824 \quad \mathbb{E}[\mathbf{C}_{ij}] = 0, \quad \text{Var}(\mathbf{C}_{ij}) \approx \alpha^2 + \beta^2 d. \quad (19)$$

825 The default initialization is equivalent to $\beta = 0$ (no diagonal dominance in weight initialization) and
 826 $\alpha = \mathcal{O}(\frac{1}{d})$ (usually around 0.04). All the values in the attention map are mean 0 with a variance
 827 much smaller than 1, which satisfy the diffuse condition.
 828

829 When $\beta > 0$, the difference between the diagonal elements and an off-diagonal element $\gamma = \mathbf{C}_{ii} -$
 830 \mathbf{C}_{ij} follows

$$831 \quad \gamma \sim \mathcal{N}(\beta d, \alpha^2(d + 3) + \beta^2(3d)) \quad (20)$$

832 (The covariance between \mathbf{C}_{ii} and \mathbf{C}_{ij} is close to 0 when d is large.), which satisfy the diagonal
 833 dominant condition with a proper β .

834 To justify our assumption that the token embeddings $\mathbf{X} \in \mathbb{R}^{n \times d} \sim \mathcal{N}(0, \mathbf{I})$, we show that their
 835 empirical distribution closely matches a zero-mean, approximately isotropic Gaussian (shown in
 836 Fig. 6).

838 A.4.2 PROOF OF PROPOSED INITIALIZATION

839 **Lemma 1.** (Jacobian of the softmax function) Let $\mathbf{A} = \text{softmax}(\mathbf{M})$, where $\mathbf{M} = \mathbf{X}\mathbf{W}^Q\mathbf{W}^{K^\top}\mathbf{X}^\top$.
 840 With the proposed initialization (see in Eq. (11)), we can show that the 2-norm of the derivative
 841 scales, $\left\| \frac{\partial \text{vec}(\mathbf{A})}{\partial \text{vec}(\mathbf{X})} \right\|_2 = O(\alpha e^{-\beta})$
 842

844 *Proof.* See the derivation in Eq. (12), we have the bound:
 845

$$846 \quad \left\| \frac{\partial \text{vec}(\mathbf{A})}{\partial \text{vec}(\mathbf{X})} \right\|_2 \leq \left\| \frac{\partial \text{vec}(\mathbf{A})}{\partial \text{vec}(\mathbf{M})} \right\|_2 \quad (21)$$

849 Since softmax is a row normalization, the Jacobian $\mathbf{J}_\mathbf{A} = \frac{\partial \text{vec}(\mathbf{A})}{\partial \text{vec}(\mathbf{M})} \in \mathbb{R}^{n^2 \times n^2}$ is a block diagonal
 850 matrix. For each block i , we have:
 851

$$852 \quad (\mathbf{J}_{\mathbf{A},i})_{jk} = \mathbf{A}_{ij}(\delta_{jk} - \mathbf{A}_{ik}), \quad (22)$$

853 where \mathbf{A}_{ij} is the i -th row and j -th column entry of \mathbf{A} .
 854

855 Obviously, using our proposed initialization (larger β leads to more diagonally dominant), we have:
 856

$$857 \quad \mathbf{A}_{ii} = 1 - \mathcal{O}(\alpha e^{-\beta}) \quad \text{and} \quad \mathbf{A}_{ij} = \mathcal{O}(\alpha e^{-\beta}) \quad (23)$$

859 Based on this, we analyze the order of magnitude of the elements in $(\mathbf{J}_{\mathbf{A},i})$. In the case of $j = k$:
 860

$$862 \quad (\mathbf{J}_{\mathbf{A},i})_{ii} = \mathbf{A}_{ii}(1 - \mathbf{A}_{ii}) = \mathcal{O}(\alpha e^{-\beta}), \text{ if } i = j \quad (24)$$

$$863 \quad (\mathbf{J}_{\mathbf{A},i})_{ii} = \mathbf{A}_{ii}(1 - \mathbf{A}_{ii}) = \mathcal{O}(\alpha e^{-\beta}), \text{ if } i \neq j \quad (25)$$

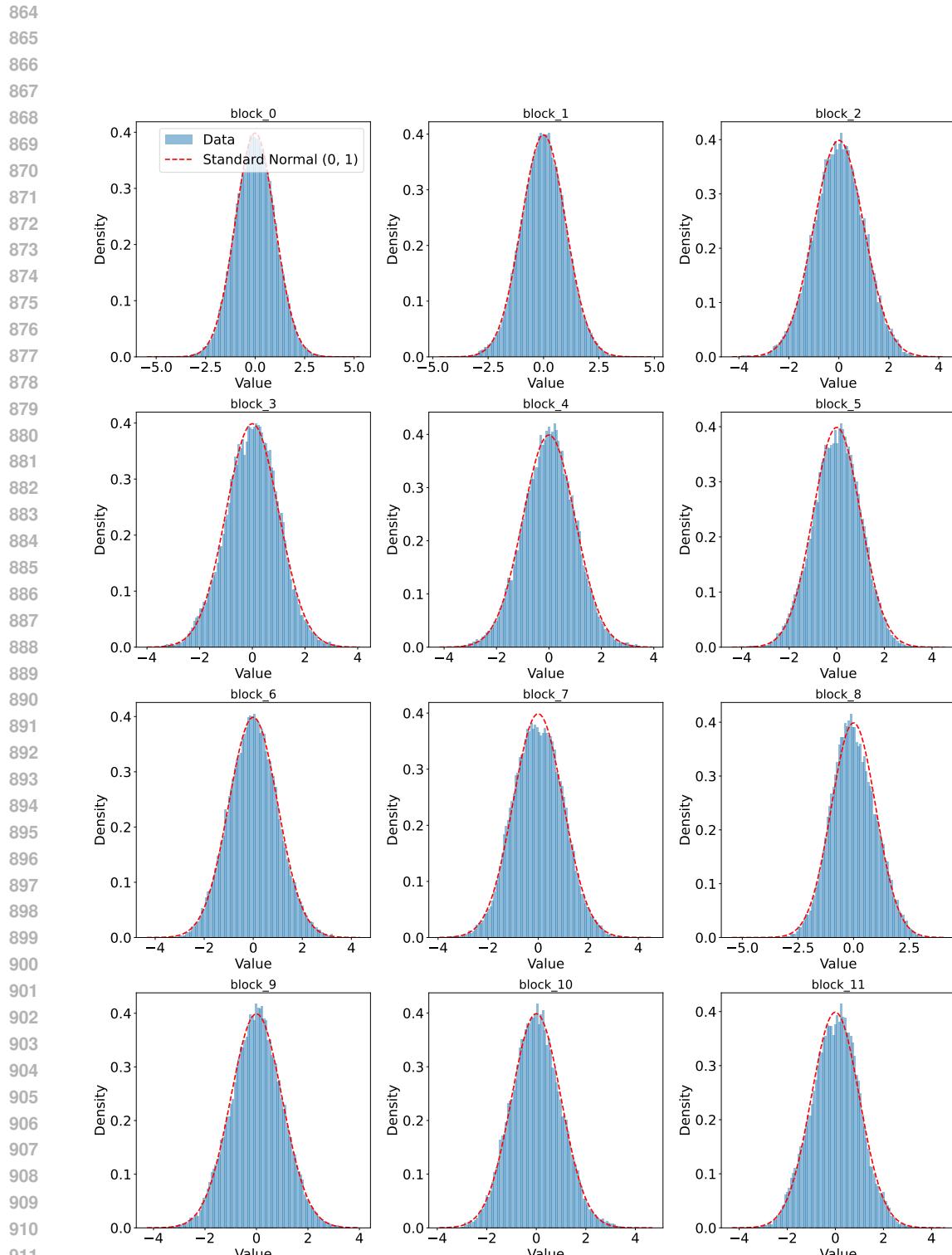


Figure 6: Distribution of token embeddings after the pre-layer norm throughout the blocks using proposed initialization.

918 In the case of $j \neq k$:

$$(\mathbf{J}_{\mathbf{A},i})_{jk} = -\mathbf{A}_{ij}\mathbf{A}_{ik} = \mathcal{O}(\alpha e^{-\beta}) \quad (26)$$

919
920
921
922
923 Then we have the bound for $\|\mathbf{J}_{\mathbf{A},i}\|$:

$$\|\mathbf{J}_{\mathbf{A},i}\|_F = \sqrt{\sum_{j,k=1}^d ((\mathbf{J}_{\mathbf{A},i})_{jk})^2} = d \cdot \mathcal{O}(\alpha e^{-\beta}) \quad (27)$$

924
925
926
927
928 Therefore, the 2-norm is:

$$\|\mathbf{J}_{\mathbf{A},i}\|_2 \leq \|\mathbf{J}_{\mathbf{A},i}\|_F = \mathcal{O}(\alpha e^{-\beta}) \quad (28)$$

929
930
931
932 Then we have :

$$\left\| \frac{\partial \text{vec}(\mathbf{A})}{\partial \text{vec}(\mathbf{X})} \right\|_2 = \max_i \|\mathbf{J}_{\mathbf{A},i}\|_2 = \mathcal{O}(\alpha e^{-\beta}) \quad (29)$$

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
999

A.4.3 CONDITIONING OF \mathbf{K}_ℓ

In this section we provide the proof for Proposition 2

Proof. We show that, with proposed initialization, \mathbf{A} is well conditioned such that $\kappa(\mathbf{A}) \approx 1$

Next step, we show that the term \mathbf{E} is a small perturbation of Jacobian \mathbf{J} .

Bound $\|\mathbf{E}\|_2$ using norm submultiplicativity:

$$\|\mathbf{E}\|_2 \leq \|\mathbf{W}_\ell^0\|_2 \|\mathbf{W}_\ell^V\|_2 \|\mathbf{X}_{\ell-1}\|_2 \left\| \frac{\partial(\text{vec}(\mathbf{A}_\ell(\mathbf{X}_{\ell-1})))}{\partial \mathbf{x}^{\ell-1}} \right\|_2 \quad (30)$$

Since $\|\mathbf{W}_\ell^0 \mathbf{W}_\ell^V\|_2 \leq \|\mathbf{W}_\ell^0\|_2 \|\mathbf{W}_\ell^V\|_2 = 1$ and $\|\mathbf{X}\|_2$ is bounded, using Lemma 1, we have:

$$\|\mathbf{W}_\ell^0 \mathbf{W}_\ell^V\|_2 \leq \mathcal{O}(\alpha e^{-\beta}) \quad (31)$$

Combine the bound $\|\mathbf{B}\|_2 \approx 1$ and $\|\mathbf{E}\|_2 \leq \mathcal{O}(\alpha e^{-\beta})$, and there exists α and β such that $\|\mathbf{E}\|_2 \ll \|\mathbf{B}\|_2$. Therefore \mathbf{E} is a small perturbation of \mathbf{B} and \mathbf{J} is well-conditioned $\kappa(\mathbf{J}) \approx 1$.

□

A.4.4 CONDITION OF MATRIX CONCATENATION

Let $\mathbf{M} = [\mathbf{A} \ \mathbf{B}] \in \mathbb{R}^{n \times (d_1+d_2)}$.

Denote the spectral norms and minimal singular values by

$$s_{\max} = \max\{\sigma_{\max}(\mathbf{A}), \sigma_{\max}(\mathbf{B})\}, \quad s_{\min} = \min\{\sigma_{\min}(\mathbf{A}), \sigma_{\min}(\mathbf{B})\},$$

and the mutual coherence parameter measuring alignment between \mathbf{A} and \mathbf{B} and a balanced condition τ measuring the norm difference of the matrices:

$$\rho := \|\mathbf{A}^\top \mathbf{B}\|_2, \quad (32)$$

$$\tau := \frac{\max\{\|\mathbf{A}\|_2, \|\mathbf{B}\|_2\}}{\min\{\|\mathbf{A}\|_2, \|\mathbf{B}\|_2\}} = \frac{\max\{\sigma_{\max}(\mathbf{A}), \sigma_{\max}(\mathbf{B})\}}{\min\{\sigma_{\max}(\mathbf{A}), \sigma_{\max}(\mathbf{B})\}}. \quad (33)$$

972 For any nonzero vectors $\mathbf{x} \in \mathbb{R}^{d_1}, \mathbf{y} \in \mathbb{R}^{d_2}$ we have
 973

$$\frac{\|\mathbf{M} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}\|^2}{\|\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}\|^2} = \frac{\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}^\top \mathbf{M}^\top \mathbf{M} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2} = \frac{\|\mathbf{Ax}\|^2 + \|\mathbf{By}\|^2 + 2\langle \mathbf{Ax}, \mathbf{By} \rangle}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2}. \quad (34)$$

979 Hence the largest singular value of \mathbf{M} is
 980

$$\begin{aligned} \sigma_{\max}(\mathbf{M})^2 &= \max_{\mathbf{x}, \mathbf{y} \neq 0} \frac{\|\mathbf{Ax}\|^2 + \|\mathbf{By}\|^2 + 2\langle \mathbf{Ax}, \mathbf{By} \rangle}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2} \\ &\leq \max_{\mathbf{x}, \mathbf{y} \neq 0} \frac{\sigma_{\max}(\mathbf{A})^2 \|\mathbf{x}\|^2 + \sigma_{\max}(\mathbf{B})^2 \|\mathbf{y}\|^2 + 2\rho \|\mathbf{x}\| \|\mathbf{y}\|}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2} \\ &\leq \max\{\sigma_{\max}(\mathbf{A})^2, \sigma_{\max}(\mathbf{B})^2\} + \max_{\mathbf{x}, \mathbf{y} \neq 0} \frac{2\rho \|\mathbf{x}\| \|\mathbf{y}\|}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2} \\ &\leq s_{\max}^2 + \rho. \end{aligned} \quad (35)$$

990 The smallest singular value of \mathbf{M} is
 991

$$\begin{aligned} \sigma_{\min}(\mathbf{M})^2 &= \min_{\mathbf{x}, \mathbf{y} \neq 0} \frac{\|\mathbf{Ax}\|^2 + \|\mathbf{By}\|^2 + 2\langle \mathbf{Ax}, \mathbf{By} \rangle}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2} \\ &\geq \min_{\mathbf{x}, \mathbf{y} \neq 0} \frac{\sigma_{\min}(\mathbf{A})^2 \|\mathbf{x}\|^2 + \sigma_{\min}(\mathbf{B})^2 \|\mathbf{y}\|^2 - 2\rho \|\mathbf{x}\| \|\mathbf{y}\|}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2} \\ &\geq \min\{\sigma_{\min}(\mathbf{A})^2, \sigma_{\min}(\mathbf{B})^2\} + \min_{\mathbf{x}, \mathbf{y} \neq 0} \frac{-2\rho \|\mathbf{x}\| \|\mathbf{y}\|}{\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2} \\ &\geq s_{\min}^2 - \rho. \end{aligned} \quad (36)$$

1000 Therefore
 1001

$$\kappa(\mathbf{M}) = \frac{\sigma_{\max}(\mathbf{M})}{\sigma_{\min}(\mathbf{M})} \leq \sqrt{\frac{s_{\max}^2 + \rho}{s_{\min}^2 - \rho}} \leq \sqrt{\frac{1 + \frac{\rho}{s_{\max}^2}}{1 - \frac{\rho}{s_{\min}^2}}} \cdot \frac{s_{\max}}{s_{\min}} \leq \tau \sqrt{\frac{1 + \frac{\rho}{s_{\max}^2}}{1 - \frac{\rho}{s_{\min}^2}}} \kappa_{\max}, \quad (37)$$

1005 where κ_{\max} is the largest condition number of the component matrices.
 1006

1007 Under a mild block-incoherence condition (i.e., $\rho \rightarrow 0$), and balanced blocks ($\tau \rightarrow 1$), the concatenated condition number is controlled by the worst block condition number κ_{\max} .
 1008

1009 A.5 VISUALIZATION

1010 As shown in Fig. 7, the skipless DINO ViT-Small produces representations that form much more
 1011 semantically coherent clusters. Moreover, Fig. 8 reveals a clear hierarchical progression: earlier
 1012 layers capture meaningful subparts and mid-level structures, while deeper layers focus on complete
 1013 objects. Such hierarchical patterns are weaker and diffuse in the residual baselines.
 1014

1015 A.6 DINO PRETRAINING LOSS

1016 In Fig. 9, we demonstrate the DINO pretraining loss for both skip DINO ViT-Small and skipless
 1017 DINO ViT-Small with proposed method.
 1018

1019 A.7 JACOBIAN CONDITIONING DURING TRAINING

1020 We tracked the condition numbers of the full Jacobian ($\kappa(\mathbf{JJ}^\top)$) as well as the per-layer Jacobian
 1021 kernels during DINO ViT-Small training. As shown in Table 5, the standard skipless baseline diverges
 1022 early in training, resulting in numerical overflow. In contrast, our *skipless + init* variant maintains
 1023 a condition number of the same order of magnitude as the residual (skip) baseline throughout
 1024

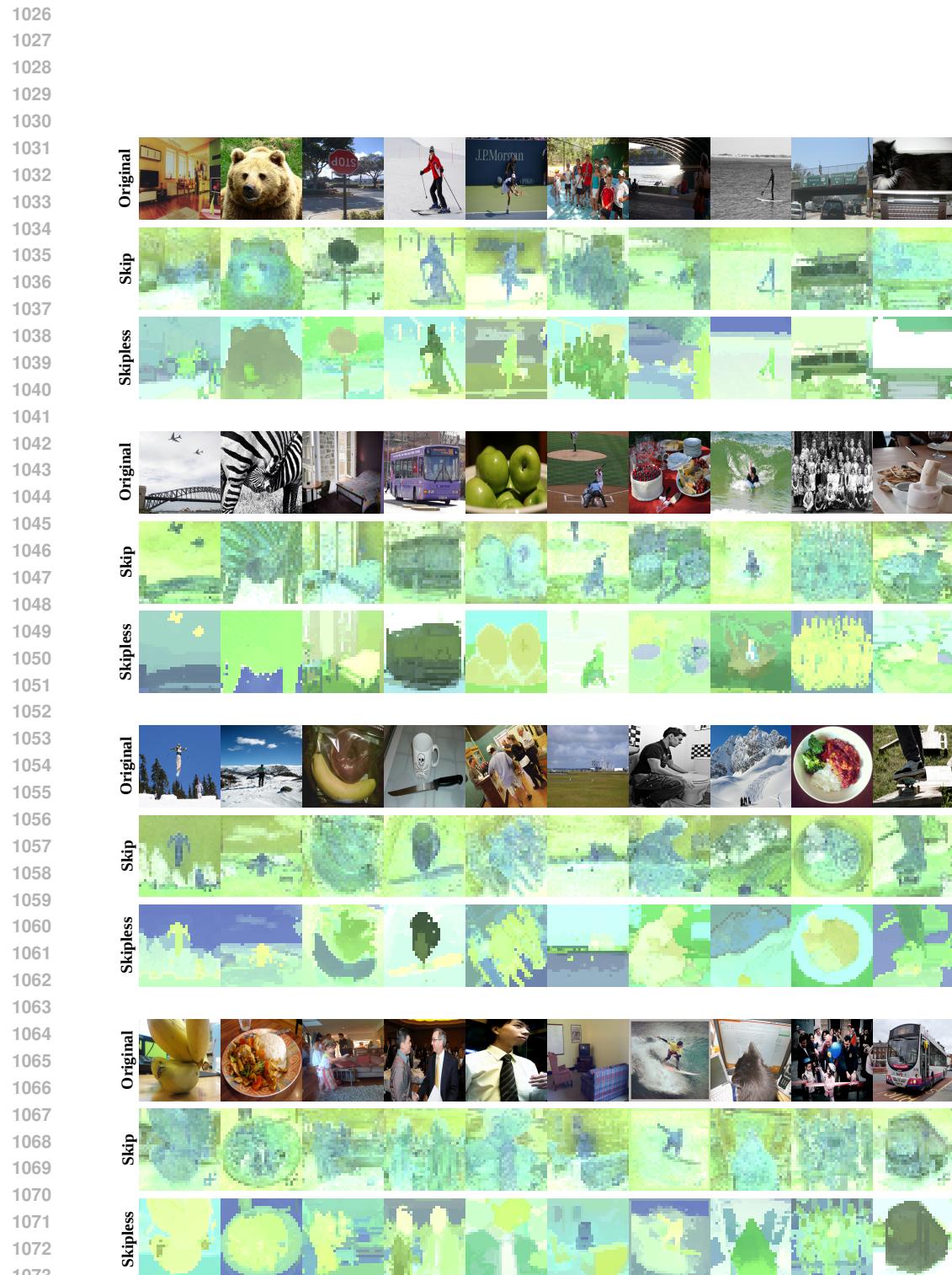


Figure 7: PCA visualization of representation

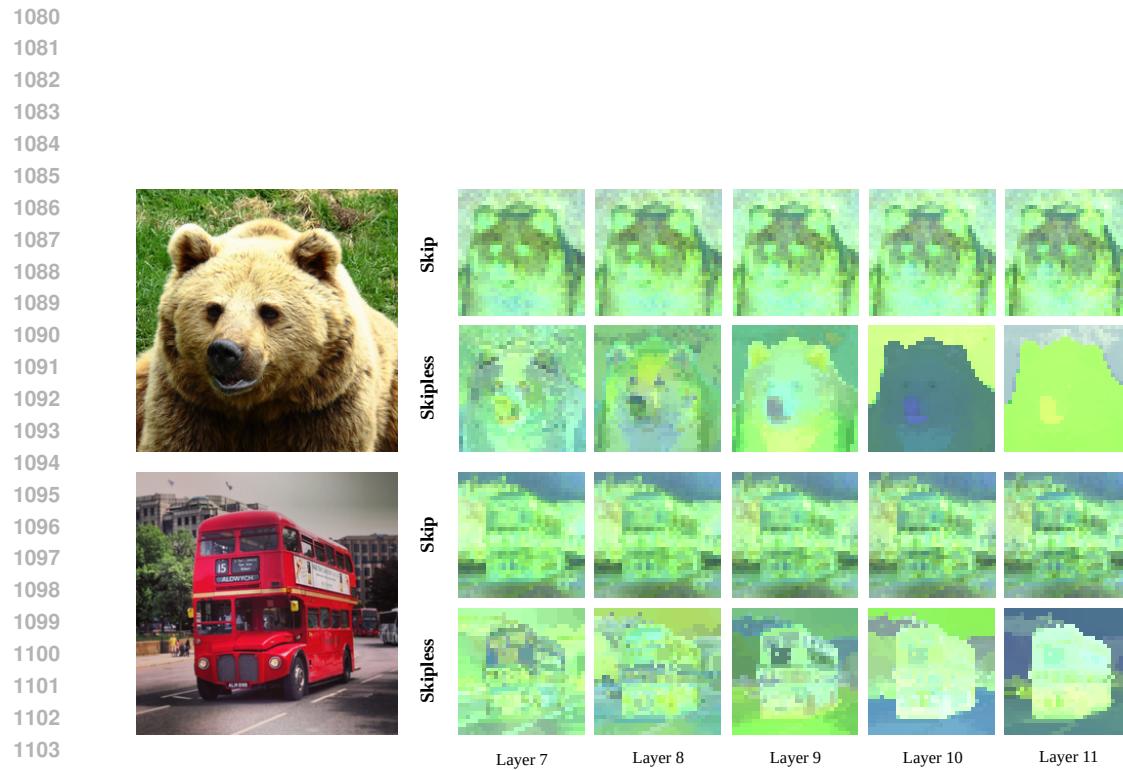


Figure 8: PCA visualization of representation from multiple layers

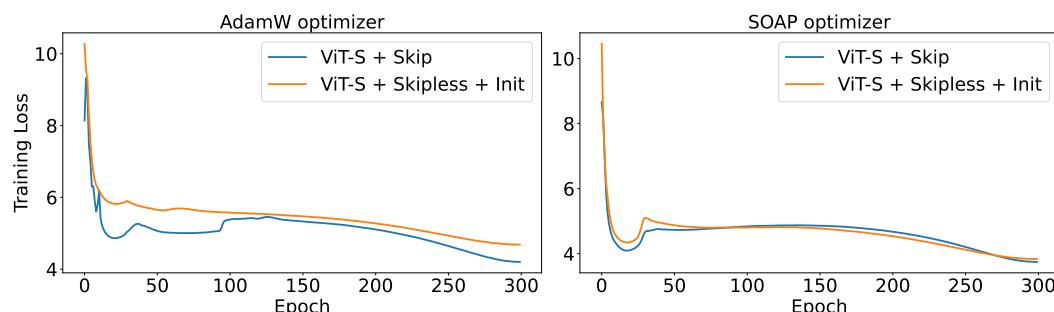


Figure 9: DINO ViT-Small Pretraining Loss

1134

1135 Table 5: Condition number of the full Jacobian $\kappa(\mathbf{J}\mathbf{J}^\top)$ during DINO ViT-S training.

	Epoch 20	Epoch 60	Epoch 120	Epoch 180	Epoch 240	Epoch 300
skip	127	72	82	93	113	144
skipless	∞	∞	∞	∞	∞	∞
skipless + init	195	340	261	160	176	207

1141

1142

1143 the entire optimization trajectory. This demonstrates that our initialization successfully mitigates the
 1144 optimization pathologies that typically arise in skipless architectures.

1145 We also analyzed the conditioning of the layer-wise Jacobian kernels, computing $\kappa(\mathbf{K}_\ell \mathbf{K}_\ell^\top)$ for
 1146 skipless models and $\kappa((\mathbf{K}_\ell + \mathbf{I})(\mathbf{K}_\ell + \mathbf{I})^\top)$ for residual models. Table 6 shows results across depth
 1147 and training epochs.

1148

1149

1150 Table 6: Layer-wise Jacobian condition numbers across layers. We report $\kappa(\mathbf{K}_\ell \mathbf{K}_\ell^\top)$ for skipless,
 1151 and $\kappa((\mathbf{K}_\ell + \mathbf{I})(\mathbf{K}_\ell + \mathbf{I})^\top)$ for skip.

Epoch 20				
	L0	L4	L7	L11
skip	1.05	1.49	1.35	1.04
skipless	∞	∞	∞	∞
skipless + init	10	2.7	7.5	12.5
Epoch 100				
	L0	L4	L7	L11
skip	1.06	1.54	1.25	1.25
skipless	∞	∞	∞	∞
skipless + init	6.25	3.7	8.54	19.2
Epoch 200				
	L0	L4	L7	L11
skip	1.03	1.57	1.21	1.37
skipless	∞	∞	∞	∞
skipless + init	6.25	3.84	11.1	21.7
Epoch 300				
	L0	L4	L7	L11
skip	1.02	1.38	1.28	1.51
skipless	∞	∞	∞	∞
skipless + init	3.44	3.57	14.3	20.2

1179

1180

A.8 LANGUAGE MODELING

1181

1182 We extended our evaluation to Language Transformers. We pretrained a 110M parameter model on
 1183 the C4 dataset for 20k steps (using AdamW) and evaluated zero-shot performance on five common-
 1184 sense reasoning tasks following (He et al., 2023). We use a batch size of 256k tokens and ablate
 1185 learning rate of $\{1, 3, 5, 7\} \times e^{-n}$. We use $\alpha = 0, \beta = 0.5$ for our initialization. The zero-shot
 1186 performance on 5 downstream tasks are shown in Table 7. We use the flash-linear-attention
 1187 codebase (Yang & Zhang, 2024).

1188

1189

Table 7: Zero-shot performance on downstream tasks.

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Without our initialization, the standard skipless Transformer diverges immediately. With our method, it achieves comparable performance with the residual baseline. Crucially, while prior work (He et al., 2023) can train skipless Transformers, it requires 5 times more training steps to match residual performance. In contrast, our method achieves this at the same training speed ($1 \times$ steps) as the baseline, demonstrating significantly superior efficiency.