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Abstract
The increasing size of large language models
(LLMs) traditionally requires low-precision in-
teger formats to meet strict latency and power
demands. Yet recently, alternative formats such
as Normal Float (NF4) have increased model ac-
curacy at the cost of increased chip area. In this
work, we first conduct a large-scale analysis of
LLM weights and activations across 30 networks
and conclude that most distributions follow a Stu-
dent’s t-distribution. We then derive a new the-
oretically optimal format, Student Float (SF4),
that improves over NF4 across modern LLMs,
for example increasing the average accuracy on
LLaMA2-7B by 0.76% across tasks. Using this
format as a high-accuracy reference, we then pro-
pose augmenting E2M1 with two variants of su-
pernormal support for higher model accuracy. Fi-
nally, we explore the quality and efficiency fron-
tier across 11 datatypes by evaluating their model
accuracy and hardware complexity. We discover
a Pareto curve composed of INT4, E2M1, and
E2M1 with supernormal support, which offers
a continuous tradeoff between model accuracy
and chip area. For example, E2M1 with super-
normal support increases the accuracy of Phi-2
by up to 2.19% with 1.22% area overhead, en-
abling more LLM-based applications to be run
at four bits. The supporting code is hosted at
https://github.com/cornell-zhang/llm-datatypes.

1. Introduction
Quantization has become the mainstream method for deep
neural network (DNN) compression (Hao et al., 2021). Com-
pared to alternatives like pruning, it retains original model
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Figure 1. Quantization Datatypes – Datatypes should reflect
LLM weight and activation distributions to achieve the highest
quality. In this work, we compare model accuracy, chip area, and
power consumption across datatypes to map the quality-efficiency
Pareto frontier. We also propose alternative datatypes including
Student Float (SF4), super-range E2M1 (SR), and super-precision
E2M1 (SP). These complement existing datatypes, e.g., Normal
Float (NF4), Intel E2M1 (E2M1-I), bitsandbytes E2M1 (E2M1-B)
and Additive Powers of Two (APoT4).

quality at higher compression ratios (Kuzmin et al., 2023),
and importantly it can be applied post-training, often with-
out any fine-tuning. This makes it suitable for large language
models (LLMs), which require significant resources during
fine-tuning for gradient and optimizer state buffers. Recent
LLM quantization works have successfully lowered weight
and activation precision to eight bits (Frantar et al., 2023;
Xiao et al., 2023) and four bits (Zhao et al., 2023; Liu et al.,
2023; Shao et al., 2023) with minimal accuracy loss.

At four bits, prior LLM quantization has focused on integer
datatypes since they are supported in current DNN accel-
erators (Jouppi et al., 2023). However, recent work has
shown eight-bit floating-point (FP8), e.g. E4M3, achieves
higher accuracy compared to INT8, where E represents the
exponent bits and M the mantissa bits (Kuzmin et al., 2022;
Micikevicius et al., 2022). These improvements motivate
the further study of four-bit non-integer formats, such as
FP4, that can be included in next-generation accelerators.
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Many of these formats are illustrated in Figure 1, which
includes seven FP4 variants in blue along with INT4 and
multiple alternative formats. All formats are normalized to
one for comparison and placed against an example weight
distribution in the background. Visualizing both the datatype
and underlying weight distribution is important since their
agreement leads to high-accuracy post-training quantization.
For example, E2M1 typically achieves higher accuracy than
INT4 because it allocates more coverage to the majority of
values in the center of the distribution. This difference be-
tween datatypes is particularly important at four bits, where
there are only sixteen possible values. At higher bitwidths,
most reasonable datatypes provide dense coverage across
the distribution.

In addition to preserving accuracy, datatypes must have effi-
cient multiply-and-accumulate (MAC) units, which perform
nearly all of the compute-intensive LLM operations. For
instance, while E2M1 has higher accuracy, up to a 7.13%
LAMBADA improvement on Phi-2, INT4 has an 8% smaller
and more power-efficient MAC unit. In this work, we ex-
plore this accuracy-efficiency frontier across datatypes and
summarize our contributions as follows:

1. Conduct a large-scale profiling of the weights and acti-
vations across 30 DNNs and discover that most DNN
distributions are best approximated by the Student’s
t-distribution.

2. Derive a theoretically optimal datatype with respect to
this distribution, Student Float (SF4), and empirically
verify that it improves the state-of-the-art for lookup-
based quantization.

3. Propose two variants of supernormal support for E2M1
and Additive Powers-of-Two (APoT) datatypes, using
SF4 as a high-accuracy reference.

4. Plot the Pareto frontier for accuracy and performance
across datatypes, comparing FP4 vs. INT4, discussing
FP4 variants, and improving the accuracy of E2M1 and
APoT4 with supernormal support.

2. Related Work
DNN quantization can be broadly categorized into two
branches: quantization-aware training (QAT) (Zhang et al.,
2023a) and post-training quantization (PTQ) (Zhao et al.,
2019a;b; Chee et al., 2023). PTQ directly performs quanti-
zation after the model has finished training, often without
any training or calibration data (Cai et al., 2020; Nagel et al.,
2019). This approach simplifies the model quantization
process but leads to lower model accuracy, especially at
extremely low precision. In this scenario, the choice of
datatype is particularly important for preserving high model
accuracy. Traditionally, integer formats were the only op-
tion at low bitwidths, yet recent work has proposed new
floating-point, lookup-based, and alternative formats. At

four bits, these datatypes have complex quality and perfor-
mance trade-offs that affect the model accuracy, chip area,
and estimated power.

2.1. Floating-Point

Floating-point formats have been essential for deep learn-
ing given their ability to represent a wide range of values
necessary for weights, activations, and gradients. Recently,
the Open Compute Project proposed a standard for lower-
precision formats, including FP4, FP6, and micro-scaling
formats (Rouhani, 2023). This standard follows prior re-
search like VS-Quant (Dai et al., 2021) and micro-exponents
(MX) (Rouhani et al., 2023), which share scales per block
and introduce multi-level scale factors. In addition, the quan-
tization library “bitsandbytes” (Dettmers et al., 2022a) has
implemented an FP4 datatype for weight-only LLM quan-
tization. Similarly, Intel’s neural compressor, which has
become a popular library for LLM compression research,
offers an FP4 implementation for weight-only LLM quanti-
zation (Shen et al., 2023).

In addition, multiple recent works have compared floating-
point and integer formats and explored mixed-format net-
works (Chen et al., 2023). For instance, FLIQS (Dotzel
et al., 2024) and MoFQ (Zhang et al., 2023b) discovered
that floating-point formats produce higher accuracies across
vision, language, and recommendation tasks, where the dif-
ferences are larger at lower precisions. Our work continues
this line of research by comparing seven different FP4 can-
didates across LLMs, proposing supernormal extensions to
them, and mapping their quality and hardware efficiency
tradeoffs.

2.2. Logarithmic Datatypes

As floating-point formats allocate all of their bits to the
exponent, they become logarithmic formats. In this process,
these formats replace costly digital multiplications with pure
exponent addition (Alsuhli et al., 2023), yet they poorly fit
natural DNN distributions. As shown in Figure 1, they
cluster too many values in the center of the distribution
while leaving sparse coverage at the extremes. To address
this, Additive Powers-of-Two (APoT) adds two logarithmic
numbers together to better match these data distributions
and increase model accuracy (Li et al., 2020). At four bits,
APoT has the general form: (−1)S (2E+2Ẽ), where E and
Ẽ are sets of powers of two. This leads to a potentially large
search space that we explore in Appendix E, yet at four bits,
the only reasonable variant has E ∈ {0, 2−1, 2−2, 2−4} and
Ẽ ∈ {0, 2−3}. Therefore, we focus on this variant only. Our
work maps the quality-efficiency frontier of these formats,
describes the limitations of native E3M0, and introduces
two variants of APoT that achieve higher accuracy with
minor area overhead.
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Figure 2. Mistral-7B Weight Profile – The weights in Mistral-7B
are best approximated by t-distributions. The best fitting normal
distribution (1.0 × σ) poorly fits the peak of the distribution, and
forcing it to fit the peak (0.6 × σ) causes poor representation on
the larger values. Straight lines on quantile-quantile (Q-Q) plots
indicate perfect fits between theoretical and sampled distributions.

2.3. Normal Float

While logarithmic datatypes were developed primarily for
performance, Normal Float (NF4) was designed exclusively
for model accuracy (Dettmers et al., 2023). It equally di-
vides the probability mass for normal distributions using
quantile functions (Dettmers et al., 2022b), ensuring approx-
imately the same number of weights get mapped to each
datatype value. This leads to high accuracy, yet it relies
on floating-point lookup tables and high-precision MAC
units to be implemented in real hardware. In our work, we
propose an alternate lookup format, Student Float (SF4),
to increase the accuracy of lookup-based quantized LLMs
and build various hardware-efficient datatypes based on its
insights.

3. Proposed Datatypes
In this section, we conduct a large-scale profiling of LLM
weight and activation distributions across models and ap-
plications. We then use these distributions to analytically
derive the SF4 datatype and introduce supernormal sup-
port, which increases model accuracy for E2M1 and APoT4
formats with low hardware overhead.

3.1. Student’s t-Distribution

Instead of the normal distribution, we use the Student’s t-
distribution to model LLM weights and activations. This
distribution, S(t; ν), generalizes the normal distribution
by introducing a degree of freedom parameter ν that con-
trols the shapes of its peaks and tails. Larger ν leads to
wider peaks and thinner tails (shown in Appendix C). The

Model Weight Activation
ν KS-∆ ν KS-∆

OPT-1B 6.682.86 0.040 5.914.08 0.117
BLOOM-560M 5.872.68 0.020 6.754.84 0.066

BLOOM-7B 10.135.96 -0.019 4.511.33 0.049
Falcon-7B 5.872.68 0.020 6.754.84 0.066

LLaMA2-7B 6.783.45 0.025 2.980.89 0.022
Yi-6B 7.264.98 0.013 2.503.30 0.036

FLAN-T5 13.472.40 0.004 5.341.53 0.031
Mistral-7B 1.660.67 0.049 1.672.15 0.111
Zephyr-3B 4.595.20 0.099 2.371.03 0.098

BERT 13.132.42 -0.069 6.454.35 0.034
RoBERTa 7.282.18 0.022 6.694.77 0.022
ALBERT 10.874.86 0.000 7.811.75 0.018

ResNet18 2.710.69 0.069 10.946.20 -0.008
ResNet50 2.951.22 0.052 6.577.03 0.006

MobileNetV2 5.025.55 0.003 8.227.92 0.003
EfficientNet-B0 4.295.42 0.065 3.511.86 0.029

Table 1. Weight and Activation Profiling – DNN distributions are
better approximated by t-distributions, typically with single-digit
degrees of freedom (ν). The mean and variance for ν are calculated
across layers. The Kolmogorov-Smirnov (KS) ∆ measures the
difference between the KS distance on the best-fit normal and
Student’s t-distributions. Positive values indicate a smaller distance
to the t-distribution.

t-distribution probability density function (PDF) is shown
below, where Γ is the generalized factorial.

S(t; ν) =
Γ
(
ν+1
2

)
√
νπ Γ

(
ν
2

) (1 + t2

ν

)− ν+1
2

(1)

As ν → ∞, this distribution converges to the standard
normal distribution:

S(t; ν → ∞) =
1√
2π

e−
t2

2 (2)

This distribution is useful for studying LLM weights and
activations, since it can both quantify the normality of the
distribution through ν and offer an analytical model for
deriving future datatypes.

3.2. Model Profiling

Figure 2 (left) applies this analysis to an MLP weight tensor
from Mistral-7B (Jiang et al., 2023). It shows the weight
histogram along with the t-distribution and standard normal
distribution. It reveals that the best-fit t-distribution gives a
better representation compared to the best-fit normal distri-
bution (1.0× σ) at small and large values. Furthermore, it
shows that this is not just a matter of incorrect scaling. Since
when σ is scaled down by 0.6 in the normal distribution to
fit the peak, the larger values are no longer well-represented.
The right figure shows the same results in a quantile-quantile
(Q-Q) plot, which compares the theoretical quantiles of each
distribution to the profiled quantiles of the weight tensor. In
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Algorithm 1 Student Float Derivation

1: Set δ = 1
2

(
1
32 + 1

30

)
.

2: Compute eight evenly spaced probabilities p1, . . . , p8
where p1 = δ and p8 = 1

2 , and then compute eight
evenly spaced probability values p8, . . . , p16 such that
p8 = 1

2 and p16 = 1− δ.
3: Set s̃i = QS(pi; ν) where QS is the quantile function

for the Student’s t-distribution S(t; ν) with degrees of
freedom ν.

4: Normalize s̃ to [−1, 1]: si = s̃i
maxi |s̃i| .

a Q-Q plot, straight lines represent perfect matches between
the profiled data and theory, and therefore the t-distribution
represents a significantly stronger fit overall.

Table 1 expands this analysis by quantifying the mean and
variance for ν across layers in LLMs, BERT-like models,
and CNNs. It shows that the best fitting t-distributions
typically have small single-digit degrees of freedom (ν),
with a few exceptions like the weights in FLAN-T5 (Wei
et al., 2022). Since t-distributions approach normal distribu-
tions at high ν, this implies they are significantly different
from normal distributions. The table also lists the differ-
ence ∆ between the Kolmogorov-Smirnov (KS) distances
for the best-fitting t-distribution and normal distributions.
The positive differences in most models indicate that the
t-distribution has an overall better fit, and these differences
also suggest that ν = 10 is approximately the cutoff for
normal distributions. More networks and more detailed
analysis are located in Appendix A.

3.3. Student Float

Given these results, we can generate datatype optimized for
the Student’s t-distribution, which we refer to as Student
Float (or SF4 at four bits). In this derivation, we follow prior
work (Dettmers et al., 2023) and equalize the expected num-
ber inputs (weights or activations) mapped to each datatype
value. This effectively equalizes the load across the datatype
and ensures the quantized histogram will be approximately
balanced and flat.

This process is described in Algorithm 1, which was adapted
from the derivation of the NF4 datatype (Dettmers et al.,
2023). It first produces sixteen numbers, pi, equally spread
out in probability space, although it fixes p8 = 1

2 to force
a lossless representation for zero. This is important since
quantization error on zero inputs can lead to multiple prac-
tical issues, e.g., incorrect masking or zero padding, that
would need to be handled specially in software. Addition-
ally, it adds more values on the positive side, against the
convention for integer types, since modern activation func-
tions often bias activations toward positive values.

OPT-125M OPT-1B Phi-2 LLaMA2-7B

ν PPL ACC PPL ACC PPL ACC PPL ACC

FP32 - 26.02 37.90 6.64 57.89 5.52 62.57 3.40 73.92

NF4 - 33.77 34.06 7.21 56.43 6.47 60.94 3.71 71.98

SF4 3 29.24 37.18 7.65 54.92 6.38 61.07 3.58 72.38
SF4 4 27.21 37.30 6.95 57.50 6.26 61.19 3.52 72.54
SF4 5 25.69 38.56 6.90 57.83 6.33 61.56 3.60 72.42
SF4 6 25.80 37.90 6.70 58.59 6.34 60.92 3.69 71.82
SF4 7 29.22 36.43 6.81 58.08 6.48 60.33 3.69 71.80

Table 2. Degrees of Freedom – LLM evaluation on LAMBADA
accuracy (ACC) and perplexity (PPL). SF4 achieves its highest
quality when generated with the most common degrees of freedom
(ν) profiled in Table 1. SF4 converges to NF4 in the limit (shown
in Appendix C), yet its accuracy peaks around ν = 5.

It then maps pi through the Student’s t-distribution quan-
tile function, Q(p), to produce the unnormalized datatype
values s̃i This quantile function gives the value x = Q(p),
such that S(X ≤ x) = p, where X is a random variable
following the t-distribution S. Therefore, equally spread
probabilities will be mapped to quantiles that equally divide
the probability mass. The values are finally normalized into
[−1, 1] for simplicity, but the true range of the datatype
will be determined by the high-precision quantization scale
factors at the row or group level.

3.4. Accuracy Study

Given the parameterization of the quantile function,
QS(p; ν), SF4 would vary with the choice of ν. As ν in-
creases, the peaks of the t-distribution become shorter and
wider, SF4 spreads out more, and in the limit, it converges
to NF4 (shown in Appendix C). However, since SF4 will be
a reference for non-lookup datatypes with specialized and
efficient MAC units, it should have a definite form and ν
should be fixed across models. Therefore, we use the most
common degrees of freedom in Table 1 and fix ν = 5.

To evaluate this choice, Table 2 sweeps the degrees of free-
dom and measures the LAMBADA accuracy and perplexity
on OPT-125M, OPT-1B, Phi-2, and LLaMA2-7B. It shows
the highest accuracy and lowest perplexity results typically
cluster around ν = 5, although there is some variance across
models. In this table, SF4 reaches its highest accuracy sig-
nificantly before converging to NF4, which occurs approxi-
mately at ν = 10 as discussed in Section 3.2.

3.5. Supernormal Support

Given its high accuracy, SF4 can be used as a reference
for building efficient datatypes with corresponding MAC
units. Figure 1 visualizes five E2M1 variants next to SF4.
Assuming model accuracy is fully determined by the shape
of the datatype, this figure shows the issues with multiple
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Mistral-7B OPT-1B OPT-6.7B LLaMA2-7B Phi-2 BLOOM-7B Yi-6B
Calib. Method None MSE None MSE None MSE None MSE None MSE None MSE None MSE

LAMBADA ↑

FP32 75.90 75.90 57.89 57.89 67.69 67.69 73.92 73.92 62.57 62.57 57.64 57.64 68.27 68.27
NF4 74.97 74.97 56.43 56.37 67.88 68.43 71.20 71.98 61.28 60.94 57.03 57.09 67.46 68.19
SF4 75.90 75.00 58.02 57.83 68.02 68.02 71.96 72.42 60.47 61.56 57.97 57.87 67.84 68.04

INT4 73.92 73.74 55.52 56.96 63.92 67.07 72.06 70.19 58.59 55.11 56.08 56.14 64.93 61.75
E2M1-I 74.17 74.36 56.18 56.53 67.49 66.02 71.43 70.72 58.20 59.15 55.75 55.82 64.39 62.12

E2M1-B 73.98 73.65 55.73 57.13 66.97 65.55 70.75 70.68 58.32 59.91 55.64 55.72 63.92 60.64
E2M1 74.75 74.81 56.26 57.52 67.84 67.86 72.40 71.51 59.95 58.92 56.51 56.48 66.74 66.95
+ SR 72.95 72.95 54.41 54.41 67.26 67.26 71.07 71.07 62.24 62.24 50.18 50.34 59.97 60.01
+ SP 75.41 74.99 55.85 57.46 67.24 67.36 71.65 71.84 61.73 60.97 56.86 56.72 67.38 67.45

E3M0 74.23 71.05 52.36 53.02 62.64 64.47 69.92 68.66 54.96 55.58 56.47 56.42 65.15 65.38
APoT4 75.41 73.78 56.22 54.67 66.08 67.53 72.77 71.58 59.62 59.97 57.02 57.12 68.19 68.07

+ SP 75.12 74.05 55.27 55.25 65.92 68.06 73.22 71.63 61.09 61.50 57.13 57.23 68.04 68.31

WikiText-2 ↓

FP32 18.01 18.01 16.41 16.41 12.28 12.28 8.79 8.79 11.05 11.05 14.71 14.71 10.21 10.21
NF4 19.80 19.36 17.17 17.13 12.73 12.75 9.11 9.12 11.89 11.89 14.94 14.74 10.36 10.47
SF4 19.09 19.34 17.11 17.10 12.67 12.66 9.16 9.10 11.83 11.84 14.96 14.84 10.34 10.36

INT4 20.17 20.81 18.28 18.02 13.27 13.20 9.33 9.71 12.41 12.81 15.16 15.25 10.71 11.34
E2M1-I 20.07 20.55 17.86 18.00 12.92 12.96 9.37 9.74 12.19 12.38 15.18 15.16 10.69 11.34

E2M1-B 20.93 21.17 18.34 18.15 13.11 13.19 9.43 9.89 12.37 12.64 15.22 15.26 10.76 11.54
E2M1 19.76 19.27 17.24 17.25 12.78 12.79 9.17 9.21 11.97 11.99 15.01 15.18 10.42 10.54
+ SR 20.25 20.25 17.62 17.62 13.06 13.06 9.84 9.84 12.58 12.58 15.95 15.82 11.60 11.54
+ SP 19.38 19.47 17.19 17.18 12.76 12.77 9.13 9.20 11.92 11.96 14.98 14.89 10.37 10.29

E3M0 20.25 21.93 18.29 18.41 13.31 13.91 9.87 10.06 12.74 12.92 15.61 15.71 11.42 11.43
APoT4 19.13 19.23 17.47 17.42 12.84 12.88 9.15 9.27 12.09 12.17 15.02 14.98 10.46 10.49

+ SP 18.93 19.32 17.40 17.32 12.80 12.85 9.11 9.41 11.98 12.06 14.99 14.92 10.40 10.39

Table 3. Weight-Only Eval – Student Float (SF4) typically outperforms NF4, and the supernormal variants (SR and SP) often improve
over E2M1 and APoT4, although there are many exceptions. All models evaluated with weight-only sub-channel quantization with block
size 128 with optional MSE clipping calibration on the LAMBADA and WikiText-2 datasets.

variants in comparison to SF4. For example, E2M1-I and
E2M1-B push their subnormal values too close to zero,
which will introduce large quantization errors on the most
numerous central values.

In addition, E2M1 only uses 15 unique values and SF4
uses all 24 = 16 values. This missing value is caused by
the floating-point sign bit, which introduces positive and
negative zero. At higher precision, such as eight bits, this
redundancy wastes only 0.4% of its bitspace, but it makes a
large difference at four bits, where FP4 wastes 6.25% of its
values. Therefore, we propose adding additional supernor-
mal support to E2M1 to complement the existing subnormal
support. This reassigns negative zero to a useful value and
brings these formats more in line with the SF4, as shown in
Figure 1. In the following sections, we evaluate the accuracy
and efficiency of two supernormal variants:

1. Super-range (SR), which extends the range of the
values by allocating one point at the edge of the distri-
bution.

2. Super-precision (SP), which extends the precision by
giving one extra value within the distribution.

Super-precision matches the symmetry of SF4 and often
achieves higher accuracy compared to super-range, yet it

leads to larger chip area and power. For instance, it de-
creases the WikiText-2 perplexity compared to super-range
across LLMs, including LLaMA2-7B, OPT1B, and Phi-2,
while increasing the area of the corresponding MAC unit
by 14%. Finally, we also add super-precision support to the
APoT4 (Li et al., 2020) datatype in an analogous way. All
datatype values are listed in Appendix D.

4. Experiments
In this section, we evaluate these proposed datatypes against
previous integer, floating-point, logarithmic, and lookup-
based datatypes. These datatypes are applied with weight-
only and weight-activation quantization across popular
LLMs, zero-shot evaluations, and quantization methods,
totaling over 4000 data points. Finally, we show that trends
found at four bits hold for lower bitwidths and prior CNN
models. The main results are shown in this section, and the
remainder are listed in the Appendix.

4.1. Weight-Only Quantization

Given the memory-bound nature of LLM inference, we be-
gin the format evaluation with weight-only quantization.
Table 3 compares all datatypes in terms of their LAM-
BADA (Kazemi et al., 2023) accuracy and WikiText-2 per-
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LAMB Hella Wino PIQA BoolQ ARC-c ∆%
FP32 73.92 57.14 69.14 78.07 77.74 43.43 0.00

NF4 72.35 56.55 69.53 76.99 77.40 42.49 -1.10
SF4 73.20 56.81 69.06 77.69 78.56 43.34 -0.22

INT4 72.06 56.53 69.14 77.31 76.76 42.92 -1.17

E2M1-I 71.43 56.50 68.90 77.80 77.06 42.66 -1.30
E2M1-B 70.75 56.54 68.98 77.58 76.73 43.34 -1.28

E2M1 71.65 56.69 69.53 77.97 78.13 42.49 -0.85
+ SR 71.07 54.66 66.85 76.77 73.55 42.41 -3.49
+ SP 71.65 56.84 69.43 77.99 78.26 42.49 -0.80

E3M0 69.92 54.61 67.64 76.55 75.32 39.59 -4.32

APoT4 72.77 56.27 68.27 78.07 77.55 43.17 -0.86
+ SP 73.22 56.56 68.59 77.69 77.68 43.86 -0.39

Table 4. LLaMA2-7B Weight-Only – Accuracy improvements
with SF4 and super-precision formats continue common zero-shot
benchmarks. ∆% represents the mean relative percentage change
in accuracy from FP32. All models shown in Appendix G.

plexity on weight-only quantized models. These metrics
were chosen first because they are the most sensitive to
model perturbations. The evaluated models include Mistral-
7B (Jiang et al., 2023), LLaMA2-7B (Touvron et al., 2023),
OPT-1B (Zhang et al., 2022), OPT-6.7B, Phi-2 (Li et al.,
2023), BLOOM-7B (Scao et al., 2023), and Yi-6B.

The models were quantized and evaluated with a modified
version of the neural compressor library, which includes
lookup-based quantization for the new datatypes. All mod-
els use symmetric, sub-channel quantization with block size
128, with either no clipping or weight-based MSE clipping.
This block size was selected since it is small enough to sig-
nificantly increase model accuracy but large enough to align
most MAC units without requiring splitting accumulations.
Both clipping methods were included to ensure the datatype
accuracy was not heavily dependent on the quantization
algorithm itself.

This table demonstrates that SF4 improves model quality
compared to NF4 in most cases. In addition, it shows the
FP4 variants, even in the worst case, typically outperform
INT4, which agrees with the results seen in prior higher-
precision comparisons to integer formats (Dotzel et al.,
2024; Kuzmin et al., 2022). Within these FP4 formats, the
Intel and bitsandbytes variants consistently underperform
compared to the E2M1 baseline, which is due to their con-
centrated subnormal values shown in Figure 1. Finally, the
baseline APoT datatype often performs well against E2M1
and INT4, for example, increasing LAMBADA accuracy
loss by 1.44% compared to INT4 on LLaMA2-7B. Table 3
further shows that supernormal support typically increases
model quality, yet there are instances when the baseline
format achieves higher accuracy.

Block Size 16 32 64 128 256 CW

NF4 -1.19 -0.89 -1.79 -1.87 -1.44 -4.86
SF4 -1.04 -1.04 -1.38 -1.33 -1.44 -3.69

INT4 -1.98 -2.27 -2.27 -2.96 -3.53 -7.98

E2M1-I -1.90 -1.70 -2.02 -2.67 -3.37 -6.57
E2M1-B -2.33 -2.00 -2.17 -2.80 -3.90 -8.58

E2M1 -1.27 -1.59 -1.67 -1.40 -1.62 -3.92
+ SR -13.54 -4.98 -1.91 -1.86 -1.58 -3.21
+ SP -0.39 -0.97 -0.92 -0.66 -0.92 -3.85

E3M0 -3.25 -3.33 -4.20 -4.50 -5.77 -6.17

APoT4 -1.34 -2.04 -2.34 -1.90 -2.30 -4.35
+ SP -0.64 -1.47 -1.13 -1.29 -1.64 -3.43

Table 5. Phi-2 Subchannel Sweep – Differences between formats
exist even with the smallest subchannel block sizes. All results are
from Phi-2 with weight-only quantization. The average relative
accuracy change (↑) from FP32 is shown, calculated across LAM-
BADA, HellaSwag, Winogrande, PIQA, BoolQ and ARC-c. More
positive change, i.e., less accuracy drop, is preferred. Channelwise
(CW) quantization is shown in the last column.

4.2. Zero-Shot Evaluation

While LAMBADA and WikiText-2 are the most sensitive
metrics, other zero-shot evaluations align more closely with
real-world LLM usage. Table 4 expands the weight-only
comparison to include multiple zero-shot tasks evaluated on
LLaMA2-7B. It includes common-sense reasoning with Hel-
laSwag (Zellers et al., 2019) and language comprehension
with WinoGrande (Sakaguchi et al., 2019) and BoolQ (Clark
et al., 2019). In addition, it measures physical common-
sense with PIQA (Bisk et al., 2020) and scientific question-
answering with ARC-c (Moskvichev et al., 2023). Its results
reinforce the previous observations, showing consistent im-
provements of SF4 over NF4 and improvement of the super-
precision variants of E2M1 and APoT4 over their baselines.
For instance, SF4 improves over NF4 by close to 1% on
LAMBADA, PIQA, BoolQ, and ARC-c, and the inclusion
of super-precision reduces accuracy loss by 0.47% with
APoT4.

4.3. Subchannel Sweep

Subchannel quantization is standard for weight-only LLM
quantization, yet the size of the subchannels affect the shape
of the weight distribution and potentially the optimal format.
Therefore, Table 5 compares formats on Phi-2 while varying
subchannel block size. It aggregates all metrics into a single
score that measures the average relative accuracy drop from
FP32. As expected, decreasing block size leads to higher
accuracy across formats, yet the differences between for-
mats still remain. Even at the extreme with block size 16,
which is beyond what current DNN accelerators can support
efficiently, the trends hold from previous evaluations. For
instance, without subchannel quantization, the difference
between INT4 and E2M1-SP is 4.14% on average, and with
block size 16 the difference remains at 1.59%.
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Channelwise Subchannel
RTN GPTQ RTN GPTQ

NF4 -4.86 -2.48 -1.87 -1.14
SF4 -3.69 -2.49 -1.33 -1.65

INT4 -7.98 -6.45 -2.96 -2.39

E2M1-I -6.57 -5.47 -2.67 -2.31
E2M1-B -8.58 -5.35 -2.80 -2.46

E2M1 -3.92 -2.57 -1.40 -1.48
+ SR -3.21 -2.19 -1.86 -1.17
+ SP -3.85 -2.35 -0.66 -1.54

E3M0 -6.17 -4.76 -4.50 -3.64

APoT4 -4.35 -3.80 -1.90 -1.89
+ SP -3.43 -2.91 -1.29 -1.46

Table 6. Phi-2 GPTQ – Quality differences remain with weight-
only quantization with the inclusion of GPTQ. The average accu-
racy drop (%) is shown, calculated across LAMBADA, HellaSwag,
Winogrande, PIQA, BoolQ, and ARC-c. Round-to-nearest (RTN)
quantization is the baseline and results are evaluated with and
without subchannel quantization with 128-element subchannels.

4.4. GPTQ Comparison

In addition to extreme subchannel quantization, we evalu-
ate the effects of advanced post-training quantization like
GPTQ (Frantar et al., 2023). GPTQ is a popular weight-
only optimizer that uses second-order Hessian information
to improve quantization quality by iteratively updating un-
quantized weight blocks to account for the add quantization
error. These results are shown in Table 6 evaluated on the
Phi-2 model, where GPTQ typically reduces the accuracy
loss across datatypes with and without subchannel quanti-
zation. However, the differences between formats remain
even in this more optimized regime.

4.5. Three-Bit Formats

The lookup datatypes NF4 and SF4 can be generalized to
other precisions with slight modifications to Algorithm 1.
At three bits, Table 7 evaluates OPT-1B across a similar sub-
set of tasks. This table demonstrates that at lower bitwidths,
Student Float continues to outperform Normal Float across
most evaluations, particularly on the more sensitive LAM-
BADA and Wikitext-2 metrics with an improvement of
1.13% and 2.50% respectively.

Of the possible FP3 datatypes, only E2M0 is well-defined,
and it performs better than INT3 in all cases, which is in
contrast to E3M0, where INT4 typically has higher quality.
This is because at low precision, the dynamic range of the
exponent is restricted, and E2M0 becomes close in shape
to SF3 (shown in Appendix D). At two bits, the datatype
shape is not well-defined and therefore it is not evaluated.

4.6. Weight-Activation Quantization

Since MAC units require both inputs to be quantized, it
is important to also evaluate weight and activation quan-

LAMB ↑ Hella ↑ Wino ↑ PIQA ↑ BoolQ ↑ Wiki ↓
FP32 57.89 41.54 59.51 71.71 57.83 16.41

NF3 46.28 38.10 54.93 68.06 53.01 25.06
SF3 47.41 36.90 56.99 68.82 53.27 22.56

INT3 00.97 27.66 49.96 56.37 40.34 33.12

E2M0 23.52 32.43 53.99 64.15 51.96 28.98

Table 7. Three-Bit OPT-1B – The same procedures for generating
SF4 and NF4 can be applied at lower bitwidths. Student Float
continues to improve over Normal Float in most cases, and both
achieve higher accuracy than integer and floating point.

M-7B O-1B O-6B L-7B P-2B B-7B Y-6B
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NF4 -4.49 -11.02 -4.27 -2.65 -8.00 -8.50 -10.61
SF4 -3.98 -10.95 -4.76 -2.82 -6.79 -7.39 -9.17

INT4 -8.74 -20.72 -9.44 -6.27 -16.19 -17.94 -24.37
E2M1-I -8.46 -16.00 -5.62 -6.11 -15.66 -12.40 -17.97

E2M1-B -10.33 -15.92 -6.22 -7.47 -17.82 -14.84 -21.45
E2M1 -5.08 -11.09 -4.16 -2.68 -8.41 -9.32 -11.52
+ SR -13.02 -11.10 -6.92 -12.28 -8.53 -7.48 -31.46
+ SP -3.88 -12.03 -4.52 -3.42 -7.25 -8.97 -10.30

E3M0 -8.40 -10.74 -8.19 -10.66 -15.25 -6.20 -10.56
APoT4 -5.46 -12.78 -4.62 -3.74 -9.62 -10.20 -12.59

+ SP -5.68 -12.02 -4.85 -3.50 -8.48 -9.59 -12.81

Sm
oo

th
Q

ua
nt

NF4 -3.75 -9.66 -1.77 -3.60 -6.98 -4.49 -5.46
SF4 -2.86 -10.02 -1.39 -3.45 -5.86 -2.19 -3.76

INT4 -7.09 -10.93 -3.60 -6.35 -19.97 -11.58 -11.52
E2M1-I -7.20 -11.17 -2.74 -5.60 -17.27 -8.64 -10.32

E2M1-B -7.71 -10.10 -3.59 -6.63 -22.07 -10.74 -13.05
E2M1 -3.77 -10.71 -1.34 -3.44 -7.57 -4.23 -5.93
+ SR -15.52 -10.49 -5.45 -13.14 -8.02 -5.23 -26.38
+ SP -3.95 -11.87 -1.18 -3.24 -7.98 -4.19 -6.24

E3M0 -8.01 -10.75 -6.39 -9.13 -13.05 -6.71 -9.77
APoT4 -4.54 -9.36 -2.10 -4.23 -9.82 -6.34 -6.40

+ SP -4.55 -9.76 -1.65 -4.19 -8.20 -5.63 -6.20

Table 8. W4A4 Eval – Evaluation of W4A4 quantization averaged
across LAMBADA, HellaSwag, Winogrande, PIQA, BoolQ and
ARC-c. Each value represents the mean relative percentage accu-
racy change (↑) from FP32.

tization. Table 8 performs this evaluation across all the
previously mentioned models and metrics, showing the av-
erage accuracy change from FP32 baseline. Across for-
mats, the accuracy drops are naturally larger compared to
weight-only quantization, e.g. INT4 dropping 24.37% on
Yi-6B. Yet, in many cases, the drop is limited by including
SmoothQuant (Xiao et al., 2023), which transfers the quan-
tization difficulty from activations to weights, reducing the
accuracy for INT4 to only 11.52% on Yi-6B.

NF4 and SF4 are included in this table, even though as
lookup-based datatypes, they would require custom sup-
port like product quantization to handle quantized activa-
tions (AbouElhamayed et al., 2024). Regardless of sup-
port, they are still meaningful references for designing other
datatypes. As before, these formats typically outperform the
hardened datatypes, with SF4 achieving the highest overall
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ResNet18 ResNet50 Dense121 ViT-B-16
FP32 69.76 76.13 74.43 81.07

NF4 58.04 67.66 68.76 79.48
SF4 63.12 69.05 69.48 80.28

INT4 40.09 29.36 47.48 77.61

E2M1 55.39 64.47 67.74 79.66
+ SR 57.04 66.80 67.97 79.57
+ SP 61.10 68.31 68.81 79.94

E3M0 49.70 50.04 53.98 78.99

APoT4 54.66 65.13 62.34 78.96
+ SP 55.03 66.09 63.11 79.04

Table 9. Vision Models – Given their similar distributions, vision
models have similar improvements with SF4 and super-precision
formats. All models are evaluated on ImageNet using channel-
wise weight and activation quantization, with clipping thresholds
determined statically over 256 training examples.

accuracy with and without SmoothQuant, e.g. limiting the
accuracy loss to an average of 2.86% on Mistral-7B. All of
the raw table data are listed in Appendix G.

4.7. Vision Models

Since the weights and activations for LLMs and convolu-
tional neural networks (CNNs) follow the same distribu-
tions according to Table 1, we expect similar quality trends
on CNNs that were found with LLMs. Table 9 shows
these results on ResNet18 (He et al., 2015), ResNet50,
DenseNet121 (Huang et al., 2017), and ViT-B-16 with
weight and activation quantization. SF4 again improves
over NF4 and reaches the highest accuracies in all models.
For instance, it improves ResNet18 by 5.08% when evalu-
ated on ImageNet-1K. Super-precision also outperforms the
E2M1 and APoT4 baselines, where E2M1 improves by up
to 5.71% and APoT4 by 0.96%.

5. Hardware Comparison
In addition to maintaining high model quality, datatypes
must also be efficient in real hardware. To examine the hard-
ware cost of different datatypes, we model their MAC units
using SystemVerilog and then use Synopsys Design Com-
piler to synthesize their area and estimate their power under
TSMC 28nm technology. Each MAC unit contains a multi-
plier and an accumulator that has been sized to iteratively
add 256 terms from a dot product.

5.1. Area and Power

Table 10 summarizes these hardware costs across datatypes
and adjusts the accumulation bitwidth for lossless accumu-
lation in integer or fixed-point. This assumption means that
each format must vary its accumulator bitwidth to avoid
overflow and underflow, which can have a significant effect
on the total area. At low precision, this accumulator area

Accum. Mult. Accum. MAC Rel. Chip
Bits µm2 µm2 µm2 µW Overhead 1

INT4 16 75.3 85.4 160.7 48.5 0.0%
INT5 18 106.6 97 203.6 59.8 17.7%

E2M1-I 20 119.1 109.1 228.2 59.7 4.2%
E2M1-B 23 137.9 131 268.9 67.9 6.7%

E2M1 17 79.7 90.7 170.4 49.6 0.6%
+ SR 18 96.8 94.5 191.3 53.5 1.9%
+ SP 19 121.5 96.5 218.0 54.6 3.6%

E3M0 22 98.0 119.7 217.7 59.5 3.6%

APoT4 16 96.2 85.4 181.6 47.2 1.3%
+ SP 16 99.7 85.4 185.1 45.5 1.5%

1 Assuming the MAC units and the memory system occupy
10% and 60% of the chip area, respectively (Chen et al.,
2019; Jouppi et al., 2021).

Table 10. Hardware Results – Area and power measurements for
the MAC units for each datatype. The relative system overhead
represents the area overhead of each format compared to INT4,
accounting for the other components of a DNN accelerator.

can even exceed the multiplier area, especially with format
with larger dynamic range. For example, the E2M1 accumu-
lator is 13.8% larger than its multiplier. This is typically not
true at higher precision, since multipliers scale quadratically
with bitwidth while accumulators only scale linearly.

This table shows that, despite often having the lowest ac-
curacy, INT4 remains the most efficient format due to its
small accumulator. Other formats, which have larger dy-
namic ranges, increase the required multiplier accumulator
bitwidth, leading to a larger total area of the MAC unit.

However, the MAC unit is only one part of the whole sys-
tem, which involves memory, communication, and addi-
tional control components. To account for these, Table 10
includes a column for estimated system chip overhead with
respect to INT4. This estimate assumes the MAC units and
memory occupy approximately 10% and 60% area of the
entire design, respectively, which is common within modern
DNN accelerators (Chen et al., 2019; Jouppi et al., 2023).
Since the memory system is largely unaffected for a given
bitwidth, the increased area for compute is dampened at the
system level. For instance, while the MAC area overhead
of adding super-precision support to E2M1 is 27.9%, its
overall chip area overhead is only 3.6%.

5.2. Higher Bitwidths

In addition to non-traditional formats, future accelerators
can increase the bitwidth beyond four bits. To consider this
possibility, Table 10 includes the estimated area and power
for INT5, which would outperform all four-bit formats in
model quality. It would even achieve this with a comparable
MAC area compared to some four-bit datatypes. However, it
would add significant memory overhead that leads to a large
increase in the overall system area. For example, although
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Figure 3. Quality vs. Area – Relative accuracy change from
unquantized baselines averaged across LAMBADA, HellaSwag,
Winogrande, PIQA, BoolQ and ARC-c. All Model results aver-
aged across Mistral-7B, OPT-1B, OPT-6.7B, LLaMA2-7B, Phi-2,
BLOOM-7B, and Yi-6B. All individual model Paretos are shown
in Appendix F.

the MAC area of INT5 only increases by 2.7% over INT4,
the required memory is at least 1.25× higher, leading to
17.7% system overhead in total.

5.3. Quality vs. Area

Combining the quality and performance results, Figure 3
plots the average accuracy changes across models and tasks.
It also highlights the Mistral-7B model, leaving the other
models in Appendix F. The accuracy change is evaluated
across the same tasks in Table 8 with respect to the unquan-
tized FP32 baseline. This figure shows a Pareto curve from
INT4 at the lowest area and quality to super-precision E2M1
with the highest area and quality. It first demonstrates the
strength of E2M1 compared to INT4, since it can signifi-
cantly reduce the average accuracy drop across models by
7.34% with a near negligible system overhead of 0.6%. The
APoT datatypes are typically in the middle of the curve,
with accuracies close to E2M1. However, APoT requires
additional logic to be converted from higher-precision FP32
or BF16, and therefore it becomes less useful than E2M1 in
real systems.

In addition, super-precision offers accuracy boosts to E2M1
across models. With approximately a 3% system area over-
head, super-precision could be worth the extra complexity as
it would enable more LLM applications at four bits. Other
formats such as the Intel and bitsandbytes variants of E2M1
and E3M0 are strictly worse; they have higher dynamic
range, which increases the size of the accumulator, and they
nearly always reduce model accuracy compared to E2M1.

6. Conclusion
DNN quantization has become essential for enabling LLM
applications to reach latency targets and reduce infrastruc-
ture costs. Traditionally, these quantization methods have
relied on integer datatypes, yet the recent success of FP8
formats motivates further study of non-integer formats at
four bits. In this work, we first profile over 30 DNNs
and discover most have weights and activations that are
best approximated by the Student’s t-distribution. Then,
by optimizing for this distribution, we introduce Student
Float (SF4), which can be used as a drop-in replacement
for NF4 in memory-bound applications involving weight-
only quantization. We first find it increases model quality
across the most popular LLMs and then use these insights
to analyze more efficient datatypes. For example, the high
accuracy of E2M1 over INT4 stems from its piecewise ap-
proximation of SF4. These high-quality datatypes reduce
the need for more complex algorithmic optimizations such
as SmoothQuant, GPTQ, and fine-grained subchannel quan-
tization. This decreases the system complexity, such as
maintaining SmoothQuant scales on residual branches and
optimizing low block-size subchannel quantization, and
lowers the effort for high-quality LLM quantization.

Finally, we introduce supernormal extensions to E2M1 and
APoT to increase their model accuracies at the cost of minor
increases in system area. We then map out the Pareto frontier
across datatypes in terms of model accuracy and chip area.
This frontier begins with INT4 with lowest accuracy but
highest efficiency and extends to E2M1 with super-precision
with highest accuracy and close to highest area. In particular,
we find that E2M1 with supernormal support increases the
accuracy of Phi-2 by up to 2.19% with 1.22% estimated
chip overhead, offering a promising option to enable new
quality-neutral LLM applications at four bits.
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Model Weight Activation
ν KS-∆ ν KS-∆

GPT2 2.040.86 0.086 7.212.13 0.097
OPT-1B 6.682.86 0.040 5.914.08 0.117

BLOOM-560M 5.872.68 0.020 6.754.84 0.066
BLOOM-7B 10.135.96 -0.019 4.511.33 0.049

Falcon-7B 5.872.68 0.020 6.754.84 0.066
LLaMA2-7B 6.783.45 0.025 2.980.89 0.022

Yi-6B 7.264.98 0.013 2.503.30 0.036
T5-Small 11.804.01 0.004 6.742.94 0.021

FLAN-T5 13.472.40 0.004 5.341.53 0.031
Mistral-7B 1.660.67 0.049 1.672.15 0.111
Zephyr-3B 4.595.20 0.099 2.371.03 0.098

BERT 13.132.42 -0.069 6.454.35 0.034
RoBERTa 7.282.18 0.022 6.694.77 0.022
ALBERT 10.874.86 0.000 7.811.75 0.018

VGG19 5.962.24 0.016 1.810.75 0.095
ResNet18 2.710.69 0.069 10.946.20 -0.008
ResNet50 2.951.22 0.052 6.577.03 0.006

ResNet101 1.960.84 0.075 9.265.13 0.008
InceptionV3 2.610.83 0.044 12.024.62 0.002
InceptionV4 2.291.55 0.007 9.186.11 -0.039

MNASNet100 4.454.27 0.020 9.845.56 0.021
MobileNetV2 5.025.55 0.003 8.227.92 0.003
MobileNetV3 4.353.16 0.031 7.825.98 0.581

EfficientNet-B0 4.295.42 0.065 3.511.86 0.029

ConvNext-S 1.960.79 0.110 4.594.07 0.069
RegNet 2.911.78 0.075 6.122.37 0.037

ConvMixer 2.451.16 0.125 9.845.56 0.021
CoAT-Lite 2.111.87 0.050 7.295.28 -0.006

PiT-B 8.133.25 0.006 8.874.22 0.017

Table 11. Profiling – DNN distributions are better approximated
by t-distributions, typically with single-digit degrees of freedom
(ν). The mean and variance for ν are calculated across layers. The
Kolmogorov-Smirnov (KS) ∆ measures the difference between the
KS distance run on the best-fit normal and Student’s t-distributions.
Positive values indicate a smaller distance to the t-distribution. For
activation profiling, model inputs are randomly generated.

Figure 4. Degrees of Freedom – Higher degrees of freedom lead
to datatypes with more spread, and in the limit, SF4 approaches
NF4. Most distributions have degrees of freedom close to 5, and
therefore the SF4 (ν = 5) datatype is used throughout Section 4.

Model Weight Activations
ν KS-∆ ν KS-∆

Query 9.884.78 -0.008 3.770.46 0.027
Key 9.484.85 -0.001 11.074.56 -0.002

Value 13.832.10 -0.001 9.404.33 0.002
Out 8.774.50 0.004 4.021.44 0.029

FC1 9.564.98 0.010 9.725.16 0.034
FC2 5.682.64 0.021 9.725.16 0.242

Total 9.534.72 0.004 4.661.11 0.040

Table 12. OPT-125M Profiling Breakdown – Disaggregating the
profiling metrics for different layer types on OPT-125M.

A. Weight and Activation Profiling
For weights and activation profiling, we use Huggingface
transformers, PyTorch torchvision, and the timm package
to load models. We chose the models holistically based
on historical significance, current popularity, architectural
types, and diversity across tasks. This leads to including
LLMs, BERT-like transformers, CNNs, RNNs, and diffu-
sion models.

To profile the model, we iterate through the model modules
and filter for nn.Linear, nn.Conv1D, and nn.Conv2D. If the
weight tensors are extremely large containing hundreds of
millions of entries, we randomly downsample since small
studies showed this did not significantly affect the profiling
results. For activation profiling, we use randomly gener-
ated inputs with the appropriate shape to match the current
model.

Table 11 shows all the model profiling data, comparing
between Student’s t-distributions and normal distributions.
It lists the mean and variance for the degrees of freedom
ν calculated across layers within the model. In addition,
it shows the difference between two Kolmogorov-Smirnov
distances: the first is between the profiled distributions and
the best-fitting normal distribution, and the second with
respect to the best-fitting Student’s t-distribution. A positive
difference between the normal and t-distribution distances
indicates that the t-distribution is closer, and therefore it
better represents the profiled data.

The degrees of freedom and KS-∆ are shown for both the
weights and activations. Overall, the activations typically
have smaller degrees of freedom. For example, BLOOM-
7B has an average of 10.13 for its weights and 4.51 for its
activations, and FLAN-T5 has 13.47 for its weights and
5.34 for its activations. The degrees of freedom and KS-∆
are also very correlated, since a high degree of freedom
indicates a distribution closer to normal. Only the models
with ν > 10 have a negative KS-∆, which indicates this
is a useful intuitive cutoff for classifying a distribution as
normal.

In addition, we disaggregate the data across layer types,
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Figure 5. t-Distributions – Increasing the degrees of freedom, ν,
leads to more probability mass in the center, and less at the edges
of the distribution. This leads to more representation in the center
of the SF4 datatype, and in the limit, the NF4 datatype.

e.g. separating the attention layers from the linear layers
in transformers. This analysis is shown in Table 12 for the
OPT-125M model, which separately averages the degrees of
freedom and KS-∆ for different layer types. It shows some
differences between layer types, with FC2 having the lowest
ν, yet overall most layers are similar within their variance.

B. Weight-Only
Table 13 shows the additional evaluations across models
on WikiText-2. As a measure of perplexity, this is most
sensitive metric to model changes, as others tend to mask
their changes through a classification problem (e.g. multiple
choice). This table shows consistent improvement with SF4
over NF4 across models with the exception of BLOOM-7B.
Results are shown with and without MSE calibration.

Table 14 shows the results of LLaMA2-7B on a multi-
lingual version of the LAMBADA dataset. It reinforces
the previous trends, which SF4 typically achieving higher
accuracy and E2M1 with and without super-precision out-
perform other datatypes.

C. Student Float
Figure 4 shows that SF4 converges to NF4 as its degrees of
freedom increase to infinity. This allows testing for gradu-
ally denser datatypes toward NF4 and making comparisons
to the corresponding degrees of freedom in the profiling re-
sults in Table 11. Overall, on average models approximately
have ν = 5, which leads to the highest accuracy results
across tasks.

In addition, Figure 5 shows the direct effect of increasing
the degrees of freedom (ν) on the curvature of the Student’s
t-distribution. Higher ν leads to wider peaks and thinner
tails.

Figure 6. Datatype Shapes – The shapes of all considered
datatypes, including lookup datatypes, integer, floating-point, and
APoT (Li et al., 2020).

Figure 7. APoT4 Variants – Comparison across APoT4 variants
with two sets (2S) and three sets (3S), where each datatype is
constructed by all possible sums by taking one value from each
set. For example, the 2S (3) variant used in Section 4, uses the
sets S1 ∈ {0, 2−1, 2−2, 2−4} and S2 ∈ {0, 2−3}. The values to
construct the sets are always drawn from {0, 2−1, 2−2, 2−4}. SF4
is shown for reference.

D. Datatype Values
This section lists the values for all the datatypes used in the
evaluations in Section 4 and Section 5. In addition, it shows
all of the datatypes in the same figure, including the lookup
datatypes, integer, floating-point, and APoT variants.

E. Additive Powers-of-Two
The Additive Powers-of-Two method leads to a large search
space of datatypes, where all the most reasonable variants
are shown in Figure 7. These have been filtered to remove
datatypes that lead to duplicate values (under-utilizing the
bitspace) and different configurations that lead to the exact
same datatype. This figure shows that the 2S (3) variant best
approximates the SF4 datatype, and therefore in this work
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Mistral-7B OPT-1B OPT-6.7B LLaMA2-7B Phi-2 BLOOM-7B Yi-6B
Calib. Method None MSE None MSE None MSE None MSE None MSE None MSE None MSE

WikiText-2 ↓

FP32 18.01 18.01 16.41 16.41 12.28 12.28 8.79 8.79 11.05 11.05 14.71 14.71 10.21 10.21
NF4 19.80 19.36 17.17 17.13 12.73 12.75 9.11 9.12 11.89 11.89 14.94 14.74 10.36 10.47
SF4 19.09 19.34 17.11 17.10 12.67 12.66 9.16 9.10 11.83 11.84 14.96 14.84 10.34 10.36

INT4 20.17 20.81 18.28 18.02 13.27 13.20 9.33 9.71 12.41 12.81 15.16 15.25 10.71 11.34
E2M1-I 20.07 20.55 17.86 18.00 12.92 12.96 9.37 9.74 12.19 12.38 15.18 15.16 10.69 11.34

E2M1-B 20.93 21.17 18.34 18.15 13.11 13.19 9.43 9.89 12.37 12.64 15.22 15.26 10.76 11.54
E2M1 19.76 19.27 17.24 17.25 12.78 12.79 9.17 9.21 11.97 11.99 15.01 15.18 10.42 10.54
+ SR 20.25 20.25 17.62 17.62 13.06 13.06 9.84 9.84 12.58 12.58 15.95 15.82 11.60 11.54
+ SP 19.38 19.47 17.19 17.18 12.76 12.77 9.13 9.20 11.92 11.96 14.98 14.89 10.37 10.29

E3M0 20.25 21.93 18.29 18.41 13.31 13.91 9.87 10.06 12.74 12.92 15.61 15.71 11.42 11.43
APoT4 19.13 19.23 17.47 17.42 12.84 12.88 9.15 9.27 12.09 12.17 15.02 14.98 10.46 10.49

+ SP 18.93 19.32 17.40 17.32 12.80 12.85 9.11 9.41 11.98 12.06 14.99 14.92 10.40 10.39

Table 13. Weight-Only WikiText-2 – All models evaluated with weight-only sub-channel quantization with block size 128. Student Float
(SF4) typically outperforms NF4, and the super normal variants (SR and SP) often improve the model performance over E2M1.

EN ↑ FR ↑ DE ↑ IT ↑ ES ↑ Wiki ↓
FP32 73.92 50.69 39.51 46.09 43.57 8.791

NF4 73.20 48.20 37.53 44.50 42.67 9.105
SF4 72.35 48.79 38.54 44.81 44.44 9.163

INT4 72.06 47.45 37.26 42.87 42.60 9.333

E2M1-I 71.43 47.43 37.07 42.48 42.05 9.366
E2M1-B 70.75 47.41 36.54 42.11 41.02 9.427

E2M1 71.65 47.49 37.05 42.91 42.50 9.168
+ SR 71.07 45.27 35.14 41.45 39.36 9.842
+ SP 71.65 47.00 37.36 42.87 42.01 9.131

E3M0 69.92 45.37 35.20 42.05 40.68 9.868

APoT4 72.77 48.98 37.88 45.16 41.53 9.149
+ SP 73.22 48.75 37.55 44.34 41.57 9.109

Table 14. LLaMA2-7B Multi-Lingual – LLaMA2-7B compari-
son across multi-lingual LAMBADA tasks and WikiText-2. SF4
outperforms NF4 on lookup datatypes, and E2M1 with subnormal
and super-precision outperforms other FP4 datatypes.

we focus only on this variant.

F. Additional Paretos
This section includes all of the Pareto-curves for Mistral-
7B, OPT-1B, OPT-6.7B, LLaMA2-7B, Phi-2, BLOOM-7B,
and Yi-6B evaluated across LAMBADA, HellaSwag, Wino-
grande, PIQA, BoolQ, and ARC-c. The y-axis represents the
average relative accuracy change from floating-point, and
the x-axis is the corresponding MAC area for the datatype.
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Datatype Values
NF4 -1.000 -0.696 -0.525 -0.395 -0.284 -0.185 -0.091 0.000 0.080 0.161 0.246 0.338 0.441 0.563 0.723 1.000

SF4 (ν = 3) -1.000 -0.576 -0.404 -0.292 -0.205 -0.131 -0.064 0.000 0.056 0.114 0.176 0.246 0.330 0.439 0.606 1.000
SF4 (ν = 4) -1.000 -0.609 -0.436 -0.318 -0.225 -0.145 -0.071 0.000 0.062 0.126 0.194 0.270 0.359 0.472 0.638 1.000
SF4 (ν = 5) -1.000 -0.628 -0.455 -0.334 -0.237 -0.153 -0.075 0.000 0.066 0.133 0.205 0.284 0.376 0.491 0.657 1.000
SF4 (ν = 6) -1.000 -0.640 -0.467 -0.345 -0.246 -0.158 -0.078 0.000 0.068 0.138 0.212 0.293 0.387 0.504 0.669 1.000

INT4 -8.000 -7.000 -6.000 -5.000 -4.000 -3.000 -2.000 -1.000 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000

E2M1-I -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.062 0.000 0.062 1.000 1.500 2.000 3.000 4.000 6.000
E2M1-B -12.000 -8.000 -6.000 -4.000 -3.000 -2.000 -0.062 0.000 0.062 2.000 3.000 4.000 6.000 8.000 12.000

E2M1-NS -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.750 0.000 0.750 1.000 1.500 2.000 3.000 4.000 6.000
E2M1 -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 3.000 4.000 6.000
+ SR -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 3.000 4.000 6.000 8.000
+ SP -6.000 -4.000 -3.000 -2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 3.000 4.000 5.000 6.000

E3M0 -16.000 -8.000 -4.000 -2.000 -1.000 -0.500 -0.250 0.000 0.250 0.500 1.000 2.000 4.000 8.000 16.000

APoT4 -1.000 -0.800 -0.600 -0.400 -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 0.600 0.800 1.000
+ SP -1.000 -0.800 -0.600 -0.400 -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000

Table 15. Quantized Datatype Values – The specific values for each datatype across lookup, integer, floating-point, and alternative
formats. Some datatypes have only 15 values, as opposed to 16 (24), since they include a dedicated sign bit, which leads to representations
for positive and negative zero. The Student Float (SF4) formats include versions for different degrees of freedom (ν), which cluster values
in different ways. For floating-point formats, the Intel (Shen et al., 2023) (I-E2M1) and bitsandbytes (Dettmers et al., 2022a) (B-E2M1)
versions are included as references too. Additive Powers of Two (APoT) (Li et al., 2020) is also shown which performs the sum of two
logarithmic numbers. Finally, the super-precision (SP), super-range (SR), and no subnormal (NS) variants are shown for some of these
formats.
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Figure 8. All Model Paretos – Relative accuracy change from unquantized baselines averaged across LAMBADA, HellaSwag, Wino-
grande, PIQA, BoolQ, and ARC-c. All models are quantized with W4A4 subchannel quantization with SmoothQuant (Xiao et al., 2023)
included on models with the SQ label.
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G. Additional Tables

Metric LAMB Hella Wino PIQA BoolQ ARC-c
BF16 73.92 57.14 69.14 78.07 77.74 43.43

NF4 72.35 56.55 69.53 76.99 77.40 42.49
SF4 73.20 56.81 69.06 77.69 78.56 43.34

INT4 72.06 56.53 69.14 77.31 76.76 42.92

I-E2M1 71.43 56.50 68.90 77.80 77.06 42.66
B-E2M1 70.75 56.54 68.98 77.58 76.73 43.34

E2M1 71.65 56.69 69.53 77.97 78.13 42.49
+ SR 71.07 54.66 66.85 76.77 73.55 42.41
+ SP 71.65 56.84 69.43 77.99 78.26 42.49

E3M0 69.92 54.61 67.64 76.55 75.32 39.59

APoT4 72.77 56.27 68.27 78.07 77.55 43.17
+ SP 73.22 56.56 68.59 77.69 77.68 43.86

Table 16. LLaMA-7B Weight-Only Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c
FP32 62.57 55.84 75.45 78.78 83.21 52.56

NF4 60.47 54.66 75.22 77.42 82.81 50.85
SF4 61.28 54.75 75.30 78.13 80.76 52.56

INT4 58.59 54.51 75.61 77.69 79.14 51.02

I-E2M1 58.20 54.06 74.59 77.69 82.45 51.28
B-E2M1 58.32 54.07 75.22 77.04 82.32 50.85

E2M1 59.95 54.83 76.24 77.09 83.06 51.96
+ SR 63.24 53.32 75.06 78.40 81.38 50.17
+ SP 61.73 55.06 76.01 76.99 83.21 52.73

E3M0 54.96 52.18 74.59 78.56 80.86 50.43

APoT4 59.62 54.50 74.35 77.91 81.35 52.82
+ SP 61.09 54.66 74.27 78.35 81.71 52.90

Table 17. Phi-2 Weight-Only Subchannel 128

Metric LAMB Hella Wino PIQA BoolQ ARC-c
FP32 75.92 61.22 73.88 80.58 83.58 50.43

NF4 74.97 60.90 72.93 80.30 82.84 49.74
SF4 75.90 60.73 73.80 80.63 83.09 49.40

INT4 73.92 60.59 73.80 80.36 82.23 49.32

I-E2M1 74.17 60.41 72.45 80.36 82.84 48.98
B-E2M1 73.98 60.36 72.22 80.09 82.48 48.81

E2M1 74.75 60.57 73.16 80.14 82.29 48.55
+ SR 72.95 59.07 73.56 79.65 82.84 47.95
+ SP 75.41 60.96 72.93 80.36 83.46 47.78

E3M0 74.23 58.76 72.22 79.71 81.99 46.42

APoT4 75.41 60.89 73.95 80.30 83.09 47.44
+ SP 75.12 61.05 73.09 80.20 83.03 48.21

Table 18. Mistral-7B Weight-Only Subchannel 128

Metric LAMB Hella Wino PIQA BoolQ ARC-c
FP32 68.27 55.40 70.96 77.64 75.50 46.25

NF4 67.46 54.81 71.03 77.26 78.47 44.97
SF4 67.84 54.75 70.80 77.15 76.97 45.14

INT4 64.93 54.51 68.75 77.31 75.41 44.37

I-E2M1 64.39 54.48 71.11 77.26 75.81 44.71
B-E2M1 63.92 54.56 70.56 77.09 75.32 44.20

E2M1 66.74 54.52 69.85 76.71 76.57 45.05
+ SR 59.97 52.95 67.80 75.90 76.18 43.52
+ SP 67.38 54.83 70.56 76.71 76.27 46.50

E3M0 65.15 52.48 68.90 76.33 73.82 41.81

APoT4 68.21 55.08 70.24 77.69 77.49 45.73
+ SP 68.14 55.25 70.88 77.58 77.34 45.39

Table 19. Yi-6B Weight-Only Subchannel 128

Metric LAMB Hella Wino PIQA BoolQ ARC-c
FP32 57.64 46.49 64.56 72.69 62.81 30.29

NF4 57.03 45.47 62.98 72.96 63.46 30.38
SF4 57.77 45.43 64.25 72.25 62.87 29.86

INT4 56.08 45.31 63.54 73.12 63.55 29.44

I-E2M1 55.75 45.66 63.38 72.80 63.24 29.95
B-E2M1 55.64 45.47 62.90 72.96 63.21 30.20

E2M1 56.51 45.26 63.30 72.63 63.43 30.12
+ SR 50.18 44.56 62.75 72.63 61.44 30.63
+ SP 56.86 45.41 63.46 72.74 63.46 30.03

E3M0 56.47 44.36 61.25 72.47 63.67 29.78

APoT4 57.02 45.30 63.85 72.96 62.57 29.86
+ SP 57.13 45.46 63.22 72.47 62.72 29.86

Table 20. BLOOM-7B Weight-Only Subchannel 128

Metric LAMB Hella Wino PIQA BoolQ ARC-c
FP32 67.69 50.49 65.43 76.28 66.06 30.72

NF4 67.88 49.34 64.25 76.22 65.99 30.63
SF4 68.02 49.58 64.96 75.90 64.04 30.03

INT4 63.92 49.02 63.93 75.63 65.23 31.23

I-E2M1 67.49 49.44 64.17 76.22 65.84 30.20
B-E2M1 66.97 49.42 63.06 76.55 67.06 31.14

E2M1 67.84 49.15 64.17 76.06 66.02 30.63
+ SR 67.26 48.48 64.48 75.14 63.46 29.44
+ SP 67.24 49.29 63.77 76.17 65.96 30.38

E3M0 62.64 48.16 63.38 74.65 65.96 30.12

APoT4 66.08 49.64 64.64 75.79 65.02 30.63
+ SP 65.92 49.59 64.96 75.95 64.31 31.06

Table 21. OPT-6B Weight-Only Subchannel 128

6



Applying t-Distributions to Explore Accurate and Efficient Formats for LLMs

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

Sm
oo

th
Q

ua
nt

FP32 68.27 55.4 70.96 77.64 75.5 46.25

NF4 51.17 51.34 63.77 74.21 71.93 40.70
SF4 55.29 51.58 64.33 74.59 73.03 40.44

INT4 31.4 46.14 56.2 71.49 58.84 34.81

I-E2M1 42.36 48.89 60.14 71.93 64.16 36.77
B-E2M1 34.52 47.16 55.64 70.78 63.64 37.80

E2M1 49.62 50.93 63.61 73.23 72.02 40.19
+ SR 23.50 41.69 55.33 65.13 63.12 25.94
+ SP 48.13 50.80 63.77 74.21 66.61 40.36

E3M0 59.07 49.19 64.80 73.07 69.97 38.48

APoT4 47.18 50.42 62.35 74.48 69.05 41.21
+ SP 48.13 50.80 63.77 74.21 66.61 40.36

Sm
oo

th
Q

ua
nt

NF4 61.81 53.40 65.59 74.92 72.75 43.94
SF4 64.72 53.48 66.93 76.61 73.24 44.45

INT4 51.85 51.13 63.93 74.65 68.29 39.76

I-E2M1 53.58 51.55 63.38 74.48 68.20 42.06
B-E2M1 51.39 50.93 62.27 73.78 67.25 38.23

E2M1 61.91 53.13 65.59 75.84 69.45 44.28
+ SR 34.97 44.82 57.46 65.51 65.47 26.62
+ SP 59.25 53.37 66.69 75.35 70.70 43.94

E3M0 59.77 49.82 65.35 74.16 72.08 37.37

APoT4 58.80 53.07 67.64 74.43 72.81 42.58
+ SP 59.25 53.37 66.69 75.35 70.70 43.94

Table 22. Yi-6B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

Sm
oo

th
Q

ua
nt

FP32 57.64 46.49 64.56 72.69 62.81 30.29

NF4 44.23 42.69 59.12 69.86 60.55 29.18
SF4 48.98 43.24 59.04 70.29 58.87 29.01

INT4 31.15 39.91 54.38 67.79 54.16 26.88

I-E2M1 41.8 42.04 55.33 68.72 57.22 27.65
B-E2M1 36.48 40.83 54.78 67.95 57.77 27.13

E2M1 44.21 42.37 59.51 70.02 59.51 28.16
+ SR 48.22 41.51 57.22 70.62 61.96 29.61
+ SP 44.58 42.82 58.48 70.73 59.69 28.41

E3M0 52.55 42.48 56.51 70.24 62.48 29.27

APoT4 40.15 41.95 58.88 70.40 60.98 28.41
+SP 41.35 41.98 59.19 70.62 59.82 29.18

Sm
oo

th
Q

ua
nt

NF4 52.90 44.50 60.69 71.38 61.65 28.84
SF4 55.29 45.06 61.09 72.31 63.64 29.86

INT4 41.72 41.72 56.83 69.53 57.13 28.41

I-E2M1 47.08 42.21 57.06 69.91 61.50 28.24
B-E2M1 43.76 41.06 56.67 69.86 61.13 27.30

E2M1 53.77 44.52 60.46 71.76 61.74 28.75
+ SR 52.94 42.11 58.41 71.06 63.30 29.44
+ SP 51.09 43.92 58.98 70.78 59.62 30.12

E3M0 51.93 42.4 57.93 69.8 62.84 28.07

APoT 50.11 43.81 58.33 70.62 59.48 29.86
+ SP 51.09 43.92 58.98 70.78 59.62 30.12

Table 23. BLOOM-7B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

Sm
oo

th
Q

ua
nt

FP32 73.92 57.14 69.14 78.07 77.74 43.43

NF4 73.03 55.57 67.09 76.55 75.96 41.38
SF4 72.21 55.28 66.69 76.93 75.72 41.81

INT4 69.92 53.76 65.27 75.79 69.88 40.10

I-E2M1 69.55 54.33 65.11 75.57 70.34 40.27
B-E2M1 68.31 53.65 62.43 74.81 70.0 40.27

E2M1 72.21 55.61 67.01 76.39 76.24 41.72
+ SR 63.96 48.91 61.01 73.18 70.18 35.58
+ SP 72.64 54.79 66.61 76.66 73.88 41.38

E3M0 65.03 51.29 62.35 74.43 69.42 36.26

APoT4 72.79 55.01 65.82 76.39 74.07 41.04
+ SP 72.64 54.79 66.61 76.66 73.88 41.38

Sm
oo

th
Q

ua
nt

NF4 72.50 55.22 66.54 76.66 74.28 40.70
SF4 71.90 55.09 66.06 77.04 75.35 41.04

INT4 70.35 54.07 65.43 75.79 68.90 39.85

I-E2M1 70.39 53.92 66.22 76.28 72.11 39.33
B-E2M1 70.44 53.73 64.96 75.03 69.88 39.51

E2M1 72.21 55.10 65.9 76.93 74.71 41.38
+ SR 64.25 47.97 61.33 73.01 68.96 34.47
+ SP 71.78 55.13 65.75 77.37 73.94 39.93

E3M0 66.74 51.16 64.25 75.68 71.71 36.18

APoT4 71.82 54.87 66.22 76.39 73.76 40.36
+ SP 71.78 55.13 65.75 77.37 73.94 39.93

Table 24. LLaMA-7B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

Sm
oo

th
Q

ua
nt

FP32 75.90 61.22 73.88 80.58 83.58 50.43

NF4 72.02 59.66 68.11 79.38 80.64 47.18
SF4 73.47 59.83 69.38 79.71 81.10 46.25

INT4 64.99 58.11 67.01 77.69 76.82 44.37

I-E2M1 66.41 57.23 68.59 78.35 74.98 44.62
B-E2M1 64.22 57.19 66.22 77.09 75.29 42.66

E2M1 72.0 59.56 69.85 79.05 79.60 45.14
+ SR 65.01 51.32 66.46 75.35 76.02 39.33
+ SP 70.83 59.66 69.30 78.56 79.57 44.71

E3M0 70.87 55.48 66.14 77.86 80.12 42.15

APoT4 71.2 59.29 68.43 79.38 79.33 45.65
+ SP 70.83 59.66 69.30 78.56 79.57 44.71

Sm
oo

th
Q

ua
nt

NF4 73.86 59.17 71.19 79.54 80.58 46.42
SF4 74.50 59.64 71.74 79.98 82.20 46.67

INT4 68.41 57.91 68.41 77.89 77.52 45.76

I-E2M1 68.97 58.54 68.27 78.56 76.12 45.05
B-E2M1 68.91 57.86 68.90 78.45 75.38 44.20

E2M1 73.63 59.45 71.98 79.92 79.91 45.90
+ SR 64.93 50.29 65.75 75.3 72.05 35.58
+ SP 73.67 59.63 69.14 79.43 79.88 45.65

E3M0 71.53 55.82 66.77 77.09 79.42 43.09

APoT4 73.67 59.37 69.69 78.67 79.42 46.25
+ SP 73.67 59.63 69.14 79.43 79.88 45.65

Table 25. Mistral-7B W4A4 Subchannel 128
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LAMB Hella Wino PIQA BoolQ ARC-c

N
o

Sm
oo

th
Q

ua
nt

FP32 57.89 41.54 59.51 71.71 57.83 23.38

NF4 40.13 36.57 57.14 66.16 52.08 22.95
SF4 41.98 37.27 55.33 66.54 51.38 22.78

INT4 28.06 32.65 53.43 61.92 47.83 20.99

I-E2M1 39.10 35.50 52.80 65.02 46.27 21.42
B-E2M1 36.25 34.28 54.78 63.33 45.90 23.29

E2M1 39.82 36.71 57.14 65.56 53.06 22.70
+ SR 40.62 37.16 54.62 68.01 51.90 22.78
+ SP 37.55 35.66 56.04 65.89 54.37 22.70

E3M0 44.13 37.82 54.46 67.74 50.98 22.01

APoT4 37.69 35.61 57.54 64.91 54.16 21.42
+ SP 37.55 35.66 56.04 65.89 54.37 22.70

Sm
oo

th
Q

ua
nt

NF4 44.75 38.11 54.46 67.85 49.63 23.63
SF4 43.61 38.02 57.30 67.41 49.33 22.78

INT4 42.42 37.22 54.46 66.81 52.57 22.44

I-E2M1 43.47 37.03 55.72 66.05 50.55 22.35
B-E2M1 43.37 36.99 56.67 65.94 50.43 23.63

E2M1 43.64 37.84 57.85 67.03 47.55 22.53
+ SR 40.02 37.27 57.06 68.12 53.46 22.18
+ SP 40.91 37.77 57.70 67.85 51.68 23.12

E3M0 42.34 37.87 55.17 67.52 52.57 21.84

APoT4 41.72 37.97 57.54 68.34 51.53 23.21
+ SP 40.91 37.77 57.70 67.85 51.68 23.12

Table 26. OPT-1B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

Sm
oo

th
Q

ua
nt

FP32 67.69 50.49 65.43 76.28 66.06 30.72

NF4 64.89 47.86 62.75 74.54 63.21 29.01
SF4 65.57 47.81 63.54 74.37 62.20 27.99

INT4 53.15 44.98 60.46 72.8 62.84 28.50

I-E2M1 62.41 47.76 60.69 73.99 62.60 29.18
B-E2M1 60.39 47.04 61.01 73.78 63.00 29.18

E2M1 65.22 47.39 62.75 74.32 64.10 29.01
+ SR 62.47 46.09 59.67 73.99 63.52 27.82
+ SP 61.73 47.28 62.04 73.88 63.82 30.03

E3M0 57.23 45.32 60.77 72.74 62.94 28.58

APoT4 61.40 47.56 62.43 75.14 63.39 29.95
+ SP 61.73 47.28 62.04 73.88 63.82 30.03

Sm
oo

th
Q

ua
nt

NF4 67.79 49.22 63.06 75.24 65.38 30.03
SF4 68.29 49.24 63.85 75.14 64.74 30.46

INT4 66.72 48.8 63.22 74.10 62.57 29.10

I-E2M1 65.55 48.64 62.83 74.59 65.29 30.03
B-E2M1 65.94 48.40 61.72 74.27 63.06 30.12

E2M1 68.27 49.23 63.69 75.19 64.71 30.63
+ SR 64.62 46.36 60.22 74.81 64.37 28.41
+ SP 67.75 49.64 64.25 74.81 62.87 30.08

E3M0 61.96 47.30 60.93 73.50 62.6 28.33

APoT 67.26 49.56 64.09 75.30 62.32 30.38
+ SP 67.75 49.64 64.25 74.81 62.87 30.08

Table 27. OPT-6B W4A4 Subchannel 128

LAMB Hella Wino PIQA BoolQ ARC-c

N
o

Sm
oo

th
Q

ua
nt

FP32 62.57 55.84 75.45 78.78 83.21 52.56

NF4 52.20 51.63 71.03 76.93 74.62 49.74
SF4 53.06 51.22 71.82 75.08 79.88 50.60

INT4 41.18 47.4 67.48 74.37 66.97 46.16

I-E2M1 43.18 47.4 67.01 75.35 66.73 45.99
B-E2M1 39.82 46.5 67.88 74.43 66.64 42.92

E2M1 49.66 51.19 71.82 75.30 78.29 49.23
+SR 51.81 49.40 73.56 75.73 78.47 47.10
+ SP 51.19 50.85 69.46 76.50 77.58 49.32

E3M0 42.15 47.63 66.61 74.05 72.81 45.22

APoT4 49.58 50.25 69.85 76.77 75.60 48.46
+ SP 51.19 50.85 69.46 76.50 77.58 49.32

Sm
oo

th
Q

ua
nt

NF4 52.98 51.74 71.82 75.73 79.72 49.23
SF4 55.33 51.53 71.82 76.44 80.92 49.74

INT4 31.94 46.57 64.96 72.03 69.45 44.54

I-E2M1 36.97 47.85 67.88 72.63 67.37 46.50
B-E2M1 31.13 45.91 64.56 72.58 66.97 40.70

E2M1 51.68 51.33 71.03 76.28 77.92 50.17
+ SR 52.78 49.39 72.93 76.39 78.01 48.21
+ SP 49.95 50.86 71.74 74.92 81.25 48.38

E3M0 49.41 47.51 69.14 74.70 71.41 44.88

APoT4 47.86 50.49 70.40 75.14 79.11 47.53
+ SP 49.95 50.86 71.74 74.92 81.25 48.38

Table 28. Phi-2 W4A4 Subchannel 128
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