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Abstract

Data valuation is crucial for assessing the impact and quality of individual data
points, enabling the ranking of data by importance for efficient data collection,
storage, and training. Many data valuation methods are sensitive to outliers and
require a certain level of noise to effectively distinguish low-quality data from high-
quality data, making them particularly useful for data removal tasks. Especially, for
instance, optimal transport based method exhibits notable performance in outlier
detection but shows only moderate effectiveness in high-quality data selection,
attributed to its property of sensitivity to outliers and insensitivity to small variations.
To mitigate the issue of insensitivity to high-quality data and facilitate effective
data selection, in this paper, we propose a straightforward two-stage approach,
JST, that initially performs data valuation as usual, followed by a second-round
data selection where the identified low-quality data points are designated as the
validation set to perform data valuation again. In this way, high-quality data become
outliers with the respect to new validation set and can be naturally popped out.
We empirically evaluate our framework instantiated with optimal transport based
method for data selection and data pruning on several standard datasets and our
framework demonstrates superior performance compared to pure data valuation,
especially under the condition with small noise. Additionally, we show the general
applicability of our framework to influence function based and reinforcement
learning based data valuation methods. The repository is publicly available on
Github: https://github.com/yfeizhang/JST.

1 Introduction

Access to large, high-quality datasets is essential in machine learning. However, in real-world data
collection and curation pipelines, individual data points often inherit different levels of quality and
vary importance on the impact of training [1, 2, 3]. Therefore, it is critical to understand and assess
such properties of data and to effectively prioritize highly valuable data sources for subset selection.
It can assist practitioners in improving model performance efficiently [4, 5] and make strategic,
cost-effective decisions in data marketplaces and exchanges [6].

* Equal-advising
Corresponding author: Yifei Zhang (yzhang2536@wisc.edu)

2nd Workshop on Attributing Model Behavior at Scale, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).

https://github.com/yfeizhang/JST


0.5k 1k 1.5k 2k
Inspected Top-k Points

6
5

4
3

2
1

No
ise

 L
ev

el
 - 

St
d.

 D
ev

.

Optimal Transport based

1k 2k 3k 4k
Inspected Top-k Points

6
5

4
3

2
1

No
ise

 L
ev

el
 - 

St
d.

 D
ev

.

Influence Function based

0.5k 1k 1.5k 2k
Inspected Top-k Points

6
5

4
3

2
1

No
ise

 L
ev

el
 - 

St
d.

 D
ev

.

Reinforcement Learning based

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NDR
outlier

NDR
in

distribution

0.0

0.1

0.2

0.3

NDR
outlier

NDR
in

distribution

0.0

0.1

0.2

0.3

0.4

0.5

NDR
outlier

NDR
in

distribution

Figure 1: Sensitivity comparison between outliers and in-distribution data. We inject white noise
into 50% of CIFAR-10 training set with different noise levels and inspect top k data points for each
data valuation method from lowest values for outliers and highest values for in-distribution data,
respectively. We evaluate the difference between normalized outlier detection rate (NDRoutlier) and
normalized in-distribution data detection rate (NDRin-distribution). Outlier data detection rate is greatly
larger than in-distribution data detection rate, reflecting higher sensitivity of these data valuation
methods to outliers.

Recently, there have been considerable efforts in developing different data valuation methods aimed
at evaluating individual data points and assigning a value to each one [5, 7]. It can help to quantify
differences between data points and rank them based on their assigned value, establishing a certain
order of "quality" or "importance" in training process. For instance, methods based on optimal
transport [8] and influence function [9] employ sensitivity analysis to quantify the impact of individual
data points on dataset distance and training outcome, respectively. Additionally, importance weight
can be obtained through reinforcement learning [10] to evaluate individual data points.

In essence, these data valuation methods should naturally provide a metric for high-quality data
subset selection. However, unfortunately, most data valuation methods have predominantly excelled
in scenarios with large noise, including intensely corrupted samples [8], randomly flipping labels
[8, 9, 10], or domain adaption due to substantial mismatch between training and target domains
[9, 10]. Especially, optimal transport based method [8] demonstrates strong performance in outlier
detection but exhibits only moderate effectiveness in selecting high-quality data, significantly due to
its well-known property of sensitivity to outliers and insensitivity to small variations [11].

As demonstrated in Figure 1, the sensitivity of these data valuation methods to outliers is greatly
larger than high-quality data. Therefore, in this paper, we address the following question: How to
improve the sensitivity of data valuation methods to high-quality data and make them better for data
selection?

To this end, we propose JST (Just Select Twice), a data subset selection framework that augments
existing data valuation methods by leveraging outliers detected by these methods, as illustrated
in Figure 2. Our key insight is that incorporating a second-round subset selection, using detected
outliers as the validation set, allows high-quality data to be identified as outliers in the new context.
This approach enhances the sensitivity of data valuation methods to high-quality data, establishing a
more meaningful order of "importance" or "quality" for subset selection. Even with the inclusion
of numerous high-quality data points within the validation set alongside low-quality data in the
second-round subset selection due to the non state-of-the-art performance of data valuation methods,
we observe that the signals from such a validation set continue to suffice in achieving superior
performance in subset selection compared to pure data valuation methods.

2 Preliminaries

Data Selection: We are given a training set Dtr = {z1, . . . , zn} containing n data points, where
each zi = (xi, yi) is drawn from a source distribution psrc(z), as well as a validation set Dv =
{z′1, . . . , z′m}with m data points, where each z′i = (x′

i, y
′
i) is drawn from a target distribution ptrg(z

′)
(typically n > m). Both sets share the same input-output space X × Y but differ in their underlying
distributions, i.e., psrc(z) ̸= ptrg(z

′).
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Figure 2: Illustration of JST framework. In stage 1, we perform data valuation as usual and select
relatively low-quality data as the validation set. In stage 2, we perform data valuation on the remaining
training samples and the new validation set. In this way, high-quality data stands out as outliers with
low value scores.

Given a selection budget k (k ≤ n), the goal of a data selection procedure is to identify a subset
D̂ = {ẑ1, . . . , ẑk} where D̂ ⊆ Dtr, such that the distribution of D̂ closely matches the distribution
of the validation set Dv , to minimize the impact on the learned model. Therefore, the selected subset
should approximate the distribution of the validation set, i.e., P (D̂) ≈ ptrg(z

′), where P (D̂) is the
distribution constructed from D̂.

Data Valuation: Similarly, we are given a training set Dtr = {z1, . . . , zn} containing n data points
zi = (xi, yi) and a validation set Dv = {z′1, . . . , z′m} with m data points z′i = (x′

i, y
′
i). As before

both sets share the same input-output space X × Y .

The goal of data valuation is to understand and distribute the validation performance across training
data points. To achieve this, we use a function V computed over the training set Dtr to find a score
vector s ∈ Rn that represents the allocation to each data point, described as follows:

s := V(Dtr, Dv), where s ∈ Rn. (1)

Given a score vector s = [s1, . . . , sn] representing scores si for each data point zi = (xi, yi) in
training set Dtr, we can express the process of ranking (in descending order) and indexing the k
points starting from index r as follows:

Dsel := R(s)[r : r + k], where |Dsel| = k andDsel ⊆ Dtr. (2)

3 JST: Just Select Twice

We now present JST, a straightforward two-stage approach to augment existing data valuation methods.
In the first stage of the process, we perform data valuation as usual and select data points with lowest
value scores as the validation set. Then, in the second stage of the process, we perform data valuation
on remaining training data points and select the data points of low value scores as high-quality data.
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Figure 3: JST framework performance comparison on high-quality data selection. JST framework
shows a notable improvement in selection precision compared with pure data valuation method.
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Figure 4: Illustration of the principle of JST framework. In the second-round data selection, high-
quality data are popped out as outliers with low value scores, demonstrating near-perfect separation.

Stage 1 (Data Valuation).
Given a training set Dtr and a validation set
Dv, let Dsel of size |Dv| represent the se-
lected data points of lowest value scores ob-
tained by the ranking functionR(·)[|Dtr| −
|Dv| : |Dtr|] of data valuation V(Dtr, Dv).

Stage 2 (Data Selection).
Substitute the original validation set Dv with
Dsel obtained in the first step and remove
data points in Dsel from the training set
Dtr, denoted as D′

tr = Dtr \ Dsel. Then
perform data valuation V(·, ·) again but in-
stead on the changed training set D′

tr and
validation set Dsel and minus the score vec-
tor, i.e., s′ = −V(D′

tr, Dsel). Finally, the
top k high-quality data can be selected by
R(s′)[1 : 1 + k]. We summarize our frame-
work in Algorithm 1.

Algorithm 1 JST Selection
Input: training set Dtr = {(xi, yi)}ni=1, validation
set Dv = {(x′

i, y
′
i)}mi=1, data valuation V(·, ·)

Output: data value score vector s′

Stage one:
Perform data valuation:

s← V(Dtr, Dv)

Select backward data points:
Dsel ← R(s)[|Dtr| − |Dv| : |Dtr|]

Stage two:
Remove training data points:

D′
tr ← Dtr \Dsel

Perform data valuation again and minus the score
vector:

s′ ← −V(D′
tr, Dsel)

Practical Implementation. Practical implementation details of Algorithm 1 and related ablation
experiments are deferred at Appendix C.

4



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pruning Ratio

70

75

80

85

90

95

Ac
cu

ra
cy

Training ResNet-18 from Scratch on SVHN

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pruning Ratio

10

20

30

40

50

60

70

80

To
p-

1 
Ac

cu
ra

cy

Training ResNet-18 from Scratch on Food-101

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pruning Ratio

30

40

50

60

70

80

To
p-

1 
Ac

cu
ra

cy

Finetuning ResNet-50 on Food-101

Round 1 Round 2 Random

Figure 5: JST framework performance comparison on raw dataset pruning with different pruning
ratio. Across each experiment, we perform three individual runs with different random seeds and
report the mean performance and the standard deviation as error bars.

4 Experimental Evaluation

4.1 High-quality Data Selection

In real-world scenarios, training data often contain corrupted images [12, 13]. To evaluate the
effectiveness of JST framework in selecting high-quality data in the presence of corrupted images, we
employ four standard datasets: MNIST, Fashion-MNIST [14], CIFAR-10, and CIFAR-100 [15]. For
all four datasets, we inject white noise into 25% of the training set and utilize the clean test set as the
validation set. To demonstrate the superior performance of JST framework compared with the pure
data valuation method, we add two levels of small noise to the training set as depicted in Figure 3 for
noise-level comparative analysis. To achieve the goal of identifying "high-quality" training samples,
we rank data points based on their value scores in descending order, selecting a subset with the
highest values. For every selection budget, we compute the selection precision, i.e, the percentage of
the points that are uncorrupted within the selected points. We compare our framework with pure data
valuation method and random selection baseline across these four datasets.

As depicted in Figure 3, our experimental results show a notable enhancement in selection precision
across all four datasets, where our JST framework outperforms the pure data valuation method
on nearly all selection budgets. Globally, our framework significantly improves the mean rank
of uncorrupted data compared to pure data valuation methods. With a very small noise level of
standard deviation 0.6 and 3.0 (Figure 3 A), our framework push forward the mean rank by 3,487 for
MNIST, 1,798 for Fashion-MNIST, 700 for CIFAR-10, and 861 for CIFAR-100, from initial values
of 24,814, 24,269, 22,212, and 22,106, respectively. This underscores the feasibility of employing
data selection using our framework under challenging circumstances with small noise. When facing
relatively larger noise with a standard deviation of 1.2 and 6.0 (Figure 3 B), our framework still
achieves improvements of 785 for MNIST, 607 for Fashion-MNIST, 843 for CIFAR-10, and 1,167
for CIFAR-100, from initial values of 23,064, 23,072, 21,869, and 21,937, respectively. Remarkably,
as illustrated in Figure 4, with a noise level of standard deviation 0.6, the data valuation method
after being augmented by our framework achieves near-perfect separation between uncorrupted and
corrupted data in the simple datasets MNIST and Fashion-MNIST. Furthermore, Figure 4 clearly
confirms the feasibility of the principle of our framework, wherein high-quality data are assigned
low value scores and popped out as outliers in the second-round data selection, vice versa to the
first-round data valuation.

4.2 Raw Dataset Pruning

With the help of commercial search engines, several web-crawled large datasets have been curated [16,
17]. These datasets typically contain heterogeneous noise, such as label noise and out-of-distribution
samples, and individual training data points usually vary in quality. To further demonstrate the
effectiveness of our JST framework in real-world data collection scenarios, we conduct experiments
on two web-crawled datasets, SVHN [18] and Food-101 [19], focusing on the task of raw dataset
pruning with being provided a small size of manually cleaned validation set.

More specifically, SVHN is a digit classification dataset with 10 categories (from 0 to 9), cropped from
pictures of real-world house number plates obtained from Google Street View images. It contains
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Figure 6: Applying JST framework to different data valuation methods (A: influence function based,
B: reinforcement learning based) on CIFAR-10 and CIFAR-100. Both methods augmented by JST
framework improve selection precision to varying extents.

73,257 digits for training and 26,032 digits for testing. Similarly, but with greater complexity, Food-
101 dataset, which was crawled online, consists of 101 food categories with 750 training images and
250 test images per category, totaling 101,000 images. The labels for test images have been manually
cleaned, while the training set contains some noise, primarily in the form of intense colors, incorrect
labels and out-of-distribution samples. We randomly sampled 5,000 digits from the test set of SVHN
and 7,500 images from the test set of Food-101 to create their respective validation sets, while leaving
the remaining samples to be used as the test sets.

Likewise to Section 4.1, we rank training data points based on their value scores in descending order to
identify "high-quality" samples. However, to mitigate the issue of class imbalance, which negatively
impacts the trained model performance [20], we simply rearrange the data points sequentially
according to their class one by one after each round of ranking. Then, to evaluate the efficacy of our
JST framework, we train a ResNet-18 model from scratch on the training set of SVHN and Food-101
with varying pruning ratios, respectively. Additionally, to explore the effectiveness of our framework
on pretrained models, we finetune a ResNet-50 model [21], initially pretrained on ImageNet1K, with
different pruning ratios. We test all trained neural networks on the reconstructed testing set, excluding
samples from the validation set to prevent prior knowledge and maintain a fair accuracy comparison.
Still, we compare our JST framework with the pure data valuation method and random selection
baseline.

As illustrated in Figure 5, in both SVHN and Food-101 experiments, our framework achieves much
higher accuracy compared to the pure data valuation method. It also outperforms the random selection
baseline across most pruning ratios especially in cases with large pruning ratios. By visualization of
selected images (deferred at Appendix F), we found that our framework selects the most relevant
images to the class, while random selection and the pure data valuation method include monotone
image patterns, low-quality data, or out-of-distribution samples, thereby hurting model performance.

4.3 Applying JST Framework to Different Data Valuation Methods

To demonstrate the general applicability of our JST framework, we apply it to other two data valuation
methods: influence function based and reinforcement learning based approaches. We use dataset
CIFAR-10 and CIFAR-100 to evaluate the effectiveness of JST. The experimental setup is the same as
in Section 4.1 with white noise standard deviation of 6.0 and 9.0, except the size of training set and
validation set. As these two methods suffer from running time for large dataset, to save computational
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resources, we randomly sample 10,000 data points from the training set as the training set and 1,000
data points from the test data as the validation set. We use the last layer of ResNet-18 model as
their dependent training model. As illustrated in Figure 6, these two methods augmented by our
framework, JST, improve selection precision to varying extents, corresponding to higher sensitivity
of outliers compared with in-distribution data as shown in Figure 1.

5 Conclusion

In this paper, we introduce JST, a straightforward two-stage framework designed to enhance the
sensitivity of existing data valuation methods to high-quality data for subset selection. The JST
framework identifies low-quality data points as a validation set, thereby allowing high-quality
data to stand out as outliers during the data valuation process. Experiments on multiple datasets
demonstrate the effectiveness of JST framework in selecting high-quality data and pruning raw
datasets, particularly in scenarios with small noise. We successfully apply JST to different data
valuation methods, highlighting the general applicability of our framework, thus making it a valuable
tool for enhancing data selection in machine learning.
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Appendix

A Background and Related Work

We provide a small amount of background and describe related work.

Data Selection. Active learning and coreset construction are two widely used methods for data subset
selection. These methods aim to identify the most representative training data points. Active learning
involves iteratively choosing points to label from a large unlabeled dataset based on the model’s
uncertainty or other heuristics, such as the entropy of predicted class probabilities [22, 23]. Recently
proposed data selection methods in continual learning are related to these approaches, determining
examples to be stored or labeled for ongoing model training [24, 25].

In contrast, coreset construction begins with the entire dataset and tries to select a small subset that
encapsulates the essence of the full dataset. The goal is to have the model trained on the subset
performs approximately as well as the one trained on the entire dataset [26, 27]. Many works have
tackled this setting to accelerate clustering and learning, proposing coresets in k-means and k-medians
clustering [28], SVMs [29], Bayesian logistic regression [30], and Bayesian inference [31]. Recently,
newly proposed coreset selection methods have demonstrated efficiency in neural network training
[32, 33, 34, 35]. In addition, related coreset techniques have been applied to active learning [22] and
continual learning [36].

Data Valuation. Data valuation assesses the contribution of each individual data point to the
overall performance of a model, aiming to distribute the validation performance across the training
data points [5]. Formally, given a training dataset Dtr = {zi}Ni=1, a validation dataset Dv, and
a model performance metric PERF evaluated on the validation set Dv, data valuation methods
assign a scalar score to each training sample zi in the Dtr to split PERF evaluated on the Dv. For
instance, if we define a utility function U over all subsets S ⊆ Dtr of the training data as U(S) :=
PERF(A(S)) evaluated on the validation set Dv with a learning algorithm A, a straightforward
method to evaluate the contribution of a training sample zi is by calculating the leave-one-out (LOO)
value, U(Dtr)− U(Dtr \ {zi}). It represents the change in model performance when the point is
excluded from the training set [8].

In practice, feasible alternatives to LOO exist to estimate the impact of the weight change of a
data point on the model performance. Two such approaches are optimal transport based method
(LAVA) [8] and influence function based method [9]. The optimal transport based method employs
Wasserstein distance between training and validation sets as the performance metric, while the
influence function based method utilizes validation loss. Both methods measure the gradient as the
scalar value score with respect to the weight change of a data point. In addition, reinforcement
learning based method (DVRL) [10] learns a weight function to minimize the weighted empirical
risk using policy gradients, thereby obtaining optimal importance weight as the scalar value score.

Indeed, data valuation is intricately related to data selection methods, but it formalizes the data
selection problem by aiming to select a subset of the training set that matches a desired target
distribution, as represented by the validation set [8, 10], because data valuation methods incorporate
validation performance into individual training samples. This approach is essentially different from
active learning and coreset construction, which instead to compress the full training dataset. Therefore,
data valuation can be applied to data selection in the scenario of robust learning with a mismatch
between training set and target set [10]. However, as demonstrated in Figure 1, data valuation
methods are typically more sensitive to outliers rather than high-quality data. Such property makes
data valuation ineffective to distinguish high-quality data at a finer-grained scale, especially when
there is a small mismatch between training set and target set. To address this issue, motivated by
the property, we propose a straightforward two-stage framework, JST, to make data valuation more
suitable for data selection. To the best of our knowledge, our work is the first to leverage this property
to augment existing data valuation methods.

B Data Valuation Algorithms

This section provides a detailed explanation of three data valuation algorithms applied in our study:
optimal transport based method, influence function based method and reinforcement learning based
method. Although we have defined notations in the preliminaries section, a thorough set of notations
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is presented here for clarity. The input space is denoted by X and the output space by Y . We denote
the training set by Dtr = {zi}ni=1, where each zi = (xi, yi) is drawn from a source distribution
psrc(z), the validation dataset by Dv = {z′i}mi=1, where each z′i = (x′

i, y
′
i) is drawn from a target

distribution ptrg(z
′), and a model performance metric PERF evaluated on the validation set Dv.

Typically, n > m and psrc(z) is not required to be the same as ptrg(z
′), i.e., psrc(z) ̸= ptrg(z

′).
The goal of data valuation is to distribute the validation performance across training data points and
compute a data score value s(zi) for each training data point zi.

LAVA (Optimal Transport based)

LAVA [8] measures the sensitivity of validation performance to changes in the training data. It
examines how the optimal transport cost between the training set Dtr and the validation set Dv

changes when a particular data point in Dtr is assigned increased weight. The sensitivity is determined
by calculating the gradient of the optimal transport cost with respect to the probability mass.

The optimal transport cost gradient can be calculated as the data value score for the training data
point zi as follows:

s(zi) := t∗[i]− 1

n− 1

∑
j ̸=i

(t∗[j])

where {t∗i }ni=1 is the optimal solution of the dual problem, which is expressed as:

t∗, u∗ := arg max
t,u∈C0(X×Y)2

〈
t,
1

n
δ(xi,yi)

〉
+

〈
u,

1

m
δ(x′

i,y
′
i)

〉
where C0(X ×Y) denotes the set of all continuous functions defined on X ×Y , and δ(x,y) represents
the Delta measure at (x, y) ∈ X × Y . The negative gradient indicates that the loss will decrease
when the data point is given more weight, signifying a higher value for the data point, whereas a
positive gradient indicates the opposite.

Influence Function

In machine learning, influence function [9] is used to evaluate the impact of a data point on a model’s
performance by upweighting a specific training point. We denote the influence of a training data
point zi = (xi, yi) on the loss L(z, θ) with respect to the parameters θ ∈ Θ of a validation data point
z′j = (x′

j , y
′
j) as I(zi, z′j). This can be obtained by:

I(zi, z
′
j) := −∇θL(z

′
j , θ̂)

⊤H−1

θ̂
∇θL(zi, θ̂)

where ∇θL(z
′
j , θ̂) represents the gradient of the loss L(z′j , θ̂) with respect to optimized parameters

θ̂ evaluated at the validation data point z′j . Similarly, ∇θL(zi, θ̂) represents the gradient of the loss
L(zi, θ̂) with respect to optimized parameters θ̂ evaluated at the training data point zi. The term
Hθ̂ denotes the Hessian matrix of empirical risk with respect to the optimized model parameters θ̂,
defined as 1

n

∑n
i=1∇2

θL(zi, θ̂).

The negative influence predicts a decrease in loss, while the positive influence predicts an increase.
Therefore, higher negative influences correspond to more valuable data points, whereas larger positive
influences correspond to less valuable points. To evaluate the impact of each training data point zi
on the whole valuation set Dv, we simply sum the influence of the training data point zi on each
validation data point z′j as the data value score s(zi), denoted as:

s(zi) :=

m∑
j=1

I(zi, z
′
j)

DVRL (Reinforcement Learning based)

DVRL [10] involves using reinforcement learning algorithm to compute the importance weight for
each training data point as the data value score. The objective function that DVRL solves in training
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a model g : X × Y → [0, 1], which maps data points to their importance weight, is expressed as:

min
g∈G

E(x′,y′)∼ptrg(z′)[L(fg(x′), y′)]

s.t. fg = argmin
f∈F

E(x,y)∼psrc(z)[g(x, y) · L(f(x), y)]

where G := {g : X × Y → [0, 1]}, F := {f : X → Y} and the loss L can be MSE or cross entropy.
The data value score of a training data point s(zi) is computed as the importance weight g(xi, yi).
The objective can be optimized using policy gradient methods. A large importance weight indicates a
more crucial data point for the training process, signifying its high value.

C Practical Implementation of JST

In practice, similar to other data valuation and selection methods [2, 5, 8, 37], we begin by using a
neural network trained on the validation set Dv to extract features into a low-dimensional space. This
allows us to leverage feature relationships effectively and compute data value scores efficiently. Given
that manually cleaned validation set Dv is often small, ResNet-18 model [21] is an appropriate choice
for feature extraction. However, in the second round, prior knowledge from the clean validation set
Dv can erroneously align the new validation set Dsel containing low-quality data with the remaining
training samples D′

tr, negatively impacting performance. Given our limited access to noisy data, we
find that leveraging a pretrained ResNet-18 model on ImageNet1K [38] suffices.

Although, to maintain the perfect match between our algorithm and pure data valuation methods, we
utilize the same number |Dv| of backward training data Dsel in the second round as the validation
set, which always mixes up with a non-obvious proportion of high-quality data. However, we find
that such mixing up does not affect the superior performance of our algorithm. Even a small portion
of signals from low-quality data is sufficient to pop out high-quality data with low value scores.
Therefore, in practice, we can reduce the size of the validation set |Dsel| to involve more training
samples for selection in the second round without degrading performance.

This section we provide the ablation studies of JST framework instantiated by optimal transport based
data valuation method on CIFAR-10 dataset with the noise level of standard deviation 6.0.

0 10000 20000 30000 40000 50000
Number of Data Selected

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Se
le

ct
io

n 
Pr

ec
isi

on

Round1: trained
Round2: trained
Round2: pretrained

0 10000 20000 30000 40000 50000
Number of Data Selected

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Se
le

ct
io

n 
Pr

ec
isi

on

Round1: pretrained
Round2: pretrained (Round1: pretrained)
Round1: trained
Round2: pretrained (Round1: trained)

Performance Comparison on Using Different Feature Extractors

Figure 7: Performance comparison on using different feature extractors in each round. A: In the
second-round data selection, we have ResNet-18 model trained on the validation set Dv to extract
features compared with a pretrained ResNet-18 model on ImageNet1K. The feature extractor of
ResNet-18 model trained on the validation set Dv hurts the performance in the second-round data
selection. B: In both rounds, we have pretrained ResNet-18 model on ImageNet1K to extract features.
Our JST framework improves selection precision, though the improvement is less pronounced in the
second-round, compared with employing ResNet-18 model trained on the validation set Dv in the
first-round data valuation. This confirms that the improvement in our JST framework is not due to
switching to a pretrained ResNet-18 model on ImageNet1K for the second-round data selection.
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Figure 8: Performance comparison on using different sizes of validation set in the second-round data
selection. In the second-round, we ablate different sizes of validation set |Dsel| to use, including
5,000, 4,000, 3,000, 2,000, 1,000. The selection precision lines closely align together, indicating
the robustness of our JST framework, not requiring many signals from low-quality data to pop out
high-quality data.

D JST Framework under Large Distribution Shifts

Although our original goal is to augment existing data valuation with a focus on small noise conditions,
we emphasize in this section that our JST framework remains effective under large distribution shifts.
In fact, large shifts naturally provide more favorable conditions for both data valuation methods
and our framework, making it easier to distinguish between in-distribution data and outliers. Here,
instead of contaminating clean images with white noise, we replace 25% of the training data with
samples from another dataset as corrupted samples (e.g., mixing 75% CIFAR-10 with 25% MNIST).
To eliminate spurious labeling correlations between the clean and corrupted data, we randomly map
the labels of the corrupted data to the label space of the clean data. As shown in Figure 9, our JST
framework remains effective, and in cases where data valuation methods already perform very well,
we at least do not degrade performance.
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Figure 9: JST framework instantiated by optimal transport based data valuation method under large
distribution shifts. Each subfigure title means target dataset (corrupted dataset).

E Where Does the JST Framework Underperform?

In this section, we discuss scenarios where our JST framework underperforms, showing a similar
selection precision to the pure data valuation method. Specifically, we observe that marginal contribu-
tion based data valuation methods yield unsatisfactory results, as these methods fail to demonstrate a
higher detection rate for outliers compared to in-distribution data. We test our framework on three
marginal contribution based methods: LOO [5], AME [39], and Data Banzhaf [40]. The experimental
setup is the same as in Section 4.3 on CIFAR-10 with white noise standard deviation of 10.0, except
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the reduced size of training set (5,000) and validation set (500) for LOO to save runtime. As shown
in Figure 10 A, these three methods augmented by our framework do not improve selection precision.
This is because these methods lack the property of higher sensitivity to outliers (Figure 10 B). Based
on this underperformance analysis, we propose a simple test framework to validate the expected
behavior of our approach: before applying it to real-world applications, we can assess whether the
data valuation method exhibits higher sensitivity to outliers on a specific type of data.

0.25k 0.5k 0.75k 1k
Inspected Top-k Points

6
5

4
3

2
1

No
ise

 L
ev

el
 - 

St
d.

 D
ev

.

LOO

0.5k 1k 1.5k 2k
Inspected Top-k Points

6
5

4
3

2
1

No
ise

 L
ev

el
 - 

St
d.

 D
ev

.
AME

0.5k 1k 1.5k 2k
Inspected Top-k Points

6
5

4
3

2
1

No
ise

 L
ev

el
 - 

St
d.

 D
ev

.

DataBanzhaf

0 1000 2000 3000 4000 5000
Number of Data Selected

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Se
le

ct
io

n 
Pr

ec
isi

on

Noise Level = 10.0
LOO

0 2000 4000 6000 8000 10000
Number of Data Selected

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Se
le

ct
io

n 
Pr

ec
isi

on

Noise Level = 10.0
AME

0 2000 4000 6000 8000 10000
Number of Data Selected

0.75

0.80

0.85

0.90

0.95

Se
le

ct
io

n 
Pr

ec
isi

on

Noise Level = 10.0
DataBanzhaf

0.0

0.05

0.1

NDR
outlier

NDR
in

distribution

0.0

0.05

0.1

NDR
outlier

NDR
in

distribution

0.0

0.05

0.1

NDR
outlier

NDR
in

distribution

A

B Original Algorithm Our Algorithm Random

Figure 10: A: Evaluating JST framework on marginal contribution based data valuation methods on
CIFAR-10. These methods do not improve selection precision compared with the pure data valuation
method. B: Sensitivity to outliers compared with in-distribution data for marginal contribution based
data valuation methods. Following the experimental setup from Figure 1, we evaluate the difference
between NDRoutlier and NDRin-distribution on CIFAR-10. The results show that these methods exhibit
similar levels of sensitivity to outliers and in-distribution data, which explains the underperformance
of our approach when applied to marginal contribution based methods.

F Extremal Images
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