
Under review as a conference paper at ICLR 2023

TRIANGLE INEQUALITY FOR INVERSE OPTIMAL
CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Inverse optimal control (IOC) is a problem of estimating a cost function based on
the behaviors of an expert that behaves optimally with respect to the cost function.
Although the Hamilton-Jacobi-Bellman (HJB) equation for the value function that
evaluates the temporal integral of the cost function provides a necessary condition
for the optimality of expert behaviors, the use of the HJB equation alone is insuffi-
cient for solving the IOC problem. In this study, we propose a triangle inequality
which is useful for estimating the better representation of the value function, along
with a new IOC method incorporating the triangle inequality. Through several
IOC problems and imitation learning problems of time-dependent control behav-
iors, we show that our IOC method performs substantially better than an existing
IOC method. Showing our IOC method is also applicable to an imitation of ex-
pert control of a 2-link manipulator, we demonstrate applicability of our method
to real-world problems.

1 INTRODUCTION

The optimal control problem (OCP) is the problem of finding optimal controls which minimize
a given objective function in a dynamical system, mostly in a continuous space of state, control
signal (action), and time (Kirk, 2004). This is advantageous over reinforcement learning (RL) be-
cause RL targets Markov decision processes (MDPs), which are mostly defined over discrete-time
domains (Sutton & Barto, 2018). Inverse optimal control (IOC), which is an inverse problem of
OCP (Pauwels et al., 2014a), inherits the above advantage over the RL counterpart, inverse rein-
forcement learning (IRL) (Ng et al., 2000). That is, IOC can estimate a cost function based on
the observation of expert behaviors, assuming that the expert has performed optimally based on the
cost function. Note that the cost function that the expert would have used can be time-dependent in
OCP (Kirk, 2004; Adida & Perakis, 2007); however, there have only been few applications of IOC
methods to time-dependent problems. Interesting applications of inverse approaches such as IOC
and IRL lie in imitation learning (Hussein et al., 2017). By solving an OCP with the cost function
estimated by IOC, the optimal controlling behaviors demonstrated by the expert can be imitated.
The setting in which an imitator solves an RL problem with the reward function estimated by the
IRL is called apprenticeship learning (Abbeel & Ng, 2004). In these imitation methods, design-
ing complex reward/cost functions can be avoided by performing optimal behaviors based on the
estimated reward/cost function (Boularias et al., 2011). Imitation learning that incorporates the in-
verse approach can be further advantageous over other imitation learning methods such as behavior
cloning (Bojarski et al., 2016; Pomerleau, 1988). Since the estimated cost function generalizes the
expert objective, imitation learning with the inverse approach is effective even when the expert and
imitator are in different environments (i.e., different system dynamics) (Boularias et al., 2011; Fu
et al., 2018).

However, solving an IOC problem is difficult in high-dimensional domains. The value function,
which evaluates the temporal integral of the cost function, is helpful in estimating the cost func-
tion. The Hamilton-Jacobi-Bellman (HJB) equation for the value function provides the necessary
condition for the optimality of expert behaviors. However, the use of the HJB equation alone is
insufficient for solving IOC well because the HJB equation presents the local optimality just around
the expert behaviors; thus, it does not provide global optimality. In this study, we propose the use
of a triangle inequality that presents the non-optimality of any bypath that goes through a via-point
on a non-optimal trajectory. Because this inequality provides additional information about the value

1

Under review as a conference paper at ICLR 2023

function, its use in IOC can improve the IOC solution by mitigating the ill-posedness possessed by
the inverse problem (i.e., expert demonstrations are consistent with multiple cost and value func-
tions). Although the idea of triangle inequality can be applied to general IOC problems, we show
several applications to time-dependent IOC problems; that is, the underlying cost function that the
expert has used is dependent on time. Time-dependent tasks can often be found in the real world;
therefore, well-established modern control methods, such as model predictive control, have been
applied to time-dependent tasks (Kirk, 2004; Oldewurtel et al., 2012). Considering this demand, we
also demonstrate the application of our new IOC method to the imitation learning of time-dependent
tasks.

In existing studies on IOC and IRL, the value and cost functions have been approximated in var-
ious forms, such as neural networks (Zou et al., 2018), linear combinations of features such as
Gaussian RBFs (Self et al., 2019; Kamalapurkar, 2018; Dvijotham & Todorov, 2010), and polyno-
mials (Pauwels et al., 2014a;b). In this study, we present a constrained linear-programming-based
algorithm with polynomial approximation assumptions for the value and cost functions. Because this
algorithm does not rely on a stochastic approximation, the implementation of the triagle inequality
is straightforward.

2 BACKGROUND

2.1 OPTIMAL CONTROL THEORY

In optimal control theory, the value function v(x), which represents the minimum total cost when
moving from an arbitrary state x to a state in the terminal state set XT , plays a central role. An OCP
is a problem for obtaining optimal control sequence u(·) that achieves the value function v(x0) from
a given initial state x0.

v(x) = min
u(·),T (≥t0)

∫ T

t0

l(x(τ),u(τ))dτ

s.t. ẋ = f(x,u),x(t0) = x, x(T) ∈ XT

(1)

Integrand l is the cost function that represents a scalar cost for a pair of state x and control u. The
value function v(x) denotes the minimum cost integrated from the initial time t0 to the terminal time
T under the following three constraints: ẋ = f(x,u) is the system dynamics, which is assumed to
be known throughout this study, x(t0) = x is the initial condition, and x(T) ∈ XT is the terminal
condition.

Using the value function, we can obtain the HJB equation, which is a necessary condition for optimal
control u at any state x.

0 = min
u

{
l(x,u) +

∂v

∂x

T

(x)f(x,u)

}
(2)

Relaxing the HJB equation yields the following inequality:

L(l, v)(x,u) := l(x,u) +
∂v

∂x

T

(x)f(x,u) ≥ 0 (3)

This implies that given a cost function l(x,u) and a value function v(x), L(l, v) should not be
negative for any pair of state x and control u. The equality in Equation (3) holds only when the
control u is optimal at the state x.

2.2 INVERSE OPTIMAL CONTROL WITH POLYNOMIAL OPTIMIZATION

IOC is an inverse problem of OCP, which estimates the cost function given a trajectory of the optimal
control (x0,u0, t0), ..., (xn−1,un−1, tn−1). Here, we explain the linear-programming-based IOC
method presented by Pauwels et al. (2014a), which was used as a baseline method in this study.
Although the authors did not show applications to time-dependent IOC problems, their method
could address time-dependent cost and value functions. For convenience, we describe a simplified
version of Pauwels’ method in which the cost and value functions are assumed to be independent

2

Under review as a conference paper at ICLR 2023

of time. This baseline IOC method estimates both the cost and value functions by optimizing the
coefficients of the polynomial function approximators, which are designed to have all monomial
bases up to the degree given as a hyperparameter. This method assumes that the dynamics of a
system ẋ = f(x,u) is given by a polynomial vector, and the domains of the state and control space
X and U, are compact basic semi-algebraic sets of the form X = {x|gi(x) ≥ 0, i = 1, ...,m}, U =
{u|kj(u) ≥ 0, j = 1, ..., l} with gi(i = 1, ...,m) and kj(j = 1, ..., l) being polynomials of x and
u, respectively.

IOC is a problem of estimating the hidden cost function of an optimally behaving expert given
the trajectory of the expert, (x0,u0, t0), ..., (xn−1,un−1, tn−1). In the baseline method, the cost
function is recovered by solving the following constrained optimization problem:

inf l,v,ϵ ϵ+ λ∥l∥1 (4a)
s.t. L(l, v)(x,u) ≥ 0,∀(x,u) ∈ X × U (4b)

1

n

n−1∑
i=0

L(l, v) (xi,ui) ≤ ϵ (4c)

v(x) = 0,∀x ∈ XT (4d)
A(L(l, v)) = 1 (4e)

Equation (3) leads to Equations (4b) and (4c), and Equation (4c) is an epsilon relaxation of the
equality condition. Equation (4d) requires the value function in the terminal state to be zero. In
Equation (4e), A is a linear functional constraint for preventing the HJB function L from becoming
a trivial function, such as the zero function; in our implementation the coefficient summation of the
polynomial L(l, v) is restricted to unity. Equation (4a) attempts to minimize the slack variable ϵ
plus L1-based regularizer of the coefficients of the cost function l; λ > 0 is a hyperparameter that
controls the strength of the regularizer. inf l,v,ϵ indicates that this optimization problem is minimized
by optimizing the coefficients of the polynomial function approximators for the cost l and value v
functions, and the slack variable ϵ.

3 INVERSE OPTIMAL CONTROL WITH TRIANGLE INEQUALITY

Although Pauwels’ method is simple and widely applicable, its solution would not necessarily be
good because of the shortage of constraints; the HJB equation only imposes constraints on the
derivative of the value function, and represents the optimality condition of the expert behaviors only
around the expert trajectory. To address this constraint shortage problem, we present a new IOC
method based on the triangle inequality. Section 3.1 introduces the triangle inequality that should
exist behind the expert optimal trajectory. Section 3.2 describes the IOC method incorporating the
triangle inequality.

3.1 TRIANGLE INEQUALITY

X1

X
2

x

Route A
Route B

Route C

Initial state

Terminal state set

XT

x0

Via-point

Figure 1: Conceptual diagram
of triangle inequality

Here, we derive the triangle inequality in a simple time-independent
setting, in which the cost and value functions taken by the expert
are independent of time; however, its extension to address time-
dependent settings is straightforward. The triangle inequality and
IOC method for time-dependent settings are described in Appendix
A.

Figure 1 depicts the concept of triangle inequality in an OCP in two-
dimensional state space. We assumed that route A is the optimal
route with the minimal total cost from the initial state x0 to any
terminal state in set XT . Route B → C is the optimal route when
it is constrained to pass through a via-point x that is not on the
optimal route. The triangle inequality states that the total cost of B
→ C should be larger than that of A for any via-point x.

Because the value function is defined as the minimum total cost to
reach any terminal state, the total costs of A and C are given by

3

Under review as a conference paper at ICLR 2023

v(x0) and v(x), respectively. However, the minimal total cost of Route B cannot be represented by
the value function. To this end, we introduce an alternative value function in the “time-reversed”
OCP, which is given by

rv(x) := min
u(·),t(≥t0)

∫ t0

t

−l(x(τ),u(τ))dτ

s.t. ẋ = f(x,u),x(t) = x,x(t0) = x0

(5)

The left-hand side of Equation (5), called the reverse value function in this study, denotes the
minimal total negative cost from the via-point x to the initial state x0 in a backward manner. By
reversing the integral interval, the reverse value function rv(x) is shown to be equivalent to the
minimum total cost from the initial state x0 to the arbitrary via-point x. Therefore, the minimal total
cost of Route B is given by rv(x).

Accordingly, the triangle inequality is expressed as:

v(x0) = min
u(·),T (≥t0)

∫ T

t0

l(x(τ),u(τ))dτ (x(T) ∈ XT) (6a)

≤ min
u(·),T ′(≥t0)

∫ T ′

t0

l(x(τ),u(τ))dτ (x(T ′) ∈ XT ,∃t ∈ [t0, T
′] x(t) = x) (6b)

= rv(x) + v(x), (6c)

where the constraints x(t0) = x0 and ẋ = f(x,u) are omitted for visibility. When the via-point x
is on optimal Route A, the equality in Equation (6) holds. If Route A is the sole optimal route in the
state space, the inequality in Equation (6) should hold strictly for any via-point that is not on Route
A.

HJB equation for the reverse value function Similar to the value function on the “time-forward”
OCP, another HJB Equation (7) also holds for the reverse value function. The equality of this HJB
equation is satisfied by the expert trajectory (x0,u0, t0), ..., (xn−1,un−1, tn−1) because the expert
trajectory is optimal in both “time-forward” and “time-reversed” OCPs. The derivation is described
in Appendix B.

RL(l, rv)(x,u) := l(x,u)− ∂rv

∂x

T

(x)f(x,u) ≥ 0 (7)

3.2 IMPLEMENTATION OF THE TRIANGLE INEQUALITY

In this subsection, we develop our new IOC method with the triangle inequality in time-independent
settings. Our IOC method (8) is an extension of the baseline IOC method (4), with the ad-
ditional constraints from (8b) to (8l), with the following assumptions: 1) the system dynam-
ics is given by a polynomial vector, 2) xn−1 ∈ XT is satisfied by the expert trajectory
(x0,u0, t0), ..., (xn−1,un−1, tn−1), and 3) the domains of state and control space are given as
compact basic semi-algebraic sets of the form X = {x|gi(x) ≥ 0, i = 1, ...,m}, U = {u|kj(u) ≥
0, j = 1, ..., l} with gi(i = 1, ...,m) and kj(j = 1, ..., l) being polynomials of x and u, respectively.
Below, we describe how the additional constraints from (8b) to (8l) have been derived.

Constraints (8k) and (8l) originate from the triangle inequality (6). Constraint (8k) requires the
triangle inequality to hold for any state x in domain X . Constraint (8l) is the epsilon relaxation of
the equality constraint, which should hold for any state x on the expert trajectory. The constraints
on the reverse value function from (8f) to (8i) correspond to the constraints on the value function
from (8b) to (8e), and have been introduced to identify the reverse value function using constrained
linear programming. Furthermore, Equation (8j) should be satisfied because rv(xn−1) and v(x0)
share the same optimal trajectory.

Application to multiple trajectories settings Depending on the situation, we can observe multi-
ple expert trajectories each from a different initial state to a state in the shared terminal state set. Our
linear-programming-based method with triangle inequality can handle these situations by defining a

4

Under review as a conference paper at ICLR 2023

reverse value function for each expert trajectory. For k expert trajectories, k reverse value functions
{rvj}i=1,...k can be defined, each with a different initial state as a terminal condition. Although
the constraints from (8b) to (8e) are applied to the single value function, we should duplicate the
constraints from (8f) to (8l) to cover multiple reverse value functions. We present the algorithm and
some further details in Appendix C.

Implementation details The optimization problem (8) is solved in the same manner as solving
the existing problem (4); the latter was solved based on polynomial optimization and linear matrix
inequalities (Pauwels et al., 2014a). The inequalities (8f) and (8k) were reduced to linear matrix
inequalities because each of them is an inequality over a compact basic semi-algebraic set, as is
inequality (4b) in (4). For the optimization, we used the YALMIP toolbox in MATLAB (Lofberg,
2009), which is suitable for handling the polynomial constraints included in (8).

inf
l,v,rv,ϵa,ϵb,ϵc

ϵa + ϵb + ϵc + λ∥l∥1 (8a)

s.t.
-Constraints from the baseline method-
L(l, v)(x,u) ≥ 0,∀(x,u) ∈ X × U (8b)

1
n

∑n−1
i=0 L(l, v) (xi,ui) ≤ ϵa (8c)
v(x) = 0,∀x ∈ XT (8d)
A(L(l, v)) = 1 (8e)

-Constraints from the introduction of rv-
RL(l, rv)(x,u) ≥ 0,∀(x,u) ∈ X × U (8f)

1
n

∑n−1
i=0 RL(l, rv) (xi,ui) ≤ ϵb (8g)

rv(x0) = 0 (8h)
A(RL(l, rv)) = 1 (8i)
rv(xn−1) = v(x0) (8j)

-Constraints from the triangle inequality-
v(x) + rv(x) ≥ v(x0),∀x ∈ X (8k)

1
n

∑n−1
i=0 {v(xi) + rv(xi)− v(x0)} ≤ ϵc (8l)

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTINGS

We compared our IOC method with the baseline IOC method by using three types of simple
OCP tasks. In particular, the third is in an imitation learning setting when the expert is taking
time-dependent behaviors. The code is available at https://github/AnonymousAuthor/
ForDoubleBlindPolicy.

Hyperparameters The polynomials to approximate l, v, and rv were set to the same degree,
assuming that they were of comparable complexities. The regularization parameter λ was set to 10−6

regardless of the task. We found that a larger setting of this parameter value likely produced errors
similar to those of the baseline method because the associated strong constraints on the coefficients
would have made the triangle inequality condition less effective.

Tasks The following three OCPs were solved by the steepest descent method (Kirk, 2004). Al-
though the domains of state and control space in the three OCPs were normalized as [−1, 1] on each
coordinate to stabilize the numerical calculation, its enlargement is straightforward.

5

https://github/AnonymousAuthor/ForDoubleBlindPolicy
https://github/AnonymousAuthor/ForDoubleBlindPolicy

Under review as a conference paper at ICLR 2023

OCP 1 Time-independent control to the origin of the two-dimensional state space with the ter-
minal time T being free, starting from a randomly (uniformly) sampled initial state.

l(x,u) = x2
1 + x2

2 + u2
1 + u2

2, ẋ = u, XT = {(0, 0)}
X = {x| |xi| ≤ 1, i ∈ {1, 2}}, U = {u| |ui| ≤ 1, i ∈ {1, 2}}

OCP 2 Time-dependent control to chase a target that moves from (0, 0) to (1, 1) along time [0, 1],
starting from a randomly (uniformly) sampled initial state.

l(x,u, t) = (x1 − t)2 + (x2 − t)2 + 0.3(u2
1 + u2

2), ẋ = 5u, XT = {(1, 1)}
X = {x| 0 ≤ xi ≤ 1, i ∈ {1, 2}}, U = {u| − 1 ≤ ui ≤ 0.3, i ∈ {1, 2}}, 0 ≤ t ≤ 1

OCP 3 Time-dependent non-polynomial control with an intersecting trajectory, which requires
different controls at the same state visited at different times. The generated trajectory will
be used as an expert data in Section 4.3 (shown in Figure (3a)).

l(x,u, t) =

(x1 − 7.6t+ 1)2 + (x2 + 0.9)2 + 2(u2

1 + u2
2) (0 ≤ t < 1/4)

(x1 − 0.9)2 + (x2 − 7.2t+ 2.7)2 + 2(u2
1 + u2

2) (1/4 ≤ t < 2/4)

(x1 + 7.2t− 4.5)2 + (x2 − 0.9)2 + 2(u2
1 + u2

2) (2/4 ≤ t < 3/4)

(x1 + 0.9)2 + (x2 + 7.6t− 6.6)2 + 2(u2
1 + u2

2) (3/4 ≤ t ≤ 1)

ẋ = 10u, x(t0) = (−1,−0.9), XT = {(−0.9,−1)}
X = {x| |xi| ≤ 1, i ∈ {1, 2}}, U = {u| |ui| ≤ 1, i ∈ {1, 2}}, 0 ≤ t ≤ 1

4.2 ACCURACY OF THE ESTIMATED COST FUNCTIONS

First, we examined the accuracy of the cost functions estimated by our IOC and the baseline IOC
methods in OCP 1 and OCP 2. The experiments were performed in two different situations: one
in which a single expert trajectory was given, and the other in which multiple expert trajectories
were given. Each experiment was evaluated using various degrees of polynomials for approximat-
ing the cost, value and reverse value functions. When applying IOC methods to the optimal (expert)
trajectories in OCP 1 and OCP 2, we used time-independent and time-dependent polynomials, re-
spectively. The following error function (9) was used to evaluate the estimated cost functions:

Error(l, l̂) := min
α

√√√√∫ T

t0

∫
U

∫
X
(l(x,u, t)− αl̂(x,u, t))2dxdudt∫ T

t0

∫
U

∫
X
l(x,u, t)2dxdudt

(9)

The function Error(l, l̂) represents the difference between the correct cost function l and the esti-
mated cost function l̂ over the entire domain and was normalized to 0 ≤ Error(l, l̂) ≤ 1. Because
there was an indeterminacy in the global magnitude of the cost function, we prepared a scalar α to
compensate for this. Equation (9) was used to evaluate a time-dependent cost function, whereas the
integral over time was eliminated when evaluating a time-independent cost function.

Results Figure 2 shows the accuracies of the cost function in terms of the normalized error (9)
averaged over ten trials. In each trial, the expert trajectories were started from different initial states
that were randomly sampled from the state space. Figures (2a) and (2b) show the accuracies with
a single expert trajectory setting when our IOC and baseline IOC methods were applied to a single
trajectory generated by OCP 1 and OCP 2 experts, respectively. Our IOC method exhibited con-
sistently smaller errors than the baseline IOC method in both time-independent and time-dependent
settings, particularly when the degree of the approximation polynomials was large. Visualization of
the value functions estimated by the two IOC methods also evidenced that the triangle inequality
contributed to the better estimation of the value function (Appendix D). The computation time of
our IOC method was on average 2.68 times longer than that of the baseline method (Appendix E).
Figures (2c) and (2d) show the accuracies with multiple trajectory settings, each applied to three
expert trajectories generated by OCP 1 and OCP 2 experts. Our IOC method performed better than
the baseline method, even when multiple expert trajectories were given.

6

Under review as a conference paper at ICLR 2023

(a) Time-independent IOC on OCP 1
with a single expert trajectory

(b) Time-dependent IOC on OCP 2
with a single expert trajectory

(c) Time-independent IOC on OCP 1
with three expert trajectories

(d) Time-dependent IOC on OCP 2
with three expert trajectories

Figure 2: Normalized errors by the two IOC methods for various degrees of approximation polyno-
mials. The lines and error bars denote the mean and standard error over ten runs. In figures (2a) and
(2b), IOC performed with a single expert trajectory. In figures (2c) and (2d), IOC performed with
3 expert trajectories. Each expert trajectory started from an initial state randomly sampled from the
state space (hence different from the other initial states).

4.3 IMITATION LEARNING OF TIME-DEPENDENT CONTROLS

Here, we applied the baseline and our IOC methods to imitate the expert trajectory for a time-
dependent and non-polynomial control problem in OCP 3. In both mimickers, that is, the baseline
and our IOC mimicker, we first estimated the cost function based on a single expert trajectory for
OCP 3 (Figure 3a), then we solved the OCP for the estimated cost functions. Note that both IOC
mimickers utilized an extended time-dependent version of the IOC methods, which are described in
Appendix A. Because this is a time-dependent control problem, the control trajectory was intersected
in the state space near the origin. In this experiment, the degree of the approximation polynomials
and regularization parameter λ were chosen to best mimic the expert data (with respect to the squared
error when reproducing the expert trajectory) among the following ranges: polynomial degree ∈
{4, 6, 8} and λ ∈ {10−8, 10−6, 10−4, 10−2}.

Figures 3b and 3c show the trajectories generated by the baseline and our IOC mimickers, respec-
tively. While the two mimickers could reproduce circular motions in the state space, our IOC mim-
icker could imitate them more accurately than the baseline mimicker, demonstrating the usefulness
of the proposed method even in the scenario of imitation learning.

As an additional experiment, we further examined the control generalization of imitation learning
by the two IOC mimickers. As in the previous experiment, the OCP behaviors with the estimated
cost functions were compared with the OCP behaviors with the correct cost function, but the initial
states of these OCPs were different from that of the expert trajectory in Figure 3a. This setup is to
examine the generalization capability of the IOC mimickers. The experiment was performed with
the hyperparameters that had been shown to be optimal in the previous experiment. Figure 4 shows
the imitation behaviors starting from a different initial state, where our IOC mimicker successfully
produced a similar trajectory to the optimal trajectory while the baseline mimicker failed. For sta-
tistical evaluation, we repeated this imitation ten times starting from ten different initial states taken
uniformly from the state space. Table 1 lists the mean squared error and its standard deviation over
these ten trials, for the baseline and our IOC mimickers. From this table, we can see that our IOC-
based imitation learning could reproduce the expert OCP’s behaviors much better than the baseline

7

Under review as a conference paper at ICLR 2023

method, even when initial states were different from the initial state with which the cost function
had been estimated.

(a) Expert data (b) Baseline method (c) Proposed method

Figure 3: Imitation control by the baseline IOC method (figure (b)) and our IOC method (figure
(c)), based on a single expert trajectory (figure (a)) that has solved OCP 3. The squared error of the
baseline IOC method was 8.6 × 10−1 with the degree of approximation polynomials being 4 and
λ = 10−6. The squared error of the baseline IOC method was 2.5 × 10−4 with the degree of the
approximation polynomials being 8 and λ = 10−8. The gradual change in color from blue (dark) to
yellow (light) indicates the progress of time.

(a) Optimal trajectory (b) Baseline method (c) Proposed method

Figure 4: Imitation control starting at a different initial state (−0.98, 0.91) from that (−1.00,−0.90)
of the original expert trajectory. Figures (a), (b), and (c) show the OCP trajectories with the correct
cost function, with the cost function estimated by the baseline IOC method (i.e., baseline IOC mim-
icker), and with the cost function estimated by our IOC method (i.e., our IOC mimicker), respec-
tively.

Table 1: Mean squared errors of imitation trajectories starting from different initial states

Baseline method Proposed method

3.634±0.571 0.521±0.096

4.4 IMITATION LEARNING IN A COMPLEX DYNAMICS

We have so far assumed linear (or polynomial) dynamics, which is a requirement for utilizing our
IOC algorithm based on polynomial optimization. To show further applicability to nonpolynomial
dynamics, which often arises in real-world applications, here we examined an imitation learning
task of control of a 2-link manipulator. Since the dynamics is represented as a complicated differ-
ential equation including trigonometric functions, we applied our IOC method to the approximated
dynamics with the Taylor expansion up to the second order.

In this task, the state space was four-dimensional as x = [θ1, θ2, θ̇1, θ̇2] and the control space was
two-dimensional as u = (τ1, τ2). Here, θi and τi are the angle and torque of the ith joint, respec-
tively. Each coordinate of the state and control space was rescaled to be within the interval [−1, 1]
to avoid possible numerical instability. The upper and lower rows in Figure 5 visualize a series of
expert and imitation behaviors, respectively. Our IOC method could well imitate back-and-forth

8

Under review as a conference paper at ICLR 2023

control demonstrated by the expert, even when the dynamics was nonpolynomial and hence approx-
imated by the Taylor expansion. Further discussion and details are provided in Appendix F.

t=0 t=0.25 t=0.5 t=0.75 t=1

Figure 5: Imitation learning of control of a 2-link robot. The upper and lower figures display expert
and imitation behaviors, respectively. Each column is a snapshot of the behaviors at a certain time.

5 DISCUSSION

In this study, we presented a new IOC method based on the newly introduced triangle inequality.
Although the HJB equation is a well-established condition for optimality in control theory, it is
insufficient for effectively solving the inverse problem in IOC. In our experiments, we found that
the triangle inequality was effective in estimating the better representation of the value function
(Appendix D), thus improving the accuracy of the cost function estimated by the value-function-
based IOC method (Section 4.2). We also found that the improved IOC method was preferable in
the imitation learning scenario (Section 4.3). Our IOC-based mimicker imitated expert control well,
even starting from an initial state that was different from that of the expert trajectory. Moreover,
our imitation learning method worked even in a time-dependent OCP setting. We believe that this
improved performance in the imitation of optimal controls would enlarge the application domains
of the OCP and IOC.

Because our formulation is based on the optimal control theory, which assumes that the system
dynamics are deterministic and known, an extension to the situations where the system is stochastic
and/or unknown requires some additional devices. One possible direction in this regard would be to
introduce spatial constraints similar to the triangle inequality to IRL. In many IRL formulations, we
maximize the likelihood or posterior probability based on the gradient optimization method (Ziebart
et al., 2008; Choi & Kim, 2011). Our IOC method with the triangle inequality might be extended in
a similar way by seeking the zero point of the stochastically identified Bellman equation. However,
the extension of our method to this IRL formulation has a disadvantage in that it has to dispose of the
continuous action/state space and continuous time assumptions employed in optimal control theory.
Moreover, in principle, conventional RL formulations based on MDPs cannot handle time-dependent
cost functions. The path-integral-based RL formulation may become the foundation for extending
our method to stochastic environments without losing continuous space and time-dependent cost
function assumptions (Theodorou et al., 2010). Moreover, in this study, the expert trajectory was
assumed to be optimal, which may not be satisfied in many practical applications. Although we
showed the robustness of our method against observation noise in the expert trajectory (Appendix
G), to handle non-optimal trajectories in a principled manner, it is necessary to extend our triangle
inequality to weakened constraints, as in (Tschiatschek et al., 2019).

In this study, we relied on the existing software for constrained linear programming (Lofberg,
2009), which restricted our tasks to being relatively low-dimensional. Applications to high-
dimensional tasks can be realized using kernel methods (Levine et al., 2011) or nonlinear neural
networks (Wulfmeier et al., 2015). Because these function approximators are often optimized based
on a (stochastic) gradient descent method to seek a zero-point of the Monte Carlo-based gradient
function, we can utilize these function approximators by extending our constrained optimization
problem to a gradient-based method.

9

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

Our study focuses on the theoretical aspects of IOC, thus there is little or no threats to health, safety,
personal security, and privacy. However, as a potential future threat to safety, we discuss as follows:

When applying our IOC method to a real-world problem such as the imitation of professional drivers
or plant operators, the evaluation of the estimated cost function is difficult because of the absence of
the correct cost function. On the other hand, the estimated cost function includes errors, as shown in
Section 4.2, causing potentially undesirable behaviors. Therefore, appropriate evaluation methods
will be required to satisfy the high demand for safety.

REPRODUCIBILITY STATEMENT

All the codes are available at https://github/AnonymousAuthor/ForDoubleBlindPolicy. All the ex-
pert data used in this study were generated by the codes. The omitted explanations and derivations
of our new IOC method are described in Appendix A,B,C.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
International Conference on Machine learning, pp. 1, 2004.

Elodie Adida and Georgia Perakis. A nonlinear continuous time optimal control model of dynamic
pricing and inventory control with no backorders. Naval Research Logistics, 54(7):767–795,
2007.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning.
In International Conference on Artificial Intelligence and Statistics, pp. 182–189, 2011.

Jaedeug Choi and Kee-Eung Kim. Map inference for bayesian inverse reinforcement learning. Ad-
vances in Neural Information Processing Systems, 24, 2011.

Krishnamurthy Dvijotham and Emanuel Todorov. Inverse optimal control with linearly-solvable
mdps. In International Conference on Machine learning, 2010.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse rein-
forcement learning. In International Conference on Learning Representations, 2018.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys, 50(2):1–35, 2017.

Rushikesh Kamalapurkar. Linear inverse reinforcement learning in continuous time and space. In
Annual American Control Conference, pp. 1683–1688, 2018.

Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2004.

Amit Kumar, Shrey Kasera, and L. B. Prasad. Optimal control of 2-link underactuated robot manipu-
lator. In International Conference on Innovations in Information, Embedded and Communication
Systems, pp. 1–6, 2017.

Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse reinforcement learning with
gaussian processes. Advances in Neural Information Processing Systems, 24, 2011.

Johan Lofberg. Pre- and post-processing sum-of-squares programs in practice. IEEE Transactions
on Automatic Control, 54(5):1007–1011, 2009.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In International
Conference on Machine learning, volume 1, pp. 2, 2000.

10

Under review as a conference paper at ICLR 2023

Frauke Oldewurtel, Alessandra Parisio, Colin N. Jones, Dimitrios Gyalistras, Markus Gwerder,
Vanessa Stauch, Beat Lehmann, and Manfred Morari. Use of model predictive control and
weather forecasts for energy efficient building climate control. Energy and Buildings, 45:15–27,
2012.

Edouard Pauwels, Didier Henrion, and Jean-Bernard Lasserre. Inverse optimal control with polyno-
mial optimization. In IEEE Conference on Decision and Control, pp. 5581–5586, 2014a.

Edouard Pauwels, Didier Henrion, and Jean-Bernard Lasserre. Linear conic optimization for inverse
optimal control. SIAM Journal on Control and Optimization, 54, 2014b.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in Neural
Information Processing Systems, 1, 1988.

Ryan Self, Michael Harlan, and Rushikesh Kamalapurkar. Online inverse reinforcement learning for
nonlinear systems. In IEEE Conference on Control Technology and Applications, pp. 296–301,
2019.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized path integral control ap-
proach to reinforcement learning. The Journal of Machine Learning Research, 11:3137–3181,
2010.

Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, and Adish Singla. Learner-aware
teaching: Inverse reinforcement learning with preferences and constraints. Advances in Neural
Information Processing Systems, 32, 2019.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
ment learning. arXiv preprint arXiv:1507.04888, 2015.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence, volume 8, pp. 1433–1438,
2008.

QiJie Zou, Haoyu Li, and Rubo Zhang. Inverse reinforcement learning via neural network in driver
behavior modeling. In IEEE Intelligent Vehicles Symposium, pp. 1245–1250, 2018.

A PROPOSED METHOD FOR TIME-DEPENDENT SETTINGS

In this section, we present the triangle inequality and an associated Inverse Optimal Control (IOC)
method in time-dependent settings. Here, we assume that the expert trajectory (x0,u0, t0),..
,(xn−1,un−1, tn−1(= T)) from the initial state x0 and time t0 is observed, where T is the fixed
terminal time and xn−1 is in the terminal state set, xn−1 ∈ XT . We also assume that the dynamics
ẋ = f(x,u, t) is given as a polynomial vector, and the domains of the state and control space,
X and U , are given as compact basic semi-algebraic sets of the form X = {x|gi(x) ≥ 0, i =
1, ...,m}, U = {u|kj(u) ≥ 0, j = 1, ..., l}.

The objective of a time-dependent optimal control problem is to find the control sequence u(·)
that achieves the value function v(t0,x0) from the initial state x0 at the initial time t0. This time-
dependent value function is defined using the time-dependent cost function l(x,u, t) and the fixed
terminal time T . Arguments t,x should satisfy t0 ≤ t ≤ T,x ∈ X . The dynamics ẋ = f(x,u, t) is
allowed to be time-dependent.

v(t,x) = min
u(·)

∫ T

t

l(x(τ),u(τ), τ)dτ

s.t. ẋ = f(x,u, t),x(t) = x, x(T) ∈ XT

(10)

The following HJB equation is derived from the value function (10).

−∂v

∂t
(x, t) = min

u
{l(x,u, t) + ∂v

∂x

T

(x, t)f(x,u, t)} (11)

11

Under review as a conference paper at ICLR 2023

This HJB equation (11) is converted into the following inequality:

L(l, v)(x,u, t) := l(x,u, t) +
∂v

∂x

T

(x, t)f(x,u, t) +
∂v

∂t
(x, t) ≥ 0 (12)

Given the expert trajectory (x0,u0, t0), ..., (xn−1,un−1, tn−1), the baseline method (Pauwels et al.,
2014a), which can deal with time-dependent problems in principle, recovers the cost function using
the following minimization problem (13):

inf l,v,ϵ ϵ+ λ∥l∥1 (13a)
s.t. L(l, v)(x,u, t) ≥ 0,∀(x,u, t) ∈ X × U × [t0, T] (13b)

1

n

n−1∑
i=0

L(l, v) (xi,ui, ti) ≤ ϵ (13c)

v(T,x) = 0,∀x ∈ XT (13d)
A(L(l, v)) = 1 (13e)

To derive the triangle inequality, the following time-dependent reverse value function rv is intro-
duced. Arguments t,x must satisfy t0 ≤ t ≤ T,x ∈ X .

rv(t,x) := min
u(·)

∫ t0

t

−l(x(τ),u(τ), τ)dτ

s.t. ẋ = f(x,u, t),x(t) = x,x(t0) = x0

(14)

Using this reverse value function, the triangle inequality can be derived as follows (constraints
x(t0) = x0, ẋ = f(x,u, t) are omitted from parentheses for simplicity):

v(t0,x0) = min
u(·)

∫ T

t0

l(x(τ),u(τ), τ)dτ (x(T) ∈ XT) (15a)

≤ min
u(·)

∫ T

t0

l(x(τ),u(τ), τ)dτ (x(T) ∈ XT ,x(t) = x) (15b)

= rv(t,x) + v(t,x) (15c)

Equation (15a) represents the total cost of the optimal route from the initial state x0 and time t0.
Equation (15b) indicates that the total cost is greater than or equal to Equation (15a) when there is
an additional constraint to pass through a via-point x at time t. Dividing the integral into two terms
separated at time t, i.e., rv(t,x) and v(t,x), we have Equation (15c). The equality of this triangle
inequality (15) is satisfied when pair (t,x) is on the optimal trajectory.

Moreover, as derived in Appendix B, the HJB equation for the reverse value function is expressed
as an inequality:

RL(l, rv)(x,u, t) := l(x,u, t)− ∂rv

∂x

T

(x, t)f(x,u, t)− ∂rv

∂t
(x, t) ≥ 0 (16)

Using the derived inequalities in Equations (15) and (16), the constraints from (17f) to (17l) can be
derived in the same manner as for the time-independent case. All these derived constraints yield the

12

Under review as a conference paper at ICLR 2023

following constrained optimization problem:

inf
l,v,rv,ϵa,ϵb,ϵc

ϵa + ϵb + ϵc + λ∥l∥1 (17a)

s.t.
-Constraints from the baseline method-

L(l, v)(x,u, t) ≥ 0,∀(x,u, t) ∈ X × U × [t0, T] (17b)
1
n

∑n−1
i=0 L(l, v) (xi,ui, ti) ≤ ϵa (17c)
v(T,x) = 0,∀x ∈ XT (17d)

A(L(l, v)) = 1 (17e)
-Constraints from the introduction of rv-

RL(l, rv)(x,u, t) ≥ 0,∀(x,u, t) ∈ X × U × [t0, T] (17f)
1
n

∑n−1
i=0 RL(l, rv) (xi,ui, ti) ≤ ϵb (17g)

rv(t0,x0) = 0 (17h)
A(RL(l, rv)) = 1 (17i)

rv(T,xn−1) = v(t0,x0) (17j)
-Constraints from the triangle inequality-

v(t,x) + rv(t,x) ≥ v(t0,x0),∀(t,x) ∈ [t0, T]×X (17k)
1
n

∑n−1
i=0 {v(ti,xi) + rv(ti,xi)− v(t0,x0)} ≤ ϵc (17l)

B HAMILTON-JACOBI-BELLMAN (HJB) EQUATION FOR THE REVERSE
VALUE FUNCTION

In this section, we derive the HJB equation for the reverse value function. Considering a small
change in time, ∆t(> 0), the reverse value function (14) can be transformed as follows:

rv(t,x) := min
u(·)

∫ t0

t

−l(x(τ),u(τ), τ)dτ

= min
u(·)

{
∫ t−∆t

t

−l(x(τ),u(τ), τ)dτ +

∫ t0

t−∆t

−l(x(τ),u(τ), τ)dτ}

= min
u(·)

{
∫ t−∆t

t

−l(x(τ),u(τ), τ)dτ + rv(t−∆t,x(t−∆t))}

Application of the Taylor expansion yields the following equation:

= min
u

{l(x,u, t)∆t+ rv(t,x)− ∂rv

∂t
(t,x)∆t− ∂rv

∂x

T

(t,x)f(x,u, t)∆t+ o(∆t)}

Dividing by ∆t and taking the limit ∆t −→ 0 yields the following HJB equation:

0 = min
u

{l(x,u, t)− ∂rv

∂t
(t,x)− ∂rv

∂x

T

(t,x)f(x,u, t)} (18)

The corresponding inequality to this HJB equation (18) is obtained as follows:

RL(l, rv)(x,u, t) = l(x,u, t)− ∂rv

∂t
(t,x)− ∂rv

∂x

T

(t,x)f(x,u, t) ≥ 0

In the time-independent cases, this inequality becomes as simple as:

RL(l, rv)(x,u) = l(x,u)− ∂rv

∂x

T

(x)f(x,u) ≥ 0

13

Under review as a conference paper at ICLR 2023

C PROPOSED METHOD FOR MULTIPLE TRAJECTORIES SETTINGS

In this section, we describe our IOC method in multiple expert trajectories settings. There are k

expert trajectories each indexed by j: {(xj
0,u

j
0, t

j
0),...,(x

j
nj−1,u

j
nj−1, t

j
nj−1)}j=1,...,k, where each

trajectory has nj tuples of state, control and time stamp. The last states {xj
nj−1}j=1,...,k in the

trajectories are assumed to be in the terminal state set XT .

The triangle inequality is derived for each trajectory. So, we define k reverse value functions
{rvj}i=1,...k, each having a different initial state xj

0 in the expert trajectories as a terminal con-
dition. We introduced a modified epsilon relaxation, Equation (19c), to deal with the k trajectories.
Constraints (19f) to (19l) are defined for each trajectory because each trajectory utilizes its specific
reverse value function.

inf
l,v,ϵa,{rvj ,ϵjb,ϵ

j
c}j=1,...,k

ϵa +
∑k

j=1{ϵ
j
b + ϵjc}+ λ∥l∥1 (19a)

s.t.
-Constraints from the baseline method-
L(l, v)(x,u) ≥ 0,∀(x,u) ∈ X × U (19b)
1∑k

j=1 nj

∑k
j=1

∑nj−1
i=0 L(l, v)

(
xj
i ,u

j
i

)
≤ ϵa (19c)

v(x) = 0,∀x ∈ XT (19d)
A(L(l, v)) = 1 (19e)

-Constraints from the introduction of {rvj}j=1,...,k-
RL(l, rvj)(x,u) ≥ 0,∀(x,u) ∈ X × U (j = 1, ..., k) (19f)

1
nj

∑nj−1
i=0 RL(l, rvj)

(
xj
i ,u

j
i

)
≤ ϵjb (j = 1, ..., k) (19g)

rvj(x
j
0) = 0 (j = 1, ..., k) (19h)

A(RL(l, rvj)) = 1 (j = 1, ..., k) (19i)

rvj(x
j
nj−1) = v(xj

0) (j = 1, ..., k) (19j)

-Constraints from the triangle inequality-

v(x) + rvj(x) ≥ v(xj
0),∀x ∈ X (j = 1, ..., k) (19k)

1
nj

∑nj−1
i=0 {v(xj

i) + rvj(x
j
i)− v(xj

0)} ≤ ϵjc (j = 1, ..., k) (19l)

In time-dependent cases, k expert trajectories {(xj
0,u

j
0, t

j
0),...,(x

j
nj−1,u

j
nj−1, t

j
nj−1(= T))}j=1,...,k

share the common terminal time T , and each last state {xj
nj−1}j=1,...,k is in the terminal state set

XT . Initial time tj0 for each trajectory can vary with the assumption tj0 ∈ [t0, T] for some scalar
t0. Using Equation (14), the k time-dependent reverse value functions {rvj}i=1,...k are defined as
having initial time and state tj0,x

j
0 as the terminal condition. Using the time-dependent constraints

derived in Appendix A, the following program is formulated:

14

Under review as a conference paper at ICLR 2023

inf
l,v,ϵa,{rvj ,ϵjb,ϵ

j
c}j=1,..,k

ϵa +
∑k

j=1{ϵ
j
b + ϵjc}+ λ∥l∥1 (20a)

s.t.
-Constraints from the baseline method-

L(l, v)(x,u, t) ≥ 0,∀(x,u, t) ∈ X × U × [t0, T] (20b)
1∑k

j=1 nj

∑k
j=1

∑nj−1
i=0 L(l, v)

(
xj
i ,u

j
i , t

j
i

)
≤ ϵa (20c)

v(T,x) = 0,∀x ∈ XT (20d)
A(L(l, v)) = 1 (20e)

-Constraints from the introduction of {rvj}j=1,...,k-

RL(l, rvj)(x,u, t) ≥ 0,∀(x,u, t) ∈ X × U × [tj0, T] (j = 1, .., k)(20f)
1
nj

∑nj−1
i=0 RL(l, rvj)

(
xj
i ,u

j
i , t

j
i

)
≤ ϵjb (j = 1, ..., k) (20g)

rvj(t
j
0,x

j
0) = 0 (j = 1, ..., k) (20h)

A(RL(l, rvj)) = 1 (j = 1, ..., k) (20i)

rvj(T,x
j
nj−1) = v(tj0,x

j
0) (j = 1, ..., k) (20j)

-Constraints from the triangle inequality-

v(t,x) + rvj(t,x) ≥ v(tj0,x
j
0),∀(t,x) ∈ [tj0, T]×X (j = 1, .., k)(20k)

1
nj

∑nj−1
i=0 {v(tji ,x

j
i) + rvj(t

j
i ,x

j
i)− v(tj0,x

j
0)} ≤ ϵjc (j = 1, .., k) (20l)

D VALUE FUNCTION VISUALIZATION

To understand the benefits of the triangle inequality, we here visualize the value functions estimated
by the baseline and our IOC methods. Figure 6 shows the value functions of OCP 1, estimated by
the baseline IOC method (figures (6a) and (6c)) and our IOC method (figures (6b) and (6d)). We
also examined two settings of the degree of approximation polynomials: degree of 3 (figures (6a)
and (6b)) and 8 (figures (6c) and (6d)). The correct value function of OCP 1 is v(x) = x2

1 + x2
2.

The baseline method and our method exhibited comparable approximations for the value functions
with relatively small polynomial degree of 3 (figures (6a) and (6b)). However, their approximations
were fairly different with a larger polynomial degree of 8 (figures (6c) and (6d)). Although the
correct value function was mirror symmetric along the diagonal line in the two-dimensional state
space and took its minimum at the origin, the baseline method approximated it as asymmetric. This
can be seen as an over-adaptation; because the number of base monomials was relatively large with
the polynomial degree being 8, the baseline method could not approximate well the value function
for the distant region from the observed expert trajectory because of the shortage of constraints to
extrapolate it. This result suggests that our IOC method improves the accuracy of the estimated value
functions by utilizing the additional information from the triangle inequality, particularly when the
number of monomial bases for the approximation is large.

15

Under review as a conference paper at ICLR 2023

(a) Baseline method
degree 3

(b) Proposed method
degree 3

(c) Baseline method
degree 8

(d) Proposed method
degree 8

Figure 6: Visualization of the estimated value functions. The red + marks show the expert trajecto-
ries used by the IOC methods. The correct value function is v(x) = x2

1 + x2
2, which has circular

contours.

E COMPUTATIONAL RESOURCES

All the experiments were performed using a MacBook Pro with 16 GB memory and the R2020b
version of MATLAB. As we described in Section 3 of the main text, we followed the original
method (Pauwels et al., 2014a) to let the inequality hold over the whole domain. In this method,
the inequality constraints are reduced into the class of SOS (sum of squares) polynomials, and
then can be transformed into linear matrix inequalities. Since our new method used the similar
technique to implement the triangle inequality and the inequality from the HJB equation, the number
of constraints further increased, but the computational time did not increase so much, at most three
times that in a single trajectory setting.

We experimentally evaluate the computational resources in this section. Table 2 lists the mean
computational time for estimating the cost function in OCP 1 and its standard deviation over 10
trials. Each column represents the degree of approximation polynomials. As shown in the degree 8
column in Table 2, the computational time required for our IOC method was 2.68 times longer than
that of the baseline method.

Table 2: Computational time (sec) in the single expert trajectory setting

degree 4 5 6 7 8

Baseline method 1.05±0.03 1.44±0.04 2.67±0.06 4.47±0.24 9.37±0.59
Proposed method 2.04±0.10 2.88±0.07 5.57±0.18 9.47±0.25 25.12±1.79

In the multiple expert trajectories setting, the computational time for the baseline and our IOC
methods increases with the number of trajectories. The computational time for these IOC methods
was compared using OCP 1 with the approximation polynomial degree being 4 throughout this
experiment. Table 3 lists the mean computational time and its standard deviation over 10 trials.
Each column represents the number of expert trajectories. While the computational time for our
IOC method increased almost linearly with the number of expert trajectories, that for the baseline
method showed a small increase.

We consider this larger increase in our IOC method was caused by the additional constraints im-
plemented for each trajectory. Since the number of constraints for HJB equations and triangle in-
equalities increased linearly with the number of expert trajectories, the computational time increased
almost linearly as well.

Table 3: Computational time (sec) in the multiple expert trajectories setting

#trajectories 2 4 6 8 10

Baseline method 1.25±0.08 1.57±0.08 1.83±0.04 2.20±0.09 2.51±0.10
Proposed method 3.69±1.48 5.85±0.28 8.43±0.27 11.35±0.30 14.42±0.32

16

Under review as a conference paper at ICLR 2023

F EXPERIMENTAL DETAILS OF A 2-LINK MANIPULATOR IMITATION

F.1 EXPERIMENTAL DETAILS

This section describes the details of the experiment presented in Section 4.4. Equation (21) repre-
sents the dynamics of a 2-link manipulator (Kumar et al., 2017) used in this study.

[
M11 M12
M21 M22

] [
θ̈1
θ̈2

]
+

[
H1
H2

]
+

[
G1
G2

]
=

[
τ1
τ2

]
M11 = m1l

2
a1 +m2

(
l21 + l2a2 + 2l1la2 cos θ2

)
+ I1 + I2

)
M12 = M21 = m2

(
l2a2 + l1la2 cos θ2

)
+ I2

M22 = m2l
2
a2 + I2

H1 = −m2l1la2 sin θ2θ̇
2
2 − 2m2l1la2 sin θ2θ̇2θ̇1

H2 = m2lm1l2 sin θ2θ̇21
G1 = (m1la1 +m2l1) g cos θ1 +m2la2g cos (θ1 + θ2)

G2 = m2la2g cos (θ1 + θ2)

(21)

The state space was four-dimensional as x = (θ1, θ2, θ̇1, θ̇2), where θ1 and θ2 are angles of the two
joints of the manipulator. The control space was two-dimensional as u = (τ1, τ2), i.e., the torques
applied to the two joints.

The parameters of the manipulator are shown in Table 4.

Table 4: Parameters of a 2-link manipulator

m1(Kg) m2(Kg) I1(Kg/m2) I2(Kg/m2) la1(m) la2(m) l1(m) l2(m) g(m/s2)

1 1 1/12 1/3 1/2 1 1 2 0

The nonpolynomial dynamics was approximated by applying the Taylor expansion around
[θ1, θ2, θ̇1, θ̇2, τ1, τ2] = [−π/2, π/2, 0, 0, 0, 0] up to the second order.

Expert trajectory was given by the following equations:

θ1(t) =

{
96πt5 − 120πt4 + 40πt3 − 3π/4 (0 ≤ t < 1/2)

−96π(t− 0.5)5 + 120π(t− 0.5)4 − 40π(t− 0.5)3 − π/4 (1/2 ≤ t ≤ 1)

θ2(t) =

{
−96πt5 + 120πt4 − 40πt3 + 3π/4 (0 ≤ t < 1/2)

96π(t− 0.5)5 − 120π(t− 0.5)4 + 40π(t− 0.5)3 + π/4 (1/2 ≤ t ≤ 1)

(22)

Equation (22) was designed to perform back-and-forth control between the two angles, (θ1, θ2) =
(−3π/4, 3π/4) and (θ1, θ2) = (−π/4, π/4). The velocity and acceleration at each angle were 0.
Obviously, the cost function associated with the expert trajectory given by Equation (22) is time-
dependent.

The imitation behaviors were produced by solving the OCP with the following settings: 1) the cost
function estimated by IOC with the approximated dynamics, 2) the initial and terminal states set to
(θ1, θ2, θ̇1, θ̇2) = (−3π/4, 3π/4, 0, 0), and 3) the correct dynamics (21).

F.2 ADDITIONAL EXPERIMENT

As shown in Section 4.4, our method based on the triangle inequality successfully imitated the expert
behaviors. As an additional experiment, we compared the baseline and our IOC methods in terms

17

Under review as a conference paper at ICLR 2023

of imitation performance with various settings of the hyper-parameter λ. During this experiment,
the degree of approximation polynomials was consistently set at 4 to keep the computation time
feasible.

Table 5: Squared errors of imitation trajectories

λ 10−2 10−4 10−6 10−8 10−10

Baseline method 23.71 36.65 30.09 9.46 9.46
Proposed method 19.11 15.58 11.02 6.01 6.01

Table 5 presents the squared error between the expert’s and mimicker’s control trajectories. Both
methods performed well for a smaller setting of the hyper-parameter λ, and our method could imitate
the expert’s behaviors more accurately than the baseline method with every setting of λ. Figure
5 displayed the case of the smallest error in Table 5, i.e., that by our new IOC algorithm with
λ = 10−10.

G SENSITIVITY TO NOISES

Most IOC methods, including the baseline (Pauwels et al., 2014a) and our method, assume that
the demonstrated trajectories are optimal, i.e., the solutions of OCP. Here, we examined how well
our IOC method works, when this optimality is not fully satisfied; in particular, we applied our
IOC method to a situation in which there was a single expert trajectory that had been disturbed by
observation noise. As an experimental setup, we re-used the setup for OCP1 with a single expert tra-
jectory setting (Figure (2a) in the main text), but we applied two modifications: 1) the random noise
from the uniform distribution of [−0.05.0.05] was added to each state and control signal along the
expert trajectory, and 2) the initial state was sampled from the uniform distribution of [−0.95, 0.95]
for each coordinate instead of [−1, 1] to ensure the noisy trajectory stayed in the domain X . Fig-
ure 7 shows the accuracy of the estimated cost function over ten trials with this setting. Our IOC
method estimated the cost function more accurately than the baseline method even when the expert
trajectory included observation noise.

Figure 7: Normalized errors by the two IOC methods for various degrees of approximation polyno-
mials. The lines and error bars denote the mean and standard error over ten trials.

18

	Introduction
	Background
	Optimal control theory
	Inverse optimal control with polynomial optimization

	Inverse optimal control with triangle inequality
	Triangle inequality
	Implementation of the triangle inequality

	Experimental results
	Experimental settings
	Accuracy of the estimated cost functions
	Imitation learning of time-dependent controls
	Imitation learning in a complex dynamics

	Discussion
	Proposed method for time-dependent settings
	Hamilton-Jacobi-Bellman (HJB) equation for the reverse value function
	Proposed method for multiple trajectories settings
	Value function visualization
	Computational resources
	Experimental details of a 2-link manipulator imitation
	Experimental details
	Additional experiment

	Sensitivity to noises

