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Abstract
The widespread online communication in a001
modern multilingual world has provided op002
portunities to blend more than one language003
(aka codemixed language) in a single utter004
ance. This has resulted a formidable chal005
lenge for the computational models due to006
the scarcity of annotated data and presence007
of noise. A potential solution to mitigate the008
data scarcity problem in lowresource setup is009
to leverage existing data in resourcerich lan010
guage through translation. In this paper, we011
tackle the problem of codemixed (Hinglish012
and Bengalish) to English machine translation.013
First, we synthetically develop HINMIX, a014
parallel corpus of Hinglish to English, with015
~5M sentence pairs. Subsequently, we pro016
pose JAMT, a robust perturbation based joint017
trainingmodel that learns to handle noise in the018
realworld codemixed text by parameter shar019
ing across clean and noisy words. Further, we020
show the adaptability of JAMT in a zeroshot021
setup for Bengalish to English translation. Our022
evaluation and comprehensive analyses quali023
tatively and quantitatively demonstrate the su024
periority of JAMT over stateoftheart code025
mixed and robust translation methods.026

1 Introduction027

Recent explosion of digital communication around028

the world has been marked by the growing use of029

informal language in online conversations. These030

conversations often feature the use of words and031

phrases from multiple languages back and forth032

into a single utterance: a phenomenon referred to033

as codemixing (CM) or codeswitching (Myers034

Scotton, 1993, 1997; Duran, 1994). Codemixing035

has become a standard practice both as a form of036

speech and text in multilingual communities such037

as HindiEnglish, SpanishEnglish, Cantonese038

Sanghaiese, etc., where people subconsciously al039

ter between languages. Building upon this promi040

nent use, it is imperative to model NLP systems for041

codemixed technologies.042

Traditionally, researchers have investigated the 043

linguistic properties and grammatical structures 044

of codemixed languages (Poplack, 1978; Pfaff, 045

1979; Joshi, 1982). However, a few recent stud 046

ies explored computational models for codemixed 047

languages in various domains such as Automatic 048

Speech Recognition (ASR), Text to Speech (TTS), 049

Sentiment Analysis, etc. (luo; Sitaram et al., 2019; 050

Patwa et al., 2020). Due to the unavailability of 051

annotated data, codemixing in the domain of text 052

remains vastly unexplored. With no official ref 053

erences of CM text in books and articles, online 054

social networks (OSNs) remain the only source of 055

mixed data collection. Further, the realworld un 056

structured text is highly susceptible to typograph 057

ical errors and misspellings. These mistakes be 058

come more prevalent when languages written in 059

nonromanized scripts such as Hindi, Japanese, etc. 060

are adopted to codemixed scenarios as each word 061

in the originating script can be mapped to multi 062

ple probable transliterations. The problem is exac 063

erbated by the multilingual nature of online code 064

mixed content, making it essential to understand 065

CM concerning a common language. 066

In order to circumvent all these challenges, 067

we propose robust codemixed translation using 068

a joint learning model, named Joint Adversarial 069

Machine Translation (JAMT). Neural Machine 070

Translation (NMT) models have become stateof 071

theart in sequencetosequence tasks (Sutskever 072

et al., 2014; Bahdanau et al., 2015). At the root 073

of this advancement are two interrelated issues: (i) 074

NMT models need a vast amount of parallel data 075

for satisfactory performance; and (ii) NMTmodels 076

are brittle to even a slight amount of input noise 077

(Belinkov and Bisk, 2018). First, to handle the 078

scarcity of codemixed parallel data, we construct 079

a synthetic HinglishEnglish dataset by leveraging 080

a bilingual HindiEnglish (HiEn) corpus. For this, 081

we identify various grammatical and semantic pat 082

terns in the continuous switching of two languages 083
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and formulate a general pipeline for creating a syn084

thetic codemixed corpus. The generated parallel085

data is then passed through an adversarial mod086

ule that injects different types of naturally occur087

ring adversarial perturbations to generate a source088

side noisy version of the codemixed dataset. In089

spired by multilingual NMT models, we train a090

joint model for translation of clean and noisy CM091

text to make the codemixed translation robust to092

noisy input. Our experiments show that by jointly093

training both noisy and clean text in a multilingual094

setting, the model can encode diverse lexical vari095

ations of codemixed words into the shared rep096

resentation space; thereby, substantially improv097

ing the translation quality. Additionally, the need098

of a parallel CM corpus for every new language099

pair limits the applicability of NMT models for100

codemixed translation. Further, the availability101

and accuracy of language specific POStaggers,102

translation dictionaries, filtering tools become piv103

otal for building a synthetic CM corpus. To ease104

this challenge, we propose zeroshot codemixed105

translation, where a bilingual BengaliEnglish (Bn106

En) parallel corpus is trained along with a code107

mixed HindiEnglish parallel corpus. This way,108

the model learns to adapt to the multilingual sce109

nario and translate Bengali CM text to English.110

Precisely, the contributions of our work are sum111

marized below:112

• We propose a novel JAMT model for effec113

tively translating realworld noisy codemixed114

sentences to English.115

• We release HINMIX, the first largescale116

Hinglish CodeMixed parallel corpus consist117

ing of ~5M parallel sentences.118

• We manually annotate 2787 gold standard CM119

sentences for the evaluation.120

• We explore ZeroShot CodeMixed Transla121

tion for Bengali codemixed to English trans122

lation without any parallel corpus.123

• Through experiments and analysis, we demon124

strate that JAMT significantly outperforms the125

previous stateoftheart CMand robustMT ap126

proaches.127

2 Related Work128

In the past, various linguists (Verma, 1976; Joshi,129

1982; Singh, 1985) studied the phenomena of CM130

and intrasentential codeswitching. The ubiqui131

tous usage of CM in daytoday spoken conver132

sations and online written content coupled with133

the success of large supervised NLP systems in 134

downstream classification and sequence genera 135

tion tasks such as POS tagging, sentiment analysis, 136

speech recognition, and translation brings up the 137

necessity to generate labeled CMdatasets. In 2018, 138

Dhar et al. (2018) initiated the effort to create a 6K 139

pair goldstandard HindiEnglish CM dataset. Fol 140

lowing this, synthetic CM data generation meth 141

ods by utilizing parse trees (Pratapa et al., 2018), 142

alignment learning (Rizvi et al., 2021) and copy 143

mechanism (Winata et al., 2018) were proposed. 144

Recently, Gupta et al. (2020, 2021) explored the 145

linguistic properties to automatically generate CM 146

sequence without parallel corpus by employing 147

NMT models such as pointer generator (See et al., 148

2017) and pretrained mBERT (Devlin et al., 2019). 149

The presence of annotated codemixed data does 150

not ease the target task due to the extensive amount 151

of typos, slang, and phonetic variations in the data; 152

thus, making it implausible to overlook the robust 153

ness against noise of existing solutions. Several 154

approaches (Belinkov and Bisk, 2018; Karpukhin 155

et al., 2019; Passban et al., 2020) have studied the 156

robustness of the model with respect to the dataset 157

and training procedure. Cheng et al. (2018, 2020) 158

adopted an adversarial stability training objective 159

to build a perturbationinvariant encoder. Some 160

of the recent works (Sato et al., 2019; Park et al., 161

2020) also adopted the regularization procedure 162

for the adversarial effectiveness of NMT models. 163

Although these schemes satisfy the robustness cri 164

teria of an NMT model, the nature of noise in the 165

CM language largely remains unexplored. 166

Our proposed work is motivated by the gap in re 167

search to build an allinclusive codemixed transla 168

tion system that handles the diverse switching na 169

ture in CM communities and is robust to any kind 170

of CM noise. Furthermore, JAMT can translate 171

multiple languages without the necessity to cre 172

ate individual CM datasets. The following section 173

elaborates upon the methodology adopted to build 174

the dataset and satisfy the mentioned criterion. 175

3 Dataset 176

In this section, we describe the pipeline used to 177

create HINMIX utilizing IITB EnglishHindi par 178

allel corpus (Kunchukuttan et al., 2018). HINMIX 179

consists of HindiEnglish CM parallel pairs gen 180

erated using two strategies – alignmentbased and 181

translationbased. 182
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Figure 1: Pipeline of codemixed data generation.

CodeMixed Generation: Matrix Language183

Frame (MLF) model (MyersScotton, 1997)184

argues that the syntactic and morphological struc185

ture of any codeswitch utterance comes from186

a Matrix Language (Lm) which borrows words187

from the Embedded Language (Le). Following188

this theory, we characterize the asymmetric (Joshi,189

1982) nature of intrasentential codemixing in190

Indian languages. After performing a linguistic191

study on a large number of CM tweets collected192

from Twitter, we conclude that the regional193

language acts as the base language Lm, and194

words are borrowed from English Le for switch195

ing in the urban usage of hybrid text in Indian196

languages. Given a sourcetarget sentence pair197

S ∥ T , we generate the synthetic codemixed198

data by substituting words in the matrix language199

sentence with the corresponding words from the200

embedded language sentence. Figure 1 explains201

the codemixed data generation pipeline.202

Candidate Word Selection: We select proper203

nouns (NNP, NNPC, NNPS), common nouns (NN,204

NNC, NNS), adjectives (JJ), and quantifiers (QC,205

QCC, QO) to be part of an inclusion list I . All206

words whose POS tag belongs to the inclusion207

list are potential candidates for codeswitching (c.f.208

appendix for detail).209

Building Substitution Dictionary: Once the210

corpus is POStagged and candidate words are211

shortlisted, the substitute words fromLe need to be212

determined. We propose two approaches to build213

a substitution dictionary:214

1. Translation Based: In any codeswitch commu215

nity, there is a code choice that is more fa216

vorable than other potential choices (Myers217

Scotton, 1997). For example, a regular Hindi218

user would routinely use the English word219

“help” than the word “assist” due to its com 220

mon usage. Moreover, NMT models show a 221

similar property of memorizing commonly seen 222

words in the corpus (Luong et al., 2015). Uti 223

lizing this correlation, we prepare a dictionary 224

by training an HiEn NMT model followed by 225

contextindependent wordbyword translation 226

using the trained model. This method ensures 227

a prevalent and consistent codemixed vocabu 228

lary in the dataset. 229

2. Alignment Based: In this approach, an align 230

ment model is trained between a source and tar 231

get corpus to learn wordlevel correspondence 232

between each parallel sentence. We use the 233

fastalign (Dyer et al., 2013) symmetric align 234

ment model to obtain the sourcetarget align 235

ment matrix. Next, a substitution dictionary 236

for each sentence is obtained, consisting of 237

only words with onetoone sourcetarget map 238

ping. This approach allows us to deal with the 239

wordsense ambiguity problem by substituting 240

contextdependent foreign words in each sen 241

tence, thereby forming a diverse set of code 242

mixed vocabulary in the corpus. 243

For each sentence S ∥ T in corpus, two substitu 244

tion dictionaries are formed corresponding to the 245

two approaches. 246

Language Switching: It might appear that the 247

decision to switch a word is a binary choice and 248

that every word in Lm can be replaced from the 249

set of potential substitute words. However, the 250

switching paradigm in a codemixed utterance de 251

pends upon a range of factors such as the lexical 252

information available with the speaker, their rel 253

ative fluency and cognitive control in either lan 254

guage, speaker’s intention to switch, and most im 255

portantly, the intrinsic structure of involved lan 256

guages (Kroll et al., 2008). Hence, instead of sub 257

stituting every candidate word and generating a 258

single codemixed sentence, we follow a random 259

ized wordselection and filtering method to obtain 260

multiple CM combinations of a single source sen 261

tence. Table 1 shows multiple generated Hindi 262

codemixed (Hic) sentences for a single sample 263

using translation (T) and alignment (A) based ap 264

proaches. To illustrate the need for sentence filter 265

ing, we rank from 1 to 5 (higher is better) to evalu 266

ate the quality of these CM sentences. 267

• Word Selection: Given that there can be 2r − 1 268

CM combinations in a sentence of r candidate 269

words – computationally expensive for large r, 270
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En The tendency to give physical training to
the whole society resulted in many disas
trous consequences. Rank ↑

Hi समस्त समाजको शारीिरक प्रिशक्षण देने के कारण
बहुत से बुरे पिरणाम हुए।

A whole समाज को physical training देने के
कारण बहुत से बुरे पिरणाम हुए।

3

A whole society को physical training देने के
कारण बहुत से बुरे consequences हुए।

5

T/A समस्त society को physical training देने के
कारण बहुत से बुरे पिरणाम हुए।

5

T all societyको शारीिरक training देने के cause
बहुत से evil results हुए।

2

T समस्त society को physical training देने के
कारण बहुत से बुरे results हुए।

4

Table 1: Sample of generated Hindi codemixed (Hic)
sentences using translation (T) and alignment (A) ap
proach. Rank (↑) defines the quality assessment by hu
mans.

we adopt a set of heuristics (details in appendix)271

to limit the CM sentences to be generated.272

• Sentence Filtering: To further narrow down the273

selection pool and incorporate language struc274

tures of bilingual languages into synthetic CM275

sentences, we use a combination of probabilistic276

and deterministic NLP evaluation metrics.277

1. We use an unsupervised crosslingual278

XLM (Conneau and Lample, 2019) model279

to calculate the perplexity of CM sentences.280

We observe a good correlation between the281

fluency of the CM sentence and its perplexity,282

even when provided with Devanagari Hindi283

and English text in a single CM sentence.284

2. We employ codemixed specific measures285

such as CodeMixing Index (CMI) (Gambäck286

and Das, 2016) and Switch Point Fraction287

(SPF) (Gupta et al., 2020) to select sentences288

between a certain threshold, details of which289

are discussed in Section 5.290

Figure 2 shows the generated CM sentences from291

both methods for a single sample. This forms292

our two codemixed parallel datasets CTRANS and293

CALIGN from translation and alignment meth294

ods respectively with Hindi (Devanagari)English295

CM pairs: HicEn. Finally, for each case, we296

use Google Transliterate API1 to produce the ro297

manized version r of the CM parallel corpora –298

HicrEn. In total, we obtain ~4.9M and ~4.2M299

parallel sentences using the translation and align300

ment strategies, respectively. A detailed statistics301

1https://developers.google.com/
transliterate/v1/getting_started

DEMPOS tag

safety certificate reliable security certificate trusted

सुर�ा
(suraksha)

�माणप�
(pramaanapatr)

िव�सनीय
(vishvasaneey)

NN NN JJ RB VM

यह
(yah)

सुर�ा
(suraksha)

�माणप�
(pramaanapatr)

िव�सनीय
(vishvasaneey)

नही ं
(nahin)

है
(hai)

This security certificate is not trustedEn

Hi

यह security certificate trusted नही ंहै।

Translation Alignment

।
(.)

SYM

yah safety certificate reliable nahin hai. yah security certificate trusted nahin hai.
यह safety certificate reliable नही ंहै।

.

Figure 2: An example showing the process of code
mixed sentence generation using both method.

of the dataset is presented in appendix. 302

4 Joint CodeMixed Translation 303

In this section, we describe our approach for ro 304

bust translation of codemixed sentences to En 305

glish. We apply a languagefree SentencePiece2 306

tokenizer with a unigram subword model (Kudo, 307

2018) to generate a vocabulary directly from the 308

raw text. The obtained synthetic CM text is then 309

passed through an adversarial module to generate 310

a noisy CM corpus. Subsequently, the clean and 311

noisy corpora are simultaneously trained using the 312

proposed JAMT model. A highlevel architectural 313

diagram of JAMT is illustrated in Figure 3. 314

Architecture: Inspired by the success of mul 315

tilingual models, we leverage a sequenceto 316

sequence joint learning framework to translate 317

codemixed sentences to English. Unlike NMT 318

models trained on a single language pair for one 319

direction, the joint model consists of a single en 320

coder and a decoder for different corpora (code 321

mixed/romanized/noisy) and directions allowing 322

them to simultaneously learn useful information 323

across language boundaries. For training the joint 324

model from multiple sources to multiple targets 325

(manytomany), a proxy token for the target lan 326

guage is inserted at the beginning of the source sen 327

tence, indicating the intended target at the decod 328

ing stage as shown in Figure 3. 329

Training Objective: The joint model is trained 330

to optimize the sum of categorical crossentropy 331

(CE) loss with label smoothing (Szegedy et al., 332

2https://github.com/google/
sentencepiece
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Shared Encoder

Unigram Tokenization

Zero-Shot CMTTask-Specific Source Task-Specific Target

Shared
embeddings

Positional
embeddings

Zero-Shot CMT

<Hicr> 2En h1 hn

z<En> 2Hicr ene1

<Bnr> 2En x1 xn

<En> 2Bnr e1 en

<En> e1 en

<Bnr> x1 xn

<En> e1 en
...

...

...

...

...

<Hicrn> 2En h'1 h'n...

...

...
<En>

<Hicr> h1 hn...

Shared Decoder

Unigram Tokenization

e1 en...

Robust CMT Robust CMT

Figure 3: Architecture of our proposed JAMT model. Here, Hi, En, and Bn represent Hindi, English, and Bengali
language, respectively. The subscripts c, r, and n are used to denote codemix, romanized, and noisy version of a
dataset. The first token [2T ] in the encoder input indicates the intended target language T followed by tokens in
the source language S. The target tokens are passed to the decoder sequentially for model training.

2016) across all language pairs. As our code333

mixed datasets are synthetically prepared by re334

placing words using the matrix language frame335

work (MyersScotton, 1997), learning the model336

directly using the CE loss would tend to memorize337

the labels for incorrect source tokens and degrade338

the model performance. Therefore, we adopt label339

smoothing to train our proposed model.340

AdversarialModule: The transliteration of non341

roman languages depends upon the phonetic tran342

scription of each word, varying heavily with the343

writer’s interpretation of involved languages. With344

no consistent spelling of a word, it becomes cru345

cial to simulate the realworld variations and noise346

for the practical application of any CMT model.347

Hence, we propose to learn robust contextual rep348

resentations by distorting the available clean cor349

pora with wordlevel adversarial perturbations as350

follows (c.f. appendix for detail):351

• Switch: “t r a n s f e r” vs “t r a s n f e r”352

• Omission: “a m a z i n g” vs “a m z n g”353

• Proximity typo: “m o b i l e” vs “m o v i l e”354

• Random Shuffle: “l a p t o p” vs “l o p t a p”355

We inject 30% switch, 12% omission, 12% typo,356

and 5% shuffle noise to Hicr to produce a 60%357

wordlevel noisy codemixed corpus HicrnEn.358

Both clean (HicrEn) and noisy (HicrnEn) cor359

pora are further used to train a joint model, which360

is described in the next subsection.361

4.1 Robust Codemixed MT (RCMT)362

To capture the contextdependent lexical variations363

between the noisy and clean corpora, we formu364

late the crosslingual translation setting to the code365

mixed scenario, referred to as Robust CodeMixed 366

Translation (RCMT). For this, we jointly train a 367

transformer model in three directions (RCMT1) 368

– bidirectional HindiEnglish using clean code 369

mixed romanized corpus (Hicr⇀↽En) and Hindi 370

to English using noisy codemixed romanized cor 371

pus (Hicrn→En), where c,r, and n represent the 372

codemixed, romanized, and noisy versions of a 373

dataset, respectively. 374

When a pair of a sentence from Hicr and Hicrn 375

are tokenized through the unigram model, the sub 376

words tokens of both sentences would contain sub 377

stantial amount of overlap due to the joint vocab 378

ulary. Any noise due to lexical, phonetic, or or 379

thographic variations only perturbs the word at 380

the character level, thereby obtaining similar sub 381

words to some extent. Further, when translating 382

two different sentences to the same target language, 383

the joint model would learn the relationship be 384

tween those subwords by utilizing their same syn 385

tactic and semantic properties. Therefore, the non 386

canonical nature of noisy text would benefit from 387

the strong implicit supervision of clean sentences 388

even when they are morphologically dissimilar. 389

Since both noisy and clean corpora follow the 390

same origin (Devanagari Hindi), we also experi 391

ment with the robustness capabilities of JAMT by 392

adding two nonromanized codemixed directions 393

in RCMT1, representing it as RCMT2: Devanagari 394

Hic⇀↽En. This modification would enable JAMT 395

to better handle the dependencies among Devana 396

gari and romanized characters besides minimizing 397

the morphological ambiguity across sentences. 398
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4.2 Zeroshot Codemixed MT (ZCMT)399

The previous robust CMT approach uses the lin400

guistic and lexical similarity of the corpora to401

learn robust representations effectively. However,402

to adapt codemixed machine translation for any403

other language pair (e.g., Bengalish ⇀↽ English),404

we need a codemixed parallel corpus for the same,405

which is often unavailable. Therefore, to negate406

the limitation of data scarcity, we propose a zero407

shot transfer learning approach for codemixed408

translation for another language pair. In this ap409

proach, we use the previously generated CM cor410

pora to exploit the transfer learning characteristic411

of crosslingual models for codemixed translation412

in an unseen pair. The idea is to utilize the existing413

noncodemixed parallel corpus of language l1 and414

a codemixed parallel corpus of language l2 for the415

translation of codemixed sentences of l1. To this416

end, we train JAMTwith BengaliEnglish (BnEn)417

and HinglishEnglish (HicrEn) parallel corpora.418

Subsequently, the trained model is employed to419

convert a Bengalish sentence to English. We ar420

gue that the trained model would be able to trans421

fer the codemixing behaviour onto the network ac422

tivations in a zeroshot way. We choose Bengali423

(Bn) due to the availability of both BnEn large424

parallelcorpora (Hasan et al., 2020) and Bengali425

codemixed test set BncEn (Gupta et al., 2021).426

The following language pairs are used to train the427

Zeroshot CM Translation (ZCMT) model:428

• Codemixed Hindi to English: Devanagari429

Hic⇀↽En, romanized Hicr⇀↽En, noisy ro430

manized Hicrn→En.431

• Bengali to English: romanized Bnr⇀↽En and432

EasternNagari Bn⇀↽En.433

5 Experiments and Results434

Depending upon the dataset and language pair, we435

evaluate JAMT on different tasks and configura436

tions. Due to the unavailability of goldstandard437

codemixed parallel test data, we limit our evalu438

ation to two languages: Hindi (Hi) and Bengali439

(Bn), described as follows: HiEn: We utilize the440

test and dev sets from WMT 2014 EnHi shared441

task (Bojar et al., 2014). Two annotators who442

were fluent bilingual speakers of Hindi and En443

glish were asked to annotate the Hindi sentences444

to Hinglish manually. This goldstandard HiEn445

codemixed data consists of 280 (dev) and 2507446

(test) CM utterances. BnEn: For testing our447

ZCMTmodel, we make use of the Spoken Tutorial448

BnEn CM test set released by Gupta et al. (2021). 449

This data3 consists of 28K utterances transcribed 450

from courses related to engineering, programming, 451

etc. We randomly selected 500 and 2000 sentences 452

as the dev and test sets, respectively. We com 453

pute SacreBLEU (Ott et al., 2019) andMETEOR 454

(Banerjee and Lavie, 2005) to evaluate the quality 455

of the translation. 456

Baselines: We conduct experiments with multi 457

ple CM and robust MT baselines for fair com 458

parison of our JAMT approach: • TFM: We 459

employ a vanilla Transformer with the same hy 460

perparameters as JAMT for each configuration. 461

• FCN: Following Gehring et al. (2017), we adapt 462

seq2seq fully convolutional network for Robust 463

CMT task. • mT5: Xue et al. (2021) put forward 464

a “spancorruption” objective to pretrain a mas 465

sive multilingual masked LM for sequence gen 466

eration. • mBART: Liu et al. (2020b) used a 467

seq2seq denoisingbased autoencoder pretrained 468

on a large commoncrawl corpus. •MTNT: Vaib 469

hav et al. (2019) proposed to enhance the robust 470

ness of MT on the noisy text by pretraining an 471

LSTM model with a clean corpus and finetuning 472

it on noisy artificial data. • MTT: Zhou et al. 473

(2019) presented a Multitask Transformer for ro 474

bust MT that uses dual decoders, one to generate 475

the clean text and another to provide the transla 476

tion given the noisy input. • AdvSR: Park et al. 477

(2020) introduced an adversarial subword regular 478

ization scheme for onthefly selection of diverse 479

subword segmentation in a sequence resulting in 480

characterlevel robustness of an NMT model. 481

Codemixed MT Results: Seq2Seq models 482

such as transformers (TFM) and convolutional 483

attention networks (FCN) have become the 484

defacto standard to evaluate MT systems (Liu 485

et al., 2020a; Wu et al., 2019). Following their 486

competitive performance in codemixed transla 487

tion tasks (Nagoudi et al., 2021; Appicharla et al., 488

2021; Dowlagar and Mamidi, 2021), we train 489

individual models in each direction (Hic→En, 490

Hicr→En, Hicrn→En) for both the CTRANS 491

and CALIGN datasets. Table 2 shows the superior 492

performance of the transformer (TFM) over FCN 493

with an average improvement of +2.47 & +2.68 494

BLEU scores across CM (c,c+ r) and robust 495

CM (c+r+n) translation models, respectively. 496

3https://github.com/shruikan20/
SpokenTutorialDataset
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Model
CTRANS CALIGN

c c+ r c+ r+ n c c+ r c+ r+ n
B M B M B M B M B M B M

TFM 9.35 36.2 9.18 35.0 5.46 27.3 9.97 39.7 10.02 36.2 9.70 37.4
FCN 6.62 27.8 6.04 27.4 4.10 22.6 7.89 33.2 8.07 33.1 5.69 27.5
mT5 4.30 23.4 3.83 23.5 2.06 16.6 4.27 22.6 4.28 25.9 2.80 19.5

mBART 6.72 34.3 5.51 30.1 2.80 22.0 5.38 29.5 7.07 35.7 3.19 21.7
MTT     8.93 34.0     10.44 38.0
MTNT   6.76 29.8 4.26 22.3   8.48 35.1 5.92 28.0
AdvSR   6.64 30.5 2.62 19.1   9.63 36.7 7.28 32.7
RCMT1   12.91 43.0 10.25 37.7   13.58 45.7 11.54 41.5
RCMT2 13.07 44.0 12.83 43.0 9.79 36.9 13.81 46.2 13.72 45.7 11.3 40.8

Table 2: Baseline comparison of RCMT1 and RCMT2 from Hindi to English on CTRANS and CALIGN datasets.
Here, c, r, and n denote codemix, romanized, and noisy version of a dataset. (B: SacreBLEU and M: METEOR)

Moreover, a substantial gain of +3.31B, +7.25M497

score (on avg.) over TFM is observed on the noisy498

corpus (Hicrn→En) when it is trained simulta499

neously with the clean corpora (Hicr⇀↽En) in500

RCMT1. Furthermore, the inclusion of Devana501

gari codemixed (Hic⇀↽En) in RCMT2 improves502

codemixed performance; however, it does not503

provide additional support in the robustness of504

the system. Also, for Hic → En, JAMT shows505

stronger results than the TFM model even when506

the Devanagari subwords are not shared with507

any other pair. We hypothesize that training508

on a common target En enables the encoder to509

learn overlapping representations for all inputs510

(Hic,Hicr,Hicrn), thereby reducing the effect511

of script variation and reinforcing the same family512

correlation.513

Previous works in CMT have primarily relied on514

largescale multilingual models such as mBART515

and mT5 (Xue et al., 2021; Liu et al., 2020b; Gau516

tam et al., 2021; Jawahar et al., 2021). For com517

parison, we adopt the existing approach by fine518

tuning mT5small and mBARTmodels on our CM519

datasets. Table 2 (row3 and row4) highlights the520

codemixed performance on these finetuned mod521

els. Surprisingly, the romanized codemixed MT522

(c+ r) demonstrates comparable METEOR per523

formance with +1.35% improvement over its De524

vanagari counterpart (c), even though the roman525

izedHindi text is seen only during finetuning. Con526

clusively from Table 2, these transfer learning ap527

proaches still lag behind JAMT, especially in ro528

bust CMT as the pretrained procedure did not in529

volve any kind of codemixed data. However, it530

gives us a direction to explore by incorporating531

such CM data in the pretraining steps.532

Robust MT Results: In order to corroborate 533

the robustness capabilities of RCMT models, we 534

test three categories of noiserobust MT models 535

as baselines, namely MTT, MTNT, and AdvSR. 536

Among these, MTT proves to be most resilient 537

to synthetic noise with 1.21 BLEU decrease from 538

RCMT1 as it uses a dual decoding scheme to 539

jointly maximize clean text and the translated text. 540

Yet, this improvement comes at the cost of in 541

creased model size to allocate parameters for sec 542

ond decoder module. On the other hand, JAMT has 543

the capability to adapt to any number of pairs with 544

out increasing the model size. The AdvSR model, 545

trained exclusively on noisy corpus, yields better 546

performance on CALIGN dataset than the MTNT 547

model, which is trained on clean corpusHicr→En 548

and finetuned on the noisy corpus Hicrn→En. 549

However, in CTRANS, AdvSR reports inferior 550

performance against MTNT, possibly due to the 551

onthefly segmentation method that is unable to 552

handle lexical differences for similar codemixed 553

words in source sentences when translated in dif 554

ferent ways depending on the context. In compar 555

ison, without changing the training procedure or 556

scaling the parameters, JAMT achieves the best ro 557

bustness to noise with an avg BLEU score of 10.89 558

against 9.68 of the best baseline (MTT). 559

Zeroshot MT Results: A good way to lever 560

age the crosslingual transfer property of multi 561

lingual models is to incorporate CM behaviour 562

learned from one codemixed language to an 563

unseen codemixed language. Table 3 shows 564

the effectiveness of zeroshot CM translation 565

({Bnc,Bncr}→En) by training a joint model 566

using a bilingual BnEn corpus and our syn 567

thetic codemixed HiEn corpus in the fol 568
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Model Hi Bn
B M B M

CT
RA
NS

MMT
c 10.8 41.9 13.84 45.1

c+ r 9.41 40.2 12.65 43.3
c+ r+ n 5.50 29.3  

c 11.95 43.4 12.81 45.5
c+ r 11.45 42.5 11.96 44.0ZCMT

c+ r+ n 7.41 33.2  

CA
LI
GN

MMT
c 13.59 45.0 15.66 47.7

c+ r 13.05 44.1 13.83 44.3
c+ r+ n 8.31 34.2  

c 14.00 46.7 15.41 49.8
c+ r 13.69 46.1 14.01 47.6ZCMT

c+ r+ n 10.79 40.4  

Table 3: Performance of ZCMTmodel for Hindi (Hi),
Bengali (Bn) to English translation on CTRANS and
CALIGN dataset. c, r, n denote the codemixed, ro
manized, noisy version of a dataset.

lowing directions: {Hic,Hicr,Bn,Bnr}⇀↽En +569

Hicrn→En. For the baseline model, we test570

Bn codemixed translation without training on571

CM text in a multilingual manner (MMT), i.e.,572

{Hi,Hir,Bn,Bnr}⇀↽En + Hirn→En. Inter573

estingly, MMT demonstrates appreciable perfor574

mance on the Bn test set with ZCMT obtaining575

3.25 improvement of METEOR scores over the576

MMTmodel. A possible reason for this can be the577

nature of the spoken tutorial test set, which mostly578

contains technical words and proper nouns as En579

glish (Le)words in Bengali (Lm) codemixed text.580

Another surprising benefit of our ZCMT model581

is observed in Hindi CM translation in both De582

vanagari and romanized texts of CALIGN dataset583

outperforming RCMT1 and RCMT2 scores in Ta584

ble 2. This indicates that adding languages from585

the same family (IndoAryan) can sometimes im586

prove the codemixed translation quality despite587

varying scripts (Devanagari vs. EasternNagari).588

Qualitative Analysis: Table 4 shows the differ589

ence in outputs of CALIGN and CTRANS datasets590

for the RCMT1 model. JAMT trained on CALIGN591

learns to match the words in source and target – the592

word “thought” is translated as it is from the source593

sentence; whereas, in CTRANS, it gets mapped to594

a commonly used word “idea”. Similar behaviour595

can be seen in the second example where the word596

“complete” takes a new meaning “whole” in the597

CTRANS prediction. Interestingly, the translations598

in both samples are semantically very different599

from the ideal target even when they represent a600

coherent and accurate translation. This highlights601

the shortcomings of precisionrecall based metrics602

such as B, M, etc. A simple but correct translation603

Source Hicr Is thought ko sabhi places par support nahin mila.
Target En The concept is not a universal hit.
CTRANS En This idea was not supported at all places.
CALIGN En This thought did not support at all the places.
Source Hicr Yah aapke relatives aur loved ones ke liye ek complete

gift hai.
Target En It is perfect gift for your relatives and loved ones.
CTRANS En This is a whole gift for your relatives and loved ones
CALIGN En This is a complete gift for your relatives and loved ones

Table 4: Sample translation of codemixed (Hicr) sen
tences to English (En) by translation (CTRANS) and
alignment (CALIGN) of proposed RCMT1 model.

would result in a low score when evaluated against 604

a vocabularyrich complex translation. 605

Human Evaluation: To quantitatively assess 606

the quality of our synthetic CM sentences, we per 607

form a human evaluation on 50 randomly selected 608

Hinglish samples from CTRANS and CALIGN 609

datasets. Three bilingual speakers proficient in En 610

glish and Hindi were asked to rate the adequacy 611

and fluency of each sample on a 5point scale. Flu 612

ency measures whether the generated codemixed 613

sentence is syntactically fluent independent of its 614

meaning, whereas adequacy compares if the mean 615

ing of the original Hi sentence is adequately con 616

veyed in the target sentence. The annotators re 617

port the average adequacy score for CALIGN and 618

CTRANS as 4.76 and 4.18, respectively. Moreover, 619

they report 4.44 and 4.12 average fluency scores 620

on the two datasets. The superiority of CALIGN 621

over CTRANS in adequacy and fluency also aligns 622

with better CMT results in Table 2. However, both 623

methods are prone to errors, some of them are dis 624

cussed in appendix. 625

6 Conclusion 626

In this work, we proposed a twophase strategy to 627

translate the realworld codemixed sentences in 628

multiple languages to English. First, a linguisti 629

cally informed pipeline was introduced to gener 630

ate a largescale HINMIX codemixed corpora syn 631

thetically. Next, we created a perturbed corpus by 632

passing the clean codemixed corpus to an adver 633

sarial module – both of which are simultaneously 634

trained in a joint learning mechanism to learn ro 635

bust CM representations. Finally, we showed the 636

effectiveness of zeroshot learning on codemixed 637

MT in Bengali language. Our evaluation showed 638

satisfying performance for both robust Hindi code 639

mixed and zeroshot Bengali codemixed transla 640

tion. 641
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A Appendix972

Candidate Word Selection: First, we select973

words to substitute in the Hindi (Lm) sentence974

based on their POS tag. Given a source sentence975

S = {s1, s2, . . . , sn} ∈ Lm and a target sentence976

T = {t1, t2, . . . , tm} ∈ Le, we obtain POS tags977

for each word in S. Next, we make the select can978

didate words based on their POS tags:979

1. Named entities such as person, location, orga980

nization, etc., are represented as proper nouns981

(NNP, NNPC, NNPS). These are typically982

present in an ambiguousmanner where the root983

word does not change, but multiple spelling984

variations can be found due to its modern adap985

tation. For example, “sitambar” vs “septem986

ber”, “captaan” vs “captain”.987

2. Common nouns (NN, NNC, NNS), adjectives988

(JJ), and quantifiers (QC, QCC, QO) are fre989

quently translated with their Le counterparts.990

These words do not change the grammati991

cal structure of Lm and form the basis of992

widespread Hinglish usage.993

Based on these switching constraints, we form994

an inclusion list (I) containing the POS tags to995

be included for codeswitching. Subsequently, we996

shortlist the candidate words S′ = si such that997

their corresponding tags pi ∈ I .998

Heuristic for candidate word selection for lan999

guage switching: Given that there can be 2r − 11000

CM combinations in a sentence of r candidate1001

words, we adopt the following selection rule de1002

pending upon the length of sentences to narrow1003

down the possible sample space:1004

1. Use all combinations for r<=4. For example,1005

an nword sentence with 3 candidate words1006

will have 23 − 1=7 CM sentences.1007

2. Use r − 3 to r candidate word combina1008

tions for 5<=r<7. For example, an nword1009

sentence with 5 candidate words will have1010
5C2+5C3+5C4+5C5=26 CM sentences.1011

3. Use 0.6r to 0.7r candidate word combina1012

tions for r>=7. For example, an nword1013

sentence with 15 candidate words will have1014
15C9+15C10=8008 CM sentences.1015

AdversarialModule: The transliteration of non1016

roman languages depends upon the phonetic tran1017

scription of each word, varying heavily with the1018

writer’s interpretation of involved languages. With1019

no consistent spelling of a word, it becomes cru1020

cial to simulate the realworld variations and noise1021

for the practical application of any CMT model. 1022

Hence, we propose to learn robust contextual repre 1023

sentations by distorting the available clean corpora 1024

with wordlevel perturbations as follows4: 1025

• Switch: The adjacent characters inside the 1026

word are randomly switched to reproduce the 1027

typos due to the fast entry of keys. For exam 1028

ple, “t r a n s f e r” vs “t r a s n f e r”. 1029

• Omission: A single character inside a word is 1030

randomly omitted to add noise. This error is 1031

usual when using short words during informal 1032

communication on OSNs. This also occurs in 1033

cases when characters are excluded while typ 1034

ing due to the phonetically similar pronuncia 1035

tion of the correct and incorrect spellings. For 1036

example, “a m a z i n g” vs “a m z n g”. 1037

• Proximity typo: While typing a character, a 1038

neighboring key is pressed mistakenly, thereby 1039

completely distorting the word. To replicate 1040

this error, we randomly select a character from 1041

the word followed by random neighboring key 1042

replacement corresponding to the QWERTY 1043

keyboard. For example, “m o b i l e” vs 1044

“m o v i l e”. 1045

• Random Shuffle: Sometimes, the non 1046

adjacent letters are swapped erroneously. Al 1047

though this does not happen frequently, we in 1048

ject this noise by randomly shuffling the word 1049

to make our model robust to any wordlevel 1050

noise. For example, “l a p t o p” vs “l o p t a p” 1051

We inject 30% switch, 12% omission, 12% typo, 1052

and 5% shuffle noise to Hicr for producing a 60% 1053

wordlevel noisy codemixed corpus HicrnEn. 1054

Both clean (HicrEn) and noisy (HicrnEn) cor 1055

pora are further used to train a joint model, which 1056

is described in the next subsection. 1057

Statistics: The detailed statistics of the synthetic 1058

and goldstandard annotated codemixed datasets 1059

are provided in Table 5. CTRANS on an average, 1060

contains 19%more number of ways in which a sin 1061

gle Hindi sentence is represented into multiple CM 1062

sentences, calculated by the ratio of total sentences 1063

to unique sentences than CALIGN. The higher 1064

number of Hi (src) tokens in CALIGN is justified 1065

by the fact that the dataset has lower CodeMixing 1066

Index (CMI) (27.9% vs 35.9%) than CTRANS sug 1067

gesting a less percentage of codemixing. Due to 1068

this, a relatively lesser number of words are sub 1069

stituted by their English counterparts. Despite a 1070

4All noise is added between the first and last character of
a word keeping both characters intact.
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Statistics CTRANS CALIGN Dev TestTrain
#Total Sent 4.9M 4.2M 280 2507
#Unique Sent 0.67M 0.71M 280 2507

CMI 35.6 27.9 32.6 32.4
SPF 47.7 44.3 47 45.5

Tokenlevel statistics
#Hi (src) 0.19M 0.25M 711 4194
#En (src) 0.08M 0.11M 667 5923
#En (tgt) 0.17M 0.19M 1392 11255

#Total (srctgt) 0.45M 0.52M 2533 18827
Charlevel sentence length

Mean 84.73 100.9 65.6 124.9
Median 74 88 64 111

Wordlevel sentence length
Mean 15.7 18.24 12.17 22.8
Median 14 16 12 20

Table 5: Statistics of CTRANS and CALIGN code
mixed datasets. Here, src and tgt represent source (Hic)
and target (En) sentences.

lower CMI, we can see that CALIGN dataset con1071

tains as much as 30000 higher number of En(src)1072

tokens than CTRANS as the alignment based sub1073

stitution method replaces different words based on1074

the target sentence alignment. Further, the CM sen1075

tences in the test set have longer average sentence1076

length than the train set (34.5%↑ characterlevel1077

and 34.3%↑ wordlevel), demonstrating the diffi1078

culty of codemixed machine translation at test1079

time.1080

We also evaluate the complexity of datasets us1081

ing codemixspecificmetrics such as CodeMixing1082

Index (CMI) and Switch Point Fraction (SPF).1083

CMI measures the percentage of codemixing in1084

a sentence, whereas SPF calculates the complex1085

ity of codemixing in a sentence. On average, the1086

CALIGN dataset is 7.1% less complex and has a1087

21.6% lower presence of codemixed words than1088

CTRANS making it relatively easier to translate.1089

Training details: We use a standard seq2seq1090

Transformer model (Vaswani et al., 2017) in all1091

our experiments to ensure the same number of pa1092

rameters. Both encoder and decoder consist of1093

a stack of 6 identical layers. Each layer com1094

prises a MultiHead Attention layer with 4 atten1095

tion heads and a Feedforward layer with an inner1096

dimension of 1024. The shared input and output1097

embedding dimensions are set to 512. We use a1098

dropout rate of 0.1, a learning rate of 5 × 10−41099

and anAdam optimizer with warmup steps of 4000.1100

A unigram model with character coverage 1.0 is1101

trained on all languages to obtain a common vocab1102

Source Hir Pati ki prerana se unhonne sanskrut men likhit
ramayan ka bangla men sankshipt rupantar kiya.

Target En At her husband's persuasion she translated into Bengali
an abridged version of the Ramayana from Sanskrit.

CTRANS Hicr Husband ki inspiration se unhonne sanskrit men
written ramayana ka bangla men brief rupantar kiya.

CALIGN Hicr Husband ki persuasion se unhonne sanskrit men
likhit ramayan ka bangla men abridged rupantar kiya.

Source Hir Hum khane ke baad aam khate the
Target En We ate mangoes after lunch
CTRANS Hicr Hum khane ke baad common account the
CALIGN Hicr Hum khane ke baad mangoes ate the

Table 6: Samples of generated codemixed (Hicr)
sentences using translation (CTRANS) and alignment
(CALIGN) approaches.

ulary of size 32000. To implement our model, the 1103

fairseq (Ott et al., 2019) toolkit is employed. We 1104

compute SacreBLEU (Ott et al., 2019), and ME 1105

TEOR (Banerjee and Lavie, 2005) to evaluate the 1106

quality of the translation. 1107

Tokenization: We apply a languagefree Senten 1108

cePiece5 tokenizer with a unigram subword model 1109

(Kudo, 2018) to generate a vocabulary directly 1110

from the raw text. As the unigram model calcu 1111

lates subwords according to the occurrence prob 1112

abilities, directly applying the tokenization to the 1113

corpora would result in the underrepresentation of 1114

lowresource languages. Therefore, we undersam 1115

ple the highresource language by randomly choos 1116

ing a fixed set of sentences from the corpora to ob 1117

tain the shared dictionary. 1118

Qualitative Analysis of CTRANS and CALIGN 1119

We determine the quality of the synthetic code 1120

mixed sentences in CTRANS and CALIGN as well 1121

the generated translations using JAMT. In Table 6, 1122

samples from both datasets highlight the distinc 1123

tion between our two CM generation approaches. 1124

In the translation approach, the word “prerana” is 1125

replaced by “inspiration” due to its frequent usage 1126

in the corpus as well as the real world. But due 1127

to the existence of a relatively uncommon word 1128

“persuasion” in its target pair, the CALIGN dataset 1129

chooses “persuasion” for substitution. Similarly, 1130

“sankshipt” is replaced by “brief ” in CTRANS and 1131

by a rare word “abridged” in CALIGN. This makes 1132

our CTRANS codemixed vocabulary consistent 1133

throughout every occurrence of a source word, 1134

whereas CALIGN benefits from the rich lexicons 1135

in generated CM sentences. 1136

5https://github.com/google/
sentencepiece
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Error Analysis: We end with the analysis of1137

some common errors when translating CM text to1138

English.1139

• Alignment Errors: Despite the context1140

dependent word substitution in CALIGN, this1141

approach is susceptible to all the alignment1142

errors. Incorrect word mapping between the1143

sourcetarget could completely alter its CM1144

meaning. Also, we substitute words with1145

an only onetoone correspondence between1146

the source and target, thereby abandoning all1147

words with multiple alignment mapping.1148

• Translation Errors: The benefit of imitat1149

ing realworld codemixed usage by substitu1150

tion with prevalent words (learned from trans1151

lation model) leads to incorrect handling of1152

Homonyms (Anekarthi Shabd). An individ1153

ual word, when passed through a translation1154

model, gives a single translation independent1155

of context. This leads to incorrect translation1156

in scenarios when the same word represents a1157

different meaning. For instance, in Table 6,1158

the word “aam” in Hi incorrectly translates to1159

“common” where the correct translation would1160

be “mango” according to the context.1161

• POS Tagging Errors: A good POS tagger1162

forms the basis of our codemixed creation pro1163

cess. In cases when a word in the source sen1164

tence is incorrectly tagged to a tag in POS in1165

clusion list I , it will be replaced by both substi1166

tution approaches. For example in Table 6, the1167

verb “khate” gets mistagged to a noun, thereby1168

being replaced by its translation “account” in1169

CTRANS and “ate” in CALIGN. Note that the1170

word “khate” is a homonym, thereby produc1171

ing both translation and POStagging error in1172

a single word.1173
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