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Abstract

The widespread online communication in a
modern multilingual world has provided op-
portunities to blend more than one language
(aka code-mixed language) in a single utter-
ance. This has resulted a formidable chal-
lenge for the computational models due to
the scarcity of annotated data and presence
of noise. A potential solution to mitigate the
data scarcity problem in low-resource setup is
to leverage existing data in resource-rich lan-
guage through translation. In this paper, we
tackle the problem of code-mixed (Hinglish
and Bengalish) to English machine translation.
First, we synthetically develop HINMIX, a
parallel corpus of Hinglish to English, with
~5M sentence pairs. Subsequently, we pro-
pose JAMT, a robust perturbation based joint-
training model that learns to handle noise in the
real-world code-mixed text by parameter shar-
ing across clean and noisy words. Further, we
show the adaptability of JAMT in a zero-shot
setup for Bengalish to English translation. Our
evaluation and comprehensive analyses quali-
tatively and quantitatively demonstrate the su-
periority of JAMT over state-of-the-art code-
mixed and robust translation methods.

1 Introduction

Recent explosion of digital communication around
the world has been marked by the growing use of
informal language in online conversations. These
conversations often feature the use of words and
phrases from multiple languages back and forth
into a single utterance: a phenomenon referred to
as code-mixing (CM) or code-switching (Myers-
Scotton, 1993, 1997; Duran, 1994). Code-mixing
has become a standard practice both as a form of
speech and text in multilingual communities such
as Hindi-English, Spanish-English, Cantonese-
Sanghaiese, etc., where people subconsciously al-
ter between languages. Building upon this promi-
nent use, it is imperative to model NLP systems for
code-mixed technologies.

Traditionally, researchers have investigated the
linguistic properties and grammatical structures
of code-mixed languages (Poplack, 1978; Pfaff,
1979; Joshi, 1982). However, a few recent stud-
ies explored computational models for code-mixed
languages in various domains such as Automatic
Speech Recognition (ASR), Text to Speech (TTS),
Sentiment Analysis, etc. (luo; Sitaram et al., 2019;
Patwa et al., 2020). Due to the unavailability of
annotated data, code-mixing in the domain of text
remains vastly unexplored. With no official ref-
erences of CM text in books and articles, online
social networks (OSNs) remain the only source of
mixed data collection. Further, the real-world un-
structured text is highly susceptible to typograph-
ical errors and misspellings. These mistakes be-
come more prevalent when languages written in
non-romanized scripts such as Hindi, Japanese, etc.
are adopted to code-mixed scenarios as each word
in the originating script can be mapped to multi-
ple probable transliterations. The problem is exac-
erbated by the multilingual nature of online code-
mixed content, making it essential to understand
CM concerning a common language.

In order to circumvent all these challenges,
we propose robust code-mixed translation using
a joint learning model, named Joint Adversarial
Machine Translation (JAMT). Neural Machine
Translation (NMT) models have become state-of-
the-art in sequence-to-sequence tasks (Sutskever
et al., 2014; Bahdanau et al., 2015). At the root
of this advancement are two interrelated issues: (i)
NMT models need a vast amount of parallel data
for satisfactory performance; and (ii) NMT models
are brittle to even a slight amount of input noise
(Belinkov and Bisk, 2018). First, to handle the
scarcity of code-mixed parallel data, we construct
a synthetic Hinglish-English dataset by leveraging
a bilingual Hindi-English (Hi-En) corpus. For this,
we identify various grammatical and semantic pat-
terns in the continuous switching of two languages



and formulate a general pipeline for creating a syn-
thetic code-mixed corpus. The generated parallel
data is then passed through an adversarial mod-
ule that injects different types of naturally occur-
ring adversarial perturbations to generate a source-
side noisy version of the code-mixed dataset. In-
spired by multilingual NMT models, we train a
joint model for translation of clean and noisy CM
text to make the code-mixed translation robust to
noisy input. Our experiments show that by jointly
training both noisy and clean text in a multilingual
setting, the model can encode diverse lexical vari-
ations of code-mixed words into the shared rep-
resentation space; thereby, substantially improv-
ing the translation quality. Additionally, the need
of a parallel CM corpus for every new language
pair limits the applicability of NMT models for
code-mixed translation. Further, the availability
and accuracy of language specific POS-taggers,
translation dictionaries, filtering tools become piv-
otal for building a synthetic CM corpus. To ease
this challenge, we propose zero-shot code-mixed
translation, where a bilingual Bengali-English (Bn-
En) parallel corpus is trained along with a code-
mixed Hindi-English parallel corpus. This way,
the model learns to adapt to the multilingual sce-
nario and translate Bengali CM text to English.

Precisely, the contributions of our work are sum-
marized below:

* We propose a novel JAMT model for effec-
tively translating real-world noisy code-mixed
sentences to English.

* We release HINMIX, the first large-scale
Hinglish Code-Mixed parallel corpus consist-
ing of ~5M parallel sentences.

* We manually annotate 2787 gold standard CM
sentences for the evaluation.

* We explore Zero-Shot Code-Mixed Transla-
tion for Bengali code-mixed to English trans-
lation without any parallel corpus.

* Through experiments and analysis, we demon-
strate that JAMT significantly outperforms the
previous state-of-the-art CM and robust M T ap-
proaches.

2 Related Work

In the past, various linguists (Verma, 1976; Joshi,
1982; Singh, 1985) studied the phenomena of CM
and intra-sentential code-switching. The ubiqui-
tous usage of CM in day-to-day spoken conver-
sations and online written content coupled with

the success of large supervised NLP systems in
downstream classification and sequence genera-
tion tasks such as POS tagging, sentiment analysis,
speech recognition, and translation brings up the
necessity to generate labeled CM datasets. In 2018,
Dhar et al. (2018) initiated the effort to create a 6K
pair gold-standard Hindi-English CM dataset. Fol-
lowing this, synthetic CM data generation meth-
ods by utilizing parse trees (Pratapa et al., 2018),
alignment learning (Rizvi et al., 2021) and copy
mechanism (Winata et al., 2018) were proposed.
Recently, Gupta et al. (2020, 2021) explored the
linguistic properties to automatically generate CM
sequence without parallel corpus by employing
NMT models such as pointer generator (See et al.,
2017) and pretrained mBERT (Devlin et al., 2019).

The presence of annotated code-mixed data does
not ease the target task due to the extensive amount
of typos, slang, and phonetic variations in the data;
thus, making it implausible to overlook the robust-
ness against noise of existing solutions. Several
approaches (Belinkov and Bisk, 2018; Karpukhin
et al., 2019; Passban et al., 2020) have studied the
robustness of the model with respect to the dataset
and training procedure. Cheng et al. (2018, 2020)
adopted an adversarial stability training objective
to build a perturbation-invariant encoder. Some
of the recent works (Sato et al., 2019; Park et al.,
2020) also adopted the regularization procedure
for the adversarial effectiveness of NMT models.
Although these schemes satisfy the robustness cri-
teria of an NMT model, the nature of noise in the
CM language largely remains unexplored.

Our proposed work is motivated by the gap in re-
search to build an all-inclusive code-mixed transla-
tion system that handles the diverse switching na-
ture in CM communities and is robust to any kind
of CM noise. Furthermore, JAMT can translate
multiple languages without the necessity to cre-
ate individual CM datasets. The following section
elaborates upon the methodology adopted to build
the dataset and satisfy the mentioned criterion.

3 Dataset

In this section, we describe the pipeline used to
create HINMIX utilizing [ITB English-Hindi par-
allel corpus (Kunchukuttan et al., 2018). HINMIX
consists of Hindi-English CM parallel pairs gen-
erated using two strategies — alignment-based and
translation-based.
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Figure 1: Pipeline of code-mixed data generation.

Code-Mixed Generation: Matrix Language
Frame (MLF) model (Myers-Scotton, 1997)
argues that the syntactic and morphological struc-
ture of any code-switch utterance comes from
a Matrix Language (L,,) which borrows words
from the Embedded Language (L.). Following
this theory, we characterize the asymmetric (Joshi,
1982) nature of intra-sentential code-mixing in
Indian languages. After performing a linguistic
study on a large number of CM tweets collected
from Twitter, we conclude that the regional
language acts as the base language L,,, and
words are borrowed from English L, for switch-
ing in the urban usage of hybrid text in Indian
languages. Given a source-target sentence pair

|| T, we generate the synthetic code-mixed
data by substituting words in the matrix language
sentence with the corresponding words from the
embedded language sentence. Figure 1 explains
the code-mixed data generation pipeline.

Candidate Word Selection: We select proper
nouns (NNP, NNPC, NNPS), common nouns (NN,
NNC, NNS), adjectives (JJ), and quantifiers (QC,
QCC, QO) to be part of an inclusion list I . All
words whose POS tag belongs to the inclusion
list are potential candidates for code-switching (c.f.
appendix for detail).

Building Substitution Dictionary: Once the
corpus is POS-tagged and candidate words are
shortlisted, the substitute words from L. need to be
determined. We propose two approaches to build
a substitution dictionary:

1. Translation Based: In any code-switch commu-
nity, there is a code choice that is more fa-
vorable than other potential choices (Myers-
Scotton, 1997). For example, a regular Hindi
user would routinely use the English word

“help” than the word “assist” due to its com-
mon usage. Moreover, NMT models show a
similar property of memorizing commonly seen
words in the corpus (Luong et al., 2015). Uti-
lizing this correlation, we prepare a dictionary
by training an Hi-En NMT model followed by
context-independent word-by-word translation
using the trained model. This method ensures
a prevalent and consistent code-mixed vocabu-
lary in the dataset.

2. Alignment Based: In this approach, an align-
ment model is trained between a source and tar-
get corpus to learn word-level correspondence
between each parallel sentence. We use the
fast-align (Dyer et al., 2013) symmetric align-
ment model to obtain the source-target align-
ment matrix. Next, a substitution dictionary
for each sentence is obtained, consisting of
only words with one-to-one source-target map-
ping. This approach allows us to deal with the
word-sense ambiguity problem by substituting
context-dependent foreign words in each sen-
tence, thereby forming a diverse set of code-
mixed vocabulary in the corpus.

For each sentence S || T in corpus, two substitu-

tion dictionaries are formed corresponding to the

two approaches.

Language Switching: It might appear that the
decision to switch a word is a binary choice and
that every word in L,, can be replaced from the
set of potential substitute words. However, the
switching paradigm in a code-mixed utterance de-
pends upon a range of factors such as the lexical
information available with the speaker, their rel-
ative fluency and cognitive control in either lan-
guage, speaker’s intention to switch, and most im-
portantly, the intrinsic structure of involved lan-
guages (Kroll et al., 2008). Hence, instead of sub-
stituting every candidate word and generating a
single code-mixed sentence, we follow a random-
ized word-selection and filtering method to obtain
multiple CM combinations of a single source sen-
tence. Table 1 shows multiple generated Hindi
code-mixed (Hi.) sentences for a single sample
using translation (T) and alignment (A) based ap-
proaches. To illustrate the need for sentence filter-
ing, we rank from 1 to 5 (higher is better) to evalu-
ate the quality of these CM sentences.
» Word Selection: Given that there can be 2" — 1
CM combinations in a sentence of r candidate
words — computationally expensive for large r,



En | The tendency to give physical training to
the whole society resulted in many disas-
trous consequences. Rank 1

Hi | A AT Qe UfTefor 3 & ot
9gd 9 g2 IR gUI

A whole THTST @1 physical training o & 3
HRUT §gd F g2 URumH gul

A | whole society &l physical training 31 & | 5
RO §gd A 2 consequences §U|

T/A | |7 society &l physical training 34 & | 5
FROT §5d § g2 IROTH gyl

T | allsociety &l QIRING training &4 & cause | 2
gd T evil results gul

T | 99 society &l physical training 31 & | 4
U7 §gd F L results §UI

Table 1: Sample of generated Hindi code-mixed (Hi.)
sentences using translation (T) and alignment (A) ap-
proach. Rank (1) defines the quality assessment by hu-
mans.

we adopt a set of heuristics (details in appendix)

to limit the CM sentences to be generated.

* Sentence Filtering: To further narrow down the
selection pool and incorporate language struc-
tures of bilingual languages into synthetic CM
sentences, we use a combination of probabilistic
and deterministic NLP evaluation metrics.

1. We use an unsupervised cross-lingual
XLM (Conneau and Lample, 2019) model
to calculate the perplexity of CM sentences.
We observe a good correlation between the
fluency of the CM sentence and its perplexity,
even when provided with Devanagari Hindi
and English text in a single CM sentence.

2. We employ code-mixed specific measures
such as Code-Mixing Index (CMI) (Gambéck
and Das, 2016) and Switch Point Fraction
(SPF) (Gupta et al., 2020) to select sentences
between a certain threshold, details of which
are discussed in Section 5.

Figure 2 shows the generated CM sentences from

both methods for a single sample. This forms

our two code-mixed parallel datasets CTRANS and

CALIGN from translation and alignment meth-

ods respectively with Hindi (Devanagari)-English

CM pairs: Hi.-En. Finally, for each case, we

use Google Transliterate API' to produce the ro-

manized version r of the CM parallel corpora —

Hi..-En. In total, we obtain ~4.9M and ~4.2M

parallel sentences using the translation and align-

ment strategies, respectively. A detailed statistics

'nttps://developers.google.com/
transliterate/vl/getting started

This  security certificate is not trusted .

AR ERIEEGEER R

(yah) [(suraksha)] [(pramaanapatr)] [(vishvasaneey) (nahin) (hai) (.)
DEM NN NN JJ RB VM SYM

e PEIEE) foyg-ta

(suraksha)

(pramaanapatr)

(vishvasaneey)

safety certificate reliable security certificate trusted

[ g safety certificate reliable :fﬁﬁ'%l J[ g security certificate trusted :TEET%I ]
y i i

ah safety certificate reliable nahin hai. )| yah security certificate trusted nahin ha

Figure 2: An example showing the process of code-
mixed sentence generation using both method.

of the dataset is presented in appendix.

4 Joint Code-Mixed Translation

In this section, we describe our approach for ro-
bust translation of code-mixed sentences to En-
glish. We apply a language-free SentencePiece?
tokenizer with a unigram subword model (Kudo,
2018) to generate a vocabulary directly from the
raw text. The obtained synthetic CM text is then
passed through an adversarial module to generate
a noisy CM corpus. Subsequently, the clean and
noisy corpora are simultaneously trained using the
proposed JAMT model. A high-level architectural
diagram of JAMT is illustrated in Figure 3.

Architecture: Inspired by the success of mul-
tilingual models, we leverage a sequence-to-
sequence joint learning framework to translate
code-mixed sentences to English. Unlike NMT
models trained on a single language pair for one
direction, the joint model consists of a single en-
coder and a decoder for different corpora (code-
mixed/romanized/noisy) and directions allowing
them to simultaneously learn useful information
across language boundaries. For training the joint
model from multiple sources to multiple targets
(many-to-many), a proxy token for the target lan-
guage is inserted at the beginning of the source sen-
tence, indicating the intended target at the decod-
ing stage as shown in Figure 3.

Training Objective: The joint model is trained
to optimize the sum of categorical cross-entropy
(CE) loss with label smoothing (Szegedy et al.,

https://github.com/google/
sentencepiece
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Figure 3: Architecture of our proposed JAMT model. Here, Hi, En, and Bn represent Hindi, English, and Bengali
language, respectively. The subscripts c, r, and n are used to denote codemix, romanized, and noisy version of a
dataset. The first token [27] in the encoder input indicates the intended target language T followed by tokens in
the source language S. The target tokens are passed to the decoder sequentially for model training.

2016) across all language pairs. As our code-
mixed datasets are synthetically prepared by re-
placing words using the matrix language frame-
work (Myers-Scotton, 1997), learning the model
directly using the CE loss would tend to memorize
the labels for incorrect source tokens and degrade
the model performance. Therefore, we adopt label
smoothing to train our proposed model.

Adversarial Module: The transliteration of non-
roman languages depends upon the phonetic tran-
scription of each word, varying heavily with the
writer’s interpretation of involved languages. With
no consistent spelling of a word, it becomes cru-
cial to simulate the real-world variations and noise
for the practical application of any CMT model.
Hence, we propose to learn robust contextual rep-
resentations by distorting the available clean cor-
pora with word-level adversarial perturbations as
follows (c.f. appendix for detail):

o Switch: “transfer’vs“trasnfer”

* Omission: “amazing’vs“amzng”

* Proximity typo: “mobile’vs“movile”

* Random Shuffle: “/aptop”vs“loptap”
We inject 30% switch, 12% omission, 12% typo,
and 5% shuftle noise to Hi., to produce a 60%
word-level noisy code-mixed corpus Hi.,n-En.
Both clean (Hi.,-En) and noisy (Hi.,,-En) cor-
pora are further used to train a joint model, which
is described in the next subsection.

4.1 Robust Code-mixed MT (RCMT)

To capture the context-dependent lexical variations
between the noisy and clean corpora, we formu-
late the cross-lingual translation setting to the code-

mixed scenario, referred to as Robust Code-Mixed
Translation (RCMT). For this, we jointly train a
transformer model in three directions (RCMT;)
— bidirectional Hindi-English using clean code-
mixed romanized corpus (Hi.,=En) and Hindi
to English using noisy code-mixed romanized cor-
pus (Hi..n,—En), where c, r, and n represent the
code-mixed, romanized, and noisy versions of a
dataset, respectively.

When a pair of a sentence from Hi., and Hicpp
are tokenized through the unigram model, the sub-
words tokens of both sentences would contain sub-
stantial amount of overlap due to the joint vocab-
ulary. Any noise due to lexical, phonetic, or or-
thographic variations only perturbs the word at
the character level, thereby obtaining similar sub-
words to some extent. Further, when translating
two different sentences to the same target language,
the joint model would learn the relationship be-
tween those subwords by utilizing their same syn-
tactic and semantic properties. Therefore, the non-
canonical nature of noisy text would benefit from
the strong implicit supervision of clean sentences
even when they are morphologically dissimilar.

Since both noisy and clean corpora follow the
same origin (Devanagari Hindi), we also experi-
ment with the robustness capabilities of JAMT by
adding two non-romanized code-mixed directions
in RCMT], representing it as RCMTy: Devanagari
Hi.=En. This modification would enable JAMT
to better handle the dependencies among Devana-
gari and romanized characters besides minimizing
the morphological ambiguity across sentences.



4.2 Zero-shot Code-mixed MT (ZCMT)

The previous robust CMT approach uses the lin-
guistic and lexical similarity of the corpora to
learn robust representations effectively. However,
to adapt code-mixed machine translation for any
other language pair (e.g., Bengalish = English),
we need a code-mixed parallel corpus for the same,
which is often unavailable. Therefore, to negate
the limitation of data scarcity, we propose a zero-
shot transfer learning approach for code-mixed
translation for another language pair. In this ap-
proach, we use the previously generated CM cor-
pora to exploit the transfer learning characteristic
of cross-lingual models for code-mixed translation
in an unseen pair. The idea is to utilize the existing
non-code-mixed parallel corpus of language /; and
a code-mixed parallel corpus of language I5 for the
translation of code-mixed sentences of {;. To this
end, we train JAMT with Bengali-English (Bn-En)
and Hinglish-English (Hi.,-En) parallel corpora.
Subsequently, the trained model is employed to
convert a Bengalish sentence to English. We ar-
gue that the trained model would be able to trans-
fer the code-mixing behaviour onto the network ac-
tivations in a zero-shot way. We choose Bengali
(Bn) due to the availability of both Bn-En large
parallel-corpora (Hasan et al., 2020) and Bengali
code-mixed test set Bn.-En (Gupta et al., 2021).
The following language pairs are used to train the
Zero-shot CM Translation (ZCMT) model:

* Code-mixed Hindi to English: Devanagari
Hi.=En, romanized Hi.,=En, noisy ro-
manized Hi..n—En.

* Bengali to English: romanized Bn,=En and
Eastern-Nagari Bh=En.

5 Experiments and Results

Depending upon the dataset and language pair, we
evaluate JAMT on different tasks and configura-
tions. Due to the unavailability of gold-standard
code-mixed parallel test data, we limit our evalu-
ation to two languages: Hindi (Hi) and Bengali
(Bn), described as follows: Hi-En: We utilize the
test and dev sets from WMT 2014 En-Hi shared
task (Bojar et al., 2014). Two annotators who
were fluent bilingual speakers of Hindi and En-
glish were asked to annotate the Hindi sentences
to Hinglish manually. This gold-standard Hi-En
code-mixed data consists of 280 (dev) and 2507
(test) CM utterances. Bn-En: For testing our
ZCMT model, we make use of the Spoken Tutorial

Bn-En CM test set released by Gupta et al. (2021).
This data® consists of 28K utterances transcribed
from courses related to engineering, programming,
etc. We randomly selected 500 and 2000 sentences
as the dev and test sets, respectively. We com-
pute SacreBLEU (Ott et al., 2019) and METEOR
(Banerjee and Lavie, 2005) to evaluate the quality
of the translation.

Baselines: We conduct experiments with multi-
ple CM and robust MT baselines for fair com-
parison of our JAMT approach: e TFM: We
employ a vanilla Transformer with the same hy-
perparameters as JAMT for each configuration.
e FCN: Following Gehring et al. (2017), we adapt
seq2seq fully convolutional network for Robust
CMT task. e mT5: Xue et al. (2021) put forward
a “span-corruption” objective to pre-train a mas-
sive multilingual masked LM for sequence gen-
eration. e mBART: Liu et al. (2020b) used a
seq2seq denoising-based autoencoder pre-trained
on a large common-crawl corpus. « MTNT: Vaib-
hav et al. (2019) proposed to enhance the robust-
ness of MT on the noisy text by pre-training an
LSTM model with a clean corpus and fine-tuning
it on noisy artificial data. e MTT: Zhou et al.
(2019) presented a Multi-task Transformer for ro-
bust MT that uses dual decoders, one to generate
the clean text and another to provide the transla-
tion given the noisy input. e AdvSR: Park et al.
(2020) introduced an adversarial subword regular-
ization scheme for on-the-fly selection of diverse
subword segmentation in a sequence resulting in
character-level robustness of an NMT model.

Code-mixed MT Results: Seq2Seq models
such as transformers (TFM) and convolutional
attention networks (FCN) have become the
de-facto standard to evaluate MT systems (Liu
et al., 2020a; Wu et al., 2019). Following their
competitive performance in code-mixed transla-
tion tasks (Nagoudi et al., 2021; Appicharla et al.,
2021; Dowlagar and Mamidi, 2021), we train
individual models in each direction (Hi.—En,
Hi.,—En, Hi.r,—En) for both the CTRANS
and CALIGN datasets. Table 2 shows the superior
performance of the transformer (TFM) over FCN
with an average improvement of +2.47 & +2.68
BLEU scores across CM (c,c + r) and robust
CM (c+r+n) translation models, respectively.

Shttps://github.com/shruikan20/
Spoken-Tutorial-Dataset
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CTRANS CALIGN

Model c c+r c+r+n c c+r c+r+n

B M B M B M B M B M B M
TFM 935 362 | 9.18 350 | 546 273 | 997 39.7|10.02 362 | 9.70 37.4
FCN 6.62 278 | 604 274 | 410 22.6 | 7.89 332 | 807 33.1| 569 275
mT5 430 234 | 383 235| 206 166 | 427 226 | 428 259 | 280 195
mBART || 6.72 343 | 551 30.1| 280 220 538 295 | 7.07 357 | 3.19 217
MTT - - - - 8.93 34.0 - - - - 10.44 38.0
MTNT - - 6.76 29.8 | 426 223 - - 848 351 | 592 28.0
AdvSR - - 6.64 30.5| 2.62 19.1 - - 9.63 36.7 | 728 32.7
RCMT, - - 1291 43.0 | 10.25 37.7 - - 13.58 45.7 | 11.54 41.5
RCMT; || 13.07 44.0 | 12.83 43.0 | 9.79 369 | 13.81 46.2 | 13.72 457 | 11.3 40.8

Table 2: Baseline comparison of RCMT; and RCMT,; from Hindi to English on CTRANS and CALIGN datasets.
Here, c, r, and n denote codemix, romanized, and noisy version of a dataset. (B: SacreBLEU and M: METEOR)

Moreover, a substantial gain of +3.31B, +7.25M
score (on avg.) over TFM is observed on the noisy
corpus (Hi.rn,—En) when it is trained simulta-
neously with the clean corpora (Hi.,=En) in
RCMT;. Furthermore, the inclusion of Devana-
gari code-mixed (Hi.+=En) in RCMT; improves
code-mixed performance; however, it does not
provide additional support in the robustness of
the system. Also, for Hi. — En, JAMT shows
stronger results than the TFM model even when
the Devanagari subwords are not shared with
any other pair. We hypothesize that training
on a common target En enables the encoder to
learn overlapping representations for all inputs
(Hic,Hicr,Hicrn), thereby reducing the effect
of script variation and reinforcing the same family
correlation.

Previous works in CMT have primarily relied on
large-scale multilingual models such as mBART
and mT5 (Xue et al., 2021; Liu et al., 2020b; Gau-
tam et al., 2021; Jawahar et al., 2021). For com-
parison, we adopt the existing approach by fine-
tuning mT5-small and mBART models on our CM
datasets. Table 2 (row-3 and row-4) highlights the
code-mixed performance on these finetuned mod-
els. Surprisingly, the romanized code-mixed MT
(c 4+ r) demonstrates comparable METEOR per-
formance with +1.35% improvement over its De-
vanagari counterpart (c), even though the roman-
ized Hindi text is seen only during finetuning. Con-
clusively from Table 2, these transfer learning ap-
proaches still lag behind JAMT, especially in ro-
bust CMT as the pre-trained procedure did not in-
volve any kind of code-mixed data. However, it
gives us a direction to explore by incorporating
such CM data in the pre-training steps.

Robust MT Results: In order to corroborate
the robustness capabilities of RCMT models, we
test three categories of noise-robust MT models
as baselines, namely MTT, MTNT, and AdvSR.
Among these, MTT proves to be most resilient
to synthetic noise with 1.21 BLEU decrease from
RCMT; as it uses a dual decoding scheme to
jointly maximize clean text and the translated text.
Yet, this improvement comes at the cost of in-
creased model size to allocate parameters for sec-
ond decoder module. On the other hand, JAMT has
the capability to adapt to any number of pairs with-
out increasing the model size. The AdvSR model,
trained exclusively on noisy corpus, yields better
performance on CALIGN dataset than the MTNT
model, which is trained on clean corpus Hi .. —En
and finetuned on the noisy corpus Hi.rn—En.
However, in CTRANS, AdvSR reports inferior
performance against MTNT, possibly due to the
on-the-fly segmentation method that is unable to
handle lexical differences for similar code-mixed
words in source sentences when translated in dif-
ferent ways depending on the context. In compar-
ison, without changing the training procedure or
scaling the parameters, JAMT achieves the best ro-
bustness to noise with an avg BLEU score of 10.89
against 9.68 of the best baseline (MTT).

Zero-shot MT Results: A good way to lever-
age the cross-lingual transfer property of multi-
lingual models is to incorporate CM behaviour
learned from one code-mixed language to an
unseen code-mixed language. Table 3 shows
the effectiveness of zero-shot CM translation
({Bnc,Bncr }—En) by training a joint model
using a bilingual Bn-En corpus and our syn-
thetic code-mixed Hi-En corpus in the fol-



Hi Bn Source | Hi., | Is thought ko sabhi places par support nahin mila.
Model B M B M Target En | The concept is not a universal hit.
c 108 419 | 13.84 451 CTRANS | En | This idea was not supported at all places.
w | MMT et 9.41 40:2 12?65 43:3 CALIGN E‘n This thought di('i not support at all the p'lacesA
Source | Hi., | Yah aapke relatives aur loved ones ke liye ek complete
g cHr+nl 550 293| - - it
S < 1195 434 | 1281 455 Target En | Itis perfect gift for your relatives and loved ones.
ZCMT (ol i 1145 425 | 11.96 44.0 CTRANS | En | This is a whole gift for your relatives and loved ones
c+r+n| 741 332 - - CALIGN | En | Thisisacomplete gift for your relatives and loved ones
c 13.59 45.0 | 15.66 47.7
% MMT c+r 13.05 44.1 | 13.83 443 Table 4: Sample translation of code-mixed (Hi.,) sen-
H c+r+n | 831 342| - - tences to English (En) by translation (CTRANS) and
5 © TG i | Loall - 22 alignment (CALIGN) of proposed RCMT; model.
ZCMT c+r 13.69 46.1 | 14.01 47.6
c+r+n | 1079 404 - =

Table 3: Performance of ZCMT model for Hindi (Hi),
Bengali (Bn) to English translation on CTRANS and
CALIGN dataset. ¢, r, n denote the code-mixed, ro-
manized, noisy version of a dataset.

lowing directions: {Hi.,Hic,,Bn,Bn,}=En +
Hicrn—En. For the baseline model, we test
Bn code-mixed translation without training on
CM text in a multilingual manner (MMT), i.e.,
{Hi,Hi,,Bn,Bn,}=En + Hi,,—En. Inter-
estingly, MMT demonstrates appreciable perfor-
mance on the Bn test set with ZCMT obtaining
3.25 improvement of METEOR scores over the
MMT model. A possible reason for this can be the
nature of the spoken tutorial test set, which mostly
contains technical words and proper nouns as En-
glish (L. ) words in Bengali (L,, ) code-mixed text.
Another surprising benefit of our ZCMT model
is observed in Hindi CM translation in both De-
vanagari and romanized texts of CALIGN dataset
outperforming RCMT; and RCMT; scores in Ta-
ble 2. This indicates that adding languages from
the same family (Indo-Aryan) can sometimes im-
prove the code-mixed translation quality despite
varying scripts (Devanagari vs. Eastern-Nagari).

Qualitative Analysis: Table 4 shows the differ-
ence in outputs of CALIGN and CTRANS datasets
for the RCMT; model. JAMT trained on CALIGN
learns to match the words in source and target — the
word “thought” is translated as it is from the source
sentence; whereas, in CTRANS, it gets mapped to
a commonly used word “idea”. Similar behaviour
can be seen in the second example where the word
“complete” takes a new meaning “whole” in the
CTRANS prediction. Interestingly, the translations
in both samples are semantically very different
from the ideal target even when they represent a
coherent and accurate translation. This highlights
the shortcomings of precision-recall based metrics
such as B, M, etc. A simple but correct translation

would result in a low score when evaluated against
a vocabulary-rich complex translation.

Human Evaluation: To quantitatively assess
the quality of our synthetic CM sentences, we per-
form a human evaluation on 50 randomly selected
Hinglish samples from CTRANS and CALIGN
datasets. Three bilingual speakers proficient in En-
glish and Hindi were asked to rate the adequacy
and fluency of each sample on a 5-point scale. Flu-
ency measures whether the generated code-mixed
sentence is syntactically fluent independent of its
meaning, whereas adequacy compares if the mean-
ing of the original Hi sentence is adequately con-
veyed in the target sentence. The annotators re-
port the average adequacy score for CALIGN and
CTRANS as 4.76 and 4.18, respectively. Moreover,
they report 4.44 and 4.12 average fluency scores
on the two datasets. The superiority of CALIGN
over CTRANS in adequacy and fluency also aligns
with better CMT results in Table 2. However, both
methods are prone to errors, some of them are dis-
cussed in appendix.

6 Conclusion

In this work, we proposed a two-phase strategy to
translate the real-world code-mixed sentences in
multiple languages to English. First, a linguisti-
cally informed pipeline was introduced to gener-
ate a large-scale HINMI X code-mixed corpora syn-
thetically. Next, we created a perturbed corpus by
passing the clean code-mixed corpus to an adver-
sarial module — both of which are simultaneously
trained in a joint learning mechanism to learn ro-
bust CM representations. Finally, we showed the
effectiveness of zero-shot learning on code-mixed
MT in Bengali language. Our evaluation showed
satisfying performance for both robust Hindi code-
mixed and zero-shot Bengali code-mixed transla-
tion.



References

Ramakrishna Appicharla, Kamal Kumar Gupta, Asif
Ekbal, and Pushpak Bhattacharyya. 2021. IITP-
MT at CALCS2021: English to Hinglish neural ma-
chine translation using unsupervised synthetic code-
mixed parallel corpus. In Proceedings of the Fifth
Workshop on Computational Approaches to Linguis-
tic Code-Switching, pages 31-35, Online. Associa-
tion for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
3rd International Conference on Learning Represen-
tations, ICLR, San Diego, CA, US.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Ar-
bor, Michigan. Association for Computational Lin-
guistics.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine trans-
lation. In 6th International Conference on Learn-
ing Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net.

Ondfej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Ale§ Tam-
chyna. 2014. Findings of the 2014 workshop on sta-
tistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12-58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Yong Cheng, Lu Jiang, Wolfgang Macherey, and Ja-
cob Eisenstein. 2020. AdvAug: Robust adversar-
ial augmentation for neural machine translation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5961—
5970, Online. Association for Computational Lin-
guistics.

Yong Cheng, Zhaopeng Tu, Fandong Meng, Junjie
Zhai, and Yang Liu. 2018. Towards robust neural
machine translation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1756—
1766, Melbourne, Australia. Association for Compu-
tational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. Advances in
Neural Information Processing Systems, 32:7059—
7069.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Mrinal Dhar, Vaibhav Kumar, and Manish Shrivas-
tava. 2018. Enabling code-mixed translation: Paral-
lel corpus creation and MT augmentation approach.
In Proceedings of the First Workshop on Linguistic
Resources for Natural Language Processing, pages
131-140, Santa Fe, New Mexico, USA. Association
for Computational Linguistics.

Suman Dowlagar and Radhika Mamidi. 2021. Gated
convolutional sequence to sequence based learning
for English-hingilsh code-switched machine transla-
tion. In Proceedings of the Fifth Workshop on Com-
putational Approaches to Linguistic Code-Switching,
pages 2630, Online. Association for Computational
Linguistics.

Luisa Duran. 1994. Toward a better understanding
of code switching and interlanguage in bilinguality:
Implications for bilingual instruction. The journal
of educational issues of language minority students,
14(2):69-88.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameter-
ization of IBM model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644—648, At-
lanta, Georgia. Association for Computational Lin-
guistics.

Bjorn Gambidck and Amitava Das. 2016. Comparing
the level of code-switching in corpora. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
1850-1855, Portoroz, Slovenia. European Language
Resources Association (ELRA).

Devansh Gautam, Prashant Kodali, Kshitij Gupta, An-
mol Goel, Manish Shrivastava, and Ponnurangam
Kumaraguru. 2021. CoMeT: Towards code-mixed
translation using parallel monolingual sentences.
In Proceedings of the Fifth Workshop on Compu-
tational Approaches to Linguistic Code-Switching,
pages 47-55, Online. Association for Computational
Linguistics.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of the
34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Re-
search, pages 1243—1252. PMLR.

Abhirut Gupta, Aditya Vavre, and Sunita Sarawagi.
2021. Training data augmentation for code-mixed


https://doi.org/10.18653/v1/2021.calcs-1.5
https://doi.org/10.18653/v1/2021.calcs-1.5
https://doi.org/10.18653/v1/2021.calcs-1.5
https://doi.org/10.18653/v1/2021.calcs-1.5
https://doi.org/10.18653/v1/2021.calcs-1.5
https://doi.org/10.18653/v1/2021.calcs-1.5
https://doi.org/10.18653/v1/2021.calcs-1.5
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=BJ8vJebC-
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.18653/v1/2020.acl-main.529
https://doi.org/10.18653/v1/2020.acl-main.529
https://doi.org/10.18653/v1/2020.acl-main.529
https://doi.org/10.18653/v1/P18-1163
https://doi.org/10.18653/v1/P18-1163
https://doi.org/10.18653/v1/P18-1163
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/W18-3817
https://aclanthology.org/W18-3817
https://aclanthology.org/W18-3817
https://doi.org/10.18653/v1/2021.calcs-1.4
https://doi.org/10.18653/v1/2021.calcs-1.4
https://doi.org/10.18653/v1/2021.calcs-1.4
https://doi.org/10.18653/v1/2021.calcs-1.4
https://doi.org/10.18653/v1/2021.calcs-1.4
https://doi.org/10.18653/v1/2021.calcs-1.4
https://doi.org/10.18653/v1/2021.calcs-1.4
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
https://aclanthology.org/L16-1292
https://aclanthology.org/L16-1292
https://aclanthology.org/L16-1292
https://doi.org/10.18653/v1/2021.calcs-1.7
https://doi.org/10.18653/v1/2021.calcs-1.7
https://doi.org/10.18653/v1/2021.calcs-1.7
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10.18653/v1/2021.naacl-main.459
https://doi.org/10.18653/v1/2021.naacl-main.459

translation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 5760-5766, Online. Association for
Computational Linguistics.

Deepak Gupta, Asif Ekbal, and Pushpak Bhattacharyya.
2020. A semi-supervised approach to generate the
code-mixed text using pre-trained encoder and trans-
fer learning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 2267—
2280, Online. Association for Computational Lin-
guistics.

Tahmid Hasan, Abhik Bhattacharjee, Kazi Samin, Ma-
sum Hasan, Madhusudan Basak, M. Sohel Rahman,
and Rifat Shahriyar. 2020. Not low-resource any-
more: Aligner ensembling, batch filtering, and new
datasets for Bengali-English machine translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2612-2623, Online. Association for Computa-
tional Linguistics.

Ganesh Jawahar, El Moatez Billah Nagoudi, Muham-
mad Abdul-Mageed, and Laks Lakshmanan, V.S.
2021. Exploring text-to-text transformers for En-
glish to Hinglish machine translation with synthetic
code-mixing. In Proceedings of the Fifth Work-
shop on Computational Approaches to Linguistic
Code-Switching, pages 36—46, Online. Association
for Computational Linguistics.

Aravind K. Joshi. 1982. Processing of sentences with
intra-sentential code-switching. In Coling 1982:
Proceedings of the Ninth International Conference
on Computational Linguistics.

Vladimir Karpukhin, Omer Levy, Jacob Eisenstein, and
Marjan Ghazvininejad. 2019. Training on synthetic
noise improves robustness to natural noise in ma-
chine translation. In Proceedings of the 5th Work-
shop on Noisy User-generated Text (W-NUT 2019),
pages 42-47, Hong Kong, China. Association for
Computational Linguistics.

Judith F. Kroll, Susan C. Bobb, Maya Misra, and
Taomei Guo. 2008. Language selection in bilingual
speech: Evidence for inhibitory processes. Acta
Psychologica, 128(3):416—430. Bilingualism: Func-
tional and neural perspectives.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66—
75, Melbourne, Australia. Association for Computa-
tional Linguistics.

Anoop Kunchukuttan, Pratik Mehta, and Pushpak Bhat-
tacharyya. 2018. The IIT Bombay English-Hindi
parallel corpus. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

10

Xiaodong Liu, Kevin Duh, Liyuan Liu, and Jianfeng
Gao. 2020a. Very deep transformers for neural ma-
chine translation. CoRR, abs/2008.07772.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020b. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015. Addressing the rare
word problem in neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 11-19,
Beijing, China. Association for Computational Lin-
guistics.

Carol Myers-Scotton. 1993. Common and uncommon
ground: Social and structural factors in codeswitch-
ing. Language in Society, 22(4):475-503.

Carol Myers-Scotton. 1997.  Duelling languages:
Grammatical structure in codeswitching. Oxford
University Press.

El Moatez Billah Nagoudi, AbdelRahim Elmadany,
and Muhammad Abdul-Mageed. 2021. Investigat-
ing code-mixed Modern Standard Arabic-Egyptian
to English machine translation. In Proceedings of
the Fifth Workshop on Computational Approaches to
Linguistic Code-Switching, pages 56—64, Online. As-
sociation for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 4853, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Jungsoo Park, Mujeen Sung, Jinhyuk Lee, and Jae-
woo Kang. 2020. Adversarial subword regulariza-
tion for robust neural machine translation. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 1945-1953, Online. Asso-
ciation for Computational Linguistics.

Peyman Passban, Puneeth S. M. Saladi, and Qun Liu.
2020. Revisiting robust neural machine translation:
A transformer case study. CoRR, abs/2012.15710.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj
Pandey, Srinivas PYKL, Bjorn Gambéack, Tanmoy
Chakraborty, Thamar Solorio, and Amitava Das.
2020. SemkEval-2020 task 9: Overview of senti-
ment analysis of code-mixed tweets. In Proceed-
ings of the Fourteenth Workshop on Semantic Eval-
uation, pages 774—790, Barcelona (online). Interna-
tional Committee for Computational Linguistics.


https://doi.org/10.18653/v1/2021.naacl-main.459
https://doi.org/10.18653/v1/2020.findings-emnlp.206
https://doi.org/10.18653/v1/2020.findings-emnlp.206
https://doi.org/10.18653/v1/2020.findings-emnlp.206
https://doi.org/10.18653/v1/2020.findings-emnlp.206
https://doi.org/10.18653/v1/2020.findings-emnlp.206
https://doi.org/10.18653/v1/2020.emnlp-main.207
https://doi.org/10.18653/v1/2020.emnlp-main.207
https://doi.org/10.18653/v1/2020.emnlp-main.207
https://doi.org/10.18653/v1/2020.emnlp-main.207
https://doi.org/10.18653/v1/2020.emnlp-main.207
https://doi.org/10.18653/v1/2021.calcs-1.6
https://doi.org/10.18653/v1/2021.calcs-1.6
https://doi.org/10.18653/v1/2021.calcs-1.6
https://doi.org/10.18653/v1/2021.calcs-1.6
https://doi.org/10.18653/v1/2021.calcs-1.6
https://aclanthology.org/C82-1023
https://aclanthology.org/C82-1023
https://aclanthology.org/C82-1023
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.18653/v1/D19-5506
https://doi.org/10.18653/v1/D19-5506
https://doi.org/https://doi.org/10.1016/j.actpsy.2008.02.001
https://doi.org/https://doi.org/10.1016/j.actpsy.2008.02.001
https://doi.org/https://doi.org/10.1016/j.actpsy.2008.02.001
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://aclanthology.org/L18-1548
https://aclanthology.org/L18-1548
https://aclanthology.org/L18-1548
http://arxiv.org/abs/2008.07772
http://arxiv.org/abs/2008.07772
http://arxiv.org/abs/2008.07772
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.3115/v1/P15-1002
https://doi.org/10.3115/v1/P15-1002
https://doi.org/10.3115/v1/P15-1002
https://doi.org/10.1017/S0047404500017449
https://doi.org/10.1017/S0047404500017449
https://doi.org/10.1017/S0047404500017449
https://doi.org/10.1017/S0047404500017449
https://doi.org/10.1017/S0047404500017449
https://doi.org/10.18653/v1/2021.calcs-1.8
https://doi.org/10.18653/v1/2021.calcs-1.8
https://doi.org/10.18653/v1/2021.calcs-1.8
https://doi.org/10.18653/v1/2021.calcs-1.8
https://doi.org/10.18653/v1/2021.calcs-1.8
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2020.findings-emnlp.175
https://doi.org/10.18653/v1/2020.findings-emnlp.175
https://doi.org/10.18653/v1/2020.findings-emnlp.175
http://arxiv.org/abs/2012.15710
http://arxiv.org/abs/2012.15710
http://arxiv.org/abs/2012.15710
https://aclanthology.org/2020.semeval-1.100
https://aclanthology.org/2020.semeval-1.100
https://aclanthology.org/2020.semeval-1.100

Carol W. Pfaff. 1979. Constraints on language mix-
ing: Intrasentential code-switching and borrowing in
spanish/english. Language, 55(2):291-318.

Shana Poplack. 1978. Syntactic structure and social
function of code-switching, volume 2. Centro de
Estudios Puertorriquefios,[City University of New
York].

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543—1553, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Mohd Sanad Zaki Rizvi, Anirudh Srinivasan, Tanuja
Ganu, Monojit Choudhury, and Sunayana Sitaram.
2021. GCM: A toolkit for generating synthetic code-
mixed text. In Proceedings of the 16th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: System Demonstrations,
pages 205-211, Online. Association for Computa-
tional Linguistics.

Motoki Sato, Jun Suzuki, and Shun Kiyono. 2019. Ef-
fective adversarial regularization for neural machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 204-210, Florence, Italy. Association for
Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Rajendra Singh. 1985. Grammatical constraints on
code-mixing: Evidence from hindi-english. Cana-
dian Journal of Linguistics/Revue canadienne de lin-
guistique, 30(1):33-45.

Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Kr-
ishna Rallabandi, and Alan W. Black. 2019. A sur-
vey of code-switched speech and language process-
ing. CoRR, abs/1904.00784.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume
2,NIPS’14, page 3104—3112, Cambridge, MA, USA.
MIT Press.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna. 2016. Rethinking the inception architec-
ture for computer vision. In 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages 2818-2826, Los Alamitos, CA, USA.
IEEE Computer Society.

11

Vaibhav Vaibhav, Sumeet Singh, Craig Stewart, and
Graham Neubig. 2019. Improving robustness of ma-
chine translation with synthetic noise. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics:. Human Language Technologies, Volume 1
(Long and Short Papers), pages 1916-1920, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-
dukasz Kaiser, and Illia Polosukhin. 2017. Attention
is all you need. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, NIPS’17, page 6000—-6010, Red Hook, NY,
USA. Curran Associates Inc.

Shivendra K Verma. 1976. Code-switching: Hindi-
english. Lingua, 38(2):153-165.

Genta Indra Winata, Andrea Madotto, Chien-Sheng
Wu, and Pascale Fung. 2018. Code-switching lan-
guage modeling using syntax-aware multi-task learn-
ing. In Proceedings of the Third Workshop on Com-
putational Approaches to Linguistic Code-Switching,
pages 62—67, Melbourne, Australia. Association for
Computational Linguistics.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin,
and Michael Auli. 2019. Pay less attention with
lightweight and dynamic convolutions. In /nterna-
tional Conference on Learning Representations.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. 2021. mT5: A massively mul-
tilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483—498, Online. Association for Computa-
tional Linguistics.

Shuyan Zhou, Xiangkai Zeng, Yingqi Zhou, Antonios
Anastasopoulos, and Graham Neubig. 2019. Im-
proving robustness of neural machine translation
with multi-task learning. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 565-571, Flo-
rence, [taly. Association for Computational Linguis-
tics.


http://www.jstor.org/stable/412586
http://www.jstor.org/stable/412586
http://www.jstor.org/stable/412586
http://www.jstor.org/stable/412586
http://www.jstor.org/stable/412586
https://doi.org/10.18653/v1/P18-1143
https://doi.org/10.18653/v1/P18-1143
https://doi.org/10.18653/v1/P18-1143
https://www.aclweb.org/anthology/2021.eacl-demos.24
https://www.aclweb.org/anthology/2021.eacl-demos.24
https://www.aclweb.org/anthology/2021.eacl-demos.24
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.18653/v1/P19-1020
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1017/S0008413100010677
https://doi.org/10.1017/S0008413100010677
https://doi.org/10.1017/S0008413100010677
http://arxiv.org/abs/1904.00784
http://arxiv.org/abs/1904.00784
http://arxiv.org/abs/1904.00784
http://arxiv.org/abs/1904.00784
http://arxiv.org/abs/1904.00784
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.18653/v1/N19-1190
https://doi.org/10.18653/v1/N19-1190
https://doi.org/10.18653/v1/N19-1190
https://doi.org/10.18653/v1/W18-3207
https://doi.org/10.18653/v1/W18-3207
https://doi.org/10.18653/v1/W18-3207
https://doi.org/10.18653/v1/W18-3207
https://doi.org/10.18653/v1/W18-3207
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
https://openreview.net/forum?id=SkVhlh09tX
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/W19-5368
https://doi.org/10.18653/v1/W19-5368
https://doi.org/10.18653/v1/W19-5368
https://doi.org/10.18653/v1/W19-5368
https://doi.org/10.18653/v1/W19-5368

A Appendix

Candidate Word Selection: First, we select
words to substitute in the Hindi (L,,) sentence
based on their POS tag. Given a source sentence

S ={s1,82,...,8,} € Ly, and a target sentence

T = {t1,ta,...,tm} € Le, we obtain POS tags

for each word in S. Next, we make the select can-

didate words based on their POS tags:

1. Named entities such as person, location, orga-
nization, etc., are represented as proper nouns
(NNP, NNPC, NNPS). These are typically
present in an ambiguous manner where the root
word does not change, but multiple spelling
variations can be found due to its modern adap-
tation. For example, “sitambar” vs “septem-
ber”, “captaan” vs “captain”.

. Common nouns (NN, NNC, NNS), adjectives
(J)), and quantifiers (QC, QCC, QO) are fre-
quently translated with their L. counterparts.
These words do not change the grammati-
cal structure of L,, and form the basis of
widespread Hinglish usage.

Based on these switching constraints, we form

an inclusion list (/) containing the POS tags to

be included for code-switching. Subsequently, we
shortlist the candidate words S’ = s; such that

their corresponding tags p; € I.

Heuristic for candidate word selection for lan-
guage switching: Given that there can be 2" — 1
CM combinations in a sentence of r candidate
words, we adopt the following selection rule de-
pending upon the length of sentences to narrow
down the possible sample space:

1. Use all combinations for r<=4. For example,

an n-word sentence with 3 candidate words

will have 23 — 1=7 CM sentences.

. Use » — 3 to r candidate word combina-
tions for 5<=r<7. For example, an n-word
sentence with 5 candidate words will have
5Cy+°C3+5Cy+5C5=26 CM sentences.

. Use 0.6r to 0.7r candidate word combina-
tions for r>=7. For example, an n-word
sentence with 15 candidate words will have
15049+15C1p=8008 CM sentences.

Adversarial Module: The transliteration of non-
roman languages depends upon the phonetic tran-
scription of each word, varying heavily with the
writer’s interpretation of involved languages. With
no consistent spelling of a word, it becomes cru-
cial to simulate the real-world variations and noise
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for the practical application of any CMT model.
Hence, we propose to learn robust contextual repre-
sentations by distorting the available clean corpora
with word-level perturbations as follows*:

» Switch: The adjacent characters inside the

word are randomly switched to reproduce the
typos due to the fast entry of keys. For exam-
ple,“transfer’vs“trasnfer”.
Omission: A single character inside a word is
randomly omitted to add noise. This error is
usual when using short words during informal
communication on OSNs. This also occurs in
cases when characters are excluded while typ-
ing due to the phonetically similar pronuncia-
tion of the correct and incorrect spellings. For
example, “amazing’vs“amzng”.
Proximity typo: While typing a character, a
neighboring key is pressed mistakenly, thereby
completely distorting the word. To replicate
this error, we randomly select a character from
the word followed by random neighboring key
replacement corresponding to the QWERTY
keyboard. For example, “m o b i [ €’ vs
“movile”.
Random Shuffle: Sometimes, the non-
adjacent letters are swapped erroneously. Al-
though this does not happen frequently, we in-
ject this noise by randomly shuffling the word
to make our model robust to any word-level
noise. For example, “laptop”vs“loptap”
We inject 30% switch, 12% omission, 12% typo,
and 5% shuffle noise to Hi ., for producing a 60%
word-level noisy code-mixed corpus Hi.rn-En.
Both clean (Hi.,-En) and noisy (Hi.,,-En) cor-
pora are further used to train a joint model, which
is described in the next subsection.

Statistics: The detailed statistics of the synthetic
and gold-standard annotated code-mixed datasets
are provided in Table 5. CTRANS on an average,
contains 19% more number of ways in which a sin-
gle Hindi sentence is represented into multiple CM
sentences, calculated by the ratio of total sentences
to unique sentences than CALIGN. The higher
number of Hi (src) tokens in CALIGN is justified
by the fact that the dataset has lower Code-Mixing
Index (CMI) (27.9% vs 35.9%) than CTRANS sug-
gesting a less percentage of code-mixing. Due to
this, a relatively lesser number of words are sub-
stituted by their English counterparts. Despite a

4 All noise is added between the first and last character of
a word keeping both characters intact.



Statistics CTRANS .CALIGN Dev Test
Train
#Total Sent 4.9M 4.2M 280 | 2507
#Unique Sent 0.67M 0.71M 280 | 2507
CMI 35.6 27.9 326 | 324
SPF 47.7 443 47 45.5
Token-level statistics
#H1 (src) 0.19M 0.25M 711 4194
#En (src) 0.08M 0.11M 667 | 5923
#En (tgt) 0.17M 0.19M 1392 | 11255
#Total (src-tgt) 0.45M 0.52M | 2533 | 18827
Char-level sentence length
Mean 84.73 100.9 65.6 | 1249
Median 74 88 64 111
Word-level sentence length
Mean 15.7 18.24 12.17 | 22.8
Median 14 16 12 20

Table 5: Statistics of CTRANS and CALIGN code-
mixed datasets. Here, src and tgt represent source (Hi.)
and target (En) sentences.

lower CMI, we can see that CALIGN dataset con-
tains as much as 30000 higher number of En(src)
tokens than CTRANS as the alignment based sub-
stitution method replaces different words based on
the target sentence alignment. Further, the CM sen-
tences in the test set have longer average sentence
length than the train set (34.5%7 character-level
and 34.3%71 word-level), demonstrating the diffi-
culty of code-mixed machine translation at test-
time.

We also evaluate the complexity of datasets us-
ing codemix-specific metrics such as Code-Mixing
Index (CMI) and Switch Point Fraction (SPF).
CMI measures the percentage of code-mixing in
a sentence, whereas SPF calculates the complex-
ity of code-mixing in a sentence. On average, the
CALIGN dataset is 7.1% less complex and has a
21.6% lower presence of code-mixed words than
CTRANS making it relatively easier to translate.

Training details: We use a standard seq2seq
Transformer model (Vaswani et al., 2017) in all
our experiments to ensure the same number of pa-
rameters. Both encoder and decoder consist of
a stack of 6 identical layers. Each layer com-
prises a Multi-Head Attention layer with 4 atten-
tion heads and a Feed-forward layer with an inner
dimension of 1024. The shared input and output
embedding dimensions are set to 512. We use a
dropout rate of 0.1, a learning rate of 5 x 1074
and an Adam optimizer with warmup steps of 4000.
A unigram model with character coverage 1.0 is
trained on all languages to obtain a common vocab-
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Source Hi, | Patiki prerana se unhonne sanskrut men likhit
ramayan ka bangla men sankshipt rupantar kiya.

At her husband's persuasion she translated into Bengali
an abridged version of the Ramayana from Sanskrit.
Husband ki inspiration se unhonne sanskrit men
written ramayana ka bangla men brief rupantar kiya.
Husband ki persuasion se unhonne sanskrit men

likhit ramayan ka bangla men abridged rupantar kiya.
Hum khane ke baad aam khate the

We ate mangoes after lunch

Hum khane ke baad common account the

Hum khane ke baad mangoes ate the

Target En

CTRANS | Hi.,

CALIGN | Hi.p

Source
Target
CTRANS
CALIGN

[EIEI
En
Hicp

Hicr

Table 6: Samples of generated code-mixed (Hi.,)
sentences using translation (CTRANS) and alignment
(CALIGN) approaches.

ulary of size 32000. To implement our model, the
fairseq (Ott et al., 2019) toolkit is employed. We
compute SacreBLEU (Ott et al., 2019), and ME-
TEOR (Banerjee and Lavie, 2005) to evaluate the
quality of the translation.

Tokenization: We apply a language-free Senten-
cePiece’ tokenizer with a unigram subword model
(Kudo, 2018) to generate a vocabulary directly
from the raw text. As the unigram model calcu-
lates subwords according to the occurrence prob-
abilities, directly applying the tokenization to the
corpora would result in the underrepresentation of
low-resource languages. Therefore, we undersam-
ple the high-resource language by randomly choos-
ing a fixed set of sentences from the corpora to ob-
tain the shared dictionary.

Qualitative Analysis of CTRANS and CALIGN
We determine the quality of the synthetic code-
mixed sentences in CTRANS and CALIGN as well
the generated translations using JAMT. In Table 6,
samples from both datasets highlight the distinc-
tion between our two CM generation approaches.
In the translation approach, the word “prerana” is
replaced by “inspiration” due to its frequent usage
in the corpus as well as the real world. But due
to the existence of a relatively uncommon word
“persuasion” in its target pair, the CALIGN dataset
chooses “persuasion” for substitution. Similarly,
“sankshipt” is replaced by “brief”” in CTRANS and
by arare word “abridged” in CALIGN. This makes
our CTRANS code-mixed vocabulary consistent
throughout every occurrence of a source word,
whereas CALIGN benefits from the rich lexicons
in generated CM sentences.

Shttps://github.com/google/
sentencepiece
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Error Analysis: We end with the analysis of
some common errors when translating CM text to
English.

Alignment Errors: Despite the context-
dependent word substitution in CALIGN, this
approach is susceptible to all the alignment
errors. Incorrect word mapping between the
source-target could completely alter its CM
meaning. Also, we substitute words with
an only one-to-one correspondence between
the source and target, thereby abandoning all
words with multiple alignment mapping.
Translation Errors: The benefit of imitat-
ing real-world code-mixed usage by substitu-
tion with prevalent words (learned from trans-
lation model) leads to incorrect handling of
Homonyms (Anekarthi Shabd). An individ-
ual word, when passed through a translation
model, gives a single translation independent
of context. This leads to incorrect translation
in scenarios when the same word represents a
different meaning. For instance, in Table 6,
the word “aam” in Hi incorrectly translates to
“common” where the correct translation would
be “mango” according to the context.

POS Tagging Errors: A good POS tagger
forms the basis of our code-mixed creation pro-
cess. In cases when a word in the source sen-
tence is incorrectly tagged to a tag in POS in-
clusion list 7, it will be replaced by both substi-
tution approaches. For example in Table 6, the
verb “khate” gets mistagged to a noun, thereby
being replaced by its translation “account” in
CTRANS and “ate” in CALIGN. Note that the
word “khate” is a homonym, thereby produc-
ing both translation and POS-tagging error in
a single word.
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