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ABSTRACT

With more and more deep neural networks being deployed as various daily ser-
vices, their reliability is essential. It is frightening that deep neural networks are
vulnerable and sensitive to adversarial attacks, the most common one of which
for the services is evasion-based. Recent works usually strengthen the robustness
by adversarial training or leveraging the knowledge of an amount of clean data.
However, retraining and redeploying the model need a large computational budget,
leading to heavy losses to the online service. In addition, when training, it is likely
that only limited adversarial examples are available for the service provider, while
much clean data may not be accessible. Based on the analysis on the defense
for deployed models, we find that how to rapidly defend against a certain attack
for a frozen original service model with limitations of few clean and adversarial
examples, which is named as RaPiD (Rapid Plug-in Defender), is really important.
Motivated by the generalization and the universal computation ability of pre-trained
transformer models, we come up with a new defender method, CeTaD, which
stands for Considering Pre-trained Transformers as Defenders. In particular, we
evaluate the effectiveness and the transferability of CeTaD in the case of one-shot
adversarial examples and explore the impact of different parts of CeTaD as well
as training data conditions. CeTaD is flexible for different differentiable service
models, and suitable for various types of attacks.

1 ANALYSIS: THE DEFENSE FOR DEPLOYED SERVICE MODELS

Table 1: Comparison of conditions of RaPiD and recent
works on adversarial defense. We focus on the needs of gen-
erating extra data, tuning the target service models, applying
adversarial training, using information from clean data and
whether it is plug-in.

Case Data
Generation

Tuning
Service

Adversarial
Training

Clean
Data Plug-in

Wang et al. (2023) ! ! ! ! %
Xu et al. (2023) % ! ! ! %
Shi et al. (2021) % ! % ! %

Wang et al. (2022) % % % ! %
Nie et al. (2022) % % % ! %
Xie et al. (2017) % % % % !
Xie et al. (2019) % % ! ! !

Ours % % ! % !

It is found that trained neural net-
work models are so vulnerable that
they could not predict labels correctly
when limited perturbations are added
into the input examples (Goodfellow
et al. (2014); Akhtar & Mian (2018);
Chakraborty et al. (2018)). Such a
method is called an evasion-based ad-
versarial attack. Facing this challenge,
recent works (Xu et al. (2023); Wang
et al. (2023); Shi et al. (2021); Wang
et al. (2022); Nie et al. (2022)) pay at-
tention to getting robust models by
leveraging the knowledge of clean
data or running adversarial training.

Nowadays, deep neural networks are employed as fundamental services in various fields (Liu et al.
(2017); Eloundou et al. (2023)). One kind of the hottest models is pre-trained transformer (Vaswani
et al. (2017)) models, such as GPT-2 (Radford et al. (2019)), BERT (Devlin et al. (2018)), and VIT
(Dosovitskiy et al. (2020)). After pre-training on related data, they perform well in generalization
and could be quickly fine-tuned to downstream tasks.

When it comes to the defense for deployed service models, the condition would be harder. Facing an
attack, the service model may be challenging to fine-tune since the methods, such as pruning (Zhu
et al. (2021)), are usually implemented before deployment to compress or speed up the service. Thus,
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Figure 1: A case for rapidly defending a deployed model against the adversarial attack. (a) The
deployed model is considered as a service for a certain task. (b) When some information about the
service model is leaked, the attacker could generate adversarial examples by one attack method to
fool the service model. (c) With a small number of adversarial examples, an adaptive defender is
needed to avoid losses as quickly as possible. We suppose the following cases: the original deployed
model is frozen since it is hard to tune and deploy quickly and well, little knowledge of clean data
may be available, and few adversarial examples are available. (d) Equipped with the defender, the
service could work correctly even with adversarial examples.

it costs a large computational budget to retrain and redeploy a more robust model. In addition, it’s
likely that only a small number of examples are possibly available. Moreover, we have to defend as
quickly as possible to avoid more losses instead of waiting for getting enough training adversarial
examples. Besides, clean data or the abstract knowledge of clean data, such as other models trained
on it, is likely to be inaccessible. Therefore, recent works could not work in this case.

Under the mentioned difficulties and limitations, it is important to come up with a Rapid Plug-in
Defender (RaPiD). As shown in Figure 1, to simulate the conditions mentioned above, the victim
service model is fixed, little knowledge of clean data and few possibly imbalanced adversarial
examples of one attack method are available for training. In this paper, by default, only one-shot
imbalanced adversarial examples are available unless stated otherwise. The main differences between
RaPiD and the recent methods are shown in Table 1.

2 RELATED WORKS

Adversarial Examples and Defenses. Introduced by Szegedy et al. (2013), adversarial examples
could fool a neural network into working incorrectly. Among various methods (Akhtar & Mian
(2018); Chakraborty et al. (2018)), attacks in a white-box manner are usually the most dangerous
since the leaked information of the victim model is utilized. Many efforts generate adversarial
examples through gradients of victims. Goodfellow et al. (2014) yielded a simple and fast method of
generating adversarial examples (FGSM). Carlini & Wagner (2017) proposed much more effective
attacks tailored to three distance metrics. PGD is a multi-step FGSM with the maximum distortion
limitation (Madry et al. (2017)). Croce & Hein (2020) came up with AutoAttack, a parameter-free
ensemble of attacks. Facing adversarial examples, lots of effort pay attention to defense. Some
works strengthen robustness by adversarial training, where the model would be trained on adversarial
examples (Goodfellow et al. (2014)). Wang et al. (2023) proposed to exploit diffusion models to
generate much extra data for adversarial training. Xu et al. (2023) encouraged the decision boundary
to engage in movement that prioritizes increasing smaller margins. In addition, many works focus on
adversarial purification. Shi et al. (2021) combined canonical supervised learning with self-supervised
representation learning to purify adversarial examples at test time. Similar to Wang et al. (2022),
Nie et al. (2022) followed a forward diffusion process to add noise and recover the clean examples
through a reverse generative process.

Pre-trained Transformer. Introduced by Vaswani et al. (2017), transformer is an efficient network
architecture based solely on attention mechanisms. It is first applied in natural language processing
and then rapidly spread in computer vision. Devlin et al. (2018) proposed BERT to utilize only the
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encoder of transformer while GPT-2 (Radford et al. (2019)) considered only transformer decoder.
In computer vision, Dosovitskiy et al. (2020) proposed Vision Transformer (VIT), transforming
a image into sequences of patches and processing them through a pure encoder-only transformer.
Moreover, transformer has the ability of universal computation over single modality. Lu et al. (2021)
demonstrated transformer models pre-trained on natural language could be transferred to tasks of
other modalities. Similar to Zhu et al. (2023) and Ye et al. (2023), Tsimpoukelli et al. (2021) proposed
to make the frozen language transformer perceive images by only training a vision encoder as the
sequence embedding.

3 PRE-TRAINED TRANSFORMERS AS DEFENDERS

Figure 2: The structure of CeTaD. The input example
would be added with the feature obtained by the stack
of an embedding, a transformer encoder, and a de-
coder before being processed by the deployed service
model. The deployed model is frozen in RaPiD.

In RaPiD, with some adversarial examples,
the defender should rapidly respond, keep-
ing the original service fixed. We only con-
sider image classification as the service task
in this paper, but other tasks are also theo-
retically feasible. Motivated by the general-
ization and the universal computation abil-
ity of pre-trained transformer models (Lu
et al. (2021); Kim et al. (2022)) and the case
that pre-training could strengthen the robust-
ness (Hendrycks et al. (2019)), we propose a
new defender method, CeTaD, Considering
Pre-trained Transformers as Defenders, as
shown in Figure 2. The plug-in defender is
initialized by the pre-trained weights. A de-
fender embedding and a defender decoder are
needed to align the plug-in defender to the
input example and the service model. There
is a residual connection of the defender to
keep the main features of the input example, which means that the original input example added with
the output of the defender is the input for the service model. In this paper, the embedding is copied
from VIT or BERT, and the decoder is PixelShuffle (Shi et al. (2016)). Since only limited adversarial
examples are accessible, to avoid over-fitting and causing much bias on clean data, we choose to
fine-tune minimal parameters, such as layer norm, of the plug-in defender. CeTaD is feasible for an
arbitrary victim structure as long as it is differentiable.

Next, we formulate the method. In a single-label image classification task, every image xc among the
clean set Xc is attached with a label y⇤ among the corresponding label set Y⇤. A deployed model
M maps xc into the prediction yc as

yc = M(xc)

If M works correctly, yc = y⇤. Based on the leaked information of M, the attacker edits the original
image xc to an adversarial image xa by adding noises. xa belongs to the adversarial set Xa. The
prediction for xa is

ya = M(xa)

If the attack succeeds, ya 6= y⇤. The tuning set for defense is Xd, which is the subset of Xa. |Xd| is
limited since adversarial examples are difficult to get.

In our method, we add a defender module D with parameters ✓ and keep M fixed. As shown in
Figure 2, M consists of the embedding of a pre-trained VIT, a pre-trained transformer encoder as a
feature poccessor and a parameter-free PixelShuffle block as a decoder. Only limited parameters are
fine-tuned in Xd. The objective is
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argmin
✓1

X

xd2Xd

loss(M(D✓1,✓2(xd) + xd), y
⇤)

where loss is the cross-entropy for classification. ✓1 and ✓2 are the parameters of D. Only ✓1 is tuned.
Specifically, layer norm parameters are ✓1 and the others are ✓2. With the trained defender D✓⇤

1 ,✓2 ,
the final prediction y is

y = M(D✓⇤
1 ,✓2(x

0) + x0)

where ✓⇤1 is the optimized parameters, and x0 2 (Xc
S
Xa).

Here are two points of view on CeTaD. First, it could be considered a purifier, which perceives and
filters the perturbations of adversarial examples by adding adaptive noise. From another angle, similar
to prompt engineering (Liu et al. (2023)) in natural language processing, if we consider CeTaD as a
prompt generator, it would generate adaptive prompts. The added prompts hint at the service model
to better classify the adversarial examples.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Attacks Three common datasets on image classification are considered: MNIST
(LeCun et al. (2010)), CIFAR-10 (Krizhevsky (2009)), and CIFAR-100 (Krizhevsky (2009)). Two
evasion-based methods, PGD (Madry et al. (2017)) and AutoAttack (Croce & Hein (2020)), are
implemented to simulate attacks when a service model is leaked. Following Wang et al. (2023),
maximum distortion ✏ is 8/255 for l1-norm and 128/255 for l2-norm. For PGD, the number of
iterations is ten while the attack step size is ✏/4.

Pre-trained Models For reproducibility, models and pre-trained checkpoints in the experiments
are all public on GitHub or Huggingface. For MNIST, the victim model is a fine-tuned VIT-base; for
CIFAR-10, both of a fine-tuned VIT-base and a standardly trained WideResNet-28-10 are considered
as victims; For CIFAR-100, a fine-tuned VIT-base is the victim. Pre-trained BERT-base, BERT-large,
VIT-base, VIT-large and GPT-2-124M are considered as the choices of the defender initialization.
Here, we consider GPT-2-124M as a transformer encoder in CeTaD since it is to perceive information
and following it, a decoder is implemented for mapping hidden feature into image space.

Experimental Details In experiments, for simplicity, the training set only consists of adversarial
examples whose number equals to that of the classes, namely one-shot; following Nie et al. (2022),
we evaluate the accuracy on a fixed subset of 512 images randomly sampled from whole test data; by
default, BERT-base is the defender for the WideResNet-28-10 against Linf-PGD on CIFAR-10; the
embedding of the defender is taken from the pre-trained VIT; similar to Xie et al. (2022), the decoder
is just implemented by PixelShuffle (Shi et al. (2016)) for less tuned parameters; only layer norm
parameters of the defender is tuned while other parameters are completely frozen; Cross-entropy
loss and Lion (Chen et al. (2023)) with default hyper-parameters is implemented for optimization;
epoch is 500 and batch size is 32; Clean accuracy (CA), which stands for the accuracy on clean data
without attack, and adversarial accuracy (AA), which stands for the accuracy on data with adversarial
perturbations added, are considered to evaluate the defenders; following Lu et al. (2021), due to the
number of experiments, we use one seed (42) for each reported accuracy in the content; unless stated
otherwise. Each experiment could run on one NVIDIA RTX A5000 GPU within half an hour.

4.2 CAN PRE-TRAINED MODELS BE CONSIDERED AS DEFENDERS?

We investigate if a model pre-trained on another task could be considered as a defender. To do this,
we apply CeTaD to MNIST, CIFAR-10, and CIFAR-100 datasets with the default settings mentioned
in Section 4.1.

As shown in Table 2, without a defender, the original service model completely breaks down after
performing attacks. Instead, although only limited parameters could be tuned and only one-shot
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adversarial examples are available, models with CeTaD could correctly classify some adversarial
examples. CeTaD is able to defend for both of VIT and ResNet on CIFAR-10, which shows that it is
feasible for different victims. Besides, Both BERT and VIT defenders work, which may demonstrate
that the frozen modules trained on the arbitrary dataset can be universal computation blocks and be
aligned to defense, similar to Lu et al. (2021) and Kim et al. (2022).

Table 2: Accuracy performance of our method on dif-
ferent datasets. None represents no defense strategy.

Dataset Model Defender CA(%) AA(%)

MNIST VIT
None 98.83 00.78
BERT 98.05 92.77
VIT 98.24 91.41

CIFAR-10

ResNet
None 93.75 00.00
BERT 68.75 44.34
VIT 82.81 30.27

VIT
None 98.05 00.00
BERT 41.80 36.33
VIT 80.86 45.90

CIFAR-100 VIT
None 91.41 00.00
BERT 44.53 34.77
VIT 52.34 30.47

In general, the performance for defense de-
pends on the dataset and the defender initial-
ization. Specifically speaking, for MNIST,
the pixels of a number are relatively clear,
and the background is always monotonous,
which makes it easy to perceive the feature
of adversarial perturbations. Thus, both of
the defenders work well. However, when
it comes to CIFAR-10 and CIFAR-100, the
scene is more varied and complex. Tuning
creates more bias, leading to the loss of clean
accuracy. It is remarkable that VIT defenders
outperform BERT defenders on clean accu-
racy while BERT defenders usually outper-
form VIT defenders on adversarial accuracy.
The reason is that, for defense on image clas-
sification, the parameters of pre-trained VIT
are more stable since the original training task in VIT is similar to our test case, making it more
vulnerable to adversarial perturbations. In contrast, the parameters of pre-trained BERT are more
robust since the original training task is entirely different, making it challenging to classify clean
examples.

Even if clean examples and adversarial examples are similar for humans, there is a wide gap for
network models. Since only one-shot adversarial examples are available, the performance on clean
data drops because of catastrophic forgetting (Goodfellow et al. (2013)). From another angle,
considering the defender as a prompt generator, the prompts added into examples hint that the service
model pays attention to adversarial features, leading to ignoring some clean features.

4.3 HOW IMPORTANT ARE THE DEFENDER STRUCTURES?
Table 3: Accuracy performance with dif-
ferent defense methods. Random Noise is
similar to BaRT (Qin et al. (2021)).

Method CA(%) AA(%)

None 93.75 00.00

R&P (Xie et al. (2017)) 93.16 02.34
Random Noise(std=0.05) 68.95 05.86
Random Noise(std=0.06) 57.23 11.13
Random Noise(std=0.07) 48.24 13.67

Linear 23.44 21.68
FFN 18.95 19.34

Bottleneck 23.44 20.90
FD(Xie et al. (2019)) 37.50 23.83

GPT-2 (ours) 55.08 39.65
VIT (ours) 82.81 30.27

VIT-large (ours) 71.68 44.14
BERT (ours) 68.75 44.34

BERT-large (ours) 66.02 48.83

Though we find that CeTaD could work on different
datasets, is the structure redundant? Here, we com-
pare CeTaD with other possible structures and feasible
state-of-the-art baselines for RaPiD. The methods are
divided into 2 categories. Ones (R&P and Random
Noise) are training-free while the others (Linear, FFN,
Bottleneck and FD) need optimization. For R&P (Xie
et al. (2017)), random resizing and random padding are
utilized to defend against adversarial examples. For
Random Noise, noise sampled from a normal distribu-
tion with a mean of zero is added to each test example as
a defense, which is similar to BaRT (Qin et al. (2021)).
FD (Xie et al. (2019)) utilizes a non-local denoising
operation with a 1×1 convolution and an identity skip
connection. We get both the best clean and adversarial
accuracy for FD when the hidden dimension is set to
256. For the Linear case, one linear layer without an activation function replaces the transformer
layers. Similarly, FFN means one feed-forward block consists of two linear layers, the hidden feature
dimension of which is double the input feature dimension, and one RELU activation function between
them. The only difference between Bottleneck and FFN is that the hidden feature dimension is half
of the input feature dimension for Bottleneck. It is worth mentioning that many previous methods
on adversarial training, such as Wang et al. (2023), can not rapidly defense with limited adversarial
examples due to their needs of abundant adversarial training data and serious time consumption for
retraining the deployed model. Thus, they are not comparable with our method. In addition, since the
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clean accuracy is rather high at the beginning of the training with random initialization, zero output
initialization (Hu et al. (2021); Zhang & Agrawala (2023)) is not implemented.

Figure 3: Accuracy and loss vs. epoch. Left: Accuracy
curves on training and test data. training means it is on train-
ing data while test means on test data. It is worth mention-
ing that clean training data is actually unseen when training.
Right: The loss curve on training data. Since the accuracy
of training data is always 100% when the number of epochs
is over 90, this loss curve is to better understand the training
process.

The results are shown in Table 3.
R&P maintains the clean accuracy
but has little effect on the adversar-
ial accuracy improvement. For the
case of adding random noise, adver-
sarial accuracy slightly increases, but
clean accuracy seriously drops. In
general, regarding adversarial accu-
racy, training-free methods are worse
than those with optimization. Linear,
FFN, and Bottleneck perform sim-
ilarly. Because of the fixed effec-
tive denoising structure and the lim-
ited tuned parameters, FD is the best
among the shown previous methods.
However, compared with the methods
above, CeTaD, initialized by GPT-
2, VIT, VIT-large, BERT, or BERT-
large, outperforms on adversarial ac-
curacy while keeps rather high clean
accuracy. In addition, the defender initialized from GPT-2 is relatively poor. It demonstrates that
although the decoder-based GPT-2 is efficient for many text tasks, combining the information for
both former and latter patches in vision might be needed. It is also evident that the scale matters.
The defenders of the large scale are better than those of the corresponding base scale in terms of
adversarial accuracy.

In addition, when designing a defender, minimal tuned parameters and robustness of it are very
essential. Linear, FFN, and Bottleneck are more flexible with much more tuned parameters when
training, causing a trend to bias on the clean data. For CeTaD, since the fixed blocks are trained on
other tasks, they are more robust. In addition, fewer tuned parameters result in better clean accuracy.
More explorations about the tuned parameters of CeTaD are in Section 4.5.

We also evaluate the function of the residual connection of CeTaD. In Table 4, without this module,
both clean and adversarial accuracy nearly crash into random selection. It seems that, with few tuned
parameters and only one-shot adversarial examples, the residual connection is significant for both
clean and adversarial accuracy.

4.4 HOW IS THE TRAINING PROCESS GOING?

With most parameters frozen and little tuned, could CeTaD well fit adversarial examples? In addition,
since the training data consists of only one-shot adversarial examples by default, could CeTaD get
overfitting? To evaluate these questions, we record clean and adversarial accuracy on both training
and test data following default experimental settings. However, the accuracy of training data is not
likely to be expressive because of its limited quantity. To better observe the training process, we also
record the training loss on training data.

As shown in Figure 3, first, adversarial accuracy on training data increases up to 100% within 90
epochs, which means CeTaD is able to quickly fit training data with only layer norm parameters
being tuned. To our surprise, clean accuracy also concomitantly rises to 100%. It is because even if
clean examples are not directly shown for our model, training on adversarial examples could dig out
some features that could reflect the corresponding clean examples.

Besides, on test data, adversarial accuracy steadily grows, which demonstrates that CeTaD could
generalize the information learned from only one-shot adversarial examples. At the same time,
clean accuracy drops. The distributions and mapping relationship to task space between clean data
and adversarial data are not completely overlapped because of the function of added adversarial
perturbations. Thus, when training, for CeTaD, drawing closer to the adversarial data domain would
distance from the clean one, resulting in a loss of accuracy on clean data.
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In addition, for the last 400 epochs, as accuracy on training data keeping 100%, adversarial accuracy
on test data continues slightly rising, the corresponding clean accuracy gently declining and the loss
occasionally shaking. It means that, instead of overfitting, CeTaD keeps exploring and learning
information about adversarial examples. It is indeed vital since, in RaPiD, with limited training data,
the difficulty is avoiding overfitting when training because methods such as evaluation and early
stopping are likely not available for restricted examples.
Table 4: Accuracy performance on the residual
connection. without-res is for removing the resid-
ual connection.

Defender CA(%) AA(%)
None 93.75 00.00
BERT 68.75 44.34

BERT-without-res 11.13 10.55
VIT 82.81 30.27

VIT-without-res 12.89 12.89

Table 5: Accuracy performance with different
initialization strategies and tuned parameters.

Defender CA(%) AA(%)
None 93.75 00.00

Random 52.93 42.39
Random-Tune-All 43.36 33.79

BERT 68.75 44.34
BERT-Tune-All 59.77 44.14

VIT 82.81 30.27
VIT-Tune-All 69.14 36.14

4.5 ARE PRE-TRAINED INITIALIZATION AND FROZEN PARAMETERS NECESSARY?

Section 4.3 shows that initialization strategies and tuned parameters are vital for defenders. Here,
we investigate these factors inside CeTaD. The difference between the BERT defender and the VIT
defender is the weight initialization, as the structures of transformer layers are the same.

As shown in Table 5, tuning all parameters would reduce both clean and adversarial accuracy, except
for the VIT defender. In that case, since the fixed modules of pre-trained VIT are also about image
classification, the mapping relationship of the defender with limited tuning is close to that of the
victim service, which makes it also vulnerable to adversarial examples. Instead, Tuning all parameters
of VIT could distance from the original mapping relationship strengthening robustness, resulting
in the increase of adversarial accuracy. In addition, we find that the BERT defender performs the
best on adversarial accuracy. The VIT defender is better on clean accuracy and even the defender
with random initialization still outperforms the VIT defender on adversarial accuracy. Therefore, the
defender with VIT initialization seems more likely to be suboptimized and conservative.

4.6 HOW DOES TRAINING DATA AFFECT PERFORMANCE?

By default, only one-shot adversarial examples are accessible, and the adversarial examples are
not class-balanced. For example, only 10 adversarial examples sampled randomly are available
on CIFAR-10. It is to simulate the conditions where a deployed service model is attacked and
only limited adversarial examples are relabeled. To discover how the training dataset affects the
performance of CeTaD, we relax the settings for evaluation.

As shown in Table 6, based on the default setting, either adding one-shot clean examples for auxiliary,
considering four-shot adversarial examples, or just balancing the class of the training data could
enhance both clean accuracy and adversarial accuracy. The conditions of establishing class-balanced
data and adding clean examples to training data are more important for improving clean accuracy.

4.7 COULD THE PROPOSED DEFENDERS ALSO RESPOND TO DIFFERENT ATTACKS?

In reality, the deployed service model may be attacked by various methods. To determine whether the
defenders are reliable, we apply different attack methods and maximum distortion types to evaluate
Table 6: Accuracy performance on different
training data settings. 1adv (1clean) means one-
shot adversarial or clean examples. Balanced

means the examples are class-balanced.
Training Data CA(%) AA(%)

1adv 68.75 44.34
1adv-1clean 76.76 48.24

4adv 70.12 50.20
1adv-Balanced 77.34 49.02

Table 7: Accuracy performance against differ-
ent attack methods. None represents no attack
method is applied.

Attack Method CA(%) AA(%)
None 93.75 -

l1-PGD 68.75 44.34
l1-AutoAttack 70.70 49.41

l2-PGD 76.17 57.03
l2-AutoAttack 73.44 61.33
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the defenders under the default experimental settings. Table 7 demonstrates that CeTaD is adaptable,
and it is noteworthy that they get better adversarial accuracy against AutoAttack. We find that, in
AutoAttack, only Auto-PGD works since the included methods are applied in turn for ensemble
and the victim always completely fail against just the first method, Auto-PGD, which is able to
automatically adjust the step size to get the minimal efficient perturbations. However, seeking for the
minimal perturbations might cause poor robustness of the perturbations themselves, which makes it
easier to successfully defend against. Thus, to generate better perturbations, the balance of maximum
distortion and perturbation effect is much important.

4.8 COULD THE DEFENDERS GENERALIZE TO DIFFERENT DATASETS WITHOUT RE-TUNING?
Table 8: Accuracy performance on zero-shot transfer from top to bottom. Source is the environment
where the defender is tuned while target is the environment which the defender transfers to. None

represents the defender is directly trained in the target environment without transfer.
Target Data

(Target Model) Defender Source Data
(Source Model) CA(%) AA(%)

CIFAR-10
(ResNet)

BERT None 68.75 44.34

CIFAR-100 (VIT) 63.87 7.42

VIT None 82.81 30.27

CIFAR-100 (VIT) 69.73 7.42

CIFAR-10
(VIT)

BERT None 41.80 36.33

CIFAR-100 (VIT) 73.63 51.17

VIT None 80.86 45.90

CIFAR-100 (VIT) 79.88 47.66

MNIST
(VIT)

BERT
None 98.05 92.77

CIFAR-10 (VIT) 96.29 90.43

CIFAR-100 (VIT) 97.85 89.84

VIT
None 98.24 91.41

CIFAR-10 (VIT) 97.66 87.50

CIFAR-100 (VIT) 97.66 86.91

Table 9: Accuracy performance on zero-shot
transfer from bottom to top.

Defender Source Data
(Source Model) CA(%) AA(%)

BERT
None 44.53 34.77

CIFAR-10 (VIT) 13.87 12.89

MNIST (VIT) 26.37 23.44

VIT
None 52.34 30.47

CIFAR-10 (VIT) 45.31 27.54

MNIST VIT) 49.41 28.91

Since pre-trained models are good at generaliza-
tion (Kim et al. (2022); Hendrycks et al. (2019);
Lu et al. (2021)), the tuned defenders are likely
to have the potential for transfer. Here, we evalu-
ate CeTaD on different transfer tasks without re-
tuning. As shown in Table 8, considering ResNet
on CIFAR-10 as the target and VIT on CIFAR-100
as the source, adversarial accuracy is even lower
than that of random selection. If the target model
is changed to VIT, CeTaD has better performance
for transfer. Thus, since CeTaD is tuned end-to-
end, they are sensitive to the structure of the victim
service model and cannot directly transfer across
different victim models. Instead, when the designs of the victim models are similar, the transfer from
the source task to the target task may be beneficial. Specifically, The transferred BERT defender
get higher adversarial accuracy than others. Thus, CeTaD tuned on much more complex data could
perform better. In addition, since CIFAR-10 and CIFAR-100 are similar, we consider MNIST as
the target data and CIFAR-10 or CIFAR-100 as the source data. The performance is comparable to
that of direct tuning, and it is similar no matter whether the source data is CIFAR-10 or CIFAR-100,
which means the knowledge of these defenders that could be transferred is identical.

The evaluations above are about transferring from a more challenging source data. It is much more
meaningful when the target task is more challenging than the source tasks. As shown in Table 9,
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CIFAR-100 is the target data since it is more complex. Surprisingly, the defenders tuned on MNIST
have better adversarial accuracy than CIFAR-10. It illustrates that the transfer from unrelated data
may be better than that from related data. The reason is that transfer from different domains would
enhance the robustness of the defenders. To sum up, the transfer gap would improve the robustness
of defense, so the defender on diverse datasets may further strengthen the ability on a single dataset.

5 DISCUSSION: LIMITATIONS AND FUTURE WORK

For now, in RaPiD, even if more powerful attacks have not been considered, there still is a significant
distance from reliability for the performance of CeTaD. Tuning CeTaD end-to-end would more or
less damage the performance on clean data. Since the clean and adversarial data are usually similar
in pixels, maybe we could remain clean accuracy by digging out the feature of clean data left on
adversarial data.

Though we only consider image classification in this paper, CeTaD is able to be applied into other
differentiable systems. We are looking forward to evaluating the performance and the generalization
in various tasks in future work. Moreover, is it possible to include methods, such as genetic algorithm
and reinforcement learning, to break the limitation of differentiability?

In addition, as demonstrated in Section 4.5, the initialization strategy and tuned parameter selection
would influence a lot. This paper evaluates only three initialization strategies from standard pre-
trained models while only the case of tuning the parameters of layer norm and fine-tuning all defender
parameters are considered. Therefore, a better initialization strategy for defense and the data-driven
elaborate selection for tuned parameters could improve the performance.

Besides, the conditions of training data are also a vital factor. In this paper, most experiments consider
only one-shot imbalanced adversarial examples as training data. However, as shown in Section 4.6,
the class balance of adversarial examples and the mixture of adversarial examples and clean data
could help a lot. Several adversarial examples and clean examples may be available. Thus, we may
slightly relax the limitations in RaPiD, focusing on structuring a training set consisting of few-shot
clean and adversarial examples with the minimal quantity to get the maximal performance.

Furthermore, lifelong learning should be considered. Though we only include one attack method in
each experiment, a service model is like to be attacked by different methods from time to time. Thus,
we need a defender which can continuously learn to defend against a new attack method while keep
and even study from the learned knowledge in the past. By the way, we believe that the defense for
deployed models is a complex system. Though we focus on the core (how to defend), there are many
other unresolved important problems, such as how to rapidly detect adversarial examples when the
attack happens.

In Section 4.8, it is surprising that indirectly related data transfer outperforms related data transfer
even from bottom to top. This means there is consistency in different data though the specific
domains differ. Thus, whether we could align modalities through such consistency is a good question.
Furthermore, what about the transferability across different attack methods and how to well transfer
across various victim models are left for future work. By including diverse service models for various
tasks on multi-modality data against different attack methods, we are possibly able to get a relative
universal defender, which could strengthen its robustness in one domain from others.

6 CONCLUSION

In this paper, we analyse the defense for deployed service model and find that the solutions in the
case, RaPiD, are essential and related works can not work well. Leveraging the generalization and
universal ability of pre-trained transformers, we propose CeTaD, a new defender method considering
pre-trained transformers as defenders. In experiments, we demonstrate that our method could work
for different victim model designs on different datasets against different attacks and explore the
optimization process, initialization strategies, frozen parameters, structures, training data conditions
and zero-shot generalization in our method.
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