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Abstract001

Zero-shot relation triplet extraction (ZeroRTE)002
task aims to extract unseen relations and003
corresponding entities from the text. Exist-004
ing methods conflate the Relation Extraction005
(RE) and Named Entity Recognition (NER)006
subtasks. Moreover, some methods intro-007
duce synthetic data or information that con-008
tains noise, resulting in failures on ZeroRTE.009
We propose a novel meta-learning approach010
named Environmentally Interactive ACtive011
Meta-Learning (ENIAC-ML) that can mimic012
human processing on ZeroRTE. We decom-013
pose ZeroRTE into RE and NER subtasks and014
train the model using a pipelined approach.015
We further develop an active meta-learning016
approach that can acquire knowledge by in-017
teracting with an agent in the environment,018
autonomously determine the focus of learn-019
ing, and mitigate the impact of noise in ex-020
ternal information. The experimental results021
demonstrate that ENIAC-ML surpasses exist-022
ing methods on Fewrel and Wiki-ZSL datasets.023
Our code is available at https://anonymous.024
4open.science/r/ENIAC-ML-E0FF.025

1 Introduction026

The objective of relation triplet extraction (RTE)027

is to extract triplets in the form of (head entity,028

tail entity, relation label) from unstructured text029

and is essential for several applications (Xu et al.,030

2016). To delve into the generalization of the RTE031

task, Chia et al. (2022) investigate it in a zero-032

shot setting, henceforth zero-shot relation triplet033

extraction (ZeroRTE). As shown in Figure 1, a034

model should extract all relation triplets mentioned035

in the text, and ZeroRTE model is trained solely036

on seen relation classes and needs to generalize to037

unseen relation classes in zero-shot scenario.038

Several works have attempted to address Ze-039

roRTE. RelationPrompt (Chia et al., 2022) utilizes040

synthetic data of unseen relations for training. How-041

ever, the model heavily relies on synthetic data that042

¼
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"Crabby Appleton was an American rock band in 
the early 1970s."

[REL]: country of origin [HEAD]: Crabby Appleton [TAIL]:American
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educated at¼
"The capital of Australia is Canberra."

[REL]: [HEAD]:Canberra [TAIL]: Australiacapital
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Figure 1: Example of the ZeroRTE task. No overlap
between training and testing relations.

may contain noise. Kim et al. (2023) develop ZETT 043

based on template filling and successfully extracts 044

the triplets without the help of synthetic data. Its 045

core idea is to retain pre-trained knowledge by lim- 046

iting the model’s output, thereby enhancing the 047

model’s generalization ability. These methods have 048

the disadvantage of not optimizing for the model’s 049

generalization and lack the ability to learn general- 050

ized knowledge from the data. Although existing 051

large language models (LLMs) have excellent lan- 052

guage understanding performance, they still cannot 053

address ZeroRTE tasks well (Li et al., 2024). 054

The key to tackling ZeroRTE is the improvement 055

of generalization. We believe that task-invariant 056

knowledge can be effectively explored by con- 057

structing a set of meta-tasks from the training data. 058

This meta-knowledge can be then modeled through 059

meta-learning frameworks, enabling the model to 060

capture transferable patterns. In this paper, we 061

identified two critical factors governing the gen- 062

eralization through a theoretical analysis: (1) the 063

diversity of meta-tasks and (2) the computational 064

complexity of meta-knowledge representation. 065

To improve the diversity, we firstly combine 066

the human way of thinking1 to decouple the RTE 067

task into relation extraction and named entity 068

recognition (NER). Then, we design a metric- 069

based meta-learning module for specifically mod- 070

eling meta-knowledge between meta-tasks. Lastly, 071

1See appendix for detailed illustration of human thinking.
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our framework further optimizes model perfor-072

mance through an innovative active learning mech-073

anism that enables effective engagement with074

external environments. Specifically, we pro-075

pose a novel Environmentally Interactive ACtive076

Meta-Learning (ENIAC-ML) framework contain-077

ing a metric-based pipelined meta-learning Mod-078

ule (MPML) and an Environmentally Interactive079

Active learning module (EIAL). MPML contains080

a pipelined task design and a metric-based meta-081

learning approach. Experimental results demon-082

strate MPML improves the model’s generalization083

capabilities. EIAL module actively absorb infor-084

mation such as relations descriptions and entity fea-085

tures from the environment. This module enables086

the model to actively interact with the environment087

based on a prototype-based uncertainty during the088

inference process, eliminating non-critical infor-089

mation or data noise from interfering with model090

training. It is demonstrated that EIAL is superior091

to existing data augmentation methods.092

In summary, our contribution are as follows.093

• For the first time, we explain the determinants094

that affect the generalization of ZeroRTE task095

through theoretical analysis, identifying task096

diversity and meta-knowledge module as the097

key factors.098

• Based on the cognitive mechanisms of human099

on ZeroRTE, we propose a novel pipelined100

meta-learning framework and obtain satisfy-101

ing improvements.102

• For the first time, we introduce an uncertainty-103

driven process for acquiring external knowl-104

edge from environment. It can reduce the105

impact of non-essential information and data106

noise. Extensive experiments demonstrate its107

superiority.108

2 Problem formulation109

Zero-shot Relation Triplet Extraction (Ze-110

roRTE) is formally defined as: Given a dataset111

D = (S, T,R) where T represents relation triplets112

of sentences S, and R is a set of relation classes,113

D is split into a seen DS = (SS , TS , RS) and an114

unseen DU = (SU , TU , RU ) with disjoint relation115

labels (RS ∩RU = ∅), the goal of ZeroRTE model116

is to train on DS and generalize to DU for rela-117

tion triplet extraction. Each triplet (ehead, etail, r)118

consists of head/tail entities and a relation r ∈ R.119

3 Methodology 120

3.1 Theoretical analysis 121

Inspired by Shu et al. (2023), we analyzed the upper 122

bound of meta-learning and tried to design our 123

model based on the analysis. 124

Assumption 1 (Bounded Inputs) X ⊂ B(0, R), 125

for R > 0, where B(0, R) = {x ∈ Rd : ∥x∥ ≤ 126

R}. 127

Assumption 2 (Bounded and Lipschitz Loss 128

Function) The loss function l (·, ·) is B-bounded, 129

and l (·, y) be L-Lipschitz for any y ∈ Y. 130

Assumption 3 (Task diversity) Given the meta 131

learning module H, it holds that 132

Rη(ĥ)−Rη(h
∗) ≤

α
(
Rtrain(ĥ, f̂)−Rtrain(h

∗, f∗)
)
+ β,

(1) 133

where h represents the model parameters corre- 134

sponding to the ‘learning method’ of meta-learning, 135

and f represents the model parameters correspond- 136

ing to the ‘specific task’, which together consti- 137

tute the parameters of the meta-learning model, h∗ 138

is the optimal model corresponding to the ‘learn- 139

ing method’ parameter, ĥ represents the learner 140

obtained by minimizing the empirical risk of the 141

training data. η represents the task distribution, 142

and R represents the risk, so that in Assumption 3, 143

the left-hand represents the difference between the 144

empirical and theoretical risk. The right-hand is 145

the upper bound on the risk spread. All the above 146

assumptions are usually satisfied. 147

Theorem 1 If Assumptions 1-3 hold, for any δ > 0, 148

with probability at least 1− δ, we have 149

Rtest(ĥ, f̂)−Rtest(h
∗, f∗) ≲ α (Rtrain(∧)−Rtrain(∗))

+ Õ

(√
C(f)

mµ

)
+ Eµ∼ηdF (µs, µq),

(2) 150151

Rtrain(ĥ, f̂)−Rtrain(h
∗, f∗) ≲ Õ

(√
C(h)∑T
t=1 nt

+

1

T

T∑
t=1

√
C(f)

mt
+

1

T

T∑
t=1

dF (µs
t , µ

q
t )

)
.

(3) 152

The final effectiveness of a meta-learning model 153

is determined by the effectiveness of the model 154

on the test task. Based on Assumptions 1-3, we 155

derive an upper bound on the risk of the test task. 156

Where Rtrain is the risk of the training task. Õ 157

denotes an expression that hides polylogarithmic 158

factors in all problem parameters. C(·) measures 159

the intrinsic complexity of the function class (e.g., 160
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...

Relation Info
context: xxx
...

Task1(step1)：Choose [REL] in [sent] from [Rel_Info]

Relation Description with positional target

context: xxx
...

Task2(step2)：Extract <triplet> in [sent] by [Relation_discribe]

 [Tail]: xxx [Head]: xxx [Rel]: xxx

Task Description [REL]: Relation Name

Task Description

Environment with Meta-knowledge

Interact

T5 MPML

EIAL

Figure 2: Overview of the proposed framework. The
first step is to select true relations contained in the sen-
tence from the candidate relations, and the second step
generates triplets based on the relation descriptions.

S1：The 14th century saw the spread of Sunni Islam among the Tatars.
I'm confident in this sentence that I don't need guidance.
[Head]:Tatars  [Tail]: Sunni Islam  [Relation]: Religion

S2：The capital of Australia is Canberra.
I'm not confident in this sentence. I need your guidance.

First, which of the following relation does this sentence contain? creator, continent, capital...
It must be capital.

Yes, you should extract the head entity tail entity based on the following relation description.
Description : the city that serves as the administrative center of [HEAD], emphasizing 
its status within the specified domain of [TAIL].

[HEAD]: Canberra  [TAIL]: Australia  [REL]: Capital

Examples of confidence

Examples of lack of confidence

Interactive

Human

Figure 3: Example of uncertainty-guided active learning.
When human or models are not confident enough in
solving a task, they can seek more advanced knowledge
for help.

VC dimension). mµ is the sample size of the test161

task. dF (µ
s, µq) denotes the discrepancy diver-162

gence between support and query data with respect163

to their sampled probability distributions µs and164

µq imposed on the hypothesis class F .165

As shown in Equation (3), the risk upper bound166

for training task contains: the complexity of in-167

dependent learning methods h (the first term), the168

complexity of learning the task-specific model f169

(the second term), and the distribution shift be-170

tween support and query sets (the third term). mt171

and nt are the sizes of support set and query set for172

the t-th task, respectively. T is the number of tasks.173

Note that the leading term capturing the com-174

plexity of learning methods h decays in terms of175

the number of task (
∑T

t=1 nt). And the second term176

above is of the order 1/T
∑T

t=1O(1/
√
mt) ≤177

O(1/
√
m), m = min{m1, · · · ,mT }. The third178

term is only relevant to the division of support179

sets and query sets. This suggests that increas-180

ing task diversity can enhance the model’s final181

performance. Traditional meta-learning methods,182

however, do not explicitly model learning strate-183

gies but embed this knowledge within the entire184

model. Accordingly, we analyze two approaches185

to reduce the upper bound of meta-learning and186

improve model generalization:187

• Increasing the diversity of meta-tasks.188

• Explicitly modeling the learning methods189

(meta-knowledge) as modules or functions.190

We simulated human problem-solving patterns for191

the ZS-RTE task through environmental interaction192

to increase task diversity and incorporated metric-193

based meta-learning to explicitly model “learning194

methods” as modular components.195

Definition 1 Environment refers to a scenario 196

where the model can interact and access task- 197

related knowledge, such as human experience or 198

relation definitions. Our approach investigates the 199

paradigm of language model-environment interac- 200

tion, demonstrating that a deeper understanding 201

of relation triplets can enhance the model’s perfor- 202

mance in ZeroRTE tasks. 203

3.2 Model overview 204

As depicted in Figure 2, ENIAC-ML adopts a 205

pipelined inference process involving Relation 206

Extraction (RE) and Named Entity Recognition 207

(NER) subtasks. It consists of two key modules: 208

MPML (Metric-based Pipelined Meta-learning 209

Module) and EIAL (Environmentally Interactive 210

Active Learning Module). MPML defines the 211

subtask formats, including model inputs and out- 212

puts, and integrates metric-based meta-learning 213

with backbone models. This architecture sep- 214

arates knowledge between subtasks, enhancing 215

meta-task diversity. Meanwhile, the metric-based 216

meta-learning module explicitly models meta- 217

knowledge, reducing the risk upper bound and im- 218

proving generalization for the ZS-RTE task. 219

The EIAL module implements a meta- 220

knowledge interaction component. While external 221

information can enhance model performance, over- 222

reliance on it may impair generalization Chia et al. 223

(2022); Gong and Eldardiry (2024). To address 224

this, we introduce a novel approach for acquiring 225

external information while preventing the model 226

from learning non-generalizable knowledge. 227

As depicted in Figure 3, our proposed ENIAC- 228

ML mimics humans’ cognitive processes when 229

dealing with an RTE task. Humans begin by iden- 230
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 [Head] :

Relation 
Prototype

Label 
Prototype

Metric-based
meta-learner

...

Rel Name context: xxx

...

Relation NameTask Description [Rel]:

Encoder_Hidden_states Decoder_Hidden_states

Figure 4: Structure of the MPML module.

...

 [Tail]: [Head]: [Rel]:Task Description

...

 [Head]_target  [TAIL]_target

Position 
Prototype

 Head Entity  TAIL Entity

Entity 
Prototype

Label 
Prototype

Metric-based
meta-learner

Prototype-based 
Uncertainty 

Sampling Module
Compute
Distance

Encoder_Hidden_states Decoder_Hidden_states

Figure 5: Structure of the EIAL module.

tifying relations contained within the text. When231

encountering unfamiliar relation categories, they232

may refer to external sources for supplementary233

information. They then complete the extraction234

of head and tail entities by integrating identified235

relations, personal knowledge, and external infor-236

mation. We posit that the conventional method of237

utilizing synthetic data for model training lacks the238

generalizable nature of human interaction.239

Building on prior research, we aim to enhance240

model learning through interactions in environ-241

ments enriched with high-level bootstrap knowl-242

edge. Alt et al. (2019) and Li et al. (2024) indicate243

that larger models, such as GPT-3.5 and LLaMA,244

achieve superior performance in Zero-RE tasks,245

suggesting a deeper understanding of entity rela-246

tions. By integrating these insights with human247

problem-solving approaches, we utilize GPT-3.5248

to generate high-quality relation descriptions that249

include meta-knowledge on the locations of head250

and tail entities. This improves the entity extraction251

capabilities of models with fewer parameters. Here252

is an example of a relation description obtained253

from the agent in the environment (See Appendix254

B.1 for more descriptions of relations):255

"Date of birth: The time or moment when256

[HEAD] was born or came into existence, empha-257

sizing its origin or creation within the specified258

domain or context of [TAIL]."259

3.3 Pipelined Meta-learning Module260

3.3.1 Pipelined training261

To avoid confusion between RE and NER subtasks262

and increase the diversity of meta-tasks, we de-263

compose ZeroRTE into two subtasks and train the264

model using a pipelined approach. We introduce265

distinct task prompts to differentiate between the266

subtasks and drive the process.267

The first step of the pipeline aims to enable268

the model to extract unseen relation labels corre-269

sponding to sentences. In the second step of the270

pipeline, we introduce a description of the relation271

that contains the location of the head and tail en- 272

tities. Based on the high-level understanding of 273

relations, the model can extract triplets of unseen 274

relations more accurately. The inputs for the two 275

steps are shown below: 276

I1 = [pad]P1 [pad]Rm [pad]S [eos] , (4) 277

278I2 = [pad]P2 [pad] r :D [pad]S [eos] , (5) 279

where, Rm = [Rel_Info] : {r1, r2, ..., rm}, P1 280

and P2 represent the task prompt of the two steps 281

respectively. m denotes the number of unseen re- 282

lations, R encapsulates the relation information 283

containing the names of m relations, and S signi- 284

fies the sentence to be processed. D represents the 285

relation description generated by GPT-3.5 corre- 286

sponding to r . [pad] and [eos] are special tokens 287

employed by T5 to signify the separation of dif- 288

ferent segments and the termination of an input. 289

When m=3, an example of an input might be : 290

• I1:<Task1>, Choose [REL] in [SENT] from [Rel_Info]. 291
[Rel_Info]: creator, continent, capital. [SENT]: The capital 292
of Australia is Canberra. 293

• I2:<Task2>, Extract <triplet> in [SENT] by [Rela- 294
tion_description]. [Relation_description]: capital, the city 295
that serves as the administrative center of [HEAD], em- 296
phasizing its status within the specified domain of [TAIL]. 297
[SENT]: The capital of Australia is Canberra. 298

We use designated task guidance tokens g1, g2 299

to indicate to the model what step of the pipeline 300

it is at, thus avoiding confusion between the two 301

tasks. The model needs to generate g1, g2 at a 302

specific step before generating anything else, where 303

g1 is “[REL]:” and g2 is “[HEAD], [TAIL], [REL]”. 304

For the running example, the outputs O1 and O2 305

obtained from the two steps are: 306

• O1: [REL]: capital 307

• O2: [HEAD] Canberra, [TAIL] Australia, [REL] capital. 308

Following the existing generative approach, I1 309

and I2 are fed into the encoder of the T5 model, 310

which is based on the Transformer architecture 311

(Vaswani et al., 2017), to obtain the embedding, 312
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subsequently fed into the decoder. Finally, our313

generative model generates results in a predefined314

order. The training of the generative model aims315

to maximize the likelihood L(D) in the training set316

D. The likelihood of our generative model is as317

follows.318

Lp1(Si) =
∏
r∈Ri

P ((g1, r) | P1,Rm, Si), (6)319

320 Lp2(Si) =
∏

(h,t,r)∈Ti

P ((g2, h, t, r) | P2, r,D, Si). (7)321

322

3.3.2 Metric-based meta-learning method323

Metric-based meta-learning (MEML) methods324

learn metric-based connections underlying various325

tasks. These methods typically map input samples326

to an embedding space and then learn an effective327

metric space that can quickly find suitable solu-328

tions based on similarity metrics within that space329

when encountering similar samples from similar330

tasks. We introduced MEML to design a metric-331

based pipeline meta-learning module (MPML). It332

has strong generalization ability without generating333

additional training data, reducing the training cost334

and making training more flexible.335

As shown in Figures 4 and 5, we design a novel336

feature mapping process, which includes the en-337

tity and relation prototype output from the encoder338

module, a label prototype output from the decoder339

module and a matching network for predicting340

matches between both prototypes. We consider341

the special tokens g1, g2 as the label prototype.342

We map the relation prototypes encoded by the343

encoder in step 1, the entity prototypes in step 2,344

and the labeled prototypes output by the decoder,345

respectively, to a unified vector space through a346

linear transformation and predict whether the label347

prototypes and the corresponding prototypes match348

using a matching network. The losses of the match-349

ing network for each of the two steps of MPML350

are:351

LM1(Si) =

|D|∑
i=1

CE
(

G (i) ,MLP
(
ER

i ⊙ EL
i

))
, (8)352

353

LM2(Si) =

|D|∑
i=1

CE
(

G (i) ,MLP
(
EE

i ⊙EL
i

))
, (9)354

355
where G(i) is the ground-truth of the i-th sentence356

in training set D. The MLP layer measures whether357

the relation prototype embedding ERi or entity pro-358

totype embedding EEi matches the label prototype359

embedding ELi . ⊙ denotes the concatenation op- 360

eration. CE is the cross-entropy loss. The training 361

loss for the entire MPML is: 362

LMPML =

|D|∑
i=1

n∑
j=1

(Lpj (Si) + LMj (Si)), (10) 363

where n is the number of steps included in the 364

pipeline. In the main experiment n is taken to be 2. 365

Lpj (Si) correspond to (6) and (7). 366

We explicitly model the meta-knowledge that 367

the model needs to learn, which reduce the risk 368

upper bound. The model additionally learns a spa- 369

tial metric pattern about the ZS-RTE task, rather 370

than a single “input-output” distribution. When 371

encountering unseen samples, the model solves the 372

problem based on this “prototype matching” pat- 373

tern, improving generalizability. 374

3.4 EIAL Module 375

Since we introduce a relation description that in- 376

volves numerous similarity metrics of varying im- 377

portance after mapping the input samples into the 378

embedding space, it is difficult for the model to ef- 379

ficiently learn the space of metrics associated with 380

Step 2. Inspired by active learning, we designed 381

the Environmentally Interactive Active learning 382

Module (EIAL) to enable the model to concentrate 383

on the most pertinent information. 384

As shown in Figure 5, we introduced a set of 385

position prototypes output by the encoder module. 386

We simulate human learning in active interaction 387

with the environment and then propose two hy- 388

potheses: (1) Not all samples benefit training. (2) 389

Not all parts of sentence benefit training. 390

For Hypothesis 1, we posit that when the model 391

is sufficiently confident in the task analysis of a 392

given sample, additional metric meta-learning is 393

unnecessary. Therefore, we designed the prototype- 394

based uncertainty sampling module to ascertain the 395

model’s confidence in the task of the current sam- 396

ple. Since our model operates in metric space, we 397

design a strategy different from traditional uncer- 398

tainty modeling in active learning. 399

Lsample =

|D|∑
i=1

CE
(

G (i) ,MLP
(
EP

i ⊙ EE
i

))
, (11) 400

401
confidence =

{
1 if Lsample ≤ α

0 if Lsample > α
, (12) 402

where Lsample represents the matching loss be- 403

tween the position prototype and the entity pro- 404

totype. Based on (12), the model is considered 405
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confident about the current sample when Lsample406

is less than α, where α is a hyperparameter. In this407

case, the model does not need to perform metric408

meta-learning for the current sample. The confi-409

dence level can be interpreted as whether the head410

entity and tail entity in the input sentence can be411

used as the words in the positions of the head entity412

and tail entity in the relation description.413

L = Lp2(Si) + β · confidence · LM2(Si). (13)414

The underpinnings of Hypothesis 2 were already415

explained in the MPML section. With the intro-416

duction of the EIAL module, the loss in the second417

step is denoted as L in (13). β is a hyperparameter,418

and confidence is the result of the prototype-based419

uncertainty sampling module.420

4 Experiments421

4.1 Experimental setup422

4.1.1 Datasets423

As follows, we evaluate our model on two public424

datasets: FewRel (Han et al., 2018) and Wiki-ZSL425

(Chen and Li, 2021). The detailed data statistics426

are shown in Appendix B.2.427

Table 1: Statistics of FewRel and Wiki-ZSL.

Dataset #Samples #Entities #Relations Sent_len

FewRel 56,000 72,954 80 24.95
Wiki-ZSL 94,383 77,623 113 24.85

4.1.2 Experimental settings428

1) We follow the setup of (Chia et al., 2022) for429

training and evaluation: We maintain disjoint re-430

lation types across training, validation, and test431

splits. 2) We evaluate different methods under vary-432

ing settings for the size of unseen relation types433

(m ∈ {5, 10, 15}). 3) To mitigate experimental434

noise, we repeat experiments using different data435

folds wherein relation types are split with varying436

random seeds: {0, 1, 2, 3, 4}. Table 2 also presents437

the statistics for each dataset and setting.438

We utilize T5-base (Zong et al., 2021), which439

comprises 220 million parameters, as our pre-440

trained generative model. The learning rates for441

the generative model parameters and other parame-442

ters are set to 3× 10−5 and 6× 10−4, respectively,443

and the batch size for training is set to 1. Both444

α and β in (12) and (13) of the experiment were445

experimented in the range of 0.1-0.9, and we ended446

up using α = 0.1 and β = 0.2 to arrive at the final447

result.448
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Figure 6: Experimental results of different models for
single and multi ZeroRTE tasks on FewRel and Wiki-
ZSL datasets, respectively.
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Figure 7: CFA for different models in FewRel and
Wiki-ZSL respectively. Higher value mean higher accu-
racy and stability of the model.

4.1.3 Evaluation Metrics 449

To evaluate the performance of our model, we ad- 450

here to the same evaluation metrics as Relation- 451

Prompt (Chia et al., 2022) for a fair comparison. 452

We separately report the scores for sentences con- 453

taining a single triplet and those containing multi- 454

ple triplets to maintain consistency with previous 455

studies. For single triplet extraction, we employ 456

Accuracy (Acc.) as the evaluation metric; for multi- 457

ple triplet extraction, we utilize the Micro-F1 score 458

(F1) as the evaluation metric, additionally reporting 459

precision (Pre.) and recall (Rec.) scores. All scores 460

are averaged across five data folds. 461

4.2 Baseline methods 462

For more information about baseline, please refer 463

to Appendix B.3 464

4.3 Main Results 465

The results of ZeroRTE on two datasets are pre- 466

sented in Table 2. We highlight key observations 467

as follows. 468
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Table 2: Main Results. The best scores are in bold, and the second-best ones are underlined.

Single-triplet Multi-triplet

Labels Model Wiki-ZSL Fewrel Wiki-ZSL Fewrel
Acc. Acc. Pre. Rec. F1 Pre. Rec. F1

1) TabSeq 14.47 11.82 43.68 3.51 6.29 15.23 1.91 3.40
2) RelPrompt 16.64 22.27 29.11 31.00 30.01 20.80 24.32 22.34
3) KBPT 17.85 24.19 32.45 31.64 32.04 23.15 23.13 24.28
4) ZETTbase 21.49 30.71 35.89 28.38 31.74 38.14 30.58 33.71

m=5 5) PCRED 18.40 22.67 38.14 36.84 37.48 43.91 34.97 38.93
6) GPT-3.5 17.19 30.10 12.49 21.71 15.85 37.76 60.87 44.21
7) MICRE 27.74 37.53
8) ZS-SKA 44.00 32.86 66.70 27.24 38.68 57.50 26.24 36.04
9) ENIAC-ML 45.21 44.28 47.40 52.56 49.74 36.97 47.71 41.64

1) TabSeq 9.61 12.54 45.31 3.57 6.40 28.93 3.60 6.37
2) RelPrompt 16.48 23.18 30.20 32.31 31.19 21.59 28.68 24.61
3) KBPT 20.45 26.58 32.47 33.69 33.17 24.35 27.28 26.46
4) ZETTbase 17.16 27.79 24.49 26.99 24.87 30.65 32.44 31.28

m=10 5) PCRED 22.30 24.91 27.09 39.09 32.00 30.89 29.90 30.39
6) GPT-3.5 14.44 23.32 8.82 17.78 11.79 26.97 48.71 32.56
7) MICRE 24.64 34.77
8) ZS-SKA 26.40 34.03 45.38 29.27 35.30 60.48 23.22 33.28
9) ENIAC-ML 38.81 42.14 39.85 48.32 43.62 36.29 47.21 41.03

1) TabSeq 9.20 11.65 44.43 3.53 6.39 19.03 1.99 3.48
2) RelPrompt 16.16 18.97 26.19 32.12 28.85 17.73 23.20 20.08
3) KBPT 20.31 22.46 32.15 29.39 30.74 19.61 25.55 22.19
4) ZETTbase 12.78 26.17 19.45 23.31 21.21 22.50 27.09 24.39

m=15 5) PCRED 21.64 25.14 25.37 33.80 28.98 27.00 23.55 25.16
6) GPT-3.5 11.01 16.41 7.13 17.21 10.08 20.72 39.30 25.09
7) MICRE 22.23 32.42
8) ZS-SKA 20.26 23.86 31.23 27.20 29.19 37.29 19.13 25.29
9) ENIAC-ML 38.48 43.10 35.16 42.63 38.36 36.12 45.05 40.03

ENIAC-ML outperforms the latest baseline, ZS-469

SKA, which has a comparable number of param-470

eters, in both single and multiple triplet extrac-471

tion tasks. On Wiki-ZSL and FewRel, ENIAC-ML472

achieves accuracy gains of 1.21% to 19.24% for473

single triplets and F1 score improvements of 5.6%474

to 15.43% for multiple triplets. While its precision475

is not always the highest, its balanced precision476

and recall result in superior F1 scores. Compared477

to LLaMA (7B), ENIAC-ML (220M) achieves478

15.96% and 8.27% higher accuracy on Wiki-ZSL479

and FewRel, respectively (Li et al., 2024). We at-480

tribute LLaMA’s limited performance to its general-481

ized training, which is not optimized for ZeroRTE482

tasks. This advantage is attributed to LLaMA’s483

generalized training, which is not optimized for484

ZeroRTE tasks. Our results show that integrat-485

ing meta-knowledge and active learning enables486

ENIAC-ML to adapt quickly and generalize ef-487

fectively, even with fewer parameters. By decou-488

pling ZS-RTE through a human-inspired approach489

and modeling meta-knowledge independently via490

metric-based meta-learning, we reduce the meta-491

learning risk upper bound and enhance model gen-492

eralization.493

As m increases, model effectiveness tends to494

diminish or fluctuate due to a rise in unseen rela-495

tions and judgment errors. Figure 6 shows that 496

in single triplet extraction, ENIAC-ML maintains 497

the highest average accuracy without significant 498

decay or fluctuation as m increases. Specifically, 499

ENIAC-ML’s accuracy decay rates on Wiki-ZSL 500

and FewRel are 8% and 1%, respectively, compared 501

to ZS-SKA’s 32% and 13%. Similar trends are ob- 502

served for F1 scores in multiple triplet extraction. 503

To evaluate both average accuracy and fluctuation, 504

we introduce the Combined Fluctuation Average 505

(CFA) metric, defined as follows: 506

CFA =
ψ

ϑ
(14) 507

where ψ represents the average precision (single 508

triplet extraction) or average F1 score (multiple 509

triplet extraction) of the model on a given dataset, 510

and ϑ represents the average rate of variation of the 511

accuracy or F1 score as m varies. See Appendix 512

B.4 for a more detailed derivation of this formula. 513

The larger the value of CFA, the more accurate 514

and stable the model. The CFA distributions for 515

the other baseline models are shown in Figure 7. 516

This demonstrates that ENIAC-ML has not only 517

mastered the comprehension of specific samples 518

but also the meta-knowledge of the ZeroRTE task 519

by the concept of meta-learning, “learning to learn”. 520

And thereby explaining its superior performance in 521

terms of accuracy, stability, and generalization. 522
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TextRelation RelationPrompt
Prediction

ZETT
Prediction

ENIAC-ML
Prediction

S1: Religion The 14th century saw the spread of
Sunni Islam among the Tatars.

S2:

Location
He then finished 15th at the 1956
World Championships in Garmisch -
Partenkirchen, Germany . 

S3:

Distributed by
Netflix published in September 2014
the documentary Print the Legend about
Makerbot history .

Head entity: Tatars
Tail entity: Sunni Islam
Relation: Religion

Head entity: Garmisch 
   - Partenkirchen

Tail entity:   Germany
Relation: Location

Head entity: Makerbot history
Tail entity: Netflix
Relation: Distributed by

Head entity: Tatars
Tail entity: Sunni Islam
Relation: Religion

Head entity: Tatars
Tail entity: Sunni Islam
Relation: Religion

Head entity: 1956 World                   
  Championships

Tail entity:   Garmisch 
   - Partenkirchen

Relation: Location

Head entity: Print the Legend
Tail entity: Netflix
Relation: Distributed by

Head entity: He
Tail entity:   Garmisch 

   - Partenkirchen
Relation: Location

Head entity: Print the Legend
Tail entity: Netflix
Relation: Distributed by

Figure 8: Case study from three models. ENIAC-ML demonstrated better accuracy.

4.4 Ablation Study523

As illustrated in Table 3, we assessed the perfor-524

mance of each component on FewRel and Wiki-525

ZSL datasets using the accuracy. NoGen repre-526

sents the RelationPrompt without additional gen-527

erated data. In contrast, the PT5 model employs528

a pipelined approach: it first identifies relations529

within the sentence and then extracts the corre-530

sponding head and tail entities based on these rela-531

tions. This method mitigates the confusion between532

the two subtasks of ZeroRTE, leading to enhanced533

model accuracy.534

In addition, the accuracy of the model with the535

introduction of the relation description which con-536

tains the position of the head and tail entities is537

also substantially improved compared to PT5. It538

can be inferred that this relation description with539

positional information enhances the model’s gener-540

alization. This is a testament to the importance of541

modeling how humans learn.542

Furthermore, we validate the effectiveness of543

MPML and EIAL, respectively. MPML demon-544

strates that employing metric-based meta-learning545

to bridge the distance between label prototypes546

and entity prototypes can effectively enhance the547

model’s judgment of head, tail entities and rela-548

tions. EIAL demonstrates that selectively enhanc-549

ing sample learning based on the model’s confi-550

dence reduces training overhead and boosts accu-551

racy. Integrating all components into ENIAC-ML552

yields significant performance gains over existing553

ZeroRTE models.

Table 3: The ablation experiment results.

PT5 Discription MPML EIAL
FewRel Wiki-ZSL

Acc. Acc.

RelationPrompt (NoGen) 11.49 9.05

✓ 22.75 20.77
✓ ✓ 39.91 38.22
✓ ✓ ✓ 40.97 38.86
✓ ✓ ✓ 41.03 39.02
✓ ✓ ✓ ✓ 43.17 40.83

4.5 Case Study 554

To analyze active meta-learning in our framework, 555

we compare the relation triplets extracted by Rela- 556

tionPrompt, ZETT, and ENIAC-ML for three sen- 557

tences (denoted as S1, S2, and S3). The results are 558

shown in Figure 8. 559

In S2, RelationPrompt correctly identifies the 560

relation but predicts incorrect head and tail entities 561

due to its reliance on synthetic training samples 562

that may not include relevant data. In contrast, 563

both ZETT and ENIAC-ML extract the correct 564

triplet. ZETT achieves this by leveraging the ’Dis- 565

tributed by’ template, while ENIAC-ML benefits 566

from metric-based meta-learning, which reduces 567

the feature-space distance between ‘Print the Leg- 568

end’ and ‘[HEAD]’. 569

For S3, RelationPrompt again fails to predict 570

the correct head and tail entities. ZETT does 571

not explicitly model entity position information, 572

leading to confusion in head and tail entity loca- 573

tion. ENIAC-ML, however, employs active meta- 574

learning to detect prediction uncertainty in differ- 575

ent sentence components and applies metric-based 576

meta-learning to samples requiring additional train- 577

ing. This allows ENIAC-ML to accurately rec- 578

ognize and predict the positions of head and tail 579

entities 580

5 Conclusion 581

This paper investigates the determinants influenc- 582

ing the generalization of ZeroRTE via a theoretical 583

analysis, identifying task diversity and the meta- 584

knowledge module as key factors. The optimal 585

performance was achieved by using the task de- 586

composition paradigm that mimics human think- 587

ing, metric-based meta learning, and active environ- 588

mental interaction module. These methods achieve 589

state-of-the-art performance while offering valu- 590

able insights for future research on generalization. 591
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6 Limitation592

While this work represents a significant improve-593

ment over previous ZeroRTE tasks, it is necessary594

to acknowledge the limitations of this work.595

Firstly, we found that the accuracy of relation596

judgment in the first step significantly affects the597

accuracy of the final result. This is because the598

additional environmental information added in the599

second step pertains to the description of the rela-600

tion extracted in the first step. If the relations in the601

first step are extracted incorrectly, the erroneous602

descriptions of the relations in the second step will603

interfere with the model’s judgment of the head604

and tail entities. Secondly, the evaluation metrics605

used in this study may only reflect task-specific per-606

formance and may not comprehensively measure607

the model’s usability and efficiency in real-world608

applications.609

To address these limitation, future research610

should implement a protective warning module611

in the second step, ensuring that if the model612

lacks confidence in the extracted relation, it re-613

frains from adding the corresponding description.614

And the future work could consider incorporating615

additional evaluation dimensions (e.g., computa-616

tional resource consumption, inference time, etc.)617

to provide a more comprehensive assessment of618

the model’s usability and efficiency in real-world619

applications.620
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A Related Work807

A.1 Meta-learning808

Meta-learning can improve the training of ma-809

chine learning models and thus has attracted sig-810

nificant interest in recent years. The conven-811

tional categorizations of meta-learning methods812

(Lee and Choi, 2018) categorize them into three813

groups: optimization-based, metric-based, and814

model-based methods.815

The optimization-based methods (Rusu et al.,816

2019; Finn et al., 2017; Nichol et al., 2018) fo-817

cus on incorporating optimization within the learn-818

ing process to achieve an optimized initialization819

of model parameters. The metric-based methods820

(Koch et al., 2015; Vinyals et al., 2016; Snell et al.,821

2017) aim to learn an appropriate distance met-822

ric for few-shot classification and have been suc-823

cessfully applied to various few-shot and zero-shot824

tasks (Han et al., 2021; Liu et al., 2022). The model-825

based methods (Zhmoginov et al., 2022; Li et al.,826

2019; Ye and Ren, 2021) involve task specifications827

to directly generate or modulate model weights.828

Following this line, TGM method (Li and Qian,829

2023) pioneered meta-learning for generative mod-830

els in the ZeroRTE. A task-aware generative model831

combined with three generative meta-learning ap-832

proaches significantly improved over previous833

state-of-the-art models. Inspired by this method,834

we combine meta-learning with our pipelined835

framework.836

A.2 Active learning837

In supervised learning problems, labeling is ex-838

pensive, and labels are difficult to obtain in large839

quantities. For certain specific tasks, only industry840

experts can accurately label the samples. In this841

context, Active learning seeks to save resources842

by selectively labeling fewer data to train better-843

performing models (Settles, 2009).844

Various active learning algorithms have been im-845

plemented for RE tasks (Duan, 2024). Seo et al.846

(2023) propose an active learning method for a847

cross-sentence n-ary relation extraction (ANRE),848

which allows models to be trained on a small849

amount of labeled data initially. The proposed850

methods acquire newly labeled train data iteratively851

and improve the model. Ye et al. (2023) propose a852

method of active learning based on subsequences853

and distant supervision. The method annotates by854

selecting information-rich subsequences as sam-855

pling units. Uncertainty can provide useful infor-856

mation to the model, so we try to introduce the 857

uncertainty mechanism into ZeroRTE task. 858

A.3 Zero-shot relation triplet extraction 859

Relation triplet extraction has been studied for a 860

long time. Recently, PURE (Zhong and Chen, 861

2021) proposes a simple and effective pipelined 862

RTE method that refers to the decomposition of 863

the task into RE and NER. In PURE, the results 864

of NER are used to assist RE in a pipeline man- 865

ner. They demonstrate the importance of learning 866

distinct contextual representations for entities and 867

relations. However, the performance of the pipeline 868

model on the ZeroRTE task remains unexplored. 869

Most of existing ZeroRTE methods model NER 870

and RE jointly. RelationPrompt (Chia et al., 871

2022) is a prominent approach for extracting entire 872

triplets in a zero-shot setting. It trains a generator 873

and uses the generated samples to synthesize data 874

for unseen relations. However, its performance 875

is severely constrained by the quality of the syn- 876

thetic data. Guo et al. (2024) proposed KBPT, a 877

method incorporating prior knowledge from onto- 878

logical schemas, which enhances semantic repre- 879

sentations. ZS-SKA (Gong and Eldardiry, 2024) 880

implements data augmentation through word-level 881

sentence translation to generate instances contain- 882

ing unseen relations from training instances con- 883

taining seen relations and use the generated data 884

as a training set for unseen relations. However, 885

the reliance of these methods on synthesized data 886

increases the training costs and potentially com- 887

promises accuracy. In contrast, Kim et al. (2023) 888

view relation extraction as a template-filling prob- 889

lem, thus eliminating the need for additional train- 890

ing data. Their ZETT approach fine-tuned the T5 891

model to obtain the ranking scores for potential 892

triplets. However, evaluating and scoring many 893

unseen relations is exceedingly time-consuming, 894

and lexical variants that appear in the relation de- 895

scriptions and resemble the words in the sentence 896

interfere with the model’s judgments. 897

This paper makes a first attempt to introduce the 898

pipeline design into ZeroRTE and explore a better 899

form of it. 900

B Experiments 901

B.1 Relation description 902

We used GPT-3.5 to generate relation descriptions 903

with information about the location of the head 904

and tail entities, and Figure 9 shows a few exam- 905
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ples. The descriptions corresponding to all other906

relations we show in the json file of the code.907

B.2 Datasets908

We evaluate our model on two public datasets:909

FewRel and Wiki-ZSL. FewRel is a standard bench-910

mark dataset designed primarily for the few-shot911

relation extraction task. It is created using distant912

supervision and has been additionally filtered by913

humans. Wiki-ZSL is generated with distant su-914

pervision from Wikipedia articles and the Wikidata915

knowledge is a subset of Wiki-KB, targeting zero-916

shot relation extraction. We use dataset versions917

released by Relationprompt, which have been trans-918

formed for zero-shot triplet extraction. The detailed919

data statistics are shown in Table 4.920

B.3 Baseline methods921

We compare ENIAC-ML with the following meth-922

ods: 1) TableSequence (Wang and Lu, 2020) is923

a joint learning model employing two distinct en-924

coders to simultaneously perform RE and NER. It925

uses data from (Chia et al., 2022) to train the mod-926

els and then report the results; 2) RelationPrompt927

(Chia et al., 2022) comprises a relation generator928

and a relation triplet extractor. 3) KBPT (Guo et al.,929

2024) incorporate prior knowledge from ontologi-930

cal schemas and employ a generative prompt model931

to synthesize training samples for unseen relational932

types. 4) ZETT (Kim et al., 2023) treats zero-shot933

relational triplet extraction as a template-filling task934

and employs a generative model to predict the sub-935

ject and object of each relation. 5) PCRED (Lan936

et al., 2022) directly utilizes the semantics of un-937

seen relations, thereby incurring no additional data938

or training costs, instead of leveraging PLMs to939

generate training samples for unseen relations. 6)940

ChatIE (Wei et al., 2023) employs GPT-3.5 for the941

zero-shot RTE task. This method first defines the942

relations to be extracted and then generates relation943

triplets in the sentence. Xu et al. (2024) applied944

it to the Fewrel and Wiki-ZSL datasets. 7) MI-945

CRE (Li et al., 2024) introduces a novel in-context946

training framework based on LLMs for zero- and947

few-shot RE, using in-context learning techniques948

to enhance few-shot prompting performance on un-949

seen RE tasks. We use the experimental results of950

LLaMa on ZeroRTE from this study. 8) ZS-SKA951

(Gong and Eldardiry, 2024) first implements data952

augmentation through word-level sentence transla-953

tion to generate augmented instances with unseen954

relations from training instances with seen rela-955

tions. 956

B.4 Definition of CFA 957

In this section we detail the CFA calculation pro- 958

cess. As (15), (16) and (17) shown, Where m rep- 959

resents the number of unseen relations, assumed to 960

grow in units of 5, i.e., m∈ {5, 10, 15, ...}, while q 961

is taken to be 5. mq represents the number of groups 962

into which the dataset is divided based on m. For 963

single-triplet extraction tasks, ai represents the ac- 964

curacy of a model on a particular set of tasks (For 965

different unseen relations), and for multi-triplet 966

extraction tasks, ai represents the F1 score. ψ rep- 967

resents the average precision or average F1 score 968

of the model on a given dataset, and ϑ represents 969

the volatility of the precision or F1 score. The 970

combined fluctuation average indicator CFA = ψ
ϑ . 971

ψ =

m
q∑
i=1

ai

m
q

(15) 972

ϑ =

m
q
−1∑

i=1

|ai+1 − ai|
ai+1

m
q − 1

(16) 973

CFA =
ψ

ϑ
(17) 974

C Model Complete Input-Output 975

Presentation 976

As shown in Figure 10, these are three examples of 977

complete inputs and outputs of ENIAC-ML. 978

D Human thinking. 979

In real-world scenarios, humans tackling Zero-Shot 980

Relation Triple Extraction (ZeroRTE) tasks typi- 981

cally adopt a structured and interactive approach 982

to comprehend and solve the problem. Initially, 983

they engage with knowledgeable individuals, such 984

as domain experts, or consult external materials, 985

such as textbooks, databases, or online resources, 986

to gain a thorough understanding of the semantics 987

and nuances of relation types embedded within sen- 988

tences. This step is crucial because it allows them 989

to build a foundational understanding of how dif- 990

ferent relations are expressed and contextualized 991

in text. Once they have grasped the semantics of 992

the relation types, they leverage this knowledge 993

to make informed judgments about the entities in- 994

volved, identifying the head and tail entities that 995

correspond to the extracted relations. 996
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Figure 9: Relation description with head and tail entity location information generated by GPT-3.5.

Text Step1 Input Final Output

<Task1>, Choose [REL] in [SENT] from [Rel_Info].
[Rel_Info]: creator, continent, capital, location, sibling
[SENT]: He then finished 15th at the 1956 World
Championships in Garmisch - Partenkirchen, Germany.

<Task2>, Extract <triplet> in [SENT] by
[Relation_description]. 
[Relation_description]: location, the adherence of
[HEAD] to a specific set of spiritual, emphasizing
its connection to a particular belief system within the
specified domain or context of [TAIL].

Step2 Input

 T1: [REL]  location

 T2: [HEAD]  1956 World  Championships
       [TAIL]   Garmisch - Partenkirchen
       [REL]     location

He then finished 15th at the 1956
World Championships in Garmisch -
Partenkirchen, Germany . 

There is another Italian river named
"Arrone" that flows into the
Tyrrhenian Sea .

<Task1>, Choose [REL] in [SENT] from [Rel_Info].
[Rel_Info]: occupant, country, director, genre, child
[SENT]: There is another Italian river named "Arrone"
that flows into the Tyrrhenian Sea.

<Task2>, Extract <triplet> in [SENT] by
[Relation_description]. 
[Relation_description]: country, [TAIL] has
defined boundaries, governments, and [HEAD] is
a geographic, political marker or other component
thereof.

 T1: [REL]  country

 T2: [HEAD]  Arrone
       [TAIL]   Italian
       [REL]    country

Shortly after the release of the GP32
in 2001, its maker Game Park began
to design their next handheld.

<Task1>, Choose [REL] in [SENT] from [Rel_Info].
[Rel_Info]: producer, country, manufacturer, use, family 
[SENT]: Shortly after the release of the GP32 in 2001,
its maker Game Park began to design their next handheld.

<Task2>, Extract <triplet> in [SENT] by
[Relation_description]. 
[Relation_description]: manufacturer, the role
played by [HEAD] in the creation of various items,
emphasizing their involvement in the production
process within the specified domain of [TAIL].

 T1: [REL]  manufacturer

 T2: [HEAD]  GP32
       [TAIL]   Game Park
       [REL]    manufacturer

Figure 10: Complete inputs and outputs of ENIAC-ML.

Samples Entities Relation Labels Average Length

Total Train Validation Test

103 5 5
Wiki-ZSL 94383 77623 113 98 5 10 24.85

93 5 15

70 5 5
FewRel 56000 72954 80 65 5 10 24.95

60 5 15

Table 4: Statistics of FewRel and Wiki-ZSL.
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