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Abstract

Zero-shot relation triplet extraction (ZeroRTE)
task aims to extract unseen relations and
corresponding entities from the text. Exist-
ing methods conflate the Relation Extraction
(RE) and Named Entity Recognition (NER)
subtasks. Moreover, some methods intro-
duce synthetic data or information that con-
tains noise, resulting in failures on ZeroRTE.
We propose a novel meta-learning approach
named Environmentally Interactive ACtive
Meta-Learning (ENIAC-ML) that can mimic
human processing on ZeroRTE. We decom-
pose ZeroRTE into RE and NER subtasks and
train the model using a pipelined approach.
We further develop an active meta-learning
approach that can acquire knowledge by in-
teracting with an agent in the environment,
autonomously determine the focus of learn-
ing, and mitigate the impact of noise in ex-
ternal information. The experimental results
demonstrate that ENIAC-ML surpasses exist-
ing methods on Fewrel and Wiki-ZSL datasets.
Our code is available at https://anonymous.
4open.science/r/ENIAC-ML-EQFF.

1 Introduction

The objective of relation triplet extraction (RTE)
is to extract triplets in the form of (head entity,
tail entity, relation label) from unstructured text
and is essential for several applications (Xu et al.,
2016). To delve into the generalization of the RTE
task, Chia et al. (2022) investigate it in a zero-
shot setting, henceforth zero-shot relation triplet
extraction (ZeroRTE). As shown in Figure 1, a
model should extract all relation triplets mentioned
in the text, and ZeroRTE model is trained solely
on seen relation classes and needs to generalize to
unseen relation classes in zero-shot scenario.
Several works have attempted to address Ze-
roRTE. RelationPrompt (Chia et al., 2022) utilizes
synthetic data of unseen relations for training. How-
ever, the model heavily relies on synthetic data that
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Figure 1: Example of the ZeroRTE task. No overlap
between training and testing relations.

may contain noise. Kim et al. (2023) develop ZETT
based on template filling and successfully extracts
the triplets without the help of synthetic data. Its
core idea is to retain pre-trained knowledge by lim-
iting the model’s output, thereby enhancing the
model’s generalization ability. These methods have
the disadvantage of not optimizing for the model’s
generalization and lack the ability to learn general-
ized knowledge from the data. Although existing
large language models (LLMs) have excellent lan-
guage understanding performance, they still cannot
address ZeroRTE tasks well (Li et al., 2024).

The key to tackling ZeroRTE is the improvement
of generalization. We believe that task-invariant
knowledge can be effectively explored by con-
structing a set of meta-tasks from the training data.
This meta-knowledge can be then modeled through
meta-learning frameworks, enabling the model to
capture transferable patterns. In this paper, we
identified two critical factors governing the gen-
eralization through a theoretical analysis: (1) the
diversity of meta-tasks and (2) the computational
complexity of meta-knowledge representation.

To improve the diversity, we firstly combine
the human way of thinking! to decouple the RTE
task into relation extraction and named entity
recognition (NER). Then, we design a metric-
based meta-learning module for specifically mod-
eling meta-knowledge between meta-tasks. Lastly,

'See appendix for detailed illustration of human thinking.
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our framework further optimizes model perfor-
mance through an innovative active learning mech-
anism that enables effective engagement with
external environments. Specifically, we pro-
pose a novel Environmentally Interactive ACtive
Meta-Learning (ENIAC-ML) framework contain-
ing a metric-based pipelined meta-learning Mod-
ule (MPML) and an Environmentally Interactive
Active learning module (EIAL). MPML contains
a pipelined task design and a metric-based meta-
learning approach. Experimental results demon-
strate MPML improves the model’s generalization
capabilities. EIAL module actively absorb infor-
mation such as relations descriptions and entity fea-
tures from the environment. This module enables
the model to actively interact with the environment
based on a prototype-based uncertainty during the
inference process, eliminating non-critical infor-
mation or data noise from interfering with model
training. It is demonstrated that EIAL is superior
to existing data augmentation methods.
In summary, our contribution are as follows.

* For the first time, we explain the determinants
that affect the generalization of ZeroRTE task
through theoretical analysis, identifying task
diversity and meta-knowledge module as the
key factors.

* Based on the cognitive mechanisms of human
on ZeroRTE, we propose a novel pipelined
meta-learning framework and obtain satisfy-
ing improvements.

* For the first time, we introduce an uncertainty-
driven process for acquiring external knowl-
edge from environment. It can reduce the
impact of non-essential information and data
noise. Extensive experiments demonstrate its
superiority.

2 Problem formulation

Zero-shot Relation Triplet Extraction (Ze-
roRTE) is formally defined as: Given a dataset
D = (S,T, R) where T represents relation triplets
of sentences S, and R is a set of relation classes,
D is split into a seen Dg = (Sg,Ts, Rg) and an
unseen Dy = (Sy, Ty, Ry) with disjoint relation
labels (Rs N Ry = (), the goal of ZeroRTE model
is to train on Dg and generalize to Dy for rela-
tion triplet extraction. Each triplet (epeqd, €tail, ")
consists of head/tail entities and a relation r € R.

3 Methodology

3.1 Theoretical analysis

Inspired by Shu et al. (2023), we analyzed the upper
bound of meta-learning and tried to design our
model based on the analysis.

Assumption 1 (Bounded Inputs) X C B(0, R),
for R > 0, where B(O,R) = {z € R? : ||z| <
R}.

Assumption 2 (Bounded and Lipschitz Loss
Function) The loss function | (-, ) is B-bounded,
and 1 (-, y) be L-Lipschitz for any y € ).
Assumption 3 (Task diversity) Given the meta
learning module H, it holds that

Ry(h) = Ry (k") <

o (Rerain(hs ) = Berain(h™, 1)) + B, .
where & represents the model parameters corre-
sponding to the ‘learning method’ of meta-learning,
and f represents the model parameters correspond-
ing to the ‘specific task’, which together consti-
tute the parameters of the meta-learning model, h*
is the optimal model corresponding to the ‘learn-
ing method’ parameter, h represents the learner
obtained by minimizing the empirical risk of the
training data. 7 represents the task distribution,
and R represents the risk, so that in Assumption 3,
the left-hand represents the difference between the
empirical and theoretical risk. The right-hand is
the upper bound on the risk spread. All the above
assumptions are usually satisfied.

Theorem 1 If Assumptions 1-3 hold, for any § > 0,
with probability at least 1 — §, we have
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The final effectiveness of a meta-learning model
is determined by the effectiveness of the model
on the test task. Based on Assumptions 1-3, we
derive an upper bound on the risk of the test task.
Where Ryrqin is the risk of the training task. O
denotes an expression that hides polylogarithmic
factors in all problem parameters. C(-) measures
the intrinsic complexity of the function class (e.g.,
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Figure 2: Overview of the proposed framework. The
first step is to select true relations contained in the sen-
tence from the candidate relations, and the second step
generates triplets based on the relation descriptions.

VC dimension). m,, is the sample size of the test
task. dz(p®, u?) denotes the discrepancy diver-
gence between support and query data with respect
to their sampled probability distributions p* and
14 imposed on the hypothesis class F.

As shown in Equation (3), the risk upper bound
for training task contains: the complexity of in-
dependent learning methods 4 (the first term), the
complexity of learning the task-specific model f
(the second term), and the distribution shift be-
tween support and query sets (the third term). m;
and n; are the sizes of support set and query set for
the #-th task, respectively. T is the number of tasks.

Note that the leading term capturing the com-
plexity of learning methods % decays in terms of
the number of task (Z;‘F:1 n¢). And the second term
above is of the order 1/T Zthl O1/ymy) <
O(1/y/m), m = min{my,--- ,mr}. The third
term is only relevant to the division of support
sets and query sets. This suggests that increas-
ing task diversity can enhance the model’s final
performance. Traditional meta-learning methods,
however, do not explicitly model learning strate-
gies but embed this knowledge within the entire
model. Accordingly, we analyze two approaches
to reduce the upper bound of meta-learning and
improve model generalization:

* Increasing the diversity of meta-tasks.

» Explicitly modeling the learning methods
(meta-knowledge) as modules or functions.

We simulated human problem-solving patterns for
the ZS-RTE task through environmental interaction
to increase task diversity and incorporated metric-
based meta-learning to explicitly model “learning
methods” as modular components.

Examples of
S1: The 14th century saw the spread of Sunni Islam among the Tatars.

E I'm confident in this sentence that I don't need guidance.
£ [Head]:Tatars [Tail]: Sunni Islam [Relation]: Religion

Examples of lack of
S2: The capital of Australia is Canberra.
@ I'mnot confident in this sentence. I need your guidance.

3 First, which of the following relation does this sentence contain? creator, continent, capital... |

& It mustbe capital.

the following relation description.
enter of [HEAD], i

entity tail entity
the i

in of [TAIL].

X Interactive @
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Figure 3: Example of uncertainty-guided active learning.
When human or models are not confident enough in
solving a task, they can seek more advanced knowledge
for help.

Definition 1 Environment refers to a scenario
where the model can interact and access task-
related knowledge, such as human experience or
relation definitions. Our approach investigates the
paradigm of language model-environment interac-
tion, demonstrating that a deeper understanding
of relation triplets can enhance the model’s perfor-
mance in ZeroRTE tasks.

3.2 Model overview

As depicted in Figure 2, ENIAC-ML adopts a
pipelined inference process involving Relation
Extraction (RE) and Named Entity Recognition
(NER) subtasks. It consists of two key modules:
MPML (Metric-based Pipelined Meta-learning
Module) and EIAL (Environmentally Interactive
Active Learning Module). MPML defines the
subtask formats, including model inputs and out-
puts, and integrates metric-based meta-learning
with backbone models. This architecture sep-
arates knowledge between subtasks, enhancing
meta-task diversity. Meanwhile, the metric-based
meta-learning module explicitly models meta-
knowledge, reducing the risk upper bound and im-
proving generalization for the ZS-RTE task.

The EIAL module implements a meta-
knowledge interaction component. While external
information can enhance model performance, over-
reliance on it may impair generalization Chia et al.
(2022); Gong and Eldardiry (2024). To address
this, we introduce a novel approach for acquiring
external information while preventing the model
from learning non-generalizable knowledge.

As depicted in Figure 3, our proposed ENIAC-
ML mimics humans’ cognitive processes when
dealing with an RTE task. Humans begin by iden-
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Figure 4: Structure of the MPML module.

tifying relations contained within the text. When
encountering unfamiliar relation categories, they
may refer to external sources for supplementary
information. They then complete the extraction
of head and tail entities by integrating identified
relations, personal knowledge, and external infor-
mation. We posit that the conventional method of
utilizing synthetic data for model training lacks the
generalizable nature of human interaction.

Building on prior research, we aim to enhance
model learning through interactions in environ-
ments enriched with high-level bootstrap knowl-
edge. Alt et al. (2019) and Li et al. (2024) indicate
that larger models, such as GPT-3.5 and LLaMA,
achieve superior performance in Zero-RE tasks,
suggesting a deeper understanding of entity rela-
tions. By integrating these insights with human
problem-solving approaches, we utilize GPT-3.5
to generate high-quality relation descriptions that
include meta-knowledge on the locations of head
and tail entities. This improves the entity extraction
capabilities of models with fewer parameters. Here
is an example of a relation description obtained
from the agent in the environment (See Appendix
B.1 for more descriptions of relations):

"Date of birth: The time or moment when
[HEAD] was born or came into existence, empha-
sizing its origin or creation within the specified
domain or context of [TAIL]."

3.3 Pipelined Meta-learning Module

3.3.1 Pipelined training

To avoid confusion between RE and NER subtasks
and increase the diversity of meta-tasks, we de-
compose ZeroRTE into two subtasks and train the
model using a pipelined approach. We introduce
distinct task prompts to differentiate between the
subtasks and drive the process.

The first step of the pipeline aims to enable
the model to extract unseen relation labels corre-
sponding to sentences. In the second step of the
pipeline, we introduce a description of the relation

Prototype-based
Uncertainty
Sampling Module

Compute
Distance

—

[ rS-— -8 Metric-based
gy
e I e — m— = 1 rotone

O @ ) e B__ @ CE_® )
------------ gomog 2 TR RID AT, T
OO0 OOOOCOOO O--0DO--0dD | IDDDD oo,

ipion  [Head]_target  [TAIL] target Head Entity TAIL Entity 1

Encoder_Hidden_states Decoder_Hidden_states

Figure 5: Structure of the EIAL module.

that contains the location of the head and tail en-
tities. Based on the high-level understanding of
relations, the model can extract triplets of unseen
relations more accurately. The inputs for the two
steps are shown below:

I = [pad] P1 [pad] R [pad] S [eos] , 4)
I> = [pad] P2 [pad] r :D [pad] S [eos], )

where, R,, = [Rel_Info] : {ri,re,....tm}, P1
and P, represent the task prompt of the two steps
respectively. m denotes the number of unseen re-
lations, R encapsulates the relation information
containing the names of m relations, and S signi-
fies the sentence to be processed. D represents the
relation description generated by GPT-3.5 corre-
sponding to r. [pad] and [eos] are special tokens
employed by T5 to signify the separation of dif-
ferent segments and the termination of an input.
When m=3, an example of an input might be :

e [1:<Taskl>, Choose [REL] in [SENT] from [Rel_Info].
[Rel_Info]: creator, continent, capital. [SENT]: The capital
of Australia is Canberra.

o Ir:<Task2>, Extract <triplet> in [SENT] by [Rela-
tion_description]. [Relation_description]: capital, the city
that serves as the administrative center of [HEAD], em-
phasizing its status within the specified domain of [TAIL].
[SENT]: The capital of Australia is Canberra.

We use designated task guidance tokens g1, go
to indicate to the model what step of the pipeline
it is at, thus avoiding confusion between the two
tasks. The model needs to generate g;, g2 at a
specific step before generating anything else, where
g1 is “[REL]:” and g» is “[HEAD], [TAIL], [REL]”.
For the running example, the outputs O1 and O4
obtained from the two steps are:

e Oz1: [REL]: capital

e O2: [HEAD] Canberra, [TAIL] Australia, [REL] capital.
Following the existing generative approach, I;

and I, are fed into the encoder of the TS5 model,

which is based on the Transformer architecture
(Vaswani et al., 2017), to obtain the embedding,



subsequently fed into the decoder. Finally, our
generative model generates results in a predefined
order. The training of the generative model aims
to maximize the likelihood L(D) in the training set
D. The likelihood of our generative model is as
follows.

Ly, () = ] P((g1,7) | Pr, R, i), (6)

rER;

Lo, (S)= ][] Plge,hit,r) | P2y, D, Si). (D)

(h,t,r)€T;

3.3.2 Metric-based meta-learning method

Metric-based meta-learning (MEML) methods
learn metric-based connections underlying various
tasks. These methods typically map input samples
to an embedding space and then learn an effective
metric space that can quickly find suitable solu-
tions based on similarity metrics within that space
when encountering similar samples from similar
tasks. We introduced MEML to design a metric-
based pipeline meta-learning module (MPML). It
has strong generalization ability without generating
additional training data, reducing the training cost
and making training more flexible.

As shown in Figures 4 and 5, we design a novel
feature mapping process, which includes the en-
tity and relation prototype output from the encoder
module, a label prototype output from the decoder
module and a matching network for predicting
matches between both prototypes. We consider
the special tokens g;, g2 as the label prototype.

We map the relation prototypes encoded by the
encoder in step 1, the entity prototypes in step 2,
and the labeled prototypes output by the decoder,
respectively, to a unified vector space through a
linear transformation and predict whether the label
prototypes and the corresponding prototypes match
using a matching network. The losses of the match-
ing network for each of the two steps of MPML
are:

|D|

Lo (S) = CE (G (i), MLP (EiR ® EL)) . ®
=1

D
Lary (S)) ;1 CE (G (i), MLP (E OF! )) )

where G(i) is the ground-truth of the i-th sentence
in training set D. The MLP layer measures whether
the relation prototype embedding ElR or entity pro-
totype embedding EF matches the label prototype

embedding ElL ® denotes the concatenation op-
eration. CE is the cross-entropy loss. The training
loss for the entire MPML is:

D] n

LyvpmL = Z Z(ﬁpj (i) + Lar; (Si)), (10)

i=1j=1

where n is the number of steps included in the
pipeline. In the main experiment n is taken to be 2.
L, (S;) correspond to (6) and (7).

We explicitly model the meta-knowledge that
the model needs to learn, which reduce the risk
upper bound. The model additionally learns a spa-
tial metric pattern about the ZS-RTE task, rather
than a single “input-output” distribution. When
encountering unseen samples, the model solves the
problem based on this “prototype matching” pat-
tern, improving generalizability.

3.4 EIAL Module

Since we introduce a relation description that in-
volves numerous similarity metrics of varying im-
portance after mapping the input samples into the
embedding space, it is difficult for the model to ef-
ficiently learn the space of metrics associated with
Step 2. Inspired by active learning, we designed
the Environmentally Interactive Active learning
Module (EIAL) to enable the model to concentrate
on the most pertinent information.

As shown in Figure 5, we introduced a set of
position prototypes output by the encoder module.
We simulate human learning in active interaction
with the environment and then propose two hy-
potheses: (1) Not all samples benefit training. (2)
Not all parts of sentence benefit training.

For Hypothesis 1, we posit that when the model
is sufficiently confident in the task analysis of a
given sample, additional metric meta-learning is
unnecessary. Therefore, we designed the prototype-
based uncertainty sampling module to ascertain the
model’s confidence in the task of the current sam-
ple. Since our model operates in metric space, we
design a strategy different from traditional uncer-
tainty modeling in active learning.

D
_ ; P pE
Loampte = ;:1 CE (G (i), MLP (E ® E! )) . an

1 if »Csample S (63

12
0 if Esample >« ’ ( )

confidence = {
where L qmple represents the matching loss be-
tween the position prototype and the entity pro-
totype. Based on (12), the model is considered



confident about the current sample when Lqmple
is less than «, where « is a hyperparameter. In this
case, the model does not need to perform metric
meta-learning for the current sample. The confi-
dence level can be interpreted as whether the head
entity and tail entity in the input sentence can be
used as the words in the positions of the head entity
and tail entity in the relation description.

L= Ly,(8S:) + B - confidence - L, (S;). (13)

The underpinnings of Hypothesis 2 were already
explained in the MPML section. With the intro-
duction of the EIAL module, the loss in the second
step is denoted as £ in (13). 3 is a hyperparameter,
and confidence is the result of the prototype-based
uncertainty sampling module.

4 Experiments

4.1 Experimental setup
4.1.1 Datasets

As follows, we evaluate our model on two public
datasets: FewRel (Han et al., 2018) and Wiki-ZSL
(Chen and Li, 2021). The detailed data statistics
are shown in Appendix B.2.

Table 1: Statistics of FewRel and Wiki-ZSL.

Dataset  #Samples #Entities #Relations Sent_len
FewRel 56,000 72,954 80 24.95
Wiki-ZSL 94,383 77,623 113 24.85

4.1.2 Experimental settings

1) We follow the setup of (Chia et al., 2022) for
training and evaluation: We maintain disjoint re-
lation types across training, validation, and test
splits. 2) We evaluate different methods under vary-
ing settings for the size of unseen relation types
(m € {5,10,15}). 3) To mitigate experimental
noise, we repeat experiments using different data
folds wherein relation types are split with varying
random seeds: {0, 1,2,3,4}. Table 2 also presents
the statistics for each dataset and setting.

We utilize T5-base (Zong et al., 2021), which
comprises 220 million parameters, as our pre-
trained generative model. The learning rates for
the generative model parameters and other parame-
ters are set to 3 x 107° and 6 x 10™*, respectively,
and the batch size for training is set to 1. Both
« and S in (12) and (13) of the experiment were
experimented in the range of 0.1-0.9, and we ended
up using o = 0.1 and 8 = 0.2 to arrive at the final
result.

Unseen Relations Unseen Relations

(a) FewRel_single

2
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(c) Wiki-ZSL_single (d) Wiki-ZSL_multi

Figure 6: Experimental results of different models for
single and multi ZeroRTE tasks on FewRel and Wiki-
ZSL datasets, respectively.
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Figure 7: CF A for different models in FewRel and
Wiki-ZSL respectively. Higher value mean higher accu-
racy and stability of the model.

4.1.3 Evaluation Metrics

To evaluate the performance of our model, we ad-
here to the same evaluation metrics as Relation-
Prompt (Chia et al., 2022) for a fair comparison.
We separately report the scores for sentences con-
taining a single triplet and those containing multi-
ple triplets to maintain consistency with previous
studies. For single triplet extraction, we employ
Accuracy (Acc.) as the evaluation metric; for multi-
ple triplet extraction, we utilize the Micro-F1 score
(F1) as the evaluation metric, additionally reporting
precision (Pre.) and recall (Rec.) scores. All scores
are averaged across five data folds.

4.2 Baseline methods

For more information about baseline, please refer
to Appendix B.3

4.3 Main Results

The results of ZeroRTE on two datasets are pre-
sented in Table 2. We highlight key observations
as follows.



Table 2: Main Results. The best scores are in bold, and the second-best ones are underlined.

Single-triplet Multi-triplet
Labels Model Wiki-ZSL Fewrel Wiki-ZSL Fewrel
Acc. Acc. Pre. Rec. F1 Pre. Rec. F1
1) TabSeq 14.47 11.82 43.68 3.51 6.29 15.23 1.91 3.40
2) RelPrompt 16.64 22.27 29.11 31.00 30.01 20.80 24.32 22.34
3) KBPT 17.85 24.19 3245 31.64 32.04 23.15 23.13 24.28
4) ZETTbase 21.49 30.71 35.89 28.38 31.74 38.14 30.58 33.71
m=5 5) PCRED 18.40 22.67 38.14 36.84 37.48 4391 34.97 38.93
6) GPT-3.5 17.19 30.10 12.49 21.71 15.85 37.76 60.87 44.21
7) MICRE 27.74 37.53
8) ZS-SKA 44.00 32.86 66.70 27.24 38.68 57.50 26.24 36.04
9) ENIAC-ML 45.21 44.28 47.40 52.56 49.74 36.97 47.71 41.64
1) TabSeq 9.61 12.54 45.31 3.57 6.40 28.93 3.60 6.37
2) RelPrompt 16.48 23.18 30.20 32.31 31.19 21.59 28.68 24.61
3) KBPT 20.45 26.58 32.47 33.69 33.17 24.35 27.28 26.46
4) ZETTbase 17.16 27.79 24.49 26.99 24.87 30.65 32.44 31.28
m=10 5) PCRED 22.30 2491 27.09 39.09 32.00 30.89 29.90 30.39
6) GPT-3.5 14.44 23.32 8.82 17.78 11.79 26.97 48.71 32.56
7) MICRE 24.64 34.77
8) ZS-SKA 26.40 34.03 45.38 29.27 35.30 60.48 23.22 33.28
9) ENIAC-ML 38.81 42.14 39.85 48.32 43.62 36.29 47.21 41.03
1) TabSeq 9.20 11.65 44.43 3.53 6.39 19.03 1.99 3.48
2) RelPrompt 16.16 18.97 26.19 32.12 28.85 17.73 23.20 20.08
3) KBPT 20.31 22.46 32.15 29.39 30.74 19.61 25.55 22.19
4) ZETTbase 12.78 26.17 19.45 23.31 21.21 22.50 27.09 24.39
m=15 5) PCRED 21.64 25.14 25.37 33.80 28.98 27.00 23.55 25.16
6) GPT-3.5 11.01 16.41 7.13 17.21 10.08 20.72 39.30 25.09
7) MICRE 22.23 32.42
8) ZS-SKA 20.26 23.86 31.23 27.20 29.19 37.29 19.13 25.29
9) ENIAC-ML 38.48 43.10 35.16 42.63 38.36 36.12 45.05 40.03

ENIAC-ML outperforms the latest baseline, ZS-
SKA, which has a comparable number of param-
eters, in both single and multiple triplet extrac-
tion tasks. On Wiki-ZSL and FewRel, ENIAC-ML
achieves accuracy gains of 1.21% to 19.24% for
single triplets and F1 score improvements of 5.6%
to 15.43% for multiple triplets. While its precision
is not always the highest, its balanced precision
and recall result in superior F1 scores. Compared
to LLaMA (7B), ENIAC-ML (220M) achieves
15.96% and 8.27% higher accuracy on Wiki-ZSL
and FewRel, respectively (Li et al., 2024). We at-
tribute LLaMA’s limited performance to its general-
ized training, which is not optimized for ZeroRTE
tasks. This advantage is attributed to LLaMA’s
generalized training, which is not optimized for
ZeroRTE tasks. Our results show that integrat-
ing meta-knowledge and active learning enables
ENIAC-ML to adapt quickly and generalize ef-
fectively, even with fewer parameters. By decou-
pling ZS-RTE through a human-inspired approach
and modeling meta-knowledge independently via
metric-based meta-learning, we reduce the meta-
learning risk upper bound and enhance model gen-
eralization.

As m increases, model effectiveness tends to
diminish or fluctuate due to a rise in unseen rela-

tions and judgment errors. Figure 6 shows that
in single triplet extraction, ENIAC-ML maintains
the highest average accuracy without significant
decay or fluctuation as m increases. Specifically,
ENIAC-ML’s accuracy decay rates on Wiki-ZSL
and FewRel are 8% and 1%, respectively, compared
to ZS-SKA’s 32% and 13%. Similar trends are ob-
served for F1 scores in multiple triplet extraction.
To evaluate both average accuracy and fluctuation,
we introduce the Combined Fluctuation Average
(CF A) metric, defined as follows:

_Y
CFA= (14)

where 1) represents the average precision (single
triplet extraction) or average F1 score (multiple
triplet extraction) of the model on a given dataset,
and 9 represents the average rate of variation of the
accuracy or F1 score as m varies. See Appendix
B.4 for a more detailed derivation of this formula.
The larger the value of CF.A, the more accurate
and stable the model. The CF A distributions for
the other baseline models are shown in Figure 7.
This demonstrates that ENIAC-ML has not only
mastered the comprehension of specific samples
but also the meta-knowledge of the ZeroRTE task
by the concept of meta-learning, “learning to learn”.
And thereby explaining its superior performance in
terms of accuracy, stability, and generalization.
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Netflix published in September 2014
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Figure 8: Case study from three models. ENIAC-ML demonstrated better accuracy.

4.4 Ablation Study

As illustrated in Table 3, we assessed the perfor-
mance of each component on FewRel and Wiki-
ZSL datasets using the accuracy. NoGen repre-
sents the RelationPrompt without additional gen-
erated data. In contrast, the PT5 model employs
a pipelined approach: it first identifies relations
within the sentence and then extracts the corre-
sponding head and tail entities based on these rela-
tions. This method mitigates the confusion between
the two subtasks of ZeroRTE, leading to enhanced
model accuracy.

In addition, the accuracy of the model with the
introduction of the relation description which con-
tains the position of the head and tail entities is
also substantially improved compared to PT5. It
can be inferred that this relation description with
positional information enhances the model’s gener-
alization. This is a testament to the importance of
modeling how humans learn.

Furthermore, we validate the effectiveness of
MPML and EIAL, respectively. MPML demon-
strates that employing metric-based meta-learning
to bridge the distance between label prototypes
and entity prototypes can effectively enhance the
model’s judgment of head, tail entities and rela-
tions. EIAL demonstrates that selectively enhanc-
ing sample learning based on the model’s confi-
dence reduces training overhead and boosts accu-
racy. Integrating all components into ENIAC-ML
yields significant performance gains over existing
ZeroRTE models.

Table 3: The ablation experiment results.

FewRel Wiki-ZSL
PT5  Discripion MPML  EIAL Acc. Acc.
RelationPrompt (NoGen) ‘ 11.49 ‘ 9.05
v 22.75 20.77
v v 39.91 38.22
v v 40.97 38.86
v v v 41.03 39.02
v v v 43.17 40.83

4.5 Case Study

To analyze active meta-learning in our framework,
we compare the relation triplets extracted by Rela-
tionPrompt, ZETT, and ENIAC-ML for three sen-
tences (denoted as S1, S2, and S3). The results are
shown in Figure 8.

In S2, RelationPrompt correctly identifies the
relation but predicts incorrect head and tail entities
due to its reliance on synthetic training samples
that may not include relevant data. In contrast,
both ZETT and ENIAC-ML extract the correct
triplet. ZETT achieves this by leveraging the ’Dis-
tributed by’ template, while ENIAC-ML benefits
from metric-based meta-learning, which reduces
the feature-space distance between ‘Print the Leg-
end’ and ‘[HEAD] .

For S3, RelationPrompt again fails to predict
the correct head and tail entities. ZETT does
not explicitly model entity position information,
leading to confusion in head and tail entity loca-
tion. ENTAC-ML, however, employs active meta-
learning to detect prediction uncertainty in differ-
ent sentence components and applies metric-based
meta-learning to samples requiring additional train-
ing. This allows ENIAC-ML to accurately rec-
ognize and predict the positions of head and tail
entities

5 Conclusion

This paper investigates the determinants influenc-
ing the generalization of ZeroRTE via a theoretical
analysis, identifying task diversity and the meta-
knowledge module as key factors. The optimal
performance was achieved by using the task de-
composition paradigm that mimics human think-
ing, metric-based meta learning, and active environ-
mental interaction module. These methods achieve
state-of-the-art performance while offering valu-
able insights for future research on generalization.



6 Limitation

While this work represents a significant improve-
ment over previous ZeroRTE tasks, it is necessary
to acknowledge the limitations of this work.

Firstly, we found that the accuracy of relation
judgment in the first step significantly affects the
accuracy of the final result. This is because the
additional environmental information added in the
second step pertains to the description of the rela-
tion extracted in the first step. If the relations in the
first step are extracted incorrectly, the erroneous
descriptions of the relations in the second step will
interfere with the model’s judgment of the head
and tail entities. Secondly, the evaluation metrics
used in this study may only reflect task-specific per-
formance and may not comprehensively measure
the model’s usability and efficiency in real-world
applications.

To address these limitation, future research
should implement a protective warning module
in the second step, ensuring that if the model
lacks confidence in the extracted relation, it re-
frains from adding the corresponding description.
And the future work could consider incorporating
additional evaluation dimensions (e.g., computa-
tional resource consumption, inference time, etc.)
to provide a more comprehensive assessment of
the model’s usability and efficiency in real-world
applications.
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A Related Work

A.1 Meta-learning

Meta-learning can improve the training of ma-
chine learning models and thus has attracted sig-
nificant interest in recent years. The conven-
tional categorizations of meta-learning methods
(Lee and Choi, 2018) categorize them into three
groups: optimization-based, metric-based, and
model-based methods.

The optimization-based methods (Rusu et al.,
2019; Finn et al., 2017; Nichol et al., 2018) fo-
cus on incorporating optimization within the learn-
ing process to achieve an optimized initialization
of model parameters. The metric-based methods
(Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017) aim to learn an appropriate distance met-
ric for few-shot classification and have been suc-
cessfully applied to various few-shot and zero-shot
tasks (Han et al., 2021; Liu et al., 2022). The model-
based methods (Zhmoginov et al., 2022; Li et al.,
2019; Ye and Ren, 2021) involve task specifications
to directly generate or modulate model weights.

Following this line, TGM method (Li and Qian,
2023) pioneered meta-learning for generative mod-
els in the ZeroRTE. A task-aware generative model
combined with three generative meta-learning ap-
proaches significantly improved over previous
state-of-the-art models. Inspired by this method,
we combine meta-learning with our pipelined
framework.

A.2  Active learning

In supervised learning problems, labeling is ex-
pensive, and labels are difficult to obtain in large
quantities. For certain specific tasks, only industry
experts can accurately label the samples. In this
context, Active learning seeks to save resources
by selectively labeling fewer data to train better-
performing models (Settles, 2009).

Various active learning algorithms have been im-
plemented for RE tasks (Duan, 2024). Seo et al.
(2023) propose an active learning method for a
cross-sentence n-ary relation extraction (ANRE),
which allows models to be trained on a small
amount of labeled data initially. The proposed
methods acquire newly labeled train data iteratively
and improve the model. Ye et al. (2023) propose a
method of active learning based on subsequences
and distant supervision. The method annotates by
selecting information-rich subsequences as sam-
pling units. Uncertainty can provide useful infor-
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mation to the model, so we try to introduce the
uncertainty mechanism into ZeroRTE task.

A.3 Zero-shot relation triplet extraction

Relation triplet extraction has been studied for a
long time. Recently, PURE (Zhong and Chen,
2021) proposes a simple and effective pipelined
RTE method that refers to the decomposition of
the task into RE and NER. In PURE, the results
of NER are used to assist RE in a pipeline man-
ner. They demonstrate the importance of learning
distinct contextual representations for entities and
relations. However, the performance of the pipeline
model on the ZeroRTE task remains unexplored.

Most of existing ZeroRTE methods model NER
and RE jointly. RelationPrompt (Chia et al.,
2022) is a prominent approach for extracting entire
triplets in a zero-shot setting. It trains a generator
and uses the generated samples to synthesize data
for unseen relations. However, its performance
is severely constrained by the quality of the syn-
thetic data. Guo et al. (2024) proposed KBPT, a
method incorporating prior knowledge from onto-
logical schemas, which enhances semantic repre-
sentations. ZS-SKA (Gong and Eldardiry, 2024)
implements data augmentation through word-level
sentence translation to generate instances contain-
ing unseen relations from training instances con-
taining seen relations and use the generated data
as a training set for unseen relations. However,
the reliance of these methods on synthesized data
increases the training costs and potentially com-
promises accuracy. In contrast, Kim et al. (2023)
view relation extraction as a template-filling prob-
lem, thus eliminating the need for additional train-
ing data. Their ZETT approach fine-tuned the T5
model to obtain the ranking scores for potential
triplets. However, evaluating and scoring many
unseen relations is exceedingly time-consuming,
and lexical variants that appear in the relation de-
scriptions and resemble the words in the sentence
interfere with the model’s judgments.

This paper makes a first attempt to introduce the
pipeline design into ZeroRTE and explore a better
form of it.

B Experiments

B.1 Relation description

We used GPT-3.5 to generate relation descriptions
with information about the location of the head
and tail entities, and Figure 9 shows a few exam-



ples. The descriptions corresponding to all other
relations we show in the json file of the code.

B.2 Datasets

We evaluate our model on two public datasets:
FewRel and Wiki-ZSL. FewRel is a standard bench-
mark dataset designed primarily for the few-shot
relation extraction task. It is created using distant
supervision and has been additionally filtered by
humans. Wiki-ZSL is generated with distant su-
pervision from Wikipedia articles and the Wikidata
knowledge is a subset of Wiki-KB, targeting zero-
shot relation extraction. We use dataset versions
released by Relationprompt, which have been trans-
formed for zero-shot triplet extraction. The detailed
data statistics are shown in Table 4.

B.3 Baseline methods

We compare ENIAC-ML with the following meth-
ods: 1) TableSequence (Wang and Lu, 2020) is
a joint learning model employing two distinct en-
coders to simultaneously perform RE and NER. It
uses data from (Chia et al., 2022) to train the mod-
els and then report the results; 2) RelationPrompt
(Chia et al., 2022) comprises a relation generator
and a relation triplet extractor. 3) KBPT (Guo et al.,
2024) incorporate prior knowledge from ontologi-
cal schemas and employ a generative prompt model
to synthesize training samples for unseen relational
types. 4) ZETT (Kim et al., 2023) treats zero-shot
relational triplet extraction as a template-filling task
and employs a generative model to predict the sub-
ject and object of each relation. 5) PCRED (Lan
et al., 2022) directly utilizes the semantics of un-
seen relations, thereby incurring no additional data
or training costs, instead of leveraging PLMs to
generate training samples for unseen relations. 6)
ChatlE (Wei et al., 2023) employs GPT-3.5 for the
zero-shot RTE task. This method first defines the
relations to be extracted and then generates relation
triplets in the sentence. Xu et al. (2024) applied
it to the Fewrel and Wiki-ZSL datasets. 7) MI-
CRE (Li et al., 2024) introduces a novel in-context
training framework based on LLMs for zero- and
few-shot RE, using in-context learning techniques
to enhance few-shot prompting performance on un-
seen RE tasks. We use the experimental results of
LLaMa on ZeroRTE from this study. 8) ZS-SKA
(Gong and Eldardiry, 2024) first implements data
augmentation through word-level sentence transla-
tion to generate augmented instances with unseen
relations from training instances with seen rela-
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tions.

B.4 Definition of CFA

In this section we detail the CF A calculation pro-
cess. As (15), (16) and (17) shown, Where m rep-
resents the number of unseen relations, assumed to
grow in units of 3, i.e., me {5, 10,15, ...}, while ¢
is taken to be 5. % represents the number of groups
into which the dataset is divided based on m. For
single-triplet extraction tasks, a; represents the ac-
curacy of a model on a particular set of tasks (For
different unseen relations), and for multi-triplet
extraction tasks, a; represents the F1 score. i rep-
resents the average precision or average F1 score
of the model on a given dataset, and ¥ represents
the volatility of the precision or F1 score. The
combined fluctuation average indicator CF A = %.

a;
) == (15)
q
m_
3 |air1 — ail
- il
9 ==L (16)
m_q
q
CFA= % 17)
)
C Model Complete Input-Output
Presentation

As shown in Figure 10, these are three examples of
complete inputs and outputs of ENIAC-ML.

D Human thinking.

In real-world scenarios, humans tackling Zero-Shot
Relation Triple Extraction (ZeroRTE) tasks typi-
cally adopt a structured and interactive approach
to comprehend and solve the problem. Initially,
they engage with knowledgeable individuals, such
as domain experts, or consult external materials,
such as textbooks, databases, or online resources,
to gain a thorough understanding of the semantics
and nuances of relation types embedded within sen-
tences. This step is crucial because it allows them
to build a foundational understanding of how dif-
ferent relations are expressed and contextualized
in text. Once they have grasped the semantics of
the relation types, they leverage this knowledge
to make informed judgments about the entities in-
volved, identifying the head and tail entities that
correspond to the extracted relations.



Relation Description of relation with targets

. The status of [HEAD] being proposed or suggested as a potential recipient of recognition

R1 nominated for or an award, emphasizing its candidacy within the specified domain or context of [TAIL].
The marital relationship between [HEAD] and their partner, indicating the legally or
R2 spousc socially acknowledged bond within the specified family or context of [TAIL].
" b The actor or performer who appears in [HEAD], emphasizing its role or
R3 cast member function within the specified domain or context of [TAIL].
. The time or moment when [HEAD] was born or came into existence, emphasizing

R4 date of birth its origin or creation within the specified domain or context of [TAIL].

Figure 9: Relation description with head and tail entity location information generated by GPT-3.5.

Text

Step1 Input

Step2 Input Final Output

He then finished 15th at the 1956
World Championships in Garmisch -
Partenkirchen, Germany .

<Task1>, Choose [REL] in [SENT] from [Rel Info].
[Rel_Info]: creator, continent, capital, location, sibling
[SENT]: He then finished 15th at the 1956 World

Championships in Garmisch - Partenkirchen, Germany.

<Task2>, Extract <triplet> in [SENT] by
[Relation_description].

[Relation_description]: location, the adherence of
[HEAD] to a specific set of spiritual, emphasizing
its connection to a particular belief system within the |
specified domain or context of [TAIL].

ITZ:[HEAD] 1956 World Championships |
[TAIL] Garmisch - Partenkirchen
[REL] location I

__________ 4
) o <Task1>, Choose [REL] in [SENT] from [Rel Info].  <Task2>, Extract <triplet> in [SENT] by i_TlﬁzE_L] country _|
There is another Italian river named [Rel_Info]: occupant, country, director, genre, child [Relation_description].
"Arrone" that flows into the [SENT]: There is another ltalian river named "Arrone”  [Relation_description]: country, [TAIL] has | T2: [HEAD] Arrone |
Tyrrhenian Sea . that flows into the Tyrrhenian Sea defined boundaries, governments, and [HEAD] is | [TAIL] ltalian |
a geographic, political marker or other component [REL] country
thereof. ol — — ]
Shortly after the release of the Gp32  <TasK1> Choose [REL] i [SENT] from [Rel Info].  <Task2>, Extract <rplet> in [SENT] by HTRED e
2001, i aker Game Park b [Rel_Info]: producer, country, manufacturer, use, family [Relation_description]. |
in 2001, its maker Game Park began | pN): Shosy afier the release of the GP32 i 2001, [Relation_deseription]: manufacturer, the role . |
to design their next handheld. 4 T B : ous i | T2: [HEAD] GP32
its maker Game Park began to design their next handheld. played by [HEAD] in the creation of various items, [TAIL] Gane Park
izing their i in the producti AL e Ptk |
process within the specified domain of [TAIL]. | [REL] manufactwer
Figure 10: Complete inputs and outputs of ENIAC-ML.
Samples Entities Relation Labels Average Length

Total Train Validation Test

103 5 5
98 10
93 15

5
5
70 5 5
5
5

Wiki-ZSL 94383 77623 113 24.85

FewRel 56000 72954 80 65 10

60 15

24.95

Table 4: Statistics of FewRel and Wiki-ZSL.
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