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Abstract

In high-stakes domains like healthcare and fi-001
nance, understanding why a model makes a002
prediction is often as important as the predic-003
tion itself. Concept Bottleneck Models (CBMs)004
enhance transparency by first providing inter-005
pretable concepts – typically from an image006
– before making the final prediction. This al-007
lows experts to validate and correct these in-008
termediate concepts. In this paper, we show009
how CBMs can be effectively implemented us-010
ing (Vision-)Language Models by leveraging011
their chain-of-thought reasoning. We fine-tune012
the model with the standard cross-entropy loss,013
and our approach maintains prediction quality014
and achieves high accuracy for intermediate015
concepts, effectively simulating CBMs without016
any architectural modifications. We demon-017
strate the effectiveness of our method on syn-018
thetic and real-world datasets, showing that it019
matches or exceeds the performance of tradi-020
tional CBMs. Our method not only simplifies021
the implementation of CBMs but also leverages022
the extensive knowledge of VLMs acquired dur-023
ing pretraining.024

1 Introduction025

AI systems are increasingly used in critical do-026

mains such as healthcare, finance, and scien-027

tific discovery, where transparent and accountable028

decision-making is essential. In medical applica-029

tions, for example, experts need not only accurate030

predictions but also clear justifications.031

To address these needs, researchers have turned032

to self-explainable models, which aim to provide033

inherent transparency rather than requiring users to034

rely solely on post-hoc explanations. One promi-035

nent approach in this direction is Concept Bottle-036

neck Models (Koh et al., 2020). Instead of mapping037

raw input data (usually, an image) directly to final038

predictions, CBMs first predict a set of concepts,039

which are then used as the only inputs for the com-040

ponent making the final decision. This explicit041

separation enhances human oversight, allowing do- 042

main experts to inspect, validate, and modify the 043

predicted concepts. 044

While constructing a CBM typically assumes 045

the reliance on specialized architectures and train- 046

ing procedures, we show that the concept bottle- 047

neck can be effectively emulated within a chain-of- 048

thought framework using a vision-language model 049

(VLM). Specifically, in our approach (CB-CoT), a 050

VLM generates a description of an input image’s 051

concepts, which are then mapped to labels by a 052

separate language model (see Figure 1). Note that 053

this second-stage model does not have access to 054

the image. We demonstrate that this architecture, 055

when fine-tuned with standard cross-entropy loss, 056

not only maintains the quality of final predictions 057

but also achieves high accuracy in predicting inter- 058

mediate concepts and enables intervention, similar 059

to CBMs. 060

While recent works (e.g., (Sun et al., 2024; Is- 061

mail et al., 2024)) integrate LLMs into CBMs, they 062

do so by introducing non-standard components or 063

specialized training objectives. These modification 064

increase architectural complexity and training over- 065

head; this additional complexity makes real-world 066

deployment harder. In contrast, we show that such 067

modifications are unnecessary: a vision-language 068

model can learn to predict concepts through stan- 069

dard supervised fine-tuning (SFT), without requir- 070

ing architectural changes or custom objectives.1 071

2 Background and Related Work 072

Concept bottleneck models (CBMs) (Koh et al., 073

2020) enable explanation of neural network deci- 074

sions through human-understandable concepts, al- 075

lowing for concept-based corrections and improved 076

robustness to covariate shifts. Formally, CBMs 077

compose two functions: ŷ = f(g(x)), where 078

1 The code is available at https://anonymous.4open.
science/r/CB_in_CoT_Reasoning-639C
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Figure 1: Pipeline of Concept Bottleneck within Chain-of-Though, CB-CoT

g : RD → Rk maps inputs to concept space and079

f : RK → R maps concepts to predictions, requir-080

ing supervised concept labels during training.081

Havasi et al. (2022) enhance CBMs through082

residual connections and side-channel models, ad-083

dressing concept inter-dependencies and relaxing084

the Markov assumption on concepts while main-085

taining the advantages of hard CBMs over soft086

variants. Structurally our CBM is similar to theirs:087

we also use hard concepts and an autoregressive088

model to predict them. However, they propose a089

custom architecture, whereas we rely on (V)LMs090

as building blocks in our pipeline.091

CB-LLMs (Sun et al., 2024) integrate CBMs into092

language processing domain, implementing con-093

cept bottlenecks for text classification and genera-094

tion. The approach introduces a significant architec-095

tural change: each token’s embedding is split into096

two components - one that encodes concept infor-097

mation and another that remains concept-agnostic.098

While they focus exclusively on text processing,099

our approach extends to multiple modalities.100

In (Oikarinen et al., 2023; Yang et al., 2023; Qu101

and Yatskar, 2024), LLMs and VLMs are used to102

generate concepts sets and annotations. Our ap-103

proach differs in that we instead rely on concept-104

annotated datasets and demonstrate that a VLM’s105

generation can itself serve as a CBM. In fact, their106

work is orthogonal to ours: concept annotations107

for our method could be generated using their ap-108

proaches.109

3 Methodology110

We present a simple, yet effective method for imple-111

menting CBMs with VLMs without architectural112

modifications. Our approach, CB-CoT, builds on113

LLaVa 7B 1.5 (Liu et al., 2023b,a, 2024), which in114

turn uses CLIP for image embedding and LLaMa115

(Touvron et al., 2023) for text generation.116

CB-CoT assumes the availability of concept-117

annotated training data, where each image is la-118

beled with binary indicators for the presence or 119

absence of predefined concepts. We convert these 120

binary annotations into natural language statements. 121

For each concept, we generate a sentence indicat- 122

ing its presence or absence, e.g., "The bird has a 123

yellow throat" for positive cases and "The bird does 124

not have a yellow throat" for negative ones. These 125

sentences are concatenated in random order to form 126

the target output for each training example. 127

The training process consists of two stages. First, 128

we fine-tune a chain-of-thought (CoT) generator by 129

conditioning the VLM on input images with a fixed 130

prompt (e.g., "Describe this animal"). The model 131

learns to generate natural language descriptions 132

that explicitly mention the presence or absence of 133

each concept, optimized using standard language 134

modeling loss (cross-entropy). The second stage 135

is done after a VLM has been trained: we use its 136

concepts predictions to train a classifier for labels, 137

just as sequential CBMs do. Hyperparameters are 138

listed in the Appendix B 139

To extract structured concept predictions from 140

the model’s free-form text generations, we segment 141

the generated text into individual sentences. Each 142

sentence is then mapped back to a binary concept 143

prediction based on whether it indicates the pres- 144

ence or absence of the corresponding concept. 145

This approach effectively simulates the behavior 146

of traditional concept bottlenecks within a VLM’s 147

chain of thought while maintaining architectural 148

simplicity and leveraging the extensive knowledge 149

of pre-trained VLMs. 150

4 Datasets 151

We benchmarked our approach on three datasets: 152

our own synthetic dataset, CUB-200 (Wah et al., 153

2011) and AwA2 (Xian et al., 2019) 154

4.1 Synthetic lines dataset 155

We randomly chose the number of lines to 156

draw on the image, uniformly between 1 and 157
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3. The angle and offseet of each line were sam-158

pled randomly uniformly from [−π;π) × [0.2 ∗159

image_size; image_size]. To increase variety,160

the line colors were also chosen randomly. The161

dataset includes 4 concepts, representing the num-162

ber of intersections on the image as one-hot vectors.163

The final task is to predict whether a triangle ap-164

pears in the image. The task is intentionally simple165

and serves as a controlled setting to evaluate our166

method.167

4.2 CUB-200168

CUB-200 (Wah et al., 2011) dataset is the most169

common benchmark for CBMs. We use concepts170

filtering procedure of Koh et al. (2020) and keep171

only concepts which are present for at least 10172

classes. The train, validation and test split as173

well as concepts annotations come from Koh et al.174

(2020); there are 4796 training, 1198 validation175

and 5794 test images, annotated with 112 concepts176

and 200 classes.177

4.3 AwA2178

Animals with attributes (Xian et al., 2019) contains179

37K images of 50 animal species, described by 85180

concepts. For this data set, we follow the concept181

filtering procedures of Kim et al. (2023).182

5 Experiments and results183

5.1 Synthetic dataset validation184

On our synthetic lines dataset, our model achieves185

100% accuracy in both concept prediction and fi-186

nal classification tasks. While conceptually sim-187

ple, this dataset serves as an important proof-of-188

concept, demonstrating that our architecture can189

perfectly capture geometric relationships between190

visual concepts (number of line intersections) and191

target classes (presence of triangles).192

5.2 Benchmarks193

We evaluated our CB-CoT model against several194

state-of-the-art concept bottleneck approaches on195

the CUB-200-2011 and AwA2 datasets, following196

the evaluation protocols established in previous197

work (Koh et al., 2020; Havasi et al., 2022; Kim198

et al., 2023). For most baselines, we adopted the199

results reported by (Kim et al., 2023) to ensure fair200

comparison.201

Table 1 presents both concept prediction accu-202

racy and label prediction accuracy for all models.203

We compare against ProbCBM (Kim et al., 2023),204

Dataset Model concepts labels

CUB Black-box – 91.9±0.2
CBM 95.6±0.1 70.8±0.6
ProbCBM 95.6±0.1 71.8±0.6
CEM 95.4±0.1 75.9±0.2
Hard AR CBM 95.7±0.1 75.4±0.1
Zero-shot LLaVa 1.5 3.0±0.1 5.0±0.2
CB-CoT (this work) 95.7±0.1 73.4±0.1

AwA2 Black-box – 89.3±0.0
CBM 97.5±0.0 87.7±0.4
ProbCBM 97.5±0.0 88.0±0.2
CEM 97.9±0.1 88.4±0.2
Zero-shot LLaVa 1.5 1.3±0.1 2.1±0.3
CB-CoT (this work) 97.6±0.1 87.8±0.2

Table 1: Concept prediction and label prediction accuracies
on CUB and AwA2

CEM (Zarlenga et al., 2022) and Hard AR CBM 205

(Havasi et al., 2022). See Appendix C for details 206

about baselines. 207

Our approach achieves competitive performance, 208

maintaining high concept prediction accuracy 209

while demonstrating strong label prediction per- 210

formance. The drop in performance with respect to 211

Black-box is expected and consistent with the liter- 212

ature. The black-box can rely on non-interpretable 213

information, which, in practical application, can 214

include non-robust features or shortcuts. 215

To justify the fine-tuning stage, we include zero- 216

shot performance of the base LLaVa model. The 217

significant gap between zero-shot and fine-tuned 218

performance demonstrates that while pretrained 219

models possess relevant world knowledge and are 220

a good initialization point, task-specific training 221

remains crucial for concept-based classification. 222

We found that randomizing the order of sentences 223

for each image in training significantly improved 224

the model’s performance. 225

5.3 Interventions 226

The ability of a human expert to correct the pre- 227

dicted concepts (i.e., intervene), thereby influenc- 228

ing the model’s final prediction, is one of the key 229

advantages of CBMs. In this experiment, we simu- 230

late interventions, by applying corrections towards 231

ground-truth concepts at test time. We show in Fig- 232

ure 2 that our model’s performance on the final task 233

benefits from correcting interventions; moreover, 234

its interventions curve is similar to that of a hard 235

sequential CBM (Havasi et al., 2022). 236

More specifically, following (Koh et al., 2020; 237

Havasi et al., 2022; Kim et al., 2023), we perform 238

interventions on semantically grouped concepts 239

rather than individual concept predictions. For ex- 240
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Figure 2: Change in target prediction accuracy after
intervening on concept groups

ample, instead of intervening on specific predic-241

tions like "wing_color::red" or "wing_color::blue"242

separately, we intervene on the entire "wing color"243

group of concepts together. We randomly select a244

number of these concept groups for intervention in245

each trial. Figure 2 demonstrates how prediction246

accuracy changes with the number of intervened247

groups, with error bars showing the standard de-248

viation across 5 random samples of group selec-249

tions. As shown in the plots, CB-CoT’s classifica-250

tion accuracy consistently improves as we increase251

the number of intervened concept groups. In fact,252

our model’s intervention behavior is fairly close to253

that of hard sequential CBM across both CUB and254

AwA2 datasets.255

5.4 Concept leakage analysis256

To investigate potential concept leakage in our257

model, we trained our models on corrupted con-258

cept sets, where individual concepts were replaced259

with random Bernoulli noise. These concepts were260

then used to produce sentences describing concepts,261

with the same procedure as for the original data.262

Figure 3 illustrates how classification accuracy de-263

clines for both the standard CBM and our CB-CoT264

as the number of corrupted concepts increases.265

In theory, a model might compensate for miss-266

ing concept information by encoding it elsewhere.267
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Figure 3: Decrease in target prediction accuracy as more
and more concepts are replaced with random noise

However, as we empirically confirm here, the re- 268

liance on (V)LMs and the absence of joint training 269

make this unlikely. The observed drop in perfor- 270

mance suggests that both models primarily depend 271

on the intended concept information for their pre- 272

dictions, rather than bypassing the concept bottle- 273

neck through unintended leakage. 274

This finding complements our intervention anal- 275

ysis, in which we demonstrate that an increase in 276

the number of intervened concept groups leads to 277

improved performance. Together, these results sug- 278

gest that CB-CoT exhibits minimal concept leak- 279

age. If significant information leakage was present, 280

we would expect resistance to concept corruption 281

(Figure 3) or limited benefit from concept interven- 282

tions. Instead, we observe both strong sensitivity 283

to concepts quality and substantial benefits from 284

interventions, suggesting minimal concept leakage. 285

6 Conclusion 286

We have demonstrated that CBMs can be effec- 287

tively implemented with a combination of VLM 288

and LLM, without requiring architectural modifi- 289

cations or custom loss functions. Our approach, 290

CB-CoT, leverages a simple fine-tuning process 291

to enable (V)LMs to predict interpretable inter- 292

mediate concepts, preserving high classification 293

accuracy while allowing human intervention and 294

correction. We show that CB-CoT closely matches 295

or outperforms traditional CBMs while simplifying 296

implementation. We further validate its effective- 297

ness by analyzing intervention impact and concept 298

leakage, confirming that our method maintains the 299

core advantages of CBMs, such as robustness to 300

corrections and reliance on interpretable represen- 301

tations. 302
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7 Limitations303

CBMs are designed to enhance collaboration be-304

tween human experts and AI tools and should ide-305

ally be evaluated through user studies. As most306

previous work on CBMs, due to cost and time con-307

straints, we did not conduct such studies in this308

work, and instead relied on automatic metrics. Our309

focus was on fine-tuning, which may not always310

be the best approach depending on the available in-311

frastructure. Using alternatives to fine-tuning, such312

as in-context learning, are possible in CB-CoT but313

were not explored here. While our experiments314

and overall architecture do not make substantial315

information leakage likely, a more thorough inves-316

tigation would be needed to confirm this.317
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390
<image> 391
How would you describe this animal? 392393

Listing 1: Input prompt. <image> token will be replaced
by CLIP’s embedding inside of the decoder

394
This animal is not black, not white, not blue, 395

brown, gray, not orange, not red, not yellow 396
, not patches, not spots, not stripes, furry 397
, not hairless, not toughskin, not big, 398
small, not bulbous, not lean, not flippers, 399
not hands, not hooves, pads, paws, not 400
longleg, not longneck, tail, chewteeth, not 401
meatteeth, buckteeth, not strainteeth, not 402
horns, claws, not tusks, not smelly, not 403
flys, hops, not swims, not tunnels, walks, 404
fast, not slow, not strong, not weak, not 405
muscle, bipedal, quadrapedal, active, not 406
inactive, not nocturnal, hibernate, agility, 407
not fish, not meat, not plankton, 408
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vegetation, not insects, forager, not grazer409
, not hunter, not scavenger, not skimmer,410
not stalker, newworld, oldworld, not arctic,411
not coastal, not desert, not bush, not412

plains, forest, not fields, not jungle, not413
mountains, not ocean, ground, not water,414
tree, not cave, not fierce, timid, not smart415
, not group, solitary, nestspot, not416
domestic.417418

Listing 2: Response

B Training details and hyperparameters419

We fine-tune LLaVa 7B 1.5 using LoRA (Hu et al.,420

2022) adapters with r = 128, α = 256. We421

set weight_decay = 0.001, lr = 0.0002 and422

train until convergence on validation loss with423

batch_size_per_device = 8. We employ cosine424

scheduling for the learning rate with first 3% it-425

erations spent on warmup. We chose LoRA rank426

and learning rate based on the scripts from LLaVa427

repository428

C More details on baselines429

For CBM, ProbCBM, and CEM implementations,430

we utilize the results as reported by Kim et al.431

(2023) on both CUB and AwA2 datasets.432

C.1 Hard AR CBM433

Introduced by Havasi et al. (2022), Hard AR CBM434

(Autoregressive Concept Bottleneck Model) modi-435

fies the standard CBM architecture by making con-436

cept predictions autoregressive. When predicting437

the (N + 1)-th concept, the model incorporates438

the predictions of the previous N concepts. This439

creates a dependency chain where each subsequent440

concept prediction is conditioned on all previously441

predicted (binary) concepts.442

C.2 Black-box443

For this baseline, we adopted the architecture and444

hyperparameters from Kim et al. (2023)’s CBM im-445

plementation, using InceptionV3 as the backbone446

network. The key distinction is that this model447

is trained only with cross-entropy loss on the fi-448

nal class labels, without any intermediate concept449

supervision.450

C.3 Zero-shot LLaVa451

For this baseline, we prompt non-tuned LLaVa with452

questions about individual concept groups (as it453

cannot follow the format we defined for training).454
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