

000
001
002
003

STEERING LLM THINKING WITH BUDGET GUIDANCE

004
005
006
007
008
009010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053004 Paper under double-blind review
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Recent deep-thinking large language models often reason extensively to improve performance, but such lengthy reasoning is not always desirable, as it incurs excessive inference costs with disproportionate performance gains. Controlling reasoning length without sacrificing performance is therefore important, but remains challenging, especially under tight thinking budgets. We propose *budget guidance*, a simple yet effective method for steering the reasoning process of LLMs toward a target budget without requiring any LLM fine-tuning. Our approach introduces a lightweight predictor that models a Gamma distribution over the remaining thinking length during next-token generation. This signal is then used to guide generation in a soft, token-level manner, ensuring that the overall reasoning trace adheres to the specified thinking budget. *Budget guidance* enables natural control of the thinking length, along with significant token efficiency improvements over baseline methods on challenging math benchmarks. For instance, it achieves up to a 26% accuracy gain on the MATH-500 benchmark under tight budgets compared to baseline methods, while maintaining competitive accuracy with only 63% of the thinking tokens used by the full-thinking model. *Budget guidance* also generalizes to broader task domains and exhibits emergent capabilities, such as estimating question difficulty.

1 INTRODUCTION

With the recent success of deep-thinking large language models (LLMs) – such as OpenAI O1 (Jaech et al., 2024), DeepSeek R1 (Guo et al., 2025), and Qwen3 (Yang et al., 2024a;b), which are capable of generating long sequences of thoughts to achieve better performance – there has been a growing need to control the reasoning length of these models while maintaining the performance, because many deep-thinking LLMs often incur excessive inference costs with disproportionate performance gain. For example, in Figure 1, we show a response from a deep-thinking model that, while correct, is unnecessarily long. Such extensive reasoning is not always desirable, and there are cases where we need to impose a budget to limit the extent of reasoning, particularly in scenarios that demand real-time interaction, such as customer-facing chatbots, where excessive latency can degrade user experience and responsiveness.

Existing thinking budget control methods can be roughly divided into two categories with complementary strengths. The first category is fine-tuning methods, which fine-tune deep-thinking LLMs on specially curated dataset (Han et al., 2024) or with budget-aware reward to enable budget control capabilities (Hou et al., 2025). Fine-tuning methods have been shown effective in changing the reasoning length while keeping competitive performance because they allow LLMs to fundamentally restructure and optimize their reasoning behavior according to the given budget. However, they come with two main drawbacks. First, fine-tuning an LLM is costly, requiring substantial computational resources and time. Second, directly fine-tuning the LLM may potentially alter its behavior in unexpected ways, such as compromising safety (Qi et al., 2023).

The second category of methods is the inference-time methods (Ma et al., 2025; Muennighoff et al., 2025), which seek to alter the reasoning behavior at inference time. While these approaches do not involve fine-tuning, they often result in sub-optimal reasoning behaviors and significant performance degradation, because the intervention at inference time are often heuristic and overly simple, breaking the integrity of the original reasoning process. For example, one well-known inference-time method is *budget forcing* (Muennighoff et al., 2025) which terminates the model’s reasoning as soon as the thinking budget is reached, as described in Figure 1. While this method offers strict control over the

054 **Question:** Jen randomly picks 4 distinct numbers from {1–10}. She wins a prize if at least 2 match, and
 055 the grand prize if all 4 match. What's the probability she wins the grand prize given she won a prize?
 056 <think> Okay, so Jen is picking 4 distinct numbers from the set {1–10}, and she wins a prize if ...
 057 [summarize the problem]. Let me recall ... But wait ... So, I need to calculate two
 058 probabilities: ... First, Let me compute that ... Now, let's find P(A) ... Next, let's find P(B) ...
 059 Therefore, $(1/5) / 23 = 1/(5*23) = 1/115$. Wait, hold on, that seems low. Let me check my steps
 060 again... Alternatively ... [a lot more reasoning...] Thus, the probability ... is: $1 / 115$. </think>
 061
 062 (Thinking from original model: correct but too long
 063 <think> Okay, so Jen is picking 4 distinct numbers from the set {1–10}, and she wins a prize if ...
 064 [summarize the problem]. Let me recall ... But wait ... So, I need to calculate two probabilities: ...
 065 First, Let me compute that: $C(10, 4) = 10! / (4! * (10 - 4)!) = (10 * 9 * 8 * 7) / (4 * 3 * 2 * 1) = 210$. Now, let's find P(B) ...
 066 (budget: 400. thinking length: 400)
 067 (Thinking with **Budget Forcing**: follow the budget but forced to stop
 068 <think> First, I need to determine ... Next, I'll calculate ... Now, I need to find the probability ...
 069 Adding these up ... Finally, the probability ... is $1 / 115$. </think>
 070 (budget: 400. thinking length: 395)
 071 (Thinking with **Budget Guidance**: follow the budget naturally

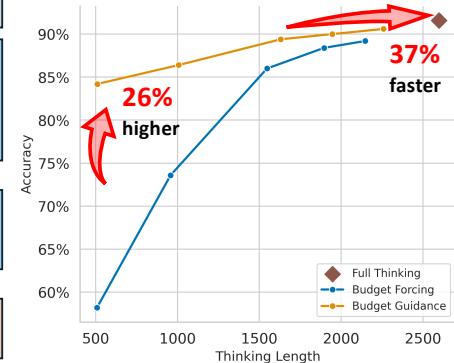


Figure 1: Deep-thinking models often produce excessively long reasoning traces, leading to high latency and unnecessary computation. Existing inference-time methods like *budget forcing* rely on simplistic heuristics such as abruptly stopping, which can result in incomplete reasoning and degraded answer quality. In contrast, our method, *budget guidance*, steers the reasoning process toward the target budget in a smoother and more natural way, without any LLM fine-tuning.

number of generated tokens, abruptly interrupting the model may cut off unfinished thoughts and force premature answers, often leading to incorrect outputs.

In short, an important bottleneck in the task of thinking budget control lies in the tradeoff between *non-intrusiveness* (in inference-time approaches) and *optimality of the reasoning chain* (in fine-tuning approaches). This leads to our central research question: *Can we design a flexible inference-time budget control approach (without fine-tuning) that still allows for wholistic, principled restructuring of the reasoning process to maintain its quality under budget?*

In this paper, we introduce *budget guidance*, a novel approach that employs a lightweight auxiliary module to enable test-time control over the reasoning length of LLMs. Inspired by the principle of classifier guidance in diffusion models (Dhariwal & Nichol, 2021), we train an auxiliary predictor that predicts the probability distribution of the remaining reasoning length at each reasoning step. The predicted length distribution is then used to modulate the LLM generation probability, effectively turning it into a budget-conditional generation probability. Our method avoids the direct fine-tuning of LLMs, while providing flexible and accurate control over the reasoning process. It can be seamlessly integrated into existing inference pipelines, and adapts to a wide range of models, thinking budgets, and tasks.

Our experiments have revealed several key highlights of our method. First, *budget guidance* exhibits a remarkable trade-off between thinking length and performance. For example, as shown in Figure 1, on MATH-500 benchmark (Hendrycks et al., 2021) *budget guidance* can reduce the full thinking length by 37% with minimal accuracy degradation, while being 26% higher in accuracy than *budget forcing* baseline under tight budget. Second, the auxiliary predictor is very successful in predicting the thinking length, effectively considering task difficulty and instruction type. Thus, it can accurately guide the thinking process under various budgets. Finally, our method demonstrates surprising generalizability across domains – an auxiliary predictor trained on one dataset can also work well in other datasets and domains.

We summarize our contributions as follows:

- We propose *budget guidance*, a novel test-time method for steering the reasoning process of LLMs toward a specified thinking budget, without requiring any fine-tuning of the LLM itself.
- We design a lightweight predictor that models a Gamma distribution over the remaining reasoning length based on the current generation context, and uses this signal to guide LLM generation toward a target thinking budget.
- *Budget guidance* achieves strong trade-offs between thinking length and accuracy across multiple benchmarks, and demonstrates cross-domain generalization, enabling effective budget control and accurate thinking length prediction.

108

2 RELATED WORKS

109

2.1 EFFICIENT LLM REASONING

110 Efficiency in large language model (LLM) reasoning has been studied through two main paradigms:
 111 *fine-tuning based methods* and *inference-time steering*. Fine-tuning methods such as ThinkPrune
 112 (Hou et al., 2025), Z1 (Yu et al., 2025), and COCONUT (Hao et al., 2024) shorten reasoning traces
 113 via reinforcement learning, curriculum-style training on variable-length data, or continuous latent
 114 representations. While effective, these methods typically rely on expensive LLM fine-tuning and
 115 primarily aim to *reduce* the length of reasoning, rather than to *control* it. More recent approaches (Han
 116 et al., 2024; Muennighoff et al., 2025) have begun exploring methods to control the reasoning length,
 117 either through heuristic rules or model fine-tuning. In contrast, we propose a simple yet effective
 118 alternative: a fine-tuning-free approach that naturally steers the reasoning process to adhere to a
 119 specified thinking budget, enabling more efficient and flexible inference.

120 Inference-time steering, in contrast, intervenes directly during decoding without fine-tuning the LLM
 121 model. Dynasor (Fu et al., 2025) and DEER (Yang et al., 2025b) dynamically allocates compute by
 122 probing intermediate steps and early terminating confident cases. In contrast, SEAL (Chen et al.,
 123 2025) calibrates reasoning traces by applying lightweight latent-space interventions to suppress
 124 reflection and transition thoughts, thereby reducing redundancy during inference. While effective,
 125 these methods primarily optimize efficiency heuristically and do not offer fine-grained control over
 126 reasoning length. Simpler strategies include NoThinking (Ma et al., 2025), which bypasses reasoning
 127 altogether but typically suffers from severe accuracy loss. The most widely adopted approach that
 128 enables explicit steering is budget forcing (Muennighoff et al., 2025), used in real-world applications
 129 such as Claude 3.7 Sonnet¹ and Qwen3 Yang et al. (2025a). It enforces a hard token cutoff to
 130 guarantee that reasoning length stays within a given budget. Although surprisingly effective in
 131 practice, this method leaves reasoning patterns untouched and forcibly terminates the reasoning once
 132 the budget is reached. In contrast, our approach offers smooth and fine-grained control over reasoning
 133 length, eliminating the need for heuristic rules or hard cutoffs.

134

2.2 GUIDANCE AND GUIDED GENERATION

135 The term *guidance* originates primarily from the diffusion model literature, where it denotes the ability
 136 to steer the generative process, often through truncated or low-temperature sampling, by reducing the
 137 variance or range of noise inputs to the generative model at sampling time (Ho & Salimans, 2022).
 138 This effectively transforms an unconditional diffusion model into a conditional one, enabling it to
 139 generate targeted outputs. One of the earliest examples is *classifier guidance* (Dhariwal & Nichol,
 140 2021), which modifies the diffusion score by incorporating the gradient of the log-likelihood from an
 141 auxiliary classifier, thereby biasing the sampling process toward desired content. This can be viewed
 142 as a form of guided generation, where image generation is conditioned on the output of a classifier.

143 A similar notion of guided generation has emerged in the context of LLMs, where it typically refers
 144 to constraining the model’s output to satisfy structural requirements, such as context-free grammars,
 145 to ensure syntactic correctness for downstream applications (Willard & Louf, 2023).

146 To the best of our knowledge, our work is the first to extend the idea of guided generation to a new
 147 dimension: *budget-conditioned generation*. Specifically, we introduce a novel form of guidance
 148 that softly steers the LLM’s generation to meet a specified thinking budget, enabling efficient and
 149 controlled reasoning without compromising output quality.

150

3 BUDGET GUIDANCE

151 We now introduce our method in detail. In Section 3.1, we begin by formulating the budget-
 152 conditioned generation problem and present the overall *budget guidance* framework, which draws
 153 inspiration from classifier guidance (Dhariwal & Nichol, 2021) in diffusion models. Section 3.2
 154 describes the design of our proposed auxiliary thinking length predictor, which estimates the distribution
 155 over remaining reasoning length at each decoding step. In Section 3.3, we outline the training
 156 procedure for the predictor using reasoning traces. Section 3.4 introduces the model architecture

1¹<https://www.anthropic.com/news/visible-extended-thinking>

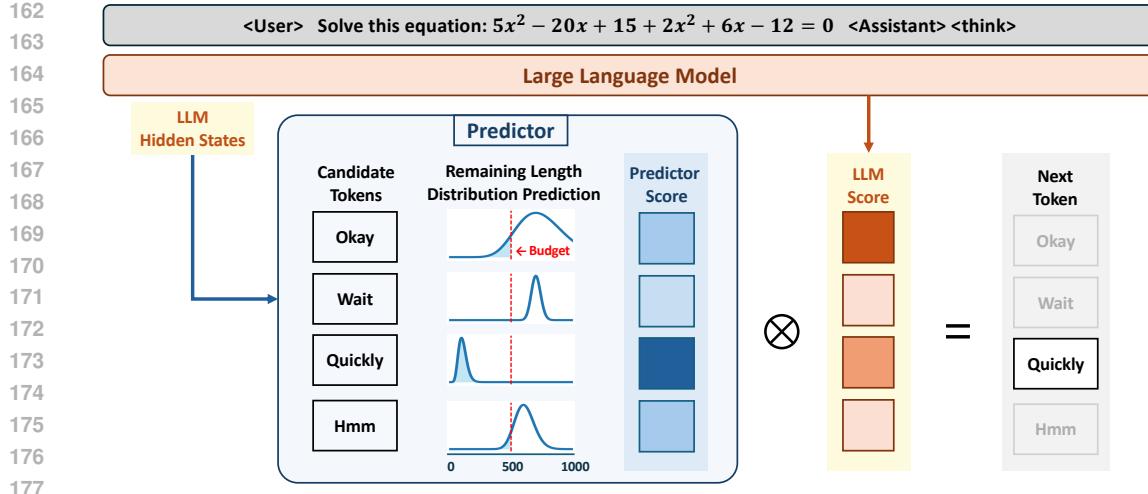


Figure 2: An overview of *budget guidance*. A lightweight predictor uses the LLM’s hidden states to predict a Gamma distribution over the remaining reasoning length for each candidate token. We then use the CDF of Gamma distribution to compute a predictor score, which is combined with the LLM’s output score to guide generation. The result is soft, token-level steering toward budget-conditioned reasoning without any LLM fine-tuning.

of the predictor, which is designed to be lightweight and inference-efficient. Finally, Section 3.5 presents a simple modulation-skipping strategy to further reduce computational overhead during decoding. An illustration of our method is provided in Figure 2.

3.1 THE BUDGET GUIDANCE FRAMEWORK

The overall framework of our method follows the classifier guidance framework in diffusion generation (Dhariwal & Nichol, 2021), thus we name our framework *budget guidance*. Specifically, denote X as the input question, $Y_{<t}$ as the LLM’s output thinking process up to token t , and Y_t as the LLM’s output at token t . The LLM generation process essentially involves sampling from the following *budget-unconditional distribution*, $p(Y_t|X, Y_{<t})$.

However, when there is a budget constraint, we would need to draw from a *budget-conditional distribution*. Formally, denote L_t as the random variable indicating the *remaining length* of the thinking process from token t . For example, if the overall thinking length is l (i.e., the `</think>` token occurs at token l), then $L_t = l - t$. Given the thinking budget limit \bar{l} , the budget-conditional distribution is defined as $p(Y_t|X, Y_{<t}, L_t \leq \bar{l} - t)$.

According to Bayes’ rule, the budget-conditional distribution can be computed from the budget-unconditional distribution as follows

$$\underbrace{p(Y_t|X, Y_{<t}, L_t \leq \bar{l} - t)}_{\text{budget-conditional}} \propto \underbrace{p(Y_t|X, Y_{<t})}_{\text{budget-unconditional}} \cdot \Pr(L_t \leq \bar{l} - t | X, Y_{<t}, Y_t). \quad (1)$$

Therefore, at each token t , generating from the budget-conditional distribution involves three steps. First, compute the unconditional distribution, which is simply performing a forward pass of the LLM. Second, predict the remaining length distribution, $\Pr(L_t \leq \bar{l} - t | X, Y_{<t}, Y_t)$. Finally, use the remaining length distribution to modulate the unconditional distribution and then renormalize.

Therefore, within budget guidance framework, our task boils down to computing $\Pr(L_t \leq \bar{l} - t | X, Y_{<t}, Y_t)$. To this end, we introduce a lightweight auxiliary thinking length predictor, which we describe in detail over the next three subsections.

3.2 AN AUXILIARY THINKING LENGTH PREDICTOR

Denote the LLM vocabulary size as n , and denote the vocabulary as $\mathcal{V} = \{v_1, \dots, v_n\}$. At each token t , the LLM outputs an n -dimensional unconditional probability vector (which we denote as

216 \mathbf{u}_t):

217 $\mathbf{u}_t = [p(Y_t = v_1|X, Y_{<t}), \dots, p(Y_t = v_n|X, Y_{<t})]. \quad (2)$

218 According to Equation 1, the predictor needs to predict an n -dimensional vector (which we denote as
219 \mathbf{a}_t):

220 $\mathbf{a}_t = [Pr(L_t \leq \bar{l} - t|X, Y_{<t}, Y_t = v_1), \dots, Pr(L_t \leq \bar{l} - t|X, Y_{<t}, Y_t = v_n)], \quad (3)$

221 so that the budget-conditional probability vector, which we denote as \mathbf{c}_t , can be computed by
222 element-wise multiplying the two vectors and renormalize:

223 $\mathbf{c}_t = \text{normalize}(\mathbf{u}_t \circ \mathbf{a}_t). \quad (4)$

225 Equation 3 indicates that the predictor needs to accomplish a rather intensive task: At each token
226 t , given the question X and all the context generated so far $Y_{<t}$, the auxiliary predictor needs to
227 ❶ traverse all possible values for Y_t across the vocabulary, ❷ for each possible value, predict what
228 would be the remaining length if Y_t took on this value (that is n probability distributions in total),
229 and ❸ compute the cumulative probability up to $\bar{l} - t$ for each distribution.230 To simplify the task, we parameterize each predicted distribution as a Gamma distribution for $\log(L_t)$:

231 $p(L_t|X, Y_{<t}, Y_t = v_i) = \text{Gamma}(\log(L_t); \lambda_t(v_i), \alpha_t(v_i)), \quad (5)$

233 where $\text{Gamma}(\cdot; \lambda, \alpha)$ represents the probability density function (PDF) of the Gamma distribution,
234 with the shape parameter λ and rate parameter α . We model the distribution over $\log(L_t)$ instead of
235 L_t directly to better capture the dynamic range of thinking lengths.236 With the Gamma distribution assumption, instead of predicting n probability distributions,
237 we only needs to predict two n -dimensional vectors: $\lambda_t = [\lambda_t(v_1), \dots, \lambda_t(v_n)]$ and $\alpha_t =$
238 $[\alpha_t(v_1), \dots, \alpha_t(v_n)]$. The cumulative probability, \mathbf{a}_t , can be computed from the predicted λ_t and α_t
239 by the known closed-form cumulative distribution function (CDF) of the Gamma distribution.

241 3.3 TRAINING THE PREDICTOR

243 To train the predictor, we need to collect a dataset of reasoning chains produced by the target LLM.
244 Formally, the data in the dataset takes the following form: $\mathcal{D} = \{(x, y_{1:l}, l)\}$, where x is the input
245 question, $y_{1:l}$ is the LLM-generated reasoning chain, and l is the length of the reasoning chain. Note
246 that the task dataset from which reasoning chain length training data are generated is not the same as
247 the inference dataset (not even the same task), as we will show that the trained predictor has good
248 dataset and task generalizability. For simplicity, in our training, we focus on math reasoning and use
249 the OpenR1-Math-220k dataset (Face, 2025).250 For each training datum, $(x, y_{1:l}, l)$, we feed the information of a partial reasoning chain to the
251 predictor, truncated at different positions, and train the predictor to predict the remaining length. We
252 adopt the maximum log likelihood objective for the gradient descent training. Formally, denote the
253 parameters of the auxiliary predictor as θ . Then the training objective can be written as

254
$$\max_{\theta} \mathbb{E}_{(x, y_{1:l}, l) \sim \mathcal{D}} \left[\sum_{t=1}^{l-1} \log (p_{\theta}(L_t = l - t|X = x, Y_{<t} = y_{<t}, Y_t = y_t)) \right], \quad (6)$$

255 where $p_{\theta}(\cdot)$ represents the predicted PDF by the auxiliary predictor, as shown in Equation 5.

259 3.4 ARCHITECTURE OF THE PREDICTOR

261 The predictor is designed to be lightweight enough to avoid significant computational overhead during
262 decoding, yet expressive enough to capture both the input question and the ongoing reasoning context
263 to produce a meaningful estimate of the remaining reasoning length. To this end, we adopt BERT-
264 base (Devlin et al., 2019) as the backbone of our predictor. Its input consists of the concatenated
265 hidden states from all layers of the last generated token of the target LLM, which encode rich semantic
266 information about both the input question and the reasoning history. A linear projection maps the
267 LLM’s hidden dimensionality to the predictor’s input space, and a [CLS] token is used to summarize
268 the hidden states. The final [CLS] representation is passed through another linear projection to
269 produce an output matrix $M \in \mathbb{R}^{n \times 2}$, where each row corresponds to the parameters λ_t and α_t of a
Gamma distribution. A softplus activation (Dugas et al., 2000) is applied to ensure both parameters
are non-negative.

270 3.5 SKIPPING MODULATION
271272 Ideally, probability modulation in Equation 4 would be applied at every decoding step t . To reduce
273 computational overhead, however, we apply it only at the start of each reasoning paragraph, indicated
274 by newline delimiters, where uncertainty is typically highest. The modulation is thus defined as:

275
$$c_t = \begin{cases} \text{normalize}(\mathbf{u}_t \circ \mathbf{a}_t), & \text{if } t \text{ is the start of a reasoning paragraph} \\ \mathbf{u}_t, & \text{otherwise} \end{cases} \quad (7)$$

276

277 Empirically, we find that our predictor leads to negligible latency overhead, which is discussed in
278 detail in Appendix A.
279280 4 EXPERIMENTS
281282 4.1 SETTINGS
283284 **Training.** We apply our method to three deep-thinking models: *DeepSeek-R1-Distill-Qwen-7B*
285 (R1-7B) (Guo et al., 2025), *DeepSeek-R1-Distill-Qwen-32B* (R1-32B) (Guo et al., 2025), and *Qwen3-8B*
286 (Yang et al., 2024a;b). Training is conducted on *OpenR1-Math-220k* (Face, 2025), a dataset
287 of 220k math problems from *NuminaMath 1.5* (Li et al., 2024) with reasoning traces generated by
288 DeepSeek R1. We apply a simple data augmentation technique (detailed in the Appendix) to double
289 the dataset size. During training, the LLMs are frozen and only the predictor is updated. We train for
290 one epoch using a batch size of 8 and a constant learning rate of 1.0×10^{-4} after warmup. Training
291 takes 15 hours for R1-7B and Qwen3-8B, and 35 hours for R1-32B, using 8 NVIDIA H100 GPUs.
292 All evaluations are conducted on the same hardware setup.
293294 **Evaluation.** We evaluate our method on four representative math reasoning benchmarks: **MATH-500**
295 (Hendrycks et al., 2021), **AIME-2024** (Art of Problem Solving, n.d.a), **AMC** (Art of Problem
296 Solving, n.d.b) (including both AMC12 2022 and AMC12 2023), and the math subset from **Olympiad-Bench**
297 (He et al., 2024). These benchmarks cover diverse mathematical topics, including arithmetic,
298 algebra, combinatorics, etc., and span a broad range of difficulty levels.299 Besides math benchmarks, we also extend our evaluation to broader domains to test the out-of-
300 domain transferability of our math-data-trained predictor. Specifically, we further evaluate on **GPQA**
301 **Diamond** (Rein et al., 2024) for scientific reasoning, **FOLIO** (Han et al., 2022) for logical reasoning,
302 the numerical reasoning subset from **TableBench** (Wu et al., 2025) for tabular numerical reasoning,
303 and **LiveCodeBench** (Jain et al., 2024) (following (Guo et al., 2025)) for code reasoning.304 All experiments are conducted in a zero-shot manner, i.e., we do not perform further fine-tuning on
305 the training sets of the evaluation benchmarks. We use greedy decoding for all evaluation.306 **Baselines.** We compare our method with other methods that also do not finetune the LLM. Our
307 main baseline is *budget forcing* (Muennighoff et al., 2025), which enforces a hard token limit by
308 appending an end-of-thinking delimiter (and optionally “Final Answer.”) to trigger early exit and
309 force the model to produce its best guess. We use their open-sourced codebase for evaluation. We also
310 include *NoThinking* (Ma et al., 2025) as a baseline, which bypasses the reasoning stage by inserting a
311 fixed phrase as the thinking process: *Okay, I think I have finished thinking.* We
312 also report results from the original model, which serves as a reference for full thinking. For the
313 accuracy-thinking length trade off experiments in Section 4.2.2, we additionally compare against
314 Dynasor (Fu et al., 2025), which is a recent inference time steering method that uses a strategy
315 called *Probe-In-The-Middle* that can early stop confident reasoning traces. It does not require LLM
316 fine-tuning. We adopt the default token-saving level (mid) provided in their official codebase.317 4.2 MAIN RESULTS
318319 4.2.1 EVALUATION ON MATH REASONING BENCHMARKS
320321 Since the predictor is trained on math data, we first evaluate its performance on math reasoning
322 benchmarks to assess in-domain effectiveness. We set the thinking budget to approximately half the
323 original model’s full thinking length and ensure the average thinking length (denoted as #Tokens)
comparable between our method and the baseline, and report the task accuracy.

324

325

Table 1: Evaluation results on math benchmarks.

326

327

	MATH-500		AIME-2024		AMC		OlympiadBench	
	Acc.	#Tokens	Acc.	#Tokens	Acc.	#Tokens	Acc.	#Tokens

328

329

330

331

332

DeepSeek-R1-Distill-Qwen-7B

Thinking	91.6	2598	36.7	4446	78.3	4338	56.9	3960
NoThinking	74.8	-	23.3	-	47.0	-	40.4	-
Budget Forcing	86.0	1547	16.7	2015	55.4	1872	47.1	1844
Budget Guidance	88.2	1329	33.3	2046	60.2	1768	54.2	1755

333

334

335

336

DeepSeek-R1-Distill-Qwen-32B

Thinking	93.2	2226	70.0	7694	77.1	4156	61.9	3435
NoThinking	68.2	-	20.0	-	47.0	-	41.9	-
Budget Forcing	86.4	1525	40.0	2936	50.6	1567	50.7	1797
Budget Guidance	90.0	1288	56.7	2873	69.9	1528	57.8	1820

337

338

339

340

341

Qwen3-8B

Thinking	96.2	4613	73.3	13660	91.6	8740	71.7	9424
NoThinking	84.8	-	33.3	-	56.6	-	53.5	-
Budget Forcing	90.2	2545	43.3	4010	77.1	3807	61.6	3712
Budget Guidance	93.0	2062	50.0	3981	80.7	3869	65.6	3639

342

343

344

345

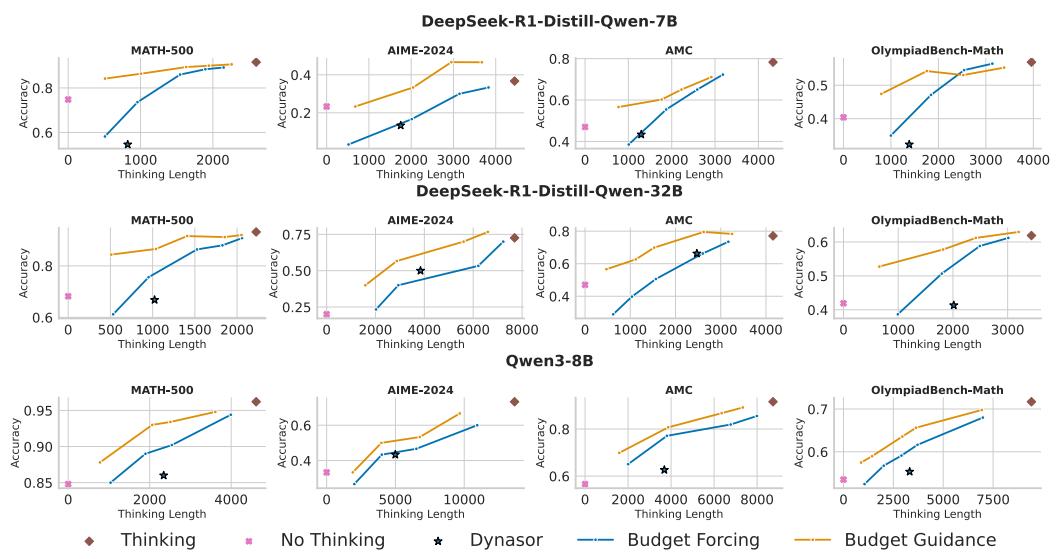


Figure 3: Accuracy vs. thinking length on math benchmarks.

363

364

365

366

367

Table 1 summarizes the evaluation results on math reasoning benchmarks. Across all three models and four datasets, *budget guidance* consistently outperforms *budget forcing* under comparable average thinking lengths, effectively reducing the reasoning length without causing significant accuracy degradation. Compared to *NoThinking*, *budget guidance* achieves substantially higher performance, indicating that the reasoning traces are non-trivial and contribute meaningfully to task success.

368

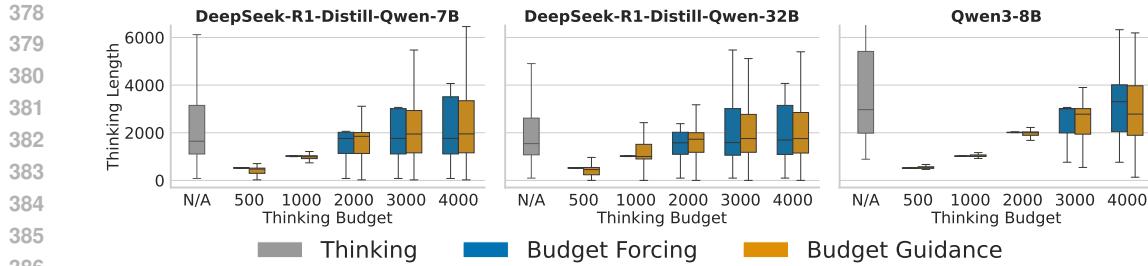
369

370

371

372

These improvements are consistent across different model sizes (7B to 32B) and model families (DeepSeek vs. Qwen3), highlighting the general applicability of our approach to diverse deep-thinking LLMs. Notably, even though the predictor for Qwen3-8B is trained on reasoning traces generated by DeepSeek-R1, it still performs well. This suggests that the training data can be *model-agnostic*, provided the target LLM exhibits a similar reasoning style, for instance, using words like “wait” or “alternatively” to structure its reasoning process.

378
379
380
381
382
383
384
385
386
387
388 Figure 4: Thinking length controllability measured on MATH-500 benchmark.
389
390
391
392
393
394
395
396
397

4.2.2 ACCURACY–THINKING LENGTH TRADEOFF ANALYSIS

A key indicator of effective control is the ability to achieve higher accuracy under the same thinking length, which we call *token efficiency*. To evaluate and compare the token efficiency of our method across different reasoning lengths, we vary the token budget to obtain different average thinking lengths and record the corresponding accuracy achieved by the model. We visualize this relationship through accuracy-thinking length trade-off curves. Experiments are conducted on all three models across the four math benchmarks, and the resulting plots are presented in Figure 3.

From Figure 3, we observe that our method consistently achieves better token efficiency across most benchmarks, achieving higher accuracy than *budget forcing* under a range of thinking lengths. Notably, as the average thinking length decreases, corresponding to stricter budget constraints, our method yields significantly higher accuracy, particularly on benchmarks with diverse problem difficulty such as MATH-500. We attribute this to the ability of our method to adapt the reasoning pattern under strict budgets, producing concise yet complete reasoning traces. This enables the model to arrive at correct answers more efficiently, especially for questions that are relatively easy and do not require deep reasoning. This is also reflected in the occasional worse accuracy of *budget forcing* compared to the *NoThinking* baseline under strict budgets (e.g., MATH-500 on DS-7B/32B), where the reasoning trace is abruptly truncated and the model is forced to guess prematurely. In contrast, our method avoids such incomplete reasoning and consistently outperforms the *NoThinking* baseline. Our method also performs better than Dynasor, another inference time steering method. We examine several failure cases of Dynasor and find that many stem from incomplete reasoning, even under its default settings. This further underscores the advantage of our method, which can precisely control reasoning length and thereby consistently deliver high-quality answers across different thinking budgets. An illustrative example of this guided reasoning behavior is provided in Appendix F.

4.2.3 FINE-GRAINED CONTROL OF THINKING LENGTH

Our goal is to steer LLM reasoning to adhere to a specified thinking budget. To evaluate controllability, we test on MATH-500 under varying thinking budgets, measuring the actual thinking length per sample and visualizing the distributions. We compare our method to *budget forcing* and include the full-thinking baseline as a reference. Results across all three models are shown in Figure 4.

From Figure 4, we observe that our method behaves similar to *budget forcing*, generally respects the specified thinking budget: for each setting, at least 75% are within the budget, and the median thinking length closely aligns with the budget. Compared to the full-thinking baseline, our method guides the model to generate a budget-aligned reasoning trajectory. This behavior is notable because, unlike *budget forcing*, our approach does not enforce a hard cutoff. Instead, it softly steers the generation process to match the desired level of detail, demonstrating flexible and controllable reasoning.

4.2.4 OUT-OF-DOMAIN TRANSFERABILITY

While we train the predictor solely on math data for simplicity, we also explore its generalization to broader task domains. To this end, we conduct an out-of-domain transferability analysis using the DS-7B model. Specifically, we evaluate our method on four benchmarks: **GPQA Diamond** (scientific reasoning), **FOLIO** (logical reasoning), **TableBench** (tabular reasoning), and **LiveCodeBench** (code

432

433

Table 2: Evaluation on out-of-domain transferability.

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

	GPQA Diamond		FOLIO		TableBench		LiveCodeBench	
	Acc.	#Tokens	Acc.	#Tokens	Acc.	#Tokens	Acc.	#Tokens
Thinking	49.1	5838	63.5	849	37.0	906	26.9	3509
NoThinking	38.4	-	46.3	-	16.9	-	20.7	-
Budget Forcing	39.9	1895	60.1	372	22.4	379	28.8	1135
Budget Guidance	49.0	1704	61.6	362	26.7	381	29.4	1138

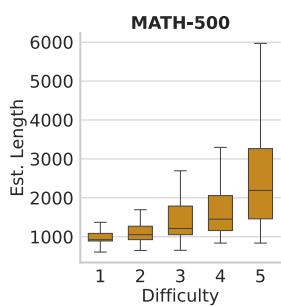


Figure 5: Correlation between question difficulties and estimated thinking lengths.

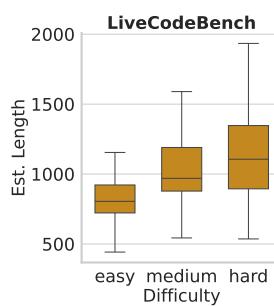
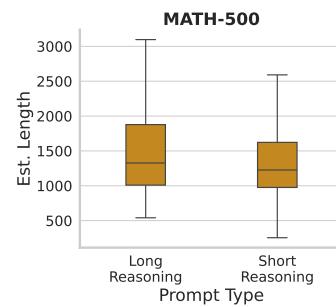


Figure 6: Correlation between prompt types and estimated thinking lengths.

reasoning). We match the average reasoning length between our method and the baseline, and report the corresponding accuracies in Table 2.

Despite being trained exclusively on math data, our predictor generalizes well to non-math reasoning tasks, consistently outperforming *budget forcing* across all four benchmarks. These results highlight the cross-domain generalizability of our approach and its potential applicability to a wide range of reasoning scenarios. While the gains on out-of-domain tasks are less pronounced than those on in-domain benchmarks, we believe performance can be further improved by incorporating reasoning traces from a broader range of domains during training. We leave this direction for future work.

4.3 INSIGHTS INTO WHAT THE PREDICTOR LEARNS

To probe what the predictor has learned, we analyze its estimated thinking length at the first thinking token, interpreted as the predicted number of thinking tokens needed, against **task difficulty** and **prompt type**, using the DS-7B model.

Task Difficulty. We evaluate on MATH-500 (in-domain) and LiveCodeBench (out-of-domain). Figure 5 shows that estimated thinking length increases with difficulty in both cases. This suggests that the predictor captures a general understanding of difficulty, enabling effective difficulty estimation.

Prompt Type. We evaluate on MATH-500 and compare two prompts: one encouraging long reasoning and one encouraging concise reasoning (listed in the Appendix). As shown in Figure 6, the long reasoning prompt yields longer estimated thinking lengths. A t-test gives a p -value of 0.0028, confirming the difference is statistically significant and indicating that the predictor is prompt-aware.

Detailed behavioral analyses of the predictor, from both quantitative and qualitative perspectives, are presented in Appendix E and Appendix F, further illustrating how it steers reasoning length.

5 CONCLUSION

We introduce *budget guidance*, a simple yet effective approach for steering LLM reasoning under a thinking budget. Without requiring any LLM fine-tuning, our method enables natural control over the reasoning process and significantly improves token efficiency on challenging benchmarks. Our results demonstrate that LLMs can be effectively guided to reason with *budget guidance*, highlighting budget-conditioned generation as a promising direction for efficient and controllable LLM reasoning.

486 REFERENCES
487

488 Art of Problem Solving. Aime problems and solutions, n.d.a. URL https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.

489
490
491 Art of Problem Solving. Amc 12 problems and solutions, n.d.b. URL https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions.

492
493
494 Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable reasoning calibration of large language models for free. *arXiv preprint arXiv:2504.07986*, 2025.

495 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

496
497 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.

498 Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating 499 second-order functional knowledge for better option pricing. *Advances in neural information 500 processing systems*, 13, 2000.

501
502 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

503
504 Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without 505 self-doubt: More efficient chain-of-thought through certainty probing. In *ICLR 2025 Workshop on 506 Foundation Models in the Wild*, 2025.

507
508 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 509 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms 510 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

511 Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James 512 Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with 513 first-order logic. *arXiv preprint arXiv:2209.00840*, 2022.

514 Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token- 515 budget-aware llm reasoning. *arXiv preprint arXiv:2412.18547*, 2024.

516
517 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong 518 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint 519 arXiv:2412.06769*, 2024.

520
521 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, 522 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for 523 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint 524 arXiv:2402.14008*, 2024.

525
526 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, 527 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv 528 preprint arXiv:2103.03874*, 2021.

529
530 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*, 531 2022.

532
533 Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang. 534 Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. *arXiv preprint 535 arXiv:2504.01296*, 2025.

540 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 541 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 542 *arXiv:2412.16720*, 2024.

543 Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
 544 Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
 545 evaluation of large language models for code. *arXiv preprint arXiv:2403.07974*, 2024.

546 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 547 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 548 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 549 13:9, 2024.

550 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 551 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth*
 552 *International Conference on Learning Representations*, 2023.

553 Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
 554 models can be effective without thinking. *arXiv preprint arXiv:2504.09858*, 2025.

555 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 556 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 557 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

558 Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
 559 Fine-tuning aligned language models compromises safety, even when users do not intend to! *arXiv*
 560 *preprint arXiv:2310.03693*, 2023.

561 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 562 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 563 *First Conference on Language Modeling*, 2024.

564 Brandon T Willard and Rémi Louf. Efficient guided generation for large language models. *arXiv*
 565 *preprint arXiv:2307.09702*, 2023.

566 Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xeron Du, Di Liang, Daixin Shu,
 567 Xianfu Cheng, Tianzhen Sun, et al. Tablebench: A comprehensive and complex benchmark
 568 for table question answering. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 569 volume 39, pp. 25497–25506, 2025.

570 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 571 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 572 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
 573 Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
 574 Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
 575 Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
 576 Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
 577 Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
 578 technical report. *arXiv preprint arXiv:2407.10671*, 2024a.

579 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 580 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 581 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 582 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
 583 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
 584 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,
 585 2024b.

586 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 587 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,
 588 2025a.

594 Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
595 and Weiping Wang. Dynamic early exit in reasoning models. *arXiv preprint arXiv:2504.15895*,
596 2025b.

597 Zhaojian Yu, Yinghao Wu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. Z1: Efficient test-time
598 scaling with code. *arXiv preprint arXiv:2504.00810*, 2025.

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 **A PREDICTOR LATENCY OVERHEAD ANALYSIS**
649650 To better quantify the latency overhead introduced by our predictor, we conduct precise measurements
651 on three representative models using the HuggingFace `transformers` library on a single NVIDIA
652 H100 GPU. We generate 1000 thinking tokens per run on the full AIME-2024 test set, with each
653 question executed 10 times to compute an average latency. Final results are averaged across questions,
654 and we report 95% confidence intervals for clarity.
655656 **Table 3: Measured latency overhead of our predictor across different LLMs.**

658 Model	659 Latency Overhead	660 95% Confidence Interval
660 DeepSeek-R1-Distill-Qwen-7B	0.72%	[0.60%, 0.83%]
661 DeepSeek-R1-Distill-Qwen-32B	0.17%	[0.12%, 0.21%]
662 Qwen3-8B	0.48%	[0.27%, 0.68%]

663 As shown in Table 3, the latency overhead for all three models is below 0.8%, and decreases further
664 for larger models (only 0.17% for a 32B LLM). This demonstrates that our predictor introduces
665 negligible additional cost relative to standard inference, and thus does not compromise the efficiency
666 of the overall system.
667668 **B ABLATION ON SKIPPING STRATEGIES**
669670 We further conduct an ablation study to examine different strategies for applying budget guidance.
671 We consider three settings:
672673

- 674 • Apply the modulation at the beginning of every sentence.
- 675 • Apply the modulation at every token (no skipping).
- 676 • Apply the modulation at the beginning of every paragraph (this is the strategy used in our
677 main paper).

678 We evaluate these strategies on the MATH-500 benchmark using the DeepSeek-R1-Distill-Qwen-7B
679 model. Results are summarized in Table 4.
680682 **Table 4: Ablation study on different skipping strategies for applying budget guidance.**

683 Strategy	684 Accuracy (%)	685 #Tokens
685 Apply at beginning of sentence	88.0	1333
686 Apply at every token	86.0	1448
687 Apply at beginning of paragraph	88.2	1329

688 We observe that there is no significant difference between applying guidance at the beginning of a
689 sentence or a paragraph. Since the paragraph-level strategy achieves comparable accuracy while
690 saving more computation, we adopt it in our main experiments. Interestingly, applying guidance at
691 every token leads to lower accuracy. Closer inspection shows that guidance applied mid-sentence
692 is less stable, often disrupting semantic coherence. This instability can accumulate across token
693 generations and result in random or repeated outputs. For both inference stability and efficiency, we
694 therefore do not recommend modulating every token.
695696 **C ABLATION ON PREDICTOR ARCHITECTURE**
697698 We also examine whether a more lightweight alternative to the BERT-based length predictor is
699 feasible. Specifically, we remove the BERT encoder and use only a single linear layer to predict the
700 parameters of the Gamma distribution. We apply the same token budget to this variant and evaluate
701 its performance on the MATH-500 benchmark.

702
703 Table 5: Comparison of predictor architectures on the MATH-500 benchmark.
704
705
706
707

Predictor Model	MATH-500 Acc.	#Tokens
Linear Layer	85.8	1617
BERT	88.2	1329

708
709 As shown in Table 5, the BERT-based predictor clearly outperforms the simple linear layer. In
710 particular, the linear layer is less effective in controlling reasoning length, as evidenced by its longer
711 outputs compared to the BERT-based predictor under the same budget. This suggests that estimating
712 the remaining reasoning length is a challenging task, and a larger model such as BERT offers stronger
713 predictive capacity. There exists a trade-off between predictor accuracy and efficiency; in this paper,
714 we adopt the BERT-based predictor due to its robust performance and widespread use across many
715 tasks.

716 D ANALYSIS OF INTERVENTIONS ON SAMPLES WITH DIFFERENT REASONING 717 LENGTH REQUIREMENTS

720 To further understand the behavior of Budget Guidance, we analyze its effect on samples requiring
721 shorter versus longer reasoning traces. We compute the relative percentage change in reasoning
722 length on the MATH-500 dataset using the DeepSeek-R1-Distill-Qwen-7B model, defined as

$$723 \Delta = \frac{|\text{length}_{\text{vanilla}} - \text{length}_{\text{BG}}|}{\text{length}_{\text{vanilla}}}.$$

727 Table 6: Length change for samples with different reasoning requirements on MATH-500.

Sample Category	Change in Length
Short reasoning	15.3%
Long reasoning	52.3%

732 We find that Budget Guidance more significantly reduces reasoning length for samples originally
733 above the budget, while having minimal effect on those below. Notably, 100% of samples already
734 under the budget remain correct, indicating no accuracy loss in these cases.

736 E QUANTITATIVE REASONING BEHAVIOR ANALYSIS

739 To quantitatively analyze how the predictor influences the reasoning behavior of LLMs under different
740 budget settings, we follow the methodology proposed by (Hou et al., 2025). Specifically, we count the
741 frequency of reasoning-related keywords such as “wait” and “alternatively”, which are indicative of
742 deeper reasoning processes. We compare the keyword frequencies for thinking budget of 500, 2000,
743 and 4000 tokens using the DS-7B model on the MATH-500 benchmark. These results are contrasted
744 with a full-thinking baseline (*i.e.*, without applying our method). The comparison is illustrated in
745 Figure 7.

746 As shown in the figure, a smaller budget substantially reduces the frequency of reasoning-related
747 keywords, indicating a more concise reasoning process. As the budget increases, the model is
748 encouraged to engage in deeper reasoning. Notably, when the budget is set sufficiently high, the
749 behavior closely matches that of the full-thinking baseline, suggesting minimal loss in reasoning
750 capability. These findings demonstrate that our method can effectively steer the reasoning behavior
751 of LLMs, while still preserving their reasoning ability under higher budget constraints.

752 F QUALITATIVE REASONING BEHAVIOR ANALYSIS

753 Figure 8 shows a case study from MATH-500 illustrating reasoning traces under different thinking
754 budgets. Rather than truncating output, our method adapts the reasoning style to the budget. With a

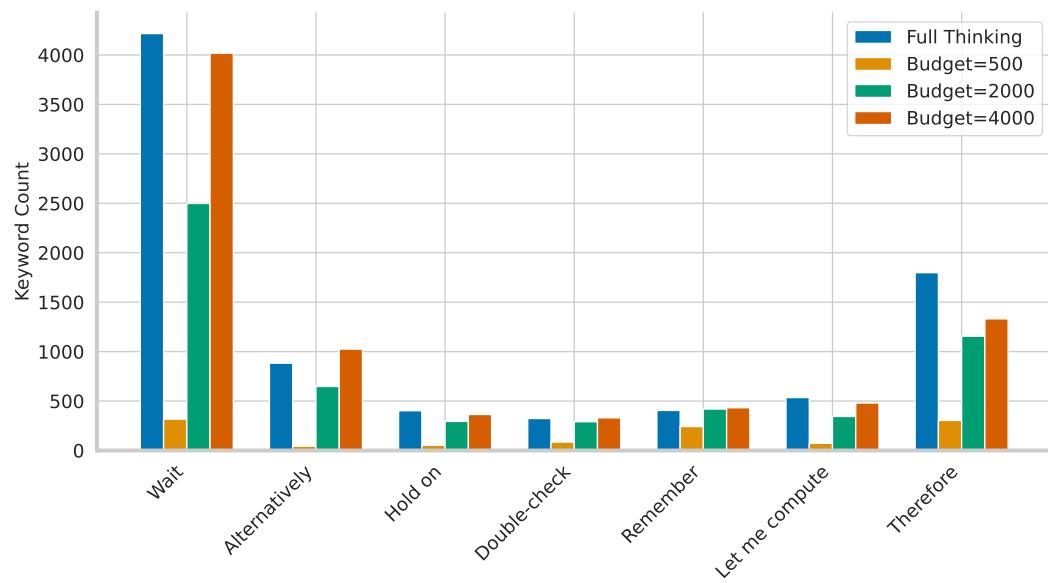


Figure 7: Reasoning keywords frequency comparison under different budget settings.

stricter budget (left), the model generates concise answers without reflection. With a larger budget (right), it mirrors full-length reasoning: it starts with problem analysis and using reflective phrases like “wait” and “double-checking.” In both settings, the trace ends appropriately, highlighting our method’s flexibility and controllability.

Figure 8: Sample reasoning traces generated with *budget guidance* under different thinking budgets.

G DATASET DESCRIPTION

We provide detailed information about the evaluation datasets used in our paper.

MATH-500 (Hendrycks et al., 2021) is a 500-problem subset of the MATH dataset, selected by (Lightman et al., 2023). Each problem is labeled with a difficulty level from 1 to 5.

810 **AIME-2024** (Art of Problem Solving, n.d.a) contains 30 problems from the 2024 American Invitational Mathematics Examination, covering topics such as algebra, combinatorics, geometry, number theory, and probability. Following *budget forcing* (Muennighoff et al., 2025), we retain only the essential ASY figure code required to solve each problem, omitting non-essential diagrams.

811
812
813
814 **AMC** (Art of Problem Solving, n.d.b) includes all 83 problems from AMC12 2022 and AMC12 2023.

815
816
817 **OlympiadBench** (He et al., 2024) is a challenging benchmark aimed at advancing AGI through
818 Olympiad-level, bilingual, multimodal scientific problems. We use its math subset, which contains a
819 total of 675 problems.

820
821 **GPQA Diamond** (Rein et al., 2024) consists of 198 high-quality, extremely difficult questions
822 spanning a broad range of scientific domains, including biology, physics, and chemistry.

823
824 **FOLIO** (Han et al., 2022) is a human-annotated dataset designed to evaluate complex logical
825 reasoning in natural language. It features 1,430 unique conclusions paired with 487 sets of premises,
826 all validated using first-order logic (FOL) annotations. We use the test set, which contains 203 unique
827 problems.

828
829 **TableBench** (Wu et al., 2025) is a benchmark for evaluating LLMs on real-world tabular data
830 challenges. We evaluate all models on the numerical reasoning subset, which comprises 493 problems.

831
832 **LiveCodeBench** (Jain et al., 2024) offers a holistic and contamination-free evaluation of LLM coding
833 capabilities. Following (Guo et al., 2025), we select problems from the August 2024 to January 2025
834 period, totaling 323 problems.

835 H TRAINING DATA AUGMENTATION

836
837 We adopt a simple data augmentation strategy to double the size of the training set. Each training
838 sample originally follows the format:

$$839 \quad \text{<think>THINK_MESSAGE</think>ANSWER_MESSAGE} \quad (8)$$

840
841 Since our predictor only operates on the THINK_MESSAGE, the ANSWER_MESSAGE is not used
842 during training. To utilize this otherwise unused information, we construct an additional training
843 sample in the following format:

$$844 \quad \text{<think>ANSWER_MESSAGE</think>ANSWER_MESSAGE} \quad (9)$$

845
846 This transformation allows us to incorporate the ANSWER_MESSAGE into the predictor's training
847 process. By generating one new sample for each original sample, we effectively double the size of
848 the training set and ensure full utilization of the available data.

849 I PROMPT DESCRIPTION

850
851 In Section 4.3, we analyze the predictor's estimated thinking length across different prompt types to
852 demonstrate its prompt awareness. Below, we list the specific prompts used in our experiment.

853
854 The prompt for long reasoning is: Think step by step and provide thorough
855 reasoning before reaching a conclusion.

856
857 The prompt for short reasoning is: Think quickly and provide a concise
858 reasoning with minimal steps.

859
860 We add these prompts as the system prompt.

861 J USE OF LARGE LANGUAGE MODELS FOR WRITING ASSISTANCE

862
863 Portions of the writing in this paper, specifically at the level of grammar refinement, sentence
864 polishing, and shortening of paragraphs for conciseness, were assisted by an external large language

864 model (OpenAI ChatGPT). The model was not used to generate original ideas, experimental design,
865 or analysis; all scientific contributions are the authors' own. The assistance was limited to improving
866 clarity, readability, and presentation quality of the manuscript.
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917