
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEERING LLM THINKING WITH BUDGET GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent deep-thinking large language models often reason extensively to improve
performance, but such lengthy reasoning is not always desirable, as it incurs
excessive inference costs with disproportionate performance gains. Controlling
reasoning length without sacrificing performance is therefore important, but re-
mains challenging, especially under tight thinking budgets. We propose budget
guidance, a simple yet effective method for steering the reasoning process of LLMs
toward a target budget without requiring any LLM fine-tuning. Our approach intro-
duces a lightweight predictor that models a Gamma distribution over the remaining
thinking length during next-token generation. This signal is then used to guide
generation in a soft, token-level manner, ensuring that the overall reasoning trace
adheres to the specified thinking budget. Budget guidance enables natural control
of the thinking length, along with significant token efficiency improvements over
baseline methods on challenging math benchmarks. For instance, it achieves up to
a 26% accuracy gain on the MATH-500 benchmark under tight budgets compared
to baseline methods, while maintaining competitive accuracy with only 63% of the
thinking tokens used by the full-thinking model. Budget guidance also generalizes
to broader task domains and exhibits emergent capabilities, such as estimating
question difficulty.

1 INTRODUCTION

With the recent success of deep-thinking large language models (LLMs) – such as OpenAI O1 (Jaech
et al., 2024), DeepSeek R1 (Guo et al., 2025), and Qwen3 (Yang et al., 2024a;b), which are capable
of generating long sequences of thoughts to achieve better performance – there has been a growing
need to control the reasoning length of these models while maintaining the performance, because
many deep-thinking LLMs often incur excessive inference costs with disproportionate performance
gain. For example, in Figure 1, we show a response from a deep-thinking model that, while correct,
is unnecessarily long. Such extensive reasoning is not always desirable, and there are cases where
we need to impose a budget to limit the extent of reasoning, particularly in scenarios that demand
real-time interaction, such as customer-facing chatbots, where excessive latency can degrade user
experience and responsiveness.

Existing thinking budget control methods can be roughly divided into two categories with comple-
mentary strengths. The first category is fine-tuning methods, which fine-tune deep-thinking LLMs on
specially curated dataset (Han et al., 2024) or with budget-aware reward to enable budget control
capabilities (Hou et al., 2025). Fine-tuning methods have been shown effective in changing the
reasoning length while keeping competitive performance because they allow LLMs to fundamentally
restructure and optimize their reasoning behavior according to the given budget. However, they come
with two main drawbacks. First, fine-tuning an LLM is costly, requiring substantial computational
resources and time. Second, directly fine-tuning the LLM may potentially alter its behavior in
unexpected ways, such as compromising safety (Qi et al., 2023).

The second category of methods is the inference-time methods (Ma et al., 2025; Muennighoff et al.,
2025), which seek to alter the reasoning behavior at inference time. While these approaches do not
involve fine-tuning, they often result in sub-optimal reasoning behaviors and significant performance
degradation, because the intervention at inference time are often heuristic and overly simple, breaking
the integrity of the original reasoning process. For example, one well-known inference-time method
is budget forcing (Muennighoff et al., 2025) which terminates the model’s reasoning as soon as the
thinking budget is reached, as described in Figure 1. While this method offers strict control over the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Question: Jen randomly picks 4 distinct numbers from {1–10}. She wins a prize if at least 2 match, and
the grand prize if all 4 match. What’s the probability she wins the grand prize given she won a prize?

<think> First, I need to determine … Next, I'll calculate … Now, I need to find the probability …
Adding these up ... Finally, the probability … is 1 / 115. </think>
(budget: 400. thinking length: 395)

<think> Okay, so Jen is picking 4 distinct numbers from the set {1–10}, and she wins a prize if …
[summarize the problem]. Let me recall … But wait … So, I need to calculate two
probabilities: … First, Let me compute that … Now, let's find P(A) … Next, let's find P(B) …
Therefore, (1/5) / 23 = 1/(5*23) = 1/115. Wait, hold on, that seems low. Let me check my steps
again… Alternatively … [a lot more reasoning…] Thus, the probability … is: 1 / 115. </think>
(thinking length: 2521)

<think> Okay, so Jen is picking 4 distinct numbers from the set {1–10}, and she wins a prize if …
[summarize the problem]. Let me recall … But wait … So, I need to calculate two probabilities: …
First, Let me compute that: C(10, 4) = 10! / (4! * (10 - 4)!) = (10 * 9 * 8 * </think>
(budget: 400. thinking length: 400)

Thinking from original model: correct but too long

Thinking with Budget Forcing: follow the budget but forced to stop

Thinking with Budget Guidance: follow the budget naturally

37%
faster26%

higher

Figure 1: Deep-thinking models often produce excessively long reasoning traces, leading to high
latency and unnecessary computation. Existing inference-time methods like budget forcing rely on
simplistic heuristics such as abruptly stopping, which can result in incomplete reasoning and degraded
answer quality. In contrast, our method, budget guidance, steers the reasoning process toward the
target budget in a smoother and more natural way, without any LLM fine-tuning.

number of generated tokens, abruptly interrupting the model may cut off unfinished thoughts and
force premature answers, often leading to incorrect outputs.

In short, an important bottleneck in the task of thinking budget control lies in the tradeoff between
non-intrusiveness (in inference-time approaches) and optimality of the reasoning chain (in fine-tuning
approaches). This leads to our central research question: Can we design a flexible inference-time
budget control approach (without fine-tuning) that still allows for wholistic, principled restructuring
of the reasoning process to maintain its quality under budget?

In this paper, we introduce budget guidance, a novel approach that employs a lightweight auxiliary
module to enable test-time control over the reasoning length of LLMs. Inspired by the principle of
classifier guidance in diffusion models (Dhariwal & Nichol, 2021), we train an auxiliary predictor
that predicts the probability distribution of the remaining reasoning length at each reasoning step.
The predicted length distribution is then used to modulate the LLM generation probability, effectively
turning it into a budget-conditional generation probability. Our method avoids the direct fine-tuning of
LLMs, while providing flexible and accurate control over the reasoning process. It can be seamlessly
integrated into existing inference pipelines, and adapts to a wide range of models, thinking budgets,
and tasks.

Our experiments have revealed several key highlights of our method. First, budget guidance exhibits
a remarkable trade-off between thinking length and performance. For example, as shown in Figure 1,
on MATH-500 benchmark (Hendrycks et al., 2021) budget guidance can reduce the full thinking
length by 37% with minimal accuracy degradation, while being 26% higher in accuracy than budget
forcing baseline under tight budget. Second, the auxiliary predictor is very successful in predicting
the thinking length, effectively considering task difficulty and instruction type. Thus, it can accurately
guide the thinking process under various budgets. Finally, our method demonstrates surprising
generalizability across domains – an auxiliary predictor trained on one dataset can also work well in
other datasets and domains.

We summarize our contributions as follows:

• We propose budget guidance, a novel test-time method for steering the reasoning process of LLMs
toward a specified thinking budget, without requiring any fine-tuning of the LLM itself.

• We design a lightweight predictor that models a Gamma distribution over the remaining reasoning
length based on the current generation context, and uses this signal to guide LLM generation toward
a target thinking budget.

• Budget guidance achieves strong trade-offs between thinking length and accuracy across multiple
benchmarks, and demonstrates cross-domain generalization, enabling effective budget control and
accurate thinking length prediction.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

2.1 EFFICIENT LLM REASONING

Efficiency in large language model (LLM) reasoning has been studied through two main paradigms:
fine-tuning based methods and inference-time steering. Fine-tuning methods such as ThinkPrune
(Hou et al., 2025), Z1 (Yu et al., 2025), and COCONUT (Hao et al., 2024) shorten reasoning traces
via reinforcement learning, curriculum-style training on variable-length data, or continuous latent
representations. While effective, these methods typically rely on expensive LLM fine-tuning and
primarily aim to reduce the length of reasoning, rather than to control it. More recent approaches (Han
et al., 2024; Muennighoff et al., 2025) have begun exploring methods to control the reasoning length,
either through heuristic rules or model fine-tuning. In contrast, we propose a simple yet effective
alternative: a fine-tuning-free approach that naturally steers the reasoning process to adhere to a
specified thinking budget, enabling more efficient and flexible inference.

Inference-time steering, in contrast, intervenes directly during decoding without fine-tuning the LLM
model. Dynasor (Fu et al., 2025) and DEER (Yang et al., 2025b) dynamically allocates compute by
probing intermediate steps and early terminating confident cases. In contrast, SEAL (Chen et al.,
2025) calibrates reasoning traces by applying lightweight latent-space interventions to suppress
reflection and transition thoughts, thereby reducing redundancy during inference. While effective,
these methods primarily optimize efficiency heuristically and do not offer fine-grained control over
reasoning length. Simpler strategies include NoThinking (Ma et al., 2025), which bypasses reasoning
altogether but typically suffers from severe accuracy loss. The most widely adopted approach that
enables explicit steering is budget forcing (Muennighoff et al., 2025), used in real-world applications
such as Claude 3.7 Sonnet1 and Qwen3 Yang et al. (2025a). It enforces a hard token cutoff to
guarantee that reasoning length stays within a given budget. Although surprisingly effective in
practice, this method leaves reasoning patterns untouched and forcibly terminates the reasoning once
the budget is reached. In contrast, our approach offers smooth and fine-grained control over reasoning
length, eliminating the need for heuristic rules or hard cutoffs.

2.2 GUIDANCE AND GUIDED GENERATION

The term guidance originates primarily from the diffusion model literature, where it denotes the ability
to steer the generative process, often through truncated or low-temperature sampling, by reducing the
variance or range of noise inputs to the generative model at sampling time (Ho & Salimans, 2022).
This effectively transforms an unconditional diffusion model into a conditional one, enabling it to
generate targeted outputs. One of the earliest examples is classifier guidance (Dhariwal & Nichol,
2021), which modifies the diffusion score by incorporating the gradient of the log-likelihood from an
auxiliary classifier, thereby biasing the sampling process toward desired content. This can be viewed
as a form of guided generation, where image generation is conditioned on the output of a classifier.

A similar notion of guided generation has emerged in the context of LLMs, where it typically refers
to constraining the model’s output to satisfy structural requirements, such as context-free grammars,
to ensure syntactic correctness for downstream applications (Willard & Louf, 2023).

To the best of our knowledge, our work is the first to extend the idea of guided generation to a new
dimension: budget-conditioned generation. Specifically, we introduce a novel form of guidance
that softly steers the LLM’s generation to meet a specified thinking budget, enabling efficient and
controlled reasoning without compromising output quality.

3 BUDGET GUIDANCE

We now introduce our method in detail. In Section 3.1, we begin by formulating the budget-
conditioned generation problem and present the overall budget guidance framework, which draws
inspiration from classifier guidance (Dhariwal & Nichol, 2021) in diffusion models. Section 3.2
describes the design of our proposed auxiliary thinking length predictor, which estimates the distribu-
tion over remaining reasoning length at each decoding step. In Section 3.3, we outline the training
procedure for the predictor using reasoning traces. Section 3.4 introduces the model architecture

1https://www.anthropic.com/news/visible-extended-thinking

3

https://www.anthropic.com/news/visible-extended-thinking

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

<User> Solve this equation: 𝟓𝒙𝟐 − 𝟐𝟎𝒙 + 𝟏𝟓 + 𝟐𝒙𝟐 + 𝟔𝒙 − 𝟏𝟐 = 𝟎 <Assistant> <think>

Large Language Model

LLM
Hidden States

LLM
Score

Predictor

0 500 1000

Remaining Length
Distribution Prediction

←Budget

Candidate
Tokens

Okay

Quickly

Hmm

Wait

Predictor
Score

Okay

Quickly

Hmm

Wait

Next
Token

Figure 2: An overview of budget guidance. A lightweight predictor uses the LLM’s hidden states to
predict a Gamma distribution over the remaining reasoning length for each candidate token. We then
use the CDF of Gamma distribution to compute a predictor score, which is combined with the LLM’s
output score to guide generation. The result is soft, token-level steering toward budget-conditioned
reasoning without any LLM fine-tuning.

of the predictor, which is designed to be lightweight and inference-efficient. Finally, Section 3.5
presents a simple modulation-skipping strategy to further reduce computational overhead during
decoding. An illustration of our method is provided in Figure 2.

3.1 THE BUDGET GUIDANCE FRAMEWORK

The overall framework of our method follows the classifier guidance framework in diffusion genera-
tion (Dhariwal & Nichol, 2021), thus we name our framework budget guidance. Specifically, denote
X as the input question, Y<t as the LLM’s output thinking process up to token t, and Yt as the LLM’s
output at token t. The LLM generation process essentially involves sampling from the following
budget-unconditional distribution, p(Yt|X,Y<t).

However, when there is a budget constraint, we would need to draw from a budget-conditional
distribution. Formally, denote Lt as the random variable indicating the remaining length of the
thinking process from token t. For example, if the overall thinking length is l (i.e., the </think>
token occurs at token l), then Lt = l − t. Given the thinking budget limit l̄, the budget-conditional
distribution is defined as p(Yt|X,Y<t, Lt ≤ l̄ − t).

According to Bayes’ rule, the budget-conditional distribution can be computed from the budget-
unconditional distribution as follows

p(Yt|X,Y<t, Lt ≤ l̄ − t)︸ ︷︷ ︸
budget-conditional

∝ p(Yt|X,Y<t)︸ ︷︷ ︸
budget-unconditional

·Pr(Lt ≤ l̄ − t|X,Y<t, Yt). (1)

Therefore, at each token t, generating from the budget-conditional distribution involves three steps.
First, compute the unconditional distribution, which is simply performing a forward pass of the
LLM. Second, predict the remaining length distribution, Pr(Lt ≤ l̄ − t|X,Y<t, Yt). Finally, use the
remaining length distribution to modulate the unconditional distribution and then renormalize.

Therefore, within budget guidance framework, our task boils down to computing Pr(Lt ≤ l̄ −
t|X,Y<t, Yt). To this end, we introduce a lightweight auxiliary thinking length predictor, which we
describe in detail over the next three subsections.

3.2 AN AUXILIARY THINKING LENGTH PREDICTOR

Denote the LLM vocabulary size as n, and denote the vocabulary as V = {v1, . . . , vn}. At each
token t, the LLM outputs an n-dimensional unconditional probability vector (which we denote as

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

ut):
ut = [p(Yt = v1|X,Y<t), . . . , p(Yt = vn|X,Y<t)]. (2)

According to Equation 1, the predictor needs to predict an n-dimensional vector (which we denote as
at):

at = [Pr(Lt ≤ l̄ − t|X,Y<t, Yt = v1), · · · , P r(Lt ≤ l̄ − t|X,Y<t, Yt = vn)], (3)
so that the budget-conditional probability vector, which we denote as ct, can be computed by
element-wise multiplying the two vectors and renormalize:

ct = normalize(ut ◦ at). (4)

Equation 3 indicates that the predictor needs to accomplish a rather intensive task: At each token
t, given the question X and all the context generated so far Y<t, the auxiliary predictor needs to
❶ traverse all possible values for Yt across the vocabulary, ❷ for each possible value, predict what
would be the remaining length if Yt took on this value (that is n probability distributions in total),
and ❸ compute the cumulative probability up to l̄ − t for each distribution.

To simplify the task, we parameterize each predicted distribution as a Gamma distribution for log(Lt):

p(Lt|X,Y<t, Yt = vi) = Gamma(log(Lt);λt(vi), αt(vi)), (5)

where Gamma(·;λ, α) represents the probability density function (PDF) of the Gamma distribution,
with the shape parameter λ and rate parameter α. We model the distribution over log(Lt) instead of
Lt directly to better capture the dynamic range of thinking lengths.

With the Gamma distribution assumption, instead of predicting n probability distributions,
we only needs to predict two n-dimensional vectors: λt = [λt(v1), . . . , λt(vn)] and αt =
[αt(v1), . . . , αt(vn)]. The cumulative probability, at, can be computed from the predicted λt and αt

by the known closed-form cumulative distribution function (CDF) of the Gamma distribution.

3.3 TRAINING THE PREDICTOR

To train the predictor, we need to collect a dataset of reasoning chains produced by the target LLM.
Formally, the data in the dataset takes the following form: D = {(x, y1:l, l)}, where x is the input
question, y1:l is the LLM-generated reasoning chain, and l is the length of the reasoning chain. Note
that the task dataset from which reasoning chain length training data are generated is not the same as
the inference dataset (not even the same task), as we will show that the trained predictor has good
dataset and task generalizability. For simplicity, in our training, we focus on math reasoning and use
the OpenR1-Math-220k dataset (Face, 2025).

For each training datum, (x, y1:l, l), we feed the information of a partial reasoning chain to the
predictor, truncated at different positions, and train the predictor to predict the remaining length. We
adopt the maximum log likelihood objective for the gradient descent training. Formally, denote the
parameters of the auxiliary predictor as θ. Then the training objective can be written as

max
θ

E(x,y1:l,l)∼D

[l−1∑
t=1

log
(
pθ(Lt = l − t|X = x, Y<t = y<t, Yt = yt)

)]
, (6)

where pθ(·) represents the predicted PDF by the auxiliary predictor, as shown in Equation 5.

3.4 ARCHITECTURE OF THE PREDICTOR

The predictor is designed to be lightweight enough to avoid significant computational overhead during
decoding, yet expressive enough to capture both the input question and the ongoing reasoning context
to produce a meaningful estimate of the remaining reasoning length. To this end, we adopt BERT-
base (Devlin et al., 2019) as the backbone of our predictor. Its input consists of the concatenated
hidden states from all layers of the last generated token of the target LLM, which encode rich semantic
information about both the input question and the reasoning history. A linear projection maps the
LLM’s hidden dimensionality to the predictor’s input space, and a [CLS] token is used to summarize
the hidden states. The final [CLS] representation is passed through another linear projection to
produce an output matrix M ∈ Rn×2, where each row corresponds to the parameters λt and αt of a
Gamma distribution. A softplus activation (Dugas et al., 2000) is applied to ensure both parameters
are non-negative.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.5 SKIPPING MODULATION

Ideally, probability modulation in Equation 4 would be applied at every decoding step t. To reduce
computational overhead, however, we apply it only at the start of each reasoning paragraph, indicated
by newline delimiters, where uncertainty is typically highest. The modulation is thus defined as:

ct =

{
normalize(ut ◦ at), if t is the start of a reasoning paragraph
ut, otherwise

(7)

Empirically, we find that our predictor leads to negligible latency overhead, which is discussed in
detail in Appendix A.

4 EXPERIMENTS

4.1 SETTINGS

Training. We apply our method to three deep-thinking models: DeepSeek-R1-Distill-Qwen-7B
(R1-7B) (Guo et al., 2025), DeepSeek-R1-Distill-Qwen-32B (R1-32B) (Guo et al., 2025), and Qwen3-
8B (Yang et al., 2024a;b). Training is conducted on OpenR1-Math-220k (Face, 2025), a dataset
of 220k math problems from NuminaMath 1.5 (Li et al., 2024) with reasoning traces generated by
DeepSeek R1. We apply a simple data augmentation technique (detailed in the Appendix) to double
the dataset size. During training, the LLMs are frozen and only the predictor is updated. We train for
one epoch using a batch size of 8 and a constant learning rate of 1.0× 10−4 after warmup. Training
takes 15 hours for R1-7B and Qwen3-8B, and 35 hours for R1-32B, using 8 NVIDIA H100 GPUs.
All evaluations are conducted on the same hardware setup.

Evaluation. We evaluate our method on four representative math reasoning benchmarks: MATH-
500 (Hendrycks et al., 2021), AIME-2024 (Art of Problem Solving, n.d.a), AMC (Art of Problem
Solving, n.d.b) (including both AMC12 2022 and AMC12 2023), and the math subset from Olympiad-
Bench (He et al., 2024). These benchmarks cover diverse mathematical topics, including arithmetic,
algebra, combinatorics, etc., and span a broad range of difficulty levels.

Besides math benchmarks, we also extend our evaluation to broader domains to test the out-of-
domain transferability of our math-data-trained predictor. Specifically, we further evaluate on GPQA
Diamond (Rein et al., 2024) for scientific reasoning, FOLIO (Han et al., 2022) for logical reasoning,
the numerical reasoning subset from TableBench (Wu et al., 2025) for tabular numerical reasoning,
and LiveCodeBench (Jain et al., 2024) (following (Guo et al., 2025)) for code reasoning.

All experiments are conducted in a zero-shot manner, i.e., we do not perform further fine-tuning on
the training sets of the evaluation benchmarks. We use greedy decoding for all evaluation.

Baselines. We compare our method with other methods that also do not finetune the LLM. Our
main baseline is budget forcing (Muennighoff et al., 2025), which enforces a hard token limit by
appending an end-of-thinking delimiter (and optionally “Final Answer:”) to trigger early exit and
force the model to produce its best guess. We use their open-sourced codebase for evaluation. We also
include NoThinking (Ma et al., 2025) as a baseline, which bypasses the reasoning stage by inserting a
fixed phrase as the thinking process: Okay, I think I have finished thinking. We
also report results from the original model, which serves as a reference for full thinking. For the
accuracy-thinking length trade off experiments in Section 4.2.2, we additionally compare against
Dynasor (Fu et al., 2025), which is a recent inference time steering method that uses a strategy
called Probe-In-The-Middle that can early stop confident reasoning traces. It does not require LLM
fine-tuning. We adopt the default token-saving level (mid) provided in their official codebase.

4.2 MAIN RESULTS

4.2.1 EVALUATION ON MATH REASONING BENCHMARKS

Since the predictor is trained on math data, we first evaluate its performance on math reasoning
benchmarks to assess in-domain effectiveness. We set the thinking budget to approximately half the
original model’s full thinking length and ensure the average thinking length (denoted as #Tokens)
comparable between our method and the baseline, and report the task accuracy.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results on math benchmarks.
MATH-500 AIME-2024 AMC OlympiadBench

Acc. #Tokens Acc. #Tokens Acc. #Tokens Acc. #Tokens

DeepSeek-R1-Distill-Qwen-7B
Thinking 91.6 2598 36.7 4446 78.3 4338 56.9 3960
NoThinking 74.8 - 23.3 - 47.0 - 40.4 -
Budget Forcing 86.0 1547 16.7 2015 55.4 1872 47.1 1844
Budget Guidance 88.2 1329 33.3 2046 60.2 1768 54.2 1755

DeepSeek-R1-Distill-Qwen-32B
Thinking 93.2 2226 70.0 7694 77.1 4156 61.9 3435
NoThinking 68.2 - 20.0 - 47.0 - 41.9 -
Budget Forcing 86.4 1525 40.0 2936 50.6 1567 50.7 1797
Budget Guidance 90.0 1288 56.7 2873 69.9 1528 57.8 1820

Qwen3-8B
Thinking 96.2 4613 73.3 13660 91.6 8740 71.7 9424
NoThinking 84.8 - 33.3 - 56.6 - 53.5 -
Budget Forcing 90.2 2545 43.3 4010 77.1 3807 61.6 3712
Budget Guidance 93.0 2062 50.0 3981 80.7 3869 65.6 3639

DeepSeek-R1-Distill-Qwen-7B

0 1000 2000
Thinking Length

0.6

0.8

Ac
cu

ra
cy

MATH 500

0 1000 2000 3000 4000
Thinking Length

0.2

0.4

Ac
cu

ra
cy

AIME 2024

0 1000 2000 3000 4000
Thinking Length

0.4

0.6

0.8

Ac
cu

ra
cy

AMC

0 1000 2000 3000 4000
Thinking Length

0.4

0.5

Ac
cu

ra
cy

OlympiadBench Math

DeepSeek-R1-Distill-Qwen-32B

0 500 1000 1500 2000
Thinking Length

0.6

0.8

Ac
cu

ra
cy

MATH 500

0 2000 4000 6000 8000
Thinking Length

0.25

0.50

0.75

Ac
cu

ra
cy

AIME 2024

0 1000 2000 3000 4000
Thinking Length

0.4

0.6

0.8

Ac
cu

ra
cy

AMC

0 1000 2000 3000
Thinking Length

0.4

0.5

0.6

Ac
cu

ra
cy

OlympiadBench Math

Qwen3-8B

0 2000 4000
Thinking Length

0.85

0.90

0.95

Ac
cu

ra
cy

MATH 500

0 5000 10000
Thinking Length

0.4

0.6

Ac
cu

ra
cy

AIME 2024

0 2000 4000 6000 8000
Thinking Length

0.6

0.8

Ac
cu

ra
cy

AMC

0 2500 5000 7500
Thinking Length

0.6

0.7

Ac
cu

ra
cy

OlympiadBench Math

Thinking No Thinking Dynasor Budget Forcing Budget Guidance

Figure 3: Accuracy vs. thinking length on math benchmarks.

Table 1 summarizes the evaluation results on math reasoning benchmarks. Across all three models and
four datasets, budget guidance consistently outperforms budget forcing under comparable average
thinking lengths, effectively reducing the reasoning length without causing significant accuracy
degradation. Compared to NoThinking, budget guidance achieves substantially higher performance,
indicating that the reasoning traces are non-trivial and contribute meaningfully to task success.

These improvements are consistent across different model sizes (7B to 32B) and model families
(DeepSeek vs. Qwen3), highlighting the general applicability of our approach to diverse deep-thinking
LLMs. Notably, even though the predictor for Qwen3-8B is trained on reasoning traces generated
by DeepSeek-R1, it still performs well. This suggests that the training data can be model-agnostic,
provided the target LLM exhibits a similar reasoning style, for instance, using words like “wait” or
“alternatively” to structure its reasoning process.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

N/A 500 1000 2000 3000 4000
Thinking Budget

0

2000

4000

6000

Th
in

ki
ng

 L
en

gt
h

DeepSeek-R1-Distill-Qwen-7B

N/A 500 1000 2000 3000 4000
Thinking Budget

DeepSeek-R1-Distill-Qwen-32B

N/A 500 1000 2000 3000 4000
Thinking Budget

Qwen3-8B

Thinking Budget Forcing Budget Guidance

Figure 4: Thinking length controllability measured on MATH-500 benchmark.

4.2.2 ACCURACY–THINKING LENGTH TRADEOFF ANALYSIS

A key indicator of effective control is the ability to achieve higher accuracy under the same thinking
length, which we call token efficiency. To evaluate and compare the token efficiency of our method
across different reasoning lengths, we vary the token budget to obtain different average thinking
lengths and record the corresponding accuracy achieved by the model. We visualize this relationship
through accuracy-thinking length trade-off curves. Experiments are conducted on all three models
across the four math benchmarks, and the resulting plots are presented in Figure 3.

From Figure 3, we observe that our method consistently achieves better token efficiency across
most benchmarks, achieving higher accuracy than budget forcing under a range of thinking lengths.
Notably, as the average thinking length decreases, corresponding to stricter budget constraints,
our method yields significantly higher accuracy, particularly on benchmarks with diverse problem
difficulty such as MATH-500. We attribute this to the ability of our method to adapt the reasoning
pattern under strict budgets, producing concise yet complete reasoning traces. This enables the model
to arrive at correct answers more efficiently, especially for questions that are relatively easy and do
not require deep reasoning. This is also reflected in the occasional worse accuracy of budget forcing
compared to the NoThinking baseline under strict budgets (e.g., MATH-500 on DS-7B/32B), where
the reasoning trace is abruptly truncated and the model is forced to guess prematurely. In contrast,
our method avoids such incomplete reasoning and consistently outperforms the NoThinking baseline.
Our method also performs better than Dynasor, another inference time steering method. We examine
several failure cases of Dynasor and find that many stem from incomplete reasoning, even under its
default settings. This further underscores the advantage of our method, which can precisely control
reasoning length and thereby consistently deliver high-quality answers across different thinking
budgets. An illustrative example of this guided reasoning behavior is provided in Appendix F.

4.2.3 FINE-GRAINED CONTROL OF THINKING LENGTH

Our goal is to steer LLM reasoning to adhere to a specified thinking budget. To evaluate controllability,
we test on MATH-500 under varying thinking budgets, measuring the actual thinking length per
sample and visualizing the distributions. We compare our method to budget forcing and include the
full-thinking baseline as a reference. Results across all three models are shown in Figure 4.

From Figure 4, we observe that our method behaves similar to budget forcing, generally respects the
specified thinking budget: for each setting, at least 75% are within the budget, and the median thinking
length closely aligns with the budget. Compared to the full-thinking baseline, our method guides the
model to generate a budget-aligned reasoning trajectory. This behavior is notable because, unlike
budget forcing, our approach does not enforce a hard cutoff. Instead, it softly steers the generation
process to match the desired level of detail, demonstrating flexible and controllable reasoning.

4.2.4 OUT-OF-DOMAIN TRANSFERABILITY

While we train the predictor solely on math data for simplicity, we also explore its generalization to
broader task domains. To this end, we conduct an out-of-domain transferability analysis using the
DS-7B model. Specifically, we evaluate our method on four benchmarks: GPQA Diamond (scientific
reasoning), FOLIO (logical reasoning), TableBench (tabular reasoning), and LiveCodeBench (code

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Evaluation on out-of-domain transferability.
GPQA Diamond FOLIO TableBench LiveCodeBench
Acc. #Tokens Acc. #Tokens Acc. #Tokens Acc. #Tokens

Thinking 49.1 5838 63.5 849 37.0 906 26.9 3509
NoThinking 38.4 - 46.3 - 16.9 - 20.7 -
Budget Forcing 39.9 1895 60.1 372 22.4 379 28.8 1135
Budget Guidance 49.0 1704 61.6 362 26.7 381 29.4 1138

1 2 3 4 5
Difficulty

1000

2000

3000

4000

5000

6000

Es
t.

Le
ng

th

MATH 500

easy medium hard
Difficulty

500

1000

1500

2000

Es
t.

Le
ng

th

LiveCodeBench

Figure 5: Correlation between question difficulties and
estimated thinking lengths.

Long
Reasoning

Short
Reasoning

Prompt Type

500

1000

1500

2000

2500

3000

Es
t.

Le
ng

th

MATH-500

Figure 6: Correlation between prompt
types and estimated thinking lengths.

reasoning). We match the average reasoning length between our method and the baseline, and report
the corresponding accuracies in Table 2.

Despite being trained exclusively on math data, our predictor generalizes well to non-math reasoning
tasks, consistently outperforming budget forcing across all four benchmarks. These results highlight
the cross-domain generalizability of our approach and its potential applicability to a wide range
of reasoning scenarios. While the gains on out-of-domain tasks are less pronounced than those on
in-domain benchmarks, we believe performance can be further improved by incorporating reasoning
traces from a broader range of domains during training. We leave this direction for future work.

4.3 INSIGHTS INTO WHAT THE PREDICTOR LEARNS

To probe what the predictor has learned, we analyze its estimated thinking length at the first thinking
token, interpreted as the predicted number of thinking tokens needed, against task difficulty and
prompt type, using the DS-7B model.

Task Difficulty. We evaluate on MATH-500 (in-domain) and LiveCodeBench (out-of-domain).
Figure 5 shows that estimated thinking length increases with difficulty in both cases. This suggests that
the predictor captures a general understanding of difficulty, enabling effective difficulty estimation.

Prompt Type. We evaluate on MATH-500 and compare two prompts: one encouraging long
reasoning and one encouraging concise reasoning (listed in the Appendix). As shown in Figure 6, the
long reasoning prompt yields longer estimated thinking lengths. A t-test gives a p-value of 0.0028,
confirming the difference is statistically significant and indicating that the predictor is prompt-aware.

Detailed behavioral analyses of the predictor, from both quantitative and qualitative perspectives, are
presented in Appendix E and Appendix F, further illustrating how it steers reasoning length.

5 CONCLUSION

We introduce budget guidance, a simple yet effective approach for steering LLM reasoning under a
thinking budget. Without requiring any LLM fine-tuning, our method enables natural control over
the reasoning process and significantly improves token efficiency on challenging benchmarks. Our
results demonstrate that LLMs can be effectively guided to reason with budget guidance, highlighting
budget-conditioned generation as a promising direction for efficient and controllable LLM reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Art of Problem Solving. Aime problems and solutions, n.d.a. URL https:
//artofproblemsolving.com/wiki/index.php/AIME_Problems_and_
Solutions.

Art of Problem Solving. Amc 12 problems and solutions, n.d.b. URL https:
//artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_
Solutions.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating
second-order functional knowledge for better option pricing. Advances in neural information
processing systems, 13, 2000.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without
self-doubt: More efficient chain-of-thought through certainty probing. In ICLR 2025 Workshop on
Foundation Models in the Wild, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
first-order logic. arXiv preprint arXiv:2209.00840, 2022.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

10

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AMC_12_Problems_and_Solutions
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, and Peter Henderson.
Fine-tuning aligned language models compromises safety, even when users do not intend to! arXiv
preprint arXiv:2310.03693, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Brandon T Willard and Rémi Louf. Efficient guided generation for large language models. arXiv
preprint arXiv:2307.09702, 2023.

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xeron Du, Di Liang, Daixin Shu,
Xianfu Cheng, Tianzhen Sun, et al. Tablebench: A comprehensive and complex benchmark
for table question answering. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 25497–25506, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895,
2025b.

Zhaojian Yu, Yinghao Wu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. Z1: Efficient test-time
scaling with code. arXiv preprint arXiv:2504.00810, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PREDICTOR LATENCY OVERHEAD ANALYSIS

To better quantify the latency overhead introduced by our predictor, we conduct precise measurements
on three representative models using the HuggingFace transformers library on a single NVIDIA
H100 GPU. We generate 1000 thinking tokens per run on the full AIME-2024 test set, with each
question executed 10 times to compute an average latency. Final results are averaged across questions,
and we report 95% confidence intervals for clarity.

Table 3: Measured latency overhead of our predictor across different LLMs.
Model Latency Overhead 95% Confidence Interval
DeepSeek-R1-Distill-Qwen-7B 0.72% [0.60%, 0.83%]
DeepSeek-R1-Distill-Qwen-32B 0.17% [0.12%, 0.21%]
Qwen3-8B 0.48% [0.27%, 0.68%]

As shown in Table 3, the latency overhead for all three models is below 0.8%, and decreases further
for larger models (only 0.17% for a 32B LLM). This demonstrates that our predictor introduces
negligible additional cost relative to standard inference, and thus does not compromise the efficiency
of the overall system.

B ABLATION ON SKIPPING STRATEGIES

We further conduct an ablation study to examine different strategies for applying budget guidance.
We consider three settings:

• Apply the modulation at the beginning of every sentence.

• Apply the modulation at every token (no skipping).

• Apply the modulation at the beginning of every paragraph (this is the strategy used in our
main paper).

We evaluate these strategies on the MATH-500 benchmark using the DeepSeek-R1-Distill-Qwen-7B
model. Results are summarized in Table 4.

Table 4: Ablation study on different skipping strategies for applying budget guidance.
Strategy Accuracy (%) #Tokens
Apply at beginning of sentence 88.0 1333
Apply at every token 86.0 1448
Apply at beginning of paragraph 88.2 1329

We observe that there is no significant difference between applying guidance at the beginning of a
sentence or a paragraph. Since the paragraph-level strategy achieves comparable accuracy while
saving more computation, we adopt it in our main experiments. Interestingly, applying guidance at
every token leads to lower accuracy. Closer inspection shows that guidance applied mid-sentence
is less stable, often disrupting semantic coherence. This instability can accumulate across token
generations and result in random or repeated outputs. For both inference stability and efficiency, we
therefore do not recommend modulating every token.

C ABLATION ON PREDICTOR ARCHITECTURE

We also examine whether a more lightweight alternative to the BERT-based length predictor is
feasible. Specifically, we remove the BERT encoder and use only a single linear layer to predict the
parameters of the Gamma distribution. We apply the same token budget to this variant and evaluate
its performance on the MATH-500 benchmark.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Comparison of predictor architectures on the MATH-500 benchmark.
Predictor Model MATH-500 Acc. #Tokens
Linear Layer 85.8 1617
BERT 88.2 1329

As shown in Table 5, the BERT-based predictor clearly outperforms the simple linear layer. In
particular, the linear layer is less effective in controlling reasoning length, as evidenced by its longer
outputs compared to the BERT-based predictor under the same budget. This suggests that estimating
the remaining reasoning length is a challenging task, and a larger model such as BERT offers stronger
predictive capacity. There exists a trade-off between predictor accuracy and efficiency; in this paper,
we adopt the BERT-based predictor due to its robust performance and widespread use across many
tasks.

D ANALYSIS OF INTERVENTIONS ON SAMPLES WITH DIFFERENT REASONING
LENGTH REQUIREMENTS

To further understand the behavior of Budget Guidance, we analyze its effect on samples requiring
shorter versus longer reasoning traces. We compute the relative percentage change in reasoning
length on the MATH-500 dataset using the DeepSeek-R1-Distill-Qwen-7B model, defined as

∆ =
|lengthvanilla − lengthBG|

lengthvanilla
.

Table 6: Length change for samples with different reasoning requirements on MATH-500.
Sample Category Change in Length
Short reasoning 15.3%
Long reasoning 52.3%

We find that Budget Guidance more significantly reduces reasoning length for samples originally
above the budget, while having minimal effect on those below. Notably, 100% of samples already
under the budget remain correct, indicating no accuracy loss in these cases.

E QUANTITATIVE REASONING BEHAVIOR ANALYSIS

To quantitatively analyze how the predictor influences the reasoning behavior of LLMs under different
budget settings, we follow the methodology proposed by (Hou et al., 2025). Specifically, we count the
frequency of reasoning-related keywords such as “wait” and “alternatively”, which are indicative of
deeper reasoning processes. We compare the keyword frequencies for thinking budget of 500, 2000,
and 4000 tokens using the DS-7B model on the MATH-500 benchmark. These results are contrasted
with a full-thinking baseline (i.e., without applying our method). The comparison is illustrated in
Figure 7.

As shown in the figure, a smaller budget substantially reduces the frequency of reasoning-related
keywords, indicating a more concise reasoning process. As the budget increases, the model is
encouraged to engage in deeper reasoning. Notably, when the budget is set sufficiently high, the
behavior closely matches that of the full-thinking baseline, suggesting minimal loss in reasoning
capability. These findings demonstrate that our method can effectively steer the reasoning behavior
of LLMs, while still preserving their reasoning ability under higher budget constraints.

F QUALITATIVE REASONING BEHAVIOR ANALYSIS

Figure 8 shows a case study from MATH-500 illustrating reasoning traces under different thinking
budgets. Rather than truncating output, our method adapts the reasoning style to the budget. With a

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Wait

Alte
rna

tiv
ely

Hold
 on

Dou
ble

-ch
eck

Re
mem

be
r

Let
 m

e c
om

pu
te

Th
ere

for
e

0

500

1000

1500

2000

2500

3000

3500

4000
Ke

yw
or

d
Co

un
t

Full Thinking
Budget=500
Budget=2000
Budget=4000

Figure 7: Reasoning keywords frequency comparison under different budget settings.

stricter budget (left), the model generates concise answers without reflection. With a larger budget
(right), it mirrors full-length reasoning: it starts with problem analysis and using reflective phrases
like “wait” and “double-checking.” In both settings, the trace ends appropriately, highlighting our
method’s flexibility and controllability.

Question: The graph of f(x) = 2x
x2−5x−14 has vertical asymptotes x = a and x = b, and horizontal asymptote y = c. Find a+ b+ c.

Thinking 1 (budget = 300)

To determine the vertical asymptotes of the
function f(x) = 2x

x2−5x−14 , I first need to find
the values of x that make the denominator
zero, as these will be the points where the
function is undefined and thus where the ver-
tical asymptotes occur.
I’ll start by factoring the denominator:

x2 − 5x− 14 = (x− 7)(x+ 2)

Setting each factor equal to zero gives the so-
lutions x = 7 and x = −2. Therefore, the
vertical asymptotes are at x = 7 and x = −2.
Next, to find the horizontal asymptote, I’ll
compare the degrees of the numerator and
the denominator. The numerator has a de-
gree of 1, and the denominator has a degree
of 2. Since the degree of the denominator is
higher, the horizontal asymptote is y = 0.
Finally, I’ll add the values of a, b, and c:

a+ b+ c = 7 + (−2) + 0 = 5

(thinking length: 260)

Thinking 2 (budget = 600)

Okay, so I have this function here: f(x) = (2x)/(x² - 5x - 14). I need to find the vertical asymptotes and
the horizontal asymptote, and then add their x-values and the y-value together to get a + b + c. Hmm, let
me think about how to approach this.
First, vertical asymptotes occur where the denominator is zero, right? Because the function will be unde-
fined at those points, and the graph will shoot off to infinity or negative infinity. So, I need to factor the
denominator to find those x-values.
The denominator is x² - 5x - 14. Let me try to factor that. I’m looking for two numbers that multiply to
-14 and add up to -5. Hmm, let’s see. The factors of 14 are 1 and 14, 2 and 7. Since the product is
negative, one has to be positive and the other negative. Let me try 2 and -7: 2 * (-7) = -14, and 2 + (-7) =
-5. Perfect! So, the denominator factors as (x + 2)(x - 7). So, the denominator is zero when x + 2 = 0 or x
- 7 = 0, which means x = -2 and x = 7. Therefore, the vertical asymptotes are at x = -2 and x = 7. So, a
and b are -2 and 7, respectively.
Wait, hold on, the problem says vertical asymptotes x = a and x = b. So, a is -2 and b is 7? Or is it the
other way around? Hmm, actually, the order doesn’t matter because we’re just adding them together. So,
a + b will be (-2) + 7, which is 5. Okay, that’s straightforward.
Now, onto the horizontal asymptote. Horizontal asymptotes depend on the degrees of the numerator and the
denominator. The numerator is 2x, which is degree 1, and the denominator is x² - 5x -14, which is degree
2. So, the degree of the numerator is less than the degree of the denominator. I remember that when the
degree of the numerator is less than the degree of the denominator, the horizontal asymptote is y = 0. So, c
is 0.
Double-checking: If the degree of the numerator is less than the denominator, horizontal asymptote is y =
0. If they are equal, it’s the ratio of the leading coefficients. If the numerator is higher, there’s no horizontal
asymptote, but maybe an oblique one. So, in this case, since numerator is degree 1 and denominator is
degree 2, horizontal asymptote is y = 0. So, c = 0.
(thinking length: 602)

Figure 8: Sample reasoning traces generated with budget guidance under different thinking budgets.

G DATASET DESCRIPTION

We provide detailed information about the evaluation datasets used in our paper.

MATH-500 (Hendrycks et al., 2021) is a 500-problem subset of the MATH dataset, selected by (Light-
man et al., 2023). Each problem is labeled with a difficulty level from 1 to 5.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

AIME-2024 (Art of Problem Solving, n.d.a) contains 30 problems from the 2024 American Invita-
tional Mathematics Examination, covering topics such as algebra, combinatorics, geometry, number
theory, and probability. Following budget forcing (Muennighoff et al., 2025), we retain only the
essential ASY figure code required to solve each problem, omitting non-essential diagrams.

AMC (Art of Problem Solving, n.d.b) includes all 83 problems from AMC12 2022 and AMC12
2023.

OlympiadBench (He et al., 2024) is a challenging benchmark aimed at advancing AGI through
Olympiad-level, bilingual, multimodal scientific problems. We use its math subset, which contains a
total of 675 problems.

GPQA Diamond (Rein et al., 2024) consists of 198 high-quality, extremely difficult questions
spanning a broad range of scientific domains, including biology, physics, and chemistry.

FOLIO (Han et al., 2022) is a human-annotated dataset designed to evaluate complex logical
reasoning in natural language. It features 1,430 unique conclusions paired with 487 sets of premises,
all validated using first-order logic (FOL) annotations. We use the test set, which contains 203 unique
problems.

TableBench (Wu et al., 2025) is a benchmark for evaluating LLMs on real-world tabular data
challenges. We evaluate all models on the numerical reasoning subset, which comprises 493 problems.

LiveCodeBench (Jain et al., 2024) offers a holistic and contamination-free evaluation of LLM coding
capabilities. Following (Guo et al., 2025), we select problems from the August 2024 to January 2025
period, totaling 323 problems.

H TRAINING DATA AUGMENTATION

We adopt a simple data augmentation strategy to double the size of the training set. Each training
sample originally follows the format:

<think>THINK_MESSAGE</think>ANSWER_MESSAGE (8)

Since our predictor only operates on the THINK_MESSAGE, the ANSWER_MESSAGE is not used
during training. To utilize this otherwise unused information, we construct an additional training
sample in the following format:

<think>ANSWER_MESSAGE</think>ANSWER_MESSAGE (9)

This transformation allows us to incorporate the ANSWER_MESSAGE into the predictor’s training
process. By generating one new sample for each original sample, we effectively double the size of
the training set and ensure full utilization of the available data.

I PROMPT DESCRIPTION

In Section 4.3, we analyze the predictor’s estimated thinking length across different prompt types to
demonstrate its prompt awareness. Below, we list the specific prompts used in our experiment.

The prompt for long reasoning is: Think step by step and provide thorough
reasoning before reaching a conclusion.

The prompt for short reasoning is: Think quickly and provide a concise
reasoning with minimal steps.

We add these prompts as the system prompt.

J USE OF LARGE LANGUAGE MODELS FOR WRITING ASSISTANCE

Portions of the writing in this paper, specifically at the level of grammar refinement, sentence
polishing, and shortening of paragraphs for conciseness, were assisted by an external large language

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

model (OpenAI ChatGPT). The model was not used to generate original ideas, experimental design,
or analysis; all scientific contributions are the authors’ own. The assistance was limited to improving
clarity, readability, and presentation quality of the manuscript.

17

	Introduction
	Related Works
	Efficient LLM Reasoning
	Guidance and Guided Generation

	Budget Guidance
	The Budget Guidance Framework
	An Auxiliary Thinking Length Predictor
	Training the Predictor
	Architecture of the Predictor
	Skipping Modulation

	Experiments
	Settings
	Main Results
	Evaluation on Math Reasoning Benchmarks
	Accuracy–Thinking Length Tradeoff Analysis
	Fine-Grained Control of Thinking Length
	Out-of-Domain Transferability

	Insights into What the Predictor Learns

	Conclusion
	Predictor Latency Overhead Analysis
	Ablation on Skipping Strategies
	Ablation on Predictor Architecture
	Analysis of Interventions on Samples with Different Reasoning Length Requirements
	Quantitative Reasoning Behavior Analysis
	Qualitative Reasoning Behavior Analysis
	Dataset Description
	Training Data Augmentation
	Prompt Description
	Use of Large Language Models for Writing Assistance

