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Abstract
The reliability of post-training quantization (PTQ)
methods in the face of extreme cases such as
distribution shift and data noise remains largely
unexplored, despite the popularity of PTQ as a
method for compressing deep neural networks
(DNNs) without altering their original architec-
ture or training procedures. This paper conducts
an investigation on commonly-used PTQ methods,
addressing questions pertaining to the impact of
calibration set distribution variations and calibra-
tion paradigm selection on the reliability of PTQ.
Through a systematic evaluation process encom-
passing various tasks and commonly-used PTQ
paradigms, it is evident that the majority of ex-
isting PTQ methods lack the necessary reliability
for worst-case group performance, underscoring
the imperative for more robust approaches.

1. Introduction
Deep neural networks (DNNs) are widely used in risk-
sensitive areas such as autonomous driving (Muhammad
et al., 2020) and finance (Zhang & Lou, 2021). DNNs with
a large number of network parameters result in expensive
computational and memory costs. As a model compression
technique, post-training quantization (PTQ) offers the ad-
vantage of compressing DNNs without modifying the orig-
inal training procedure, model structures, and parameters,
making them highly desirable for practical applications.

During the calibration process, PTQ determines the quan-
tization parameters to reduce the bits used for network
weights and activations. The calibration dataset is small
number of input samples, which is used to estimate the sta-
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Figure 1. Overview of the framework for assessing reliability of
PTQ.

tistical properties of the activation values that the neural
network produces during inference. These statistical prop-
erties are then used to determine the optimal quantization
parameters that minimize the quantization error. Previous ef-
forts have been made to improve PTQ from different dimen-
sions such as devising new optimizing algorithms (Nagel
et al., 2020; Li et al., 2021), especially in the low-bit regime.
To date, state-of-the-art method can achieve nearly loss-
less accuracy on the image classification task in the 4-bit
setting (Wang et al., 2022).

PTQ assumes that the calibration and test sets follow the
same distribution, referred to as the ”close-environment” as-
sumption. However, in real-world open environments, this
assumption is often impractical due to distribution shifts be-
tween the calibration and test distributions. A natural ques-
tion arises: Is current PTQ method reliable enough when
facing extreme test samples such as worst-case-category
or out-of-distribution samples? Answering this question is
vital for the deployment of quantized DNNs in real-world
applications, yet it remains largely unexplored within the
current research community.

In this paper, the reliability of various commonly-used PTQ
methods are deeply investigated and comprehensively evalu-
ated for the first time. To this end, we first perform extensive
experiments and observe that some specific test categories
suffer significant performance drop after PTQ. In practical
applications, we observed that several factors affect the per-



formance of PTQ. These factors include the calibration set
distribution, PTQ settings, and PTQ methods. Our specific
research questions are as follows:

• How does the variation in the distribution of the calibra-
tion data affect the performance of quantized network?

• How do different quantization settings affect the per-
formance among different categories?

• How do different PTQ methods affect the performance
among different categories?

To answer these questions, this paper introduces a frame-
work designed to systematically evaluate the impact of
PTQ from a reliability perspective. Through this frame-
work, we conducted experiments covering various tasks and
commonly-used PTQ approaches. We provide quantitative
results and a comprehensive analysis of the underlying fac-
tors for each research question. The primary observations
derived from our experiments are summarized as follows:

• Significant accuracy drop of individual categories is
observed on the quantized model, which indicates the
reliability issue of current PTQ methods. (Sec 3.2)

• The average prediction accuracy remains resilient to
variations in the composition of the calibration dataset,
in the presence of noise and intra-class bias. How-
ever, the prediction accuracy for individual categories
displays sensitivity to these factors. (Sec 4.1)

• Reducing the bit-width has the potential to lead to
substantial degradation in specific categories. (Sec 4.2)

• Certain optimization algorithms, such as gradient-
based PTQ, exhibit comparatively diminished relia-
bility, despite attaining superior average predictive ac-
curacy. (Sec 4.3)

From the above observations, existing mainstream methods
are often unreliable, as they can result in significant accuracy
drops for certain categories or groups, which is unacceptable
for risk-sensitive scenarios. So, it is crucial to develop
reliable and robust PTQ methods that can effectively handle
distribution shift scenarios. Additionally, we contribute by
creating a benchmark for PTQ reliability, covering different
tasks, PTQ methods, and network architectures.

2. Related Work
2.1. Quantization

Quantization is a highly effective technique for compressing
neural networks, speeding up network inference, and reduc-
ing memory cost by reducing the precision of weights and
activations, often storing them as integers like INT4 (Deng

et al., 2020; Nagel et al., 2021; Yuan et al., 2022). Lower
precision calculations can be performed faster, resulting
in faster inference times. Two primary quantization meth-
ods are Post-Training Quantization (PTQ) and Quantization
Aware Training (QAT). PTQ is a quantization technique ap-
plied to a pre-trained neural network, quantizing the weights
and activations after the training process (Migacz, 2017;
Banner et al., 2019). While QAT integrates the quantization
process into the training process (Krishnamoorthi, 2018;
Choi et al., 2018; Esser et al., 2020). It involves training
the network with a combination of full-precision and lower-
precision weights and activations, enhancing its resilience
to quantization effects.

Some previous work has explored the stability of quanti-
zation and the influence of calibration dataset. (Hubara
et al., 2021) explore the problems of using small calibration
dataset in quantization. PD-Quant (Liu et al., 2022) pro-
poses a technique for adjusting the calibration activations
accordingly. SelectQ (Zhang et al., 2022) shows that ran-
domly selecting data for calibration in PTQ can result in
performance instability and degradation due to activation
distribution mismatch. Existing research has been limited in
scope, focusing on a narrow range of factors and their effect
on quantization stability. This paper presents a comprehen-
sive framework to evaluate PTQ reliability and conducts an
extensive analysis of various factors that influence quantiza-
tion reliability.

2.2. Reliability of Neural Network

The reliability of deep models is often measured through
different dimensions: (1) model performance in various
situations (including performance on the existing worst cate-
gories, noise samples, and out-of-distribution samples, etc.),
(2) model robustness against test-time attacks such as adver-
sarial attacks, and (3) the quality of the model’s confidence.
This paper mainly focus on the first dimension and leaves
other two as the future work.

Model reliability in the worst case: For the first dimension,
various studies have been conducted to evaluate the reliabil-
ity of models against worst-case scenarios involving distri-
bution shift and data noise, among other factors(Shen et al.,
2021; Han et al., 2020). In this context, the evaluation metric
typically used is the worst-case accuracy among existing test
categories or out-of-distribution (OOD) samples(Shen et al.,
2021; Rahimian & Mehrotra, 2019). It has been observed
that models trained conventionally with the assumption of
independent and identically distributed (IID) data fail to gen-
eralize in real-world testing environments with challenges
such as hardness, noise, or OOD samples(Han et al., 2018;
Duchi & Namkoong, 2018). Further literature on this sub-
ject can be found in prior surveys(Shen et al., 2021; Han
et al., 2020; Rahimian & Mehrotra, 2019). Despite the ef-



forts made by the community, the model reliability of PTQ
methods in such cases remains largely unexplored.

3. Exploring Reliability of PTQ
In this section, we will initially introduce the generic work-
flow of the Post-Training Quantization (PTQ). Subsequently,
we will define the PTQ reliability and propose an approach
to examine the reliability of PTQ.

3.1. PTQ Workflow

The workflow of PTQ involves three key steps, namely col-
lecting a calibration dataset, assigning quantization settings,
and determining quantization parameters. While it is worth
noting that not all prior work can be neatly subsumed under
these three steps, these stages are consistently found in the
majority of PTQ methodologies.

Collecting Calibration Dataset: PTQ requires a cali-
bration dataset to compute the activations of each layer,
{X1, ..., XL}. The majority of academic papers typically
obtain their calibration dataset through random sampling
from the training dataset. In contrast, industrial applications
involve the user collecting a specific amount of real-world
data to serve as the calibration dataset.

Assigning Quantization Settings: The next step is to
choose the quantization settings, which specify the bit-width
and the quantization function. The quantization bit-width
refers to the number of bits used to represent a numerical
value in a quantized representation. The quantization func-
tion determines how the continuous values of weights and
activations are mapped to discrete values, such as uniform
quantization (Krishnamoorthi, 2018) and non-uniform quan-
tization (Miyashita et al., 2016; Li et al., 2020). Taking the
symmetric uniform quantization function as an example,
float value x is quantized to k bits integer xq:

xq = clamp(round(
x

s
),−2k−1, 2k−1 − 1), (1)

where s is the scaling factor, clamp function limits the value
into the range of k bit integer [−2k−1, 2k−1 − 1]. For 8 bit
integer, the range is [-128,127]. xq can be de-quantized as
x̂ = sxq ≈ x.

Optimize Quantization Parameters: The final step
searches for the best quantization parameters to minimize
the quantization error. This error is typically evaluated
using a MSE (Choukroun et al., 2019) metric. The optimiza-
tion can be layer-wise (Migacz, 2017; Yuan et al., 2022),
block-wise (Nagel et al., 2020; Wei et al., 2022), or network-
wise (Wang et al., 2022). For example, we can layer-wisely
optimize the scaling factors sl in Eq 1 by minimize the MSE
of de-quantized activation X̂ l and original activation X l:

argmin
slx

MSE(X̂ l, X l). (2)

We can use various methods, such as grid search or gradient-
based methods to solve the optimization problem. The grid
search method is a commonly used approach, which tests a
range of candidate values for the quantization parameters
and selects the parameters that minimize the quantization
error.

3.2. PTQ Reliability Evaluation Method

The reliability of deep models is often measured through
different dimensions, some commonly used dimensions in-
clude (1) model performance in various situations (including
performance on the existing worst categories, noise samples,
and out-of-distribution samples, etc.), (2) model robustness
against test-time attacks such as adversarial attacks, and
(3) the quality of the model’s confidence. In this paper, we
mainly focus on evaluating the reliability of existing PTQ
methods based on the first dimension. Exploration of other
dimensions will be addressed in future work.

To this end, we assess the prediction accuracy on different
categories1 to evaluate the reliability of PTQ. By analyzing
prediction accuracy across multiple categories, we gain a
comprehensive understanding of PTQ’s reliability and its
generalization capability. This approach can provide addi-
tional insights into the performance of the quantized network
and help identify any potential biases or limitations that may
affect its overall reliability. To demonstrate the necessity of
assessing on different categories, we experiment three net-
works, ResNet (He et al., 2016) for CIFAR-10 (Krizhevsky
et al., 2009) classification task, MobileNetV2 (Sandler et al.,
2018) for ImageNet (Deng et al., 2009) classification task,
and YOLOv5 (Jocher et al., 2022) for MS COCO (Lin et al.,
2014) object detection task. We conducted multiple network
quantization trials using different random seeds. In each
trial, we randomly selected a calibration dataset from the
training dataset and applied PTQ quantization. We assessed
the performance of the quantized neural network based on
both average accuracy and accuracy per category.

Figure 2 illustrates the accuracy drop from the original net-
work, with the box spanning from the first quartile (Q1) to
the third quartile (Q3) of the data, while a red horizontal line
depicts the median. Firstly, we observe that different cate-
gories show varying sensitivity to quantization, with some
maintaining prediction accuracy while others experience
a significant decline. For example, large objects exhibit a
much larger accuracy drop compared to small and medium
objects, indicating their higher vulnerability to quantization.
Secondly, we find that the variation in accuracy drop differs
significantly across categories. For instance, the variation in

1Different categories can refer not only to different class labels
in classification tasks but also to grouping of object detection
bounding boxes based on their sizes, shapes, or other properties,
as well as to grouping of samples based on their difficulty level.
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Figure 2. The box plot of accuracy drop on different classes over
50 trials with different random seeds. We only plot 10 classes of
ImageNet and COCO for demonstration. ”mAP” refers to mean
average precision. ”Small”, ”Medium”, and ”Large” refer to the
precision for small, medium, and large objects.

Class 4 of COCO is much larger than that of other classes.
Thirdly, we observe that the variance of accuracy drop across
most individual categories is substantially higher than the
average value. In conclusion, the reliability of individual
categories is lower than anticipated.

Drawing on the above findings, we indicate that the low
reliability of individual categories poses a risk in practical
applications. In many real-world scenarios, the accuracy of
predictions for specific categories may be of critical impor-
tance, and any decrease in reliability for these categories
can lead to serious consequences.

4. Factors Affect PTQ Reliability
In the preceding section, we propose an approach to assess
the reliability of PTQ. Subsequently, we aim to examine
how different factors involved in the quantization workflow
impact the reliability of PTQ. To achieve this goal, we will
conduct a series of tests on each step of PTQ workflow,
including calibration dataset construction, quantization set-

Figure 3. Influence of noisy calibration data. This figure plots the
relative performance change to the clean case with varying data
noise amounts. The change values are demonstrated in different
colors (red means accuracy increment while blue means decre-
ment). We execute 50 trails for each percentage of noise.

tings, and optimization of quantization parameters.

4.1. Construction of Calibration Dataset

The calibration dataset is used to estimate the distribution
of the activations in the network we want to quantize. If the
calibration dataset fails to capture the statistical character-
istics of the real-world data, the accuracy of the quantized
network may decrease, since the quantization parameters
are derived based on the distribution of the activations. In
this subsection, we analyze the impact of constructing a
calibration dataset on the reliability of PTQ. We consider
three factors that can affect the distribution of the calibration
dataset: noise data, inter-class bias and dataset size.

Noise data refers to data samples that are not representative
of the underlying distribution of the data. Including noise
data in a calibration dataset can have a negative impact on
PTQ, as the noise data can bias the distribution of activa-
tion and lead to inaccurate quantization parameters. To
assess the impact of noise data, we construct the calibration
dataset with some images sampled from training set and
some randomly generated noise images.

Figure 3 demonstrates the prediction accuracy mean value
change and standard deviation change comparing with ex-
periments without noise on the prediction accuracy. We
observe that increasing the percentage of noise data leads to
a reduction on the average accuracy. The more noise data,
the more average accuracy drop. However, the impact on
individual classes is much larger than average accuracy. We
observe that most of the classes are vulnerable to the noise
data. For instance, the prediction accuracy of Class 8 of
CIFAR-10 drops significantly when noise data is introduced.



Figure 4. Influence of unbalanceed calibration datasets. The re-
ported top-1 accuracy is averaged over 50 runs with different
random seeds. The prediction accuracy change is demonstrated in
different colors (red means increment and blue means decrement).
The standard deviation change is annotated as text (positive means
increment and negative means decrement).

While some classes, such as Class 1 and Class 9 of CIFAR-
10, exhibit consistent predictive accuracy. Additionally, it is
noteworthy that the noise data changes the standard devia-
tion of individual classes, while the standard deviation on
Average not changes too much.

Inter-class bias refers to distribution differences among dif-
ferent classes. To evaluate the impact of inter-class bias on
the quantization process, we construct unbalanced calibra-
tion datasets, where the number of samples from each class
is different. We build the unbalanced dataset by increasing
the sampling probability of a specific class. Specifically, we
constructed calibration datasets in which the sampling prob-
ability of a certain class was set to 50%, while the remaining
classes were included with equal probability.

Figure 4 depicts the results obtained using unbalanced cal-
ibration datasets. The figure demonstrates that increasing
the number of different classes leads to slight change on
the average prediction accuracy, while significant change
on the prediction accuracy of individual classes. The results
also indicate that some classes are more susceptible to the
unbalanced calibration dataset. For instance, the prediction
accuracy of Class 6 on ImageNet significantly decreases. It
is also worth noting that increasing the number of a certain
class does not necessarily improve the prediction accuracy
on this class. In addition, we note that the standard devi-
ation of the average prediction accuracy almost remains
unchanged, whereas the standard deviation of individual
classes displays a marked variation. The distribution of
various classes may vary, and an unbalanced dataset can
alter the distribution of the calibration dataset. Inter-class
bias can impact the selection of quantization parameters,
leading to variations in prediction accuracy. However, the

Table 1. The influence of different numbers of calibration samples.
We report the mean±std over 50 runs.

Dataset Size 1 32 256 1024

Imagenet MobilenetV2 W6A6

Average 70.0±0.38 70.2±0.06 70.2±0.05 70.2±0.07
Class 0 82.8±1.44 83.1±1.34 83.3±1.48 82.8±1.13
Class 1 68.8±2.22 70.4±1.34 70.2±1.40 70.4±1.15
Class 2 72.8±2.71 74.4±2.58 74.6±2.31 73.8±2.77
Class 3 74.6±2.33 73.6±2.04 74.8±1.83 74.3±2.28
Class 4 61.2±2.11 60.8±1.92 61.2±1.65 60.8±1.79
Class 5 95.1±1.28 95.2±1.12 95.0±1.15 95.2±1.26
Class 6 84.4±2.53 85.3±1.90 85.4±1.79 85.2±1.21
Class 7 63.5±2.49 64.6±2.06 65.9±2.12 65.4±2.37
Class 8 80.8±1.54 80.0±1.52 80.1±1.92 80.0±1.62
Class 9 91.8±1.90 91.7±1.74 91.3±1.68 91.6±1.80

average prediction accuracy remains relatively stable, indi-
cating its robustness to changes in quantization parameters.
Conversely, significant variations in the prediction accuracy
of individual classes suggest their vulnerability to perturba-
tions caused by changes in the calibration dataset.

The size of calibration dataset is an important factor for
PTQ. It is generally known that small datasets can yield
inaccurate quantization parameters, whereas large datasets
can improve quantization accuracy, leading to stable and
reliable outcomes. As shown in Table 1, we observe that
larger dataset size results in higher and more stable average
prediction accuracy, aligning with the generally accepted
understanding. As the calibration dataset size increases
from 1 to 32, there is a significant reduction in the variance
of prediction accuracy. For instance, when size increases
from 1 to 32, the standard deviation on Class 1 of ImageNet
decreases from 2.22 to 1.34.

However, we observe that increasing the dataset size beyond
32 has little effect on reducing the variance of accuracy
on individual classes. Despite increasing the calibration
dataset size to 1024, there may still be significant variance
in the accuracy of some classes. For instance, the Class 2 of
ImageNet has a standard deviation of 2.77 on prediction ac-
curacy. Some classes may inherently have more variability
than others, and increasing the dataset size may not neces-
sarily reduce this variability. Therefore, simply increasing
the dataset size may not be sufficient to reduce the variance.

4.2. Quantization Settings

Once the calibration dataset is collected, the next step is to
select quantization settings. In this paper, we only examine
the effects of bit-width on uniform quantization. Mixed-
precision quantization and non-uniform quantization are
expected to be the future directions of research.

We conducted experiments by setting the same bit-width for
all layers in the network and tested the prediction accuracy



Table 2. The influence of quantization settings. We report
mean±std over 50 runs with different random seeds. W6A6 means
6-bit weight and 6-bit activation.

Task CIFAR-10 ResNet20 ImageNet MobilenetV2
bit-width W6A6 W4A4 W8A8 W6A6

Average 90.66±0.08 88.01±0.21 72.0±0.03 70.2±0.07
Class 0 90.14±0.27 92.18±0.43 84.0±0.00 82.8±1.27
Class 1 95.77±0.19 93.22±0.45 74.1±1.44 70.6±1.13
Class 2 88.54±0.30 84.55±0.61 76.4±1.00 74.3±2.53
Class 3 82.64±0.51 76.42±0.69 77.4±0.90 74.7±1.82
Class 4 90.76±0.27 86.56±0.61 62.4±1.44 60.6±1.89
Class 5 85.51±0.33 81.40±0.67 95.9±0.39 95.2±1.38
Class 6 92.14±0.28 94.19±0.45 94.0±0.00 85.6±1.56
Class 7 93.19±0.29 89.52±0.46 62.0±0.28 65.7±2.09
Class 8 93.15±0.21 88.84±0.70 82.0±0.00 79.9±1.60
Class 9 94.82±0.21 93.23±0.43 93.6±0.77 91.4±1.56

across 50 trials. The results are demonstrated in Table 13.
We observe that the bit-width have a significant impact
on the performance of quantized networks. Specifically, a
higher bit-width results in not only more accurate but also
more stable quantized networks. For example, the mean and
std of average prediction accuracy is 36.6±0.06 on W8A8,
while that of W6A6 is 31.4±0.41 for YOLOv5s quantiza-
tion. We also observe that the performance of individual
classes varies from each other. Some classes experience a
significant drop in prediction accuracy, while others do not.
For example, Class 6 of ImageNet experience a decrease of
more than 6% in prediction accuracy from W8A8 to W6A6,
while Class 5 of ImageNet experience a decrease of less
than 1%. We think this is because different classes require
different dynamic ranges to achieve a certain prediction ac-
curacy. Consequently, the accuracy of some classes may
decrease significantly. It is worth noting that even a slight
decrease in average prediction accuracy can result in sub-
stantial drops in both their accuracy and stability on certain
categories. In order to maintain prediction accuracy and
stability of quantization, it is important to exercise caution
when decreasing the bit-width.

4.3. Optimization of Quantization Parameters

The final step of PTQ is to search for the optimal quan-
tization parameters. The optimization algorithm deter-
mines how the quantization parameters are determined.
In our study, we assessed four different optimization al-
gorithms, including the grid search method (Nagel et al.,
2021), as well as three gradient-based approaches2, namely
Adaround (Nagel et al., 2020), BRECQ (Li et al., 2021), and
QDrop (Wei et al., 2022). The results, as shown in Table 3,
demonstrate that gradient-based methods can substantially
enhance the overall prediction accuracy. For instance, the av-
erage accuracy on ImageNet using QDrop is 72.1%, which

2These gradient based methods will optimize the scaling factors
for quantizing activation and the rounding for quantizing weight.

Table 3. The influence of optimization algorithm. We report
mean±std over 50 runs with different random seeds.
Algorithm Grid Search Adaround BRECQ QDrop

ImageNet MobileNetV2 W6A6

Average 70.2±0.07 72.0±0.06 72.1±0.06 72.1±0.06
Class 0 82.8±1.27 82.3±1.05 81.7±0.98 82.1±1.01
Class 1 70.6±1.13 67.2±2.77 69.2±2.27 68.8±2.33
Class 2 74.3±2.53 81.9±2.51 79.7±2.37 80.6±2.95
Class 3 74.7±1.82 76.4±2.52 77.0±2.01 78.0±2.73
Class 4 60.6±1.89 63.8±2.56 61.1±2.34 60.6±2.51
Class 5 95.2±1.38 95.2±0.99 95.4±0.98 95.4±1.09
Class 6 85.6±1.56 92.3±1.61 90.7±1.43 89.7±2.26
Class 7 65.7±2.09 64.0±1.95 62.8±1.65 63.0±1.61
Class 8 79.9±1.60 80.4±1.33 80.8±1.38 78.4±0.80
Class 9 91.4±1.56 93.3±1.42 93.5±1.25 91.0±1.66

is almost comparable to full-precision. However, our anal-
ysis reveals that the accuracy of individual classes varied
considerably. For instance, using QDrop, Class 1 of Ima-
geNet achieves a mean accuracy of only 68.6%, whereas
this is 70.6% using the grid search algorithm. Addition-
ally, our observation reveals that the standard deviations of
individual classes are relatively high. Therefore, we indi-
cate that gradient-based PTQ methods may have relatively
lower reliability, despite achieving better overall prediction
accuracy.

5. Benchmark of PTQ Reliability
We have developed a framework that can test the PTQ re-
liability of different networks according to the proposed
approach in this paper. As shown in Figure 1, the frame-
work provide a standardized approach for evaluating the
reliability of PTQ by assessing both the average perfor-
mance and performance on various cetegories. We have
used this framework to test the PTQ reliability performance
on various tasks, PTQ methods, and network architectures3,
which can serve as a benchmark. Furthermore, the frame-
work can be extended to evaluate the reliability of PTQ on
other datasets or tasks, as well as to investigate the effect
of different calibration metrics or other parameters on the
quantization accuracy. We hope that the proposed frame-
work and the benchmark can contribute to the development
and improvement of PTQ and other quantization methods.

6. Conclusion
In this paper, we have introduced the concept of reliability
in the context of post-training quantization. We have ex-
plored the impact of various factors on the reliability of PTQ,
including: calibration dataset construction, quantization set-
tings assignment, and quantization parameter optimization.
Furthermore, we have developed a benchmark for evaluating

3The results are provided in supplementary materials.



the reliability of PTQ on different neural networks, which
can aid future research in this area.
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A. Quantization Models
We have quantized various CNN architectures for the Im-
ageNet, such as ResNet-18, ResNet-50, RegNetX-600m,
RegNetX-3200m, MobileNetV2, and MNasNet. Addition-
ally, for the CIFAR-10, we considered ResNet models with
different depths, including ResNet-20, ResNet-32, ResNet-
44, and ResNet-56. In our benchmark, we conducted thor-
ough experiments on all the mentioned models to determine
that quantization reliability issues exist in various networks.

B. Benchmark
B.1. Evaluation on accuracy drop

We quantize each model 50 times, selecting different ran-
dom calibration data each time, and investigate the change
in quantized model’s accuracy for each class compared to
the accuracy of the full-precision model. The box plot of ac-
curacy drop on different classes over 50 trials with different
random seeds is shown as follows. We only plot 10 classes
of ImageNet.
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B.2. Evaluation on calibration numbers

We tested the performance of PTQ at calibration set sizes of
1, 32, 64, and 256 separately, and the experimental results
of different models are as follows:

B.3. Evaluation on calibration metrics

We have studied a total of four calibration metrics, including
MinMax, Cosine, KL and MSE. Results of different models
on different datasets for different metrics are as follows:

MinMax calibration. Quantization scaling factors are com-
puted based on the range directly determined by the maxi-
mum and minimum values of the feature map. The equation
for calculating the scaling factors is as follows:

s =
max(x)−min(x)

2n − 1
. (3)

Cosine calibration. Quantization range is determined based
on the cosine distance between features before and after
quantization. Here we consider asymmetric quantization,
where the minimum value after quantization is set to 0.
Therefore, we only need to find the maximum value of the
quantization range. Search 100 times uniformly within the
range of the maximum value of the feature to find the maxi-
mum value that minimizes cosine distance. The equation is
as follows:

min
s

Dcos(x, x
q). (4)

KL calibration. Minimizing the KL divergence between
the distributions before and after quantization to find the
range for quantization. Specifically, the distribution is di-
vided into a histogram of 2048 bins, and the difference
between the distributions before and after quantization is
compared. The equation is as follows:

min
s

Dcos(hist(x), hist(x
q)). (5)

MSE calibration. Similar to KL calibration, the quantiza-
tion range is determined based on the difference between
the pre- and post-quantization distributions using MSE dis-
tance instead of KL divergence. Similarly, search 100 times
to find the optimal maximum value. The equation is as
follows:

min
s

∥x− xq∥2. (6)

B.4. Evaluation on bitwidth

We evaluated the performance of multiple models under 6-
bit and 8-bit quantization for the ImageNet, and under 4-bit
and 6-bit quantization for the CIFAR-10. The experimental
results are shown as follows:

B.5. Evaluation on noise data

We investigated the performance of quantized models when
introducing noise data similar to the actual calibration set
during calibration. Specifically, we conducted experiments
on the performance of quantized models when the calibra-
tion set contains 1%, 5%, 10%, and 50% noise data. The



results of the experiments on multiple models are as follows,
we only plot 10 classes of ImageNet. The figures below are
the relative performance change to the clean case with vary-
ing datanoise amounts. The change values are demonstrated
in different colors.
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B.6. Evaluation on class bias

We conducted experiments on unbalanced calibration
datasets to explore how class imbalance affects model quan-
tization. Specifically, we set one category in the calibration
dataset to represent 50% of the total samples and tested four
different categories across multiple models. The experimen-
tal results of top-1 accuracy is averaged over 50 runs with
different random seeds. The prediction accuracy change
is demonstrated in different colors (red means increment
and blue means decrement). We only plot 10 classes of
ImageNet.
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-0.12 -0.08 -0.62 -0.1 0.01 0.32 0.08 0.44 0.14 -0.28 -0.0

ImageNet ResNet50 W6A6

1.0

0.5

0.0

0.5

1.0

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9
Average

50%
Class 0

50%
Class 1

50%
Class 2

50%
Class 3

0.01 0.25 -0.4 -0.19 0.03 -0.23 0.1 -0.15 -0.39 -0.23 -0.01

-0.25 -0.06 -0.13 0.17 0.11 0.08 -0.02 -0.12 -0.35 -0.43 0.0

-0.05 -0.05 -0.25 0.25 -0.37 -0.18 -0.42 0.09 -0.36 -0.55 0.0

-0.2 0.07 -0.16 0.13 -0.06 0.11 -0.14 0.23 -0.35 -0.49 -0.0

ImageNet MobileNetV2 W6A6

1.0

0.5

0.0

0.5

1.0

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9
Average

50%
Class 0

50%
Class 1

50%
Class 2

50%
Class 3

-0.19 -0.14 -0.85 -0.01 0.42 0.27 0.01 -0.81 0.19 -0.02 -0.12

-0.28 0.11 -0.76 -0.59 0.04 0.31 -0.09 -0.58 -0.14 -0.11 -0.12

-0.04 -0.16 -0.62 -0.87 0.18 -0.1 -0.45 -0.75 -0.42 -0.01 -0.11

0.04 0.01 -0.8 -0.24 0.67 0.35 0.02 -0.46 -0.05 -0.33 -0.1

ImageNet MNasNet W6A6

2

1

0

1

2

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9
Average

50%
Class 0

50%
Class 1

50%
Class 2

50%
Class 3

0.28 -0.15 0.03 -0.28 -0.33 -0.28 0.03 0.17 -0.3 -0.28 -0.03

0.33 -0.29 -0.19 -0.55 0.07 -0.1 0.55 0.15 -0.1 -0.28 -0.02

0.16 -0.25 -0.26 0.18 -0.15 -0.48 0.29 0.21 -0.13 -0.28 -0.02

0.18 -0.15 -0.5 -0.18 0.06 -0.62 -0.13 0.42 -0.45 -0.0 -0.03

ImageNet RegNetX600m W6A6

2

1

0

1

2

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9
Average

50%
Class 0

50%
Class 1

50%
Class 2

50%
Class 3

-0.28 0.0 -0.14 0.06 0.38 -0.31 0.12 -0.16 0.04 -0.65 -0.03

-0.28 -0.11 -0.12 0.09 0.33 0.04 0.03 -0.21 0.01 -0.33 -0.02

-0.28 -0.05 -0.25 0.28 0.3 -0.45 0.14 -0.41 -0.37 -0.54 -0.02

-0.28 0.15 0.03 0.24 0.36 -0.15 0.02 -0.39 -0.16 -0.65 -0.02

ImageNet RegNetX3200m W6A6

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Table 4. The influence of different numbers of calibration samples.
We report the mean±std over 50 runs on CIFAR-10.

Dataset Size 1 32 256 1024

CIFAR-10 ResNet20 W4A4

Average 88.0±0.53 88.0±0.30 88.0±0.21 88.1±0.18
Class 0 92.6±0.81 92.3±0.41 92.2±0.44 92.1±0.52
Class 1 92.3±0.80 93.0±0.52 93.2±0.46 93.1±0.33
Class 2 83.2±1.09 84.4±0.75 84.6±0.62 84.7±0.57
Class 3 77.8±1.70 76.6±0.87 76.4±0.70 76.3±0.69
Class 4 86.5±1.22 86.7±0.58 86.6±0.61 86.8±0.47
Class 5 81.7±1.65 81.5±0.71 81.4±0.67 81.6±0.50
Class 6 94.1±0.50 94.2±0.42 94.2±0.45 94.1±0.45
Class 7 89.4±0.69 89.4±0.57 89.5±0.47 89.7±0.53
Class 8 88.9±1.23 88.9±0.99 88.8±0.71 88.7±0.58
Class 9 93.5±0.50 93.5±0.47 93.2±0.43 93.3±0.41

CIFAR-10 ResNet32 W4A4

Average 87.8±0.62 87.8±0.29 87.7±0.21 87.7±0.24
Class 0 91.5±0.88 91.7±0.64 91.8±0.54 91.7±0.55
Class 1 93.5±0.71 93.8±0.39 93.8±0.36 94.0±0.46
Class 2 84.9±1.24 86.0±0.52 86.1±0.63 86.0±0.58
Class 3 69.8±2.39 68.1±1.06 67.4±1.02 67.3±0.85
Class 4 90.5±1.08 90.4±0.63 90.3±0.49 90.3±0.67
Class 5 81.7±1.80 81.4±0.86 81.4±0.77 81.1±0.60
Class 6 91.9±0.91 92.2±0.55 92.3±0.54 92.4±0.58
Class 7 88.8±0.77 89.4±0.55 89.4±0.45 89.3±0.47
Class 8 93.5±0.90 93.2±0.60 93.2±0.52 93.1±0.44
Class 9 92.0±0.67 91.5±0.50 91.5±0.40 91.5±0.38

CIFAR-10 ResNet44 W4A4

Average 87.5±1.10 87.4±0.47 87.3±0.39 87.2±0.17
Class 0 77.5±3.07 77.6±1.63 77.4±1.13 77.1±0.79
Class 1 90.5±1.34 90.7±0.57 90.9±0.52 90.8±0.50
Class 2 84.1±2.14 84.0±1.00 83.9±0.97 83.6±0.68
Class 3 87.2±1.35 88.3±0.94 88.3±0.80 88.8±0.56
Class 4 91.7±0.88 91.2±0.61 91.2±0.55 91.3±0.51
Class 5 79.0±1.90 78.4±0.76 78.2±0.79 77.7±0.51
Class 6 89.4±2.36 88.0±1.55 87.7±1.16 87.2±0.57
Class 7 88.1±1.25 87.8±0.73 87.5±0.73 87.5±0.50
Class 8 94.0±1.16 94.1±0.59 94.2±0.52 94.2±0.38
Class 9 94.1±0.71 94.0±0.42 94.1±0.42 94.2±0.27

CIFAR-10 ResNet56 W4A4

Average 89.3±0.80 89.4±0.19 89.4±0.19 89.3±0.16
Class 0 86.6±2.03 86.8±1.00 86.8±0.82 86.7±1.00
Class 1 90.9±1.55 91.3±0.44 91.2±0.58 91.0±0.54
Class 2 84.2±1.53 85.2±0.78 85.2±0.68 85.5±0.58
Class 3 85.1±1.53 84.6±0.96 84.8±0.84 84.8±0.71
Class 4 91.5±0.96 91.6±0.72 91.6±0.61 91.6±0.67
Class 5 78.2±1.94 78.0±1.10 77.9±1.13 77.4±0.92
Class 6 94.8±0.63 94.6±0.44 94.7±0.52 94.7±0.36
Class 7 91.7±1.33 92.3±0.49 92.1±0.51 92.0±0.46
Class 8 96.3±0.49 96.4±0.31 96.4±0.31 96.5±0.33
Class 9 93.6±0.68 93.5±0.51 93.4±0.43 93.4±0.42



Table 5. The influence of different numbers of calibration samples.
We report the mean±std over 50 runs on ImageNet.
Dataset Size 1 32 256 1024

ImageNet ResNet18 W6A6

Average 70.0±0.29 70.3±0.07 70.3±0.06 70.3±0.05
Class 0 85.0±1.08 84.2±0.65 84.3±0.69 84.3±0.73
Class 1 89.2±1.39 89.6±0.83 89.5±0.85 89.4±0.93
Class 2 83.9±0.84 83.4±0.98 83.6±1.0 83.3±1.18
Class 3 68.6±2.02 68.4±1.46 68.6±1.85 68.4±1.71
Class 4 90.8±1.44 90.4±1.73 90.0±1.85 89.9±1.7
Class 5 70.0±1.52 70.8±1.26 70.9±1.14 70.7±1.11
Class 6 79.0±1.97 79.3±1.48 79.2±1.64 78.8±1.39
Class 7 69.4±1.39 68.5±1.9 68.5±2.26 68.9±1.97
Class 8 86.4±2.34 87.9±1.72 88.1±1.76 88.5±1.54
Class 9 98.5±1.17 99.9±0.39 100.0±0.0 100.0±0.0

ImageNet ResNet50 W6A6

Average 76.2±0.3 76.3±0.05 76.3±0.04 76.3±0.05
Class 0 94.2±0.86 94.7±1.04 95.0±1.08 95.0±1.15
Class 1 89.8±2.21 93.1±1.15 93.2±1.12 93.5±1.17
Class 2 81.7±1.22 81.6±1.06 81.7±0.9 81.7±0.9
Class 3 83.8±1.77 83.8±1.94 84.2±1.51 84.3±1.5
Class 4 87.0±1.08 86.5±1.24 86.3±1.44 86.0±1.41
Class 5 75.1±2.27 75.8±2.29 75.6±2.37 75.2±1.96
Class 6 81.5±1.91 81.8±1.53 82.0±1.83 81.5±1.73
Class 7 71.8±2.71 72.4±2.36 72.8±2.0 73.1±2.2
Class 8 84.3±1.06 83.6±1.08 84.0±0.94 83.2±1.32
Class 9 99.9±0.62 100.0±0.28 100.0±0.28 100.0±0.28

ImageNet MobileNetV2 W6A6

Average 70.0±0.37 70.2±0.06 70.2±0.06 70.2±0.05
Class 0 90.5±1.1 91.0±1.08 91.0±1.08 91.0±1.08
Class 1 83.2±2.91 85.2±1.13 85.3±0.95 85.3±1.03
Class 2 74.4±2.34 74.2±2.46 74.0±2.38 73.3±2.18
Class 3 78.2±1.78 78.5±1.82 78.0±1.83 78.1±1.76
Class 4 79.0±1.8 78.1±1.92 78.2±1.87 77.9±1.92
Class 5 67.9±2.53 68.3±2.15 68.4±2.01 67.9±1.7
Class 6 69.4±2.54 69.2±2.66 69.9±2.31 69.8±2.01
Class 7 73.4±1.27 73.5±1.42 73.1±1.39 73.2±1.33
Class 8 88.1±2.43 88.5±1.59 87.9±2.09 88.6±1.67
Class 9 97.8±0.65 97.3±1.03 97.3±1.03 97.3±1.24

ImageNet MNasNet W6A6

Average 74.9±0.2 74.8±0.22 74.8±0.19 74.8±0.14
Class 0 95.5±1.19 96.0±1.44 96.0±1.41 95.9±1.2
Class 1 91.0±1.56 91.0±1.66 91.2±1.59 91.0±1.66
Class 2 81.2±2.66 80.3±2.05 79.5±2.87 79.6±2.7
Class 3 83.1±2.86 82.6±2.77 82.4±2.95 82.1±2.5
Class 4 80.8±2.62 82.0±2.91 82.0±2.21 82.0±2.21
Class 5 79.2±2.23 78.2±2.58 79.1±2.01 79.2±2.65
Class 6 79.0±3.28 79.5±2.29 79.9±2.65 80.2±2.46
Class 7 65.4±3.5 66.8±3.73 67.7±3.5 69.2±2.53
Class 8 90.0±2.19 89.0±2.31 88.9±2.3 88.5±2.49
Class 9 97.9±1.41 97.9±1.09 97.6±1.13 97.5±1.1

Table 6. The influence of different numbers of calibration samples.
We report the mean±std over 50 runs on ImageNet.

Dataset Size 1 32 256 1024

ImageNet RegNetx600M W6A6

Average 72.7±0.44 73.0±0.07 73.0±0.08 73.0±0.06
Class 0 90.4±1.4 90.7±1.04 90.4±0.77 90.3±0.93
Class 1 89.3±1.24 89.4±1.16 89.3±1.11 89.7±0.84
Class 2 75.2±1.49 75.9±2.09 75.8±1.86 76.6±1.57
Class 3 76.0±1.79 77.1±1.61 77.0±1.84 77.1±1.84
Class 4 90.0±1.79 89.1±1.84 89.9±1.49 89.9±1.85
Class 5 77.1±1.92 75.6±1.89 75.8±1.99 75.3±1.54
Class 6 76.2±2.55 76.9±2.72 77.0±2.37 77.5±2.55
Class 7 73.8±2.55 75.0±2.37 75.0±2.01 76.2±1.91
Class 8 83.0±2.44 83.8±1.64 83.4±1.79 83.3±1.86
Class 9 96.0±0.28 96.0±0.0 96.0±0.28 96.0±0.0

ImageNet RegNetx3200M W6A6

Average 77.8±0.21 77.9±0.07 77.9±0.07 77.9±0.06
Class 0 94.1±0.39 94.0±0.28 94.0±0.28 94.0±0.0
Class 1 90.9±1.07 91.8±0.6 91.8±0.65 91.9±0.39
Class 2 84.6±1.33 84.3±1.13 84.5±1.19 84.6±1.08
Class 3 84.6±1.28 85.9±0.93 85.9±1.01 86.0±0.63
Class 4 92.2±0.92 92.2±0.78 92.1±0.62 92.0±0.4
Class 5 87.7±1.7 87.3±1.94 87.6±1.63 87.5±1.69
Class 6 82.5±1.37 82.6±1.5 82.2±1.48 82.6±1.7
Class 7 72.4±1.99 72.4±1.39 72.5±1.73 73.2±1.6
Class 8 85.5±1.99 85.9±1.98 86.0±1.92 85.6±2.0
Class 9 99.4±0.98 99.5±0.88 99.4±0.93 99.3±0.95



Table 7. The influence of different metrics. We report the mean±std
over 50 runs on CIFAR-10.
Dataset Size Cosine KL MSE MinMax

CIFAR-10 ResNet20 W4A4

Average 88.3±0.14 87.1±0.28 88.0±0.21 79.4±1.18
Class 0 92.4±0.54 92.9±0.54 92.2±0.44 88.3±1.46
Class 1 92.0±0.36 94.0±0.45 93.2±0.46 88.4±1.27
Class 2 83.5±0.65 83.6±0.62 84.6±0.62 70.7±1.94
Class 3 79.2±0.51 73.8±0.85 76.4±0.7 73.2±1.78
Class 4 86.9±0.48 84.5±0.77 86.6±0.61 71.0±2.99
Class 5 81.7±0.54 81.1±0.79 81.4±0.67 72.1±1.71
Class 6 94.3±0.33 93.8±0.46 94.2±0.45 89.4±1.06
Class 7 90.1±0.48 88.5±0.57 89.5±0.47 86.3±0.7
Class 8 89.6±0.48 85.9±0.87 88.8±0.71 64.9±3.47
Class 9 93.7±0.33 92.7±0.42 93.2±0.43 90.0±0.66

CIFAR-10 ResNet32 W4A4

Average 88.1±0.19 86.4±0.48 87.7±0.21 73.9±1.42
Class 0 92.0±0.48 90.9±1.0 91.8±0.54 85.9±2.42
Class 1 92.9±0.37 94.3±0.45 93.8±0.36 88.6±1.02
Class 2 85.2±0.58 85.3±0.85 86.1±0.63 72.2±2.55
Class 3 70.2±0.87 64.9±1.69 67.4±1.02 45.1±2.62
Class 4 91.6±0.48 86.7±1.24 90.3±0.49 72.5±2.3
Class 5 81.8±0.61 82.3±1.67 81.4±0.77 62.0±3.35
Class 6 92.1±0.45 89.0±1.16 92.3±0.54 88.8±2.23
Class 7 88.6±0.46 89.9±0.67 89.4±0.45 78.7±3.01
Class 8 94.2±0.28 90.1±1.63 93.2±0.52 63.5±4.22
Class 9 92.1±0.37 90.3±0.84 91.5±0.4 81.5±2.97

CIFAR-10 ResNet44 W4A4

Average 87.9±0.31 85.1±0.51 87.3±0.39 62.6±5.08
Class 0 78.5±1.09 83.2±1.51 77.4±1.13 27.3±8.72
Class 1 89.8±0.48 91.2±0.87 90.9±0.52 68.2±7.1
Class 2 84.6±0.86 80.4±1.32 83.9±0.97 56.3±6.9
Class 3 87.6±0.68 87.7±0.88 88.3±0.8 88.2±1.43
Class 4 91.8±0.44 87.9±1.21 91.2±0.55 73.4±5.74
Class 5 79.6±0.77 70.0±1.79 78.2±0.79 64.8±3.74
Class 6 90.6±0.83 85.5±1.73 87.7±1.16 61.2±11.26
Class 7 88.1±0.61 83.0±1.23 87.5±0.73 56.6±6.58
Class 8 94.4±0.51 91.4±0.82 94.2±0.52 54.2±10.08
Class 9 94.2±0.41 90.3±0.88 94.1±0.42 76.2±4.44

CIFAR-10 ResNet56 W4A4

Average 89.1±0.17 85.7±0.69 89.4±0.19 72.7±3.12
Class 0 84.9±0.54 88.5±1.09 86.8±0.82 72.6±8.02
Class 1 89.7±0.52 94.3±0.7 91.2±0.58 78.9±6.8
Class 2 84.1±0.57 84.3±1.12 85.2±0.68 59.5±6.61
Class 3 85.6±0.69 77.5±2.2 84.8±0.84 81.5±4.02
Class 4 92.0±0.48 73.7±3.08 91.6±0.61 51.5±8.77
Class 5 77.8±0.63 78.7±2.03 77.9±1.13 65.3±4.89
Class 6 94.8±0.33 90.8±1.08 94.7±0.52 80.0±4.4
Class 7 91.7±0.46 87.0±1.45 92.1±0.51 76.1±3.69
Class 8 96.9±0.24 90.4±1.36 96.4±0.31 75.4±6.05
Class 9 93.9±0.36 91.7±0.63 93.4±0.43 86.0±3.56

Table 8. The influence of different metrics. We report the mean±std
over 50 runs on ImageNet.
Dataset Size Cosine KL MSE MinMax

ImageNet ResNet18 W6A6

Average 70.2±0.05 70.3±0.04 70.3±0.06 69.8±0.15
Class 0 84.7±0.95 84.5±0.88 84.3±0.69 84.8±0.98
Class 1 89.6±0.83 89.3±0.96 89.5±0.85 89.6±1.42
Class 2 83.2±1.12 83.6±1.31 83.6±1.0 84.9±1.51
Class 3 68.2±2.33 68.9±2.05 68.6±1.85 65.8±3.65
Class 4 91.1±1.07 91.0±1.34 90.0±1.85 86.6±2.41
Class 5 70.4±1.4 69.9±0.69 70.9±1.14 70.4±1.92
Class 6 79.4±1.65 78.8±1.2 79.2±1.64 79.8±2.25
Class 7 69.4±1.34 68.8±2.15 68.5±2.26 68.4±2.2
Class 8 88.0±1.47 87.8±1.9 88.1±1.76 87.2±1.96
Class 9 98.7±0.95 100.0±0.0 100.0±0.0 99.6±0.8

ImageNet ResNet50 W6A6

Average 76.3±0.05 76.3±0.06 76.3±0.04 75.7±0.29
Class 0 94.2±0.6 94.3±0.8 95.0±1.08 93.6±1.91
Class 1 91.4±1.0 92.9±0.99 93.2±1.12 94.8±1.14
Class 2 81.9±0.56 81.4±0.9 81.7±0.9 82.9±2.12
Class 3 84.8±1.5 84.4±1.73 84.2±1.51 83.5±3.01
Class 4 87.7±0.73 87.5±0.88 86.3±1.44 83.4±2.67
Class 5 75.6±2.15 76.9±2.23 75.6±2.37 78.2±2.22
Class 6 81.8±1.73 80.8±1.69 82.0±1.83 79.2±2.85
Class 7 70.7±2.1 70.1±2.51 72.8±2.0 74.4±2.65
Class 8 84.0±0.85 84.1±1.35 84.0±0.94 83.3±2.55
Class 9 100.0±0.0 100.0±0.28 100.0±0.28 99.1±0.99

ImageNet MobileNetV2 W6A6

Average 70.1±0.06 69.9±0.07 70.2±0.06 69.7±0.07
Class 0 90.6±0.9 91.2±0.97 91.0±1.08 90.7±1.1
Class 1 85.2±1.14 85.2±1.05 85.3±0.95 86.6±1.22
Class 2 75.5±2.61 73.3±2.45 74.0±2.38 68.4±2.1
Class 3 78.2±1.94 78.8±1.92 78.0±1.83 79.2±2.0
Class 4 79.9±1.13 78.0±1.81 78.2±1.87 77.0±2.41
Class 5 70.0±2.4 65.9±1.76 68.4±2.01 67.5±2.82
Class 6 69.8±2.03 70.2±2.51 69.9±2.31 70.7±3.29
Class 7 73.8±1.28 73.3±1.48 73.1±1.39 73.7±1.62
Class 8 88.6±1.89 89.9±1.67 87.9±2.09 88.4±2.33
Class 9 97.8±0.65 97.7±0.69 97.3±1.03 97.4±0.93

ImageNet MNasNet W6A6

Average 74.9±0.09 74.9±0.26 74.8±0.19 72.9±1.41
Class 0 95.0±1.08 95.9±1.35 96.0±1.41 95.9±1.62
Class 1 91.2±1.26 91.0±1.56 91.2±1.59 90.6±2.53
Class 2 82.2±2.16 81.8±2.15 79.5±2.87 74.6±5.24
Class 3 81.5±2.76 82.8±2.49 82.4±2.95 79.2±5.04
Class 4 81.4±2.33 81.0±1.84 82.0±2.21 75.8±4.79
Class 5 78.6±2.23 76.8±2.27 79.1±2.01 72.1±3.45
Class 6 80.3±2.15 82.6±1.92 79.9±2.65 77.9±3.33
Class 7 65.6±2.65 66.4±1.7 67.7±3.5 63.2±6.37
Class 8 88.5±1.72 90.1±1.83 88.9±2.3 89.2±3.92
Class 9 97.1±1.27 97.6±1.34 97.6±1.13 97.1±1.39



Table 9. The influence of different metrics. We report the mean±std
over 50 runs on ImageNet.

Dataset Size Cosine KL MSE MinMax

ImageNet RegNetx600M W6A6

Average 72.9±0.06 73.0±0.06 73.0±0.08 72.4±0.11
Class 0 90.2±0.72 90.6±1.16 90.4±0.77 90.3±1.46
Class 1 89.6±0.8 89.5±0.88 89.3±1.11 89.4±1.7
Class 2 76.2±1.59 75.8±1.54 75.8±1.86 76.0±2.56
Class 3 76.5±2.11 75.9±1.46 77.0±1.84 76.5±2.45
Class 4 90.8±1.64 90.3±1.74 89.9±1.49 88.2±2.67
Class 5 77.1±1.66 76.2±1.91 75.8±1.99 75.0±2.27
Class 6 75.6±2.63 77.4±2.31 77.0±2.37 76.7±2.67
Class 7 75.2±1.79 75.2±2.37 75.0±2.01 74.3±2.33
Class 8 83.0±1.84 83.9±1.32 83.4±1.79 82.3±2.28
Class 9 96.0±0.0 95.9±0.47 96.0±0.28 95.8±0.78

ImageNet RegNetx3200M W6A6

Average 77.9±0.04 77.9±0.06 77.9±0.07 77.1±0.14
Class 0 94.0±0.28 94.0±0.0 94.0±0.28 95.0±1.15
Class 1 90.8±1.2 91.4±1.02 91.8±0.65 92.4±1.74
Class 2 85.1±0.99 84.3±0.98 84.5±1.19 82.0±1.65
Class 3 84.6±1.29 85.4±0.93 85.9±1.01 85.0±2.09
Class 4 92.4±0.77 92.3±1.2 92.1±0.62 91.5±1.32
Class 5 87.7±0.93 89.1±1.34 87.6±1.63 86.9±2.08
Class 6 82.9±1.34 82.9±1.45 82.2±1.48 79.2±3.73
Class 7 74.0±1.52 70.8±1.6 72.5±1.73 73.0±1.84
Class 8 84.8±1.75 85.1±1.84 86.0±1.92 85.4±1.98
Class 9 100.0±0.0 100.0±0.28 99.4±0.93 97.8±0.67

Table 10. The influence of quantization settings on CIFAR-10.

Task CIFAR-10 ResNet20 CIFAR-10 ResNet32
bit-width W6A6 W4A4 W6A6 W4A4

Average 90.7±0.08 88.0±0.21 90.4±0.1 87.7±0.21
Class 0 90.1±0.27 92.2±0.44 93.5±0.3 91.8±0.54
Class 1 95.8±0.19 93.2±0.46 95.8±0.22 93.8±0.36
Class 2 88.5±0.3 84.6±0.62 90.8±0.3 86.1±0.63
Class 3 82.6±0.51 76.4±0.7 77.4±0.41 67.4±1.02
Class 4 90.8±0.27 86.6±0.61 90.0±0.35 90.3±0.49
Class 5 85.5±0.33 81.4±0.67 84.4±0.35 81.4±0.77
Class 6 92.1±0.28 94.2±0.45 94.6±0.3 92.3±0.54
Class 7 93.2±0.29 89.5±0.47 89.5±0.26 89.4±0.45
Class 8 93.1±0.21 88.8±0.71 94.3±0.29 93.2±0.52
Class 9 94.8±0.21 93.2±0.43 93.6±0.2 91.5±0.4

Table 11. The influence of quantization settings on CIFAR-10.

Task CIFAR-10 ResNet44 CIFAR-10 ResNet56
bit-width W6A6 W4A4 W6A6 W4A4

Average 92.1±0.1 87.3±0.39 92.9±0.11 89.4±0.19
Class 0 92.0±0.28 77.4±1.13 93.1±0.28 86.8±0.82
Class 1 96.7±0.2 90.9±0.52 96.6±0.22 91.2±0.58
Class 2 90.8±0.31 83.9±0.97 90.6±0.39 85.2±0.68
Class 3 86.4±0.35 88.3±0.8 86.5±0.36 84.8±0.84
Class 4 92.5±0.25 91.2±0.55 94.2±0.33 91.6±0.61
Class 5 86.9±0.35 78.2±0.79 87.9±0.42 77.9±1.13
Class 6 92.0±0.36 87.7±1.16 94.8±0.21 94.7±0.52
Class 7 93.9±0.26 87.5±0.73 94.1±0.31 92.1±0.51
Class 8 95.3±0.26 94.2±0.52 95.5±0.22 96.4±0.31
Class 9 94.6±0.26 94.1±0.42 95.7±0.21 93.4±0.43

Table 12. The influence of quantization settings on ImageNet.
Task ImageNet ResNet18 ImageNet ResNet50

bit-width W8A8 W6A6 W8A8 W6A6

Average 70.9±0.03 70.3±0.06 76.6±0.03 76.3±0.04
Class 0 86.0±0.0 84.3±0.69 93.4±1.47 95.0±1.08
Class 1 86.8±0.97 89.5±0.85 93.8±0.54 93.2±1.12
Class 2 78.6±1.29 83.6±1.0 82.0±0.0 81.7±0.9
Class 3 69.1±1.07 68.6±1.85 83.8±0.65 84.2±1.51
Class 4 88.0±0.0 90.0±1.85 85.0±1.08 86.3±1.44
Class 5 72.0±0.0 70.9±1.14 78.8±1.39 75.6±2.37
Class 6 74.6±1.23 79.2±1.64 75.2±1.45 82.0±1.83
Class 7 68.1±0.39 68.5±2.26 71.5±1.99 72.8±2.0
Class 8 86.8±1.05 88.1±1.76 82.9±1.21 84.0±0.94
Class 9 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.28

Task ImageNet MobilenetV2 ImageNet MNasNet
bit-width W8A8 W6A6 W8A8 W6A6

Average 72.0±0.03 70.2±0.06 76.4±0.04 74.8±0.19
Class 0 91.9±0.47 91.0±1.08 97.0±1.0 96.0±1.41
Class 1 92.0±0.0 85.3±0.95 89.6±0.87 91.2±1.59
Class 2 88.8±1.07 74.0±2.38 86.9±1.39 79.5±2.87
Class 3 79.2±1.05 78.0±1.83 81.5±2.02 82.4±2.95
Class 4 83.0±1.0 78.2±1.87 84.4±1.68 82.0±2.21
Class 5 68.6±1.66 68.4±2.01 76.3±1.27 79.1±2.01
Class 6 78.8±1.27 69.9±2.31 75.9±1.67 79.9±2.65
Class 7 77.0±1.22 73.1±1.39 70.8±1.33 67.7±3.5
Class 8 86.0±0.0 87.9±2.09 90.0±0.0 88.9±2.3
Class 9 96.1±0.39 97.3±1.03 96.0±0.0 97.6±1.13

Table 13. The influence of quantization settings on ImageNet.
Task ImageNet RegNet600 ImageNet RegNet3200

bit-width W8A8 W6A6 W8A8 W6A6

Average 73.5±0.04 73.0±0.08 78.5±0.03 77.9±0.07
Class 0 92.0±0.0 90.4±0.77 94.0±0.0 94.0±0.28
Class 1 88.0±0.85 89.3±1.11 90.0±0.28 91.8±0.65
Class 2 76.9±1.15 75.8±1.86 85.8±0.65 84.5±1.19
Class 3 78.1±0.84 77.0±1.84 84.0±0.28 85.9±1.01
Class 4 85.2±1.74 89.9±1.49 92.0±0.28 92.1±0.62
Class 5 75.5±0.94 75.8±1.99 85.5±1.25 87.6±1.63
Class 6 79.6±1.25 77.0±2.37 84.8±0.98 82.2±1.48
Class 7 71.7±1.55 75.0±2.01 72.9±1.0 72.5±1.73
Class 8 88.0±0.0 83.4±1.79 86.1±1.6 86.0±1.92
Class 9 96.0±0.0 96.0±0.28 100.0±0.0 99.4±0.93


