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ABSTRACT

We present an efficient transfer-learning framework that reparameterizes a state-of-
the-art detector backbone—instantiated with a YOLO-family model—for polygon-
based instance segmentation. Our key idea is a Receptive-Field Prior: the largest-
receptive-field block (P5) of the backbone, pretrained for detection, is kept fixed
to preserve global object context, while intermediate low-level blocks (P3–P4)
are fine-tuned for boundary precision. We formalize this with a block-diagonal
Gaussian prior on backbone weights, yielding a MAP objective that acts as implicit
adaptation. Multi-scale features from P3–P5 are fused in a attentive decoder to
predict per-instance polygons. Experiments show strong and stable performance
compared with scratch training or naı̈ve tuning strategy. This approach1 highlights
that carefully constrained reuse of high-level detector features—guided by an
explicit inductive bias—can yield strong segmentation.

1 INTRODUCTION

Inductive bias—architectural constraints that shape the hypothesis space—is a principal driver of
generalization in vision models. Classic CNNs hard–code translation equivariance and locality,
while recent hybrids interleave convolution and attention to couple fine detail with global scene
context (Liu et al., 2021; Wang et al., 2018; Liu et al., 2022; Woo et al., 2023). Such designs yield
pyramidal hierarchies whose high–resolution stages capture boundaries and textures, and whose
low–resolution stages aggregate semantics over large receptive fields. These hierarchies transfer well
across tasks: detector backbones provide geometry–aware mid–level cues and dense heads refine
them into pixel–accurate segmentations (Kirillov et al., 2019; Cheng et al., 2022). Yet how to preserve
useful priors during fine–tuning remains open. Full freezing curbs adaptation under domain shift; full
fine–tuning expands the search space, slows convergence, and can overwrite global context (Xuhong
et al., 2018).

Premise. We observe that the largest receptive–field block (P5) of modern detectors—already
enhanced with efficient attention in YOLOv12 (Tian et al., 2025)—encodes stable scene–level
structure that is especially valuable for polygonal instance segmentation. We therefore anchor
global semantics by freezing P5 and adapt only P3–P4, multi–scale decoder that performs a single
area–restricted fusion at the P5→P4 interface. This early–adaptive, context–aware recipe sharpens
boundaries, reduces texture overfitting, and accelerates convergence.

Contributions.

• Receptive–Field Prior. We cast transfer as MAP with a block–diagonal Gaussian over
backbone weights (Sec. 3.2), unifying a δ–prior on P5 (hard freezing) with zero–mean decay
on adaptable blocks in a single objective Eq. 2.

• Targeted Global-to-Local Fusion. We introduce a multi–scale decoder that concentrate
s area–restricted attention once at the P5-to-P4 fusion, while keeping the context-aligned
fusion; this focuses long–range cues exactly where mid–level features benefit most.

• Automatic BBox-to-Polygon Mining for Transfer. To leverage box–only corpora under
background/label shift, we propose a simple mining module that converts detector boxes

1Our framework (code & dataset) will be released upon acceptance as Ultralytics-compatible pipeline.
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into polygon pseudo–masks via candidate segmentation, multi–metric ranking, and contour
simplification (Sec. 3.5); integrating these pseudo–polygons into our RF–prior pipeline
yields further gains in boundary metrics with little to no inference overhead.

2 RELATED WORK

2.1 INDUCTIVE BIAS AND TRANSFER REGULARIZATION

Pyramidal backbones encode complementary scales by design; preserving their semantics during
fine–tuning is key for generalization. L2–SP contracts parameters toward source weights and mitigates
catastrophic drift (Xuhong et al., 2018; Chen & Liu, 2022), while subnetwork freezing is used to
retain global attention patterns in large–vision models (e.g., ViT–R (Zhai et al., 2022)). Our work
adopts a MAP view in which a block–diagonal prior fixes the top semantic block (P5) via a δ–prior
and regularizes adaptable blocks with zero–mean decay, balancing stability and capacity (Sec. 3.2)
More information of cross-task representation reuse are included in Appendix§A.1.

2.2 GLOBAL CONTEXT FOR DENSE PREDICTION

Non–local operators (Wang et al., 2018), criss–cross attention (Huang et al., 2019), and transformer
(SETR (Zheng et al., 2021), SegFormer (Xie et al., 2021), DETR-like methods (Li et al., 2023)) inject
global context but can be costly at high resolution. Area–restricted attention from the YOLOv12
family (Tian et al., 2025) offers a compute–aware alternative. Placing a single attention site at the
stride–32 to 16 fusion is a targeted compromise that preserves long–range cues while keeping the
highest–resolution stage lightweight (Sec. 3.3). We introduce, in Sec. 3.2–3.4, a prediction framework
that leverages a prior structure and decoder to enable context-aligned interactions and implicit (model
↔ latent space) optimization using decoder-coupled weight decay ξ.

2.3 AUTOMATIC BOX-TO-POLYGON PRIORS

Weakly and box–supervised segmentation has long converted coarse boxes into usable mask supervi-
sion via proposal mining and regularization, with BoxSup (Dai et al., 2015) and the “Simple Does It”
line (Khoreva et al., 2017) as early milestones, and instance–level formulations such as BoxInst (Tian
et al., 2021). Promptable segmenters like SAM (Kirillov et al., 2023) enable mask proposals from
box prompts, while vision–language models such as CLIP (Radford et al., 2021) provide semantic
filtering to favor class–consistent candidates. We situate our approach within this literature by using
automatically mined polygons—obtained through proposal selection and contour simplification—as
additional priors during transfer. Unlike heavy multi–stage pipelines, our integration couples mined
polygons with an RF PRIOR and a Attentive Decoder, emphasizing boundary quality while retaining
throughput.

3 METHODOLOGY

3.1 PRELIMINARIES

Notation. Given x∈R3×H×W , the backboneBθbb
produces a feature pyramid {F3, F4, F5} at strides

{8, 16, 32}. We decompose θbb = [θb; θ5] and freeze θ5 to preserve large–receptive–field semantics
inherited from detection; θb (P3/P4) and the decoder Hθseg

are optimized for segmentation. The head
upsamples and fuses {F3, F4, F5} to logits M̂ ∈ RC×H×W , with masks M = σ(M̂). Intuition. F5

supplies global layout/category priors, while lower stages sharpen boundaries and local geometry.

3.2 RECEPTIVE-FIELD PRIOR

Let θbb = [θ3;θ4;θ5] denote backbone blocks (P3–P5) producing Fℓ = Bθℓ
(Fℓ−1) with receptive-

field radii R3 < R4 < R5. We freeze P5 to the detector initialization θ0,5 and fine-tune P3/P4 with
SGD (with momentum; L2 weight decay). From a MAP perspective, this induces a block–diagonal
prior (Fig. 1-a):

p(θbb) ∝ exp
(
− 1

2

[
θ3
θ4

]⊤
diag(ξ3I, ξ4I)

[
θ3
θ4

])
δ(θ5 − θ0,5), (1)

where ξ3,4 coincide with the L2 weight–decay coefficients on P3/P4, and the delta factor encodes the
hard freeze of P5 at θ0,5.

2
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Figure 1: Overview of the proposed transfer-learning scheme. A YOLOv12-x backbone produces
multi-scale features P3–P5, where P5 (blue) is attention-augmented with the largest receptive field and
is frozen as the RF PRIOR. During segmentation fine-tuning, only P3/P4 (gray) and the segmentation
head receive ∇Lseg updates. The segmentation head fuses P3, P4, and the fixed P5 context to predict
instance masks.

Objective. On Dseg = {(xi, yi)}Ni=1 we minimize

LCC(θ) =

N∑
i=1

ℓseg
(
Hθseg

◦Bθbb
(xi), yi

)︸ ︷︷ ︸
Unified loss in Sec. 3.6

+
ξ3
2
∥θ3∥22 +

ξ4
2
∥θ4∥22, s.t. θ5 = θ0,5. (2)

Update dynamics. For block ℓ∈{3, 4} with step size ηℓ, we employ SGD with momentum coefficient
µ ∈ [0, 1) and maintain a velocity vℓ:

vt+1
ℓ = µ vtℓ + g t

ℓ + ξℓ θ
t
ℓ, (3)

θt+1
ℓ = θt

ℓ − ηℓ v
t+1
ℓ , g t

ℓ = ∇θℓ
ℓseg(θ

t), (4)

while the hard constraint yields θt+1
5 = θ0,5. Writing θℓ = θ0,ℓ +∆ℓ (detector init + change) makes

the forgetting bias explicit:

∆t+1
ℓ = (1− ηℓξℓ)∆

t
ℓ − ηℓ

(
µ vtℓ + g t

ℓ + ξℓ θ0,ℓ

)
. (5)

Thus, standard L2 weight decay does not preserve θ0,ℓ; it shrinks both the initialization and the
task-driven change toward 0, whereas the P5 freeze preserves global semantics exactly (∆5=0). (If
Nesterov momentum is used, replace g t

ℓ in the first line with ∇θℓ
ℓseg(θ

t − ηℓµv
t
ℓ); the rest remains

analogous.)

Receptive-field locality and polygon adaptation. Backpropagated gradients into block ℓ aggregate
supervision from a spatial neighborhood NRℓ

(x):

g t
ℓ ≈

∑
u∈NRℓ

(x)

J t
ℓ(x, u)

⊤ ∂ℓseg
∂F t

ℓ (u)
, (6)

with Jℓ the feature Jacobian. Since R3 < R4 ≪ R5 and θ5 is frozen, updates concentrate on P3/P4
near polygon boundaries where ∂ℓ/∂Fℓ is large. Eq. 5 then yields compact yet plastic adjustments in
P3/P4 (via the factor (1− ηℓξℓ)).

Context modulation under a frozen P5. Although θ5 is frozen, the P5 block applies intra-scale area
attention in an input-conditioned manner. Let

F̂5(x) = Bpre
θ5

(
F4(x)

)
, A(x) = Aself

(
F̂5(x);θA

)
∈ [0, 1]H/32×W/32,

3
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and define the P5 backbone output as

F5(x) = A(x)⊙ F̂5(x),

with θ5 and θA held fixed during training (no parameter updates). Because both A and F̂5 depend on
the input x (and on F4, which adapts via θ3,4),

∂F5(x)

∂x
=

∂A

∂F̂5

∂F̂5

∂x
⊙ F̂5 + A⊙ ∂F̂5

∂x
̸= 0.

Moreover, across training steps t, the evolving lower blocks imply
F t+1
5 (x) − F t

5 (x) ̸= 0 even though θ5,θA remain fixed.
The decoder then consumes (F5, F4, F3); cross-scale fusion therein aligns the P5 context with the
evolving lower stages and the head.

3.3 MULTI-SCALE ATTENTIVE DECODER

We propose a decoder that adapts the global context encoded by our RF PRIOR to local evidence.
This design strengthens cross-scale interaction, enabling more effective fusion of prior-driven global
cues with local features (see Figure 1-b,c).

Near-global context via SPPF. We adopt the expansion a stride–preserving SPPF (Jocher, 2023)
on F5 yields S = [P(0)

k (F5)∥P(1)
k (F5)∥P(2)

k (F5)∥P(3)
k (F5)], with P(0)

k ≡ Id and P(ℓ)
k =Pk◦P(ℓ−1)

k ;
F̃5 = ϕ1×1(S) reprojects to the decoder width. Stacking stride–1 pooling enlarges the effective RF
additively, RL = 1 + L(k−1) (e.g., k=5, L=3⇒ RL=13 at stride 32).

C2f/A2C2f parametric form. For X∈RB×Cin×H×W ,

C2f(X; c, r, s, g, e) = P
(c)
1×1

(
Cat

[
X, ψ(1)(X), . . . , ψ(r)(X)

])
,

where each ψ(i) is a bottleneck with expansion e, groups g, and internal shortcut flag s∈{0, 1}; c is
the output width and r the repeat count. Let U = C2f(X; c, r, s, g, e). Area-restricted attention is
then defined by

Q = UWQ, K = UWK , V = UWV , WQ,WK ,WV ∈ RC×d,

and a partition {Ar}ar=1 of the spatial grid, with

Y =
( a⊕

r=1

softmax
(QArK

⊤
Ar√

d

)
VAr

)
WO, WO ∈ Rd×C .

We write Aa(U) = Y and define the gated variant

A2C2f(X; c, r, s, g, e, a, γ) = U + γ Aa(U), γ ∈ RC .

Top–down fusion with a single attention site. Attention is enabled at the F5⊕F4 fusion; the
subsequent high–resolution stage uses C2f (Jocher, 2023). With channel widths and repeats fixed to
(c4, r4, s4) = (512, 2, 0) at stride 16 and (c3, r3, s3) = (256, 2, 0) at stride 8, we write

C4 = Cat
[
↑2 (F̃5), F4

]
, Ĉ4 = P

(c4)
1×1 (C4), G4 = A2C2f

(
Ĉ4; c4, r4, s4, g=1, e=1, a=4, γ

)
,

C3 = Cat
[
↑2 (G4), F3

]
, Ĉ3 = P

(c3)
1×1 (C3), G3 = C2f

(
Ĉ3; c3, r3, s3, g=1, e=1

)
. (7)

Complexity. For Y = Aa(Z) with N=HW , area partitioning gives O(N2/a) time/memory; we use
a=4 at stride 16 to concentrate attention where global→local alignment is most beneficial.

3.4 GLOBAL-TO-LOCAL GRADIENT FLOW

Let W 5→4
q denote the query projection drawing from F5 when attending into F4. Although θ5 is

frozen, the attention path is trainable and yields
∂ℓseg
∂F5

=
(
W⊤q

(
A⊙ ∂ℓseg

∂Z

))
R,

with attention map A and reshape R. Interpretation. The decoder aligns shallow features to the global
template in F5 by implicitly reducing E =

∑
k

∥∥F5,k − ϕ(F4,k)
∥∥2 + ∥∥F5,k − ϕ(F3,k)

∥∥2, where ϕ is
learned projection into the query-aligned space (see Figure 1-c).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.5 AUTOMATIC BBOX-TO-POLYGON GENERATION

We verify the applicability of our transfer-learning framework to real-shifted (background, label)
proposed data by polygonizing bbox-only annotations and using them in the transfer stage (Fig. 1-d,e).
From a YOLO box l = (c, ĉx, ĉy, ŵ, ĥ), we denormalize to B = [x1, y1, x2, y2] and prompt SAM to
obtain candidates {Mk}Kk=1. For each Mk, we compute IoUk = |Mk∩B|

|Mk∪B| , Coverk = |Mk∩B|
|Mk| , and an

optional CLIP score sclip
k = cos

(
fimg(I⊙Mk), ftext(tc)

)
. After per-metric min–max scaling, we rank

with Sk = α ĨoUk + β s̃clip
k + γ C̃overk; if any IoUk≥τ we take the pixelwise union

∨
k:IoUk≥τ Mk,

else we choose argmaxk Sk. The selected mask is polygonized via Douglas–Peucker with tolerance
ε (Ramer, 1972; Douglas & Peucker, 1973), vertices are clipped to B, re-normalized by (W,H), and
emitted as [c, x̂1, ŷ1, . . . , x̂n, ŷn].

Design rationale. (1) Multi-mask union. SAM can partition a single object; an IoU gate (IoU≥τ )
with pixelwise union consolidates parts while suppressing off-box regions. (2) Scoring. IoU enforces
geometric consistency with the box, Cover penalizes off-box leakage, and CLIP helps disambiguate
candidates without altering the given class c. Per-metric min–max normalization calibrates scales
so (α, β, γ) are comparable. (3) Polygonization & clipping. Douglas–Peucker simplifies boundaries;
clipping to B guarantees consistency with the source box; degenerate cases (<3 vertices) fall back to
the rectangle. (4) Compatibility. The emitted YOLO-Polygon preserves c and is directly usable in
second stage transfer. Our bbox2poly generation can be found in Algorithm 1.

3.6 UNIFIED OPTIMIZATION

We use SGD with momentum and L2 weight decay, together with a short warm-up followed by
a linear learning-rate decay (from an initial rate η0 to a final rate ηfinal over 30 epochs), and a
YOLO-style multi-task loss:

L = λbox CIoU+λcls BCE+λdfl DFL+λmaskLmask, (8)

Lmask =
1∑
i s

∗
i

∑
i

s∗i
Ai

∑
p∈Ω(b∗i )

BCE
(
m̂i(p), mi(p)

)
. (9)

s∗i objectness score, Ai box area, p pixel, b∗i GT box, mi, m̂i GT/pred. masks.

Objectness-/area-normalized mask loss balances small/large instances. Freezing P5 reduces memory (enabling
larger batch and stability), while the RF PRIOR (Eq. 2) preserves detector semantics during transfer.

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENT SETUP

Datasets. Three splits are derived from the SIDEGUIDE traffic-scene corpus (Park et al., 2020), all sharing the
same 35 object categories. (i) BBox–DS is a randomly sampled, down-scaled version of the original bounding-box
annotations (max side 512 px); it provides high-level context priors for the detector. (ii) PolySeg contains pixel-
accurate polygon labels converted to YOLO-style masks. (iii) SurfaceMask consists of coarse surface masks
for road-layout understanding, integrated with the class indices as PolySeg so results are directly comparable
for Instance Segmentation. We additionally introduce the Fixed Objects dataset and categorize all four datasets
along two axes—Background (BG) and Label–Space (LS) shift—relative to BBox–DS, our prior source. (1)
Background (BG) shift—changes in scene/background statistics or capture context; (2) Label-Space (LS)
shift—changes in the category vocabulary or mask type of label.

PolySeg keeps the same 35 classes as BBox–DS but switches from boxes to polygons; the mask–space supervision
and per-image region differences induce a moderate LS and mild BG shift. SurfaceMask is polygon-based with

Table 1: Summary of Datasets. We define datasets as Background (BG) and Label-Space (LS) shift.

Custom of SIDEGUIDE & New Dataset
Datasets (#images) Dataset Type cls train set val. set total

BBox–DS (Park et al., 2020) Prior Source 29 20,097 2,233 22,330
PolySeg (Park et al., 2020) BG shift ▲, LS shift ▲ 29 66,082 7,342 73,424

SurfaceMask (Park et al., 2020) BG shift ✓, LS shift ✓ 6 41,759 4,640 46,399
Fixed Objects (Proposed) BG shift ▲, LS shift ✓ 15 13,577 1,543 15,120

5
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(a) PRETRAINING (b) FULL FT (c) P5 FROZEN (d) RF PRIOR

Figure 2: Attention map visualization (Selvaraju
et al., 2017) of PolySeg sample for each model’s
trained backbone, θbb. The mismatch energy E =∑

k ∥F5,k − ϕ(F4/3,k)∥2 (Eq. 3.4), is minimized
when attention collapses to the frozen P5 context,
as visualized.

(a) PRETRAINING (b) FULL FT (c) P5 FROZEN (d) RF PRIOR

Figure 3: Attention map visualization (Selvaraju
et al., 2017) of SurfaceMask for each model’s
trained backbone, θbb. The mismatch energy E =∑

k ∥F5,k − ϕ(F4/3,k)∥2 (Eq. 3.4), is minimized
when attention collapses to the frozen P5 context,
as visualized.

surface-centric labels that differ from BBox–DS; although the domain is traffic scenes, images emphasize road
surfaces, yielding strong LS and noticeable BG shift. Fixed Objects (Proposed) shares the pedestrian/crosswalk
background with BBox–DS/PolySeg but uses a different label set focused on fixed infrastructure, thus showing a
clear LS and small BG shift (Table 1 summarizes these relations and Appendix§A.2 formalizes it).
Implementation details. A YOLOv12-x backbone with an information-separated design is used: Models are
pre-trained for 500 epochs with image size 640× 640, batch size 8, using an RTX Quadro A6000 (24 GB &
fine-tuning for SIDEGUIDE). and A100 (40GB & fine-tuning for Fixed Objects) in mixed precision. All other
hyper-parameters follow Ultralytics defaults.
Evaluation protocol. We report precision, recall, COCO-style mAP50 and mAP50:90 for boxes, and mask mAP
for polygons. We report the final-epoch score and the per-epoch mean ± std.dev. to track early-stage adaptation
within 30, 50 epochs and additional adaptation steps.

4.2 ABULATION STUDIES AND PRIOR VISUALIZATION

Experiments are organized as follows:

(1) No Pretraining: Segmentation training from scratch. (2) Full Fine-tuning: No parameters frozen
in ℓseg learning, with transferring pretrained BBox-DS, θdet.bb. (3) P5 Frozen: P1–P4 adaptive,
P5 fixed in ℓseg learning, with transferring pretrained BBox-DS, θdet.bb. (4) Proposed Method
(RF PRIOR): Decoupled backbone, with Multi-Scale Attentive Decoder in LCC. Task is to transfer
the non-overlapping, fine-grained polygon cues provided by SIDEGUIDE—namely PolySeg and
SurfaceMask—and Fixed Objects into the BBox-DS backbone, so that pedestrian-related objects can

Table 2: Performance comparison in Instance Segmentation
#Efficiency fw(.) POLYSEG SURFACEMASK meanscore gain over BASE*

Models FPS/GFLOPs SRI∗ mAP val
50 mAP val

50:90 mAP val
50 mAP val

50:90 overall val mAP val

YOLOv9-E (Wang et al., 2024) 19.6/1.24 0.58 46.56 27.62 75.59 59.68 2.90 2.13
YOLOv11-X (Khanam et al., 2024) 36.1/1.60 1.38 46.01 27.41 74.64 59.22 1.15 1.39

YOLOv12-X Backbone (Tian et al., NeurIPS 2025)
NO PRETRAINING (BASE)∗ 25.8/1.62 1.00 43.92 26.04 74.73 59.61 - -

FULL FINE-TUNING 25.8/1.62 1.00 44.25 26.22 74.07 59.31 −1.27 −0.72
P5 FROZEN 25.9/1.62 1.01 42.95 25.32 74.14 59.58 −0.60 −0.60

RF PRIOR (OURS) 25.2/3.93 2.34 48.42 28.25 75.15 60.15 3.52 3.19

6
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Table 3: Performance comparison of box (B) and mask (M) metrics on val. set; last-epoch and
second-best results.

SIDEGUIDE FOR DETECTION AND INSTANCE SEGMENTATION (Park et al., 2020)
Models P (B) R (B) mAP val

50 (B) mAP val
50:90 (B) P (M) R (M) mAP val

50 (M) mAP val
50:90 (M)

v9-E (Wang et al., 2024) 71.09 70.20 49.85 50.09 55.17 54.97 41.91 41.72 69.69 69.49 46.97 46.64 51.15 51.30 33.25 33.15

v11-X (Khanam et al., 2024) 66.08 68.82 47.89 47.68 53.93 53.47 40.97 40.58 67.64 66.95 45.39 45.59 50.58 50.15 33.03 32.83

NO PRETRAINING 66.61 66.28 47.15 46.65 52.30 52.04 39.51 39.31 65.41 64.72 44.70 44.64 49.08 48.86 32.08 31.95

⌞ (50 epochs) 67.95 67.62 49.61 49.95 54.72 54.57 41.84 41.71 69.54 69.27 45.66 45.83 51.25 51.12 33.53 33.47

FULL FINE-TUNING 69.38 68.91 44.97 44.88 51.53 51.15 38.78 38.42 67.72 66.85 43.11 43.01 48.30 47.92 31.48 31.22

P5 FROZEN 63.58 64.10 46.77 46.09 51.61 51.26 38.99 38.71 63.38 66.56 44.04 43.48 48.41 48.13 31.57 31.36

RF PRIOR 70.22 69.48 51.55 51.49 56.95 56.63 42.09 41.84 68.08 67.95 48.91 48.08 52.86 52.56 33.81 33.71

⌞ (50 epochs) 75.84 74.52 56.69 57.08 63.61 63.21 48.26 47.96 75.11 73.96 52.99 52.87 58.98 58.66 37.87 37.64

Table 4: Performance comparison of box (B) and mask (M) metrics on val. set; mean ± standard
deviation (percentage points) over all epochs.

SIDEGUIDE FOR DETECTION AND INSTANCE SEGMENTATION (Park et al., 2020)
Models P (B) R (B) mAP val

50 (B) mAP val
50:90 (B) P (M) R (M) mAP val

50 (M) mAP val
50:90 (M)

v9-E (Wang et al., 2024) 65.53±7.20 42.09±8.54 46.72±9.98 34.52±8.31 64.59±6.73 40.15±8.04 43.94±9.19 28.05±6.31

v11-X (Khanam et al., 2024) 64.67±7.05 40.13±7.84 45.08±9.62 33.15±8.03 63.95±6.81 38.24±7.41 42.38±8.93 27.19±6.24

NO PRETRAINING 64.93±6.54 39.01±7.39 43.86±9.21 32.16±7.71 63.88±6.22 37.29±6.99 41.38±8.57 26.51±6.01

⌞ (50 epochs) 64.43±7.28 39.34±10.85 48.03±14.19 32.08±12.25 65.08±7.17 37.06±9.68 44.45±13.26 25.30±10.60

FULL FINE-TUNING 62.68±7.62 35.71±7.67 40.53±9.71 29.44±8.06 61.59±7.31 34.22±7.34 38.16±9.01 24.34±6.33

P5 FROZEN 63.33±6.14 38.82±7.47 43.11±9.08 31.53±7.57 63.03±6.11 36.98±7.04 40.52±8.42 25.97±5.91

RF PRIOR 64.86±6.44 42.68±8.19 47.60±9.54 34.19±7.80 64.23±5.92 40.16±7.50 44.27±8.71 27.99±6.00

⌞ (50 epochs) 68.20±6.50 47.13±8.46 52.58±9.66 38.51±8.12 67.16±5.90 44.34±7.81 48.89±8.87 31.08±6.04

be segmented and detected with higher fidelity. Earlier studies on task transfer focused on COCO-
scale pre-training, progressive fine-tuning, or freezing all layers before a chosen stage (Vazquez et al.,
2025; Gandhi & Gandhi, 2025). In contrast, we examine a subtler, label-level shift: how performance
changes within a similar domain when annotation granularities and object types differ, rather than
when the entire visual domain changes. To this end, we design alignment-aware learning schemes that
explicitly account for spatial mis-alignment and category mismatches between the two label spaces.

4.3 RESULTS

Table 2 reports performance for each segmentation sub-task. To show that a small architectural
tweak can still transfer well, we introduce the Speed-Retention Index (SRI). We define SRIi =
(Fi × Gi)

/(∗
Fbase × Gbase

)
. Our custom head raises GFLOPs (G; We report GFLOPs scaled by

10−2) by 2.4 × yet reaches an SRI of 2.34, holding FPS (F ) loss below 3 % thanks to the memory-
bound regime and higher TensorCore utilization. Thus, it improves accuracy while maintaining
real-time inference (25 FPS) on an NVIDIA A100 system. RF PRIOR achieves the top mAP
on both PolySeg and SurfaceMask. Compared with a 50-epoch, target-focused fine-tune, it raises
mAP(50–90), confirming that our Maximum-A-Posteriori formulation boosts accuracy without cross-
dataset bottlenecks. Figures 2, 3, 5, 6 illustrate why: in PolySeg, class-specific polygon cues emerge
coherently across P3–P5, while in SurfaceMask the model attends to separable polygon lines within
the difficult road-surface class over the same feature levels, aligning low- and high-level evidence for
stronger segmentation. Details under varying training conditions are provided in Figures 7, 8, 9.

4.3.1 DETECTION AND SEGMENTATION ON SIDEGUIDE

On SIDEGUIDE (Tables 3–4), all rows except those explicitly marked “(50 epochs)’’ are trained
for 30 epochs. Under this budget, RF PRIOR delivers the strongest last-epoch performance across
detection and instance segmentation, reaching mAPval

50 =56.95 / 52.86 and mAPval
50:90=42.09 / 33.81

for B/M, respectively, which clearly exceeds No Pretraining (52.30/49.08 and 39.51/32.08) and Full
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Table 5: Performance comparison of box (B) and mask (M) metrics on val. set; Top three rows show
last-epoch and second-best results. Second rows show mean ± standard deviation over all epochs.

FIXED OBJECTS FOR DETECTION AND INSTANCE SEGMENTATION

Models P (B) R (B) mAP val
50 (B) mAP val

50:90 (B) P (M) R (M) mAP val
50 (M) mAP val

50:90 (M)

Adaptation steps=16.98k, A2C2f scale=1.2 (Tian et al., 2025)

NO PRETRAINING 79.77 76.98 64.28 62.06 72.00 68.26 52.54 49.32 69.54 66.48 55.01 54.47 59.14 57.76 40.45 38.38

⌜ (w/o AreaAtten.) 79.38 78.14 66.72 64.60 73.44 71.72 53.57 50.83 73.46 70.32 55.78 55.60 62.27 60.51 42.98 40.48

RF PRIOR 80.26 75.58 66.50 67.02 75.62 73.07 55.21 53.16 69.70 66.90 57.23 55.56 63.58 60.45 43.71 41.36

NO PRETRAINING 62.85±15.94 48.50±16.10 51.64±20.84 35.24±16.37 58.47±10.26 41.61±14.21 43.72±16.73 28.17±11.96
⌜ (w/o AreaAtten.) 61.98±16.71 49.54±17.43 52.40±21.81 34.95±16.76 57.10±14.25 42.96±14.89 44.90±18.08 28.85±12.81

RF PRIOR 64.19±16.06 51.23±17.20 54.80±21.51 37.06±16.85 57.96±12.99 44.47±14.35 46.64±17.38 30.19±12.60
Adaptation steps=50.94k

NO PRETRAINING 87.41 86.49 73.83 74.14 83.36 83.57 67.01 66.70 76.53 77.66 63.64 64.19 70.30 71.33 51.23 51.48

⌜ (w/o AreaAtten.) 83.72 81.40 81.29 81.60 86.64 85.98 69.55 68.67 73.54 70.91 70.84 70.92 73.51 73.15 53.86 53.77

RF PRIOR 83.99 84.24 80.13 79.89 86.48 86.08 69.84 69.38 72.96 72.81 69.58 69.19 73.05 72.64 53.68 53.47

NO PRETRAINING 77.06±13.68 63.44±14.18 70.13±17.85 52.98±16.03 68.72±9.52 54.70±12.50 59.12±14.70 41.06±11.67
⌜ (w/o AreaAtten.) 75.88±13.80 65.84±15.66 72.03±18.86 54.17±17.05 67.55±11.07 57.09±13.59 61.31±15.75 42.75±12.58

RF PRIOR 76.00±13.05 66.05±15.31 72.34±18.35 54.54±16.75 67.02±10.30 57.15±13.09 61.23±15.10 42.82±12.25

Fine-Tuning (51.53/48.30 and 38.78/31.48). Notably, P5 Frozen already matches or slightly surpasses
full fine-tuning at the early stage (51.61/48.41 vs. 51.53/48.30 in mAP50 for B/M; 38.99/31.57 vs.
38.78/31.48 in mAP50:90), supporting the view that preserving large-RF semantics while adapting
lower stages accelerates alignment under BG/LS shift. Averaged over epochs (Table 4), RF PRIOR
again shows the highest means with moderate variance: for B it attains 47.60± 9.54 (mAP50) and
34.19±7.80 (mAP50:90); for M, 44.27±8.71 and 27.99±6.00. Both No Pretraining (43.86±9.21 /
32.16±7.71 for B; 41.38±8.57 / 26.51±6.10 for M) and Full Fine-Tuning (40.45±9.71 / 29.44±8.06;
38.16±9.01 / 24.34±6.33) lag behind. Extending only RF PRIOR to 50 epochs further lifts the means
to 52.58± 9.60/38.51± 8.12 (B) and 48.89± 8.87/31.08± 6.04 (M), indicating faster and more
stable convergence than training from scratch—even when the latter is given a longer schedule (cf.
No Pretraining at 50 epochs: 54.72/41.84 for B and 51.25/33.53 for M). Finally, while YOLOv9-E
exhibits strong precision (P(B) = 71.09, P(M) = 69.69) consistent with its gradient-concentration
design, its attention adaptation under shift remains limited; with the same budget, RF PRIOR attains
higher mask mAP50 (52.86 vs. 51.15) without relying on additional throughput-oriented tweaks.

5 DISCUSSION

Figure 4: Left: Target Adaptation loss (train) and
Right: Target validation risk in FIXED OBJECTS.

Fixed Objects (Table 5 & Figure 4). Because
the FIXED OBJECTS is substantially smaller than
SIDEGUIDE, we down-scaled the A2C2f back-
bone by a factor of 1.2 to avoid overfitting. Even
under this tighter capacity budget, RF PRIOR
adapts more effectively than the No Pretraining
and is more stable than RF PRIOR w/o AreaAt-
ten. throughout the early adaptation window.

Early budget (16.98k steps, A2C2f scale=1.2).
At the same compute budget shown at the top
of Table 5, RF PRIOR achieves P(B)=80.2675.58,
R(B)=66.5067.02, mAPval

50(B)=75.6273.07,
mAPval

50:90(B)=55.2153.16, and on masks
P(M)=69.7066.90, R(M)=57.2355.56, mAPval

50(M)=63.5860.45, mAPval
50:90(M)=43.7141.36. These

numbers improve upon No Pretraining ( e.g., 72.0068.26 mAPval
50(B) and 59.1457.76 mAPval

50(M) ) by
+3.62 B-mAP50 and +4.44 M-mAP50, and over RF PRIOR W/O AREAATTEN. (73.4471.72 / 62.2760.51)
by +2.18 (B) and +1.31 (M) absolute mAP50 points. Figure 4 corroborates this: both the training and
validation seg loss curves for RF PRIOR sit below the others from the earliest steps onward, and
the corresponding mAP rises sooner in the adaptation trajectory.
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Table 6: Training and validation loss deltas between RF PRIOR and RF PRIOR (w/o AreaAtten.) across
299.6k adatptation steps in SIDEGUIDE. We use ∆ = RF PRIOR − RF PRIOR (w/o AreaAtten.).
“Last step” is 299.6k. “Global”, “Early” (0–149.8k), and “Late” (149.8k–299.6k) report the mean ±
standard deviation of step-wise deltas over those ranges. “Best step” marks where the most negative ∆
occurs. 14,978 steps ≈ one full pass over the training set. Additionally, we report the mean log-delta
(mean ∆log±std) and the geometric-mean ratio (↓%) across 0–299.6k steps; positive ↓% indicates
average percentage reduction in loss for RF PRIOR.
Loss Last step Last ∆ Global mean±std Early mean±std Late mean±std Best step Best ∆ Mean ∆log±std GM ratio (↓%)

train/box loss 299.6k -0.10968 −0.25817± 0.17441 −0.37392± 0.18366 −0.14241± 0.02662 15.0k -0.76653 −0.19280± 0.06036 17.54%

train/seg loss 299.6k -0.27932 −0.37709± 0.08485 −0.44165± 0.07239 −0.31253± 0.02643 15.0k -0.60440 −0.17359± 0.01635 15.94%

train/cls loss 299.6k -0.22018 −0.48829± 0.31038 −0.69579± 0.32502 −0.28080± 0.04546 15.0k -1.37547 −0.31002± 0.06431 26.66%

train/dfl loss 299.6k -0.19145 −0.36693± 0.21945 −0.50646± 0.24016 −0.22741± 0.02700 15.0k -0.99273 −0.24601± 0.07340 21.81%

val/box loss 299.6k -0.03425 −0.23336± 0.25246 −0.40081± 0.26650 −0.06591± 0.03500 15.0k -0.97990 −0.19155± 0.14490 17.43%

val/seg loss 299.6k -0.00963 −0.19094± 0.20008 −0.34185± 0.17992 −0.04003± 0.03913 15.0k -0.61513 −0.09980± 0.08731 9.50%

val/cls loss 299.6k -0.02323 −0.37914± 0.48071 −0.67547± 0.53793 −0.08282± 0.05776 15.0k -1.92284 −0.25264± 0.20725 22.33%

val/dfl loss 299.6k -0.08400 −0.24929± 0.22282 −0.39044± 0.24463 −0.10815± 0.02653 15.0k -0.93564 −0.18350± 0.11495 16.76%

Larger budget (50.94k steps). The gains persist when we triple the adaptation steps (bottom half of
Table 5). RF PRIOR reaches about 86.5 B-mAP50 and 73.1 M-mAP50 with strong precision/recall
(e.g., ≈ 84/80 on boxes and ≈ 73/70 on masks). The second rows in each block report the epoch with
the second-best checkpoint, and the bottom rows report the mean±std over all checkpoints; in both
summaries RF PRIOR remains at least competitive on boxes and consistently better on masks. We
attribute the slightly larger variance on FIXED OBJECTS to genuine domain shift: while BBox-DS
and outdoor backgrounds overlap with the training distribution, indoor backgrounds appear in the
validation set only. This out-of-distribution shift inflates variance relative to SIDEGUIDE, yet RF
PRIOR still secures higher mAP early and maintains a safe margin over No Pretraining (Table 5,
Figure 4). Compared to RF PRIOR W/O AREAATTEN., the loss traces show a more consistent gap to
No Pretraining, suggesting that AreaAtten. dampens oscillations from the indoor/outdoor mixture.

SideGuide (Table 6). We summarizes stepwise loss deltas at equal budgets, using ∆ =
RF PRIOR − RF PRIOR (w/o AreaAtten.). Across the full 0–299.6k steps, RF PRIOR reduces
losses relative to its ablation: train—box loss (∆log = −0.1928±0.0604, GM ratio ↓ 17.54%),
seg loss (−0.1736±0.0163, ↓ 15.94%), cls loss (−0.3100±0.0643, ↓ 26.66%), dfl loss
(−0.2460±0.0734, ↓ 21.81%); validation—box loss (−0.1916±0.1449, ↓ 17.43%), seg loss
(−0.0998±0.0873, ↓ 9.50%), cls loss (−0.2526±0.2073, ↓ 22.33%), dfl loss (−0.1835±
0.1150, ↓ 16.76%). The most negative deltas (“best step”) consistently occur around 15.0k steps, indi-
cating that AreaAtten. not only lowers the average risk but also accelerates early adaptation—precisely
the regime of interest for rapid deployment.

Takeaways. (i) With a smaller backbone on FIXED OBJECTS, RF PRIOR already yields better
mAP at low budgets while keeping losses lower and steadier (Figure 4); (ii) variance is higher than
SIDEGUIDE due to indoor backgrounds unique to validation, yet the method preserves its early-step
advantage; (iii) on SIDEGUIDE, the quantitative loss analysis shows clear, systematic reductions over
the ablation across all four losses, confirming that RF PRIOR is both sample-efficient and robust to
target shift. Accordingly, we will extend this line of work across a broader spectrum of real-world
datasets, toward a more stable and sustainable source–target framework.

6 CONCLUSION

We proposed a simple, effective strategy for efficient instance segmentation transfer by explicitly pre-
serving global receptive-field priors derived from detection tasks. Our method significantly enhances
segmentation performance and training efficiency by freezing the deepest, globally-contextualized
block (P5) with alining decoder. This approach bridges detection and segmentation tasks effectively,
presenting a practical transfer learning strategy adaptable to various multi-task vision frameworks.
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ETHICS STATEMENT

Scope and intended use. Our work studies representation reuse and weakly supervised instance
segmentation. The method is designed for research and benchmarking with generating real-domain
polygon; but it is not safety-certified for safety-critical systems (e.g., autonomous driving) in paper.
Any deployment must include additional hazard analyses, on-road testing, and compliance audits.

Data provenance and consent. All experiments use publicly available traffic-scene images and labels
(or our own annotations) that do not intentionally include personally identifiable information (PII).
We do not attempt to infer sensitive attributes (e.g., identity, race, health). If any image incidentally
contains PII (faces, license plates), we apply standard obfuscation or omit such samples from release.
We respect the original dataset licenses and terms of use; any redistributed annotations follow those
licenses.

Weak-label mining risks. Our BBox→Polygon conversion may propagate dataset or foundation-model
biases (e.g., class vocabulary biases from CLIP, proposal biases from SAM). To reduce this risk,
our pipeline (i) gates masks by detector-aligned geometry (IoU/coverage), (ii) limits the class set to
non-sensitive, utilitarian object categories, and (iii) clips polygons to the annotated box to discourage
off-target leakage. We recommend auditing pseudo-labels before downstream use and avoiding
sensitive categories.

Annotator welfare and credit. If new annotations (e.g., Fixed Objects) are released, annotators are to be
trained with clear guidelines, credited in documentation, and compensated according to institutional
policies. We avoid collecting harmful content and provide a takedown contact for data subjects.

Reproducibility and transparency. We plan to release full training code, configuration files,
bbox2polygon.py, and scripts to regenerate all figures/tables, along with documentation of
dataset splits and any post-processing. This aims to facilitate independent verification, error reporting,
and responsible reuse by the community.

REPRODUCIBILITY STATEMENT

The code implementing our method should be released upon publication. We provide all the necessary
details to reproduce our experiments in the Section 4 and in the Appendix§A.
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A APPENDIX

A.1 BACKGROUND AND RELATED WORK
Representation reuse and anchored adaptation. A central problem in transfer learning is how
to adapt a pretrained representation without erasing its invariances. Early evidence established that
low/mid-level conv features transfer broadly while high-level features become task-specific (Yosinski
et al., 2014). From an optimization view, existing approaches can be organized by what is allowed to
move relative to the source solution θ0:
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(A) min
θ

Ltgt(θ) +
λ
2 ∥θ − θ0∥22 (10)

(B) min
ϕ

Ltgt(θ0, ϕ) (11)

(C) min
θtrain

Ltgt

(
θtrain, θfrozen:=θ0,frozen

)
(12)

Notes. (A) Anchored regularization / L2-SP. (B) PEFT with a frozen backbone and small trainables
(adapters/LoRA/BitFit/VPT(Houlsby et al., 2019; Hu et al., 2022; Ben Zaken et al., 2022; Jia et al.,
2022)). (C) Hard-freeze subsets used in practice for stability and efficiency.

(A) keeps the whole model plastic but contracts it toward θ0, mitigating destructive drift and improving
stability/conditioning (Xuhong et al., 2018). (B) makes the contraction implicit by clamping the
backbone and only learning a small set of parameters; this is parameter-efficient and often robust
when target data are scarce (Houlsby et al., 2019; Hu et al., 2022). (C) is widely used in large
vision models (e.g., freezing deepest blocks or early ViT stages) to preserve global attention patterns
while specializing shallower components. Our method sits at the intersection: we impose a receptive-
field–aware prior that freezes the largest-RF block and applies Gaussian shrinkage to the remaining
blocks, yielding a precise MAP objective

min
θ3,θ4,θseg

Ltgt(θ3,θ4,θ5=θ0,5) +
ξ3
2 ∥θ3∥

2
2 +

ξ4
2 ∥θ4∥

2
2, (13)

which is equivalent to a block-diagonal Gaussian prior on trainable blocks and a delta prior on the
frozen block (Sec. 3.2). This scale-coupled view differs from generic PEFT/anchoring in two ways.
First, the prior is aligned with the architecture’s multi-scale semantics: the deepest block (stride-32,
largest RF) encodes global scene structure and is preserved exactly, while mid/low-RF blocks are
regularized but plastic. Second, we prove that this choice induces a global-to-local gradient pathway:
error signals traverse the frozen high-RF features and concentrate updates onto small-RF parameters
where boundary and texture cues matter most (Appendix§A.3).

Dense prediction pipelines already exploit representation reuse across scales. FPN and Mask R-CNN
propagate high-level semantics downward (Lin et al., 2017; He et al., 2017), while modern backbones
(Swin/ConvNeXt) improve the quality of these multiscale features (Liu et al., 2021; 2022). Decoder
designs such as DETR/Mask2Former inject global reasoning but do so at limited fusion sites to control
cost (Carion et al., 2020; Cheng et al., 2022). We adopt the same philosophy: a single global-to-local
attention site couples the frozen global template to adaptable mid/low-resolution maps (Sec. 3.3).
Analytically, restricting global attention to one site reduces complexity from O(N2) to O(N2/a)
with area partitioning while retaining long-range cues where they have the highest leverage (mid
scales). Empirically, this design prevents wholesale retuning of global semantics and focuses capacity
on spatial details, matching the theoretical picture given by our gradient-flow analysis.

Weak supervision from boxes and automatic polygon mining. When dense masks are limited,
bounding boxes provide a strong but coarse prior. Classic methods refine boxes into masks via
proposal mining and consistency regularization (Dai et al., 2015; Khoreva et al., 2017); BoxInst
shows that instance segmentation is learnable from boxes alone with alignment losses (Tian et al.,
2021). Large pretrained models further strengthen this conversion pipeline: CLIP supplies class-
consistency scores from text–image alignment (Radford et al., 2021), and SAM yields high-quality,
box-prompted proposals at scale (Kirillov et al., 2023). We leverage these capabilities but enforce
detector consistency end-to-end: (i) generate multiple SAM masks per box; (ii) gate by IoU/coverage
to reject off-box leakage; (iii) optionally re-rank by CLIP to prefer semantically on-class candidates;
(iv) simplify contours with Douglas–Peucker and clip polygons to the original box (Sec. 3.5). This
choice is not merely heuristic—under our MAP objective, the weak labels and the adaptation bias
are mutually reinforcing. The frozen deepest block provides a stable global template; polygon priors
sharpen local residuals; and the single attention site transmits these residuals as targeted updates to
P3/P4. In contrast to PEFT that introduces extra trainables or to box-supervised pipelines that treat
label mining as a separate pre-processing step, our conversion is tied to the detector’s geometry and
to the RF-aware prior, closing the loop between what the model preserves, where it learns, and how
weak labels are shaped.

Contrast to prior art. Prior work typically (i) regularizes toward θ0, (ii) freezes most weights and
learns small adapters, or (iii) mines masks from boxes. We combine all three perspectives coherently:
a scale-aware MAP prior (freeze largest-RF block, shrink others), a single global-to-local attention
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site for efficient context injection, and a detector-aligned SAM+CLIP polygon miner whose outputs
are geometrically constrained. Our analysis (Appendix§A.3) explains why this combination yields
localized, boundary-focused updates while preserving global semantics, aligning theory with practice.

A.2 DATASET TAXONOMY AND SHIFT FORMALIZATION

Setup. Let the prior source be S with joint PS(x, y), label set CS , and supervision type τS ∈
{box,polygon,surface}. Any target dataset D has PD(x, y), CD, τD.

BG shift (covariate/context). We measure background change by any nonnegative divergence
between marginals:

dBG(D | S) := D
(
PD(x) ∥PS(x)

)
, D ∈ {KL, χ2, IPM, W2, . . .}. (14)

LS shift (label space / supervision granularity). Let the vocabulary distance be the Jaccard
complement and the supervision mismatch be a simple indicator:

dcls(D | S) := 1− |CD ∩ CS |
|CD ∪ CS |

, dsup(D | S) := 1[τD ̸= τS ] . (15)

Combine them as a single score
dLS(D | S) := dcls(D | S) + κ dsup(D | S), κ ∈ [0, 1]. (16)

Dataset type (decision rule). For thresholds δBG, δLS > 0,

Type(D | S) =


PRIOR SOURCE, dBG < δBG ∧ dLS < δLS,

BG SHIFT, dBG ≥ δBG ∧ dLS < δLS,

LS SHIFT, dBG < δBG ∧ dLS ≥ δLS,

BG + LS SHIFT, dBG ≥ δBG ∧ dLS ≥ δLS.

It depends only on the underlying distributions and simple set relations. In our experiments we treat
S=BBox–DS and choose (δBG, δLS, κ) on a validation split; the qualitative assignments in Table 1
follow directly from the definitions in equation 14–equation 16.

A.3 WHY FREEZING HIGH-RF FEATURES YIELDS GLOBAL-TO-LOCAL GRADIENT FLOW

Let the backbone produce F3, F4, F5 at strides (8, 16, 32) with radii R3 < R4 < R5, and decoder
Y = Hθseg

(F3, F4, F5). We train

min
θ3,θ4,θseg

1

N

N∑
i=1

ℓ
(
Hθseg

(F i
3, F

i
4, F

i
5), yi

)
s.t. θ5 = θ0

5, (17)

with F5 = B5(F4;θ
0
5), F4 = B4(F3;θ4), F3 = B3(x;θ3).

Assumption 1 (Locality and regularity). Bℓ are CNN blocks with finite RF radii Rℓ, piecewise C1 in
their arguments; Hθseg

is C1 in its inputs.

Gradients still pass through the frozen block. By chain rule, for any sample (drop the index i),

∇θ4ℓ =
( ∂ℓ

∂F4
+

∂ℓ

∂F5

∂F5

∂F4︸ ︷︷ ︸
via frozen B5

)∂F4

∂θ4
, ∇θ3ℓ =

∂ℓ

∂F3

∂F3

∂θ3
, (18)

where ∂F5

∂F4
= J5←4(F4;θ

0
5) is a fixed Jacobian. Thus, although ∇θ5

ℓ = 0 (frozen), gradients
propagate through B5 to F4 and then to θ4.
Assumption 2 (Non-degenerate coupling). There exists σmin > 0 such that the smallest singular
value of J5←4 at training points is ≥ σmin (i.e., B5 does not collapse F4 to a constant along training
trajectories).
Proposition 1 (Lower bound on update signal). Under Assumptions 1–2,

∥∥∇θ4ℓ
∥∥ ≥

σmin

∥∥ ∂ℓ
∂F5

∂F4

∂θ4

∥∥.
Proof. From equation 18, ∂ℓ

∂F5
J5←4 is a nonzero linear form unless ∂ℓ

∂F5
= 0; its operator norm is

bounded below by σmin∥ ∂ℓ
∂F5

∥. Multiply by ∂F4

∂θ4
and take norms.

14
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(a) PRETRAINING (b) FULL FT (c) P5 FROZEN (d) RF PRIOR

Figure 5: Attention map (overlaid on the origi-
nal image) visualization (Selvaraju et al., 2017)
of PolySeg sample for each model’s trained
backbone, θbb. The mismatch energy E =∑

k ∥F5,k − ϕ(F4/3,k)∥2 (Eq. 3.4), is minimized
when attention collapses to the frozen P5 context.

(a) PRETRAINING (b) FULL FT (c) P5 FROZEN (d) RF PRIOR

Figure 6: Attention map (overlaid on the original
image) visualization (Selvaraju et al., 2017) of
SurfaceMask for each model’s trained backbone,
θbb. The mismatch energy E =

∑
k ∥F5,k −

ϕ(F4/3,k)∥2 (Eq. 3.4), is minimized when atten-
tion collapses to the frozen P5 context.

Why updates are spatially localized. Let w(ℓ) be a convolutional kernel in Bℓ, shared over spatial
sites. Denote by Ω(ℓ)(w) the set of output locations whose computation involves w(ℓ). Then

∂ℓ

∂w(ℓ)
=

∑
(u,v)∈Ω(ℓ)(w)

∂ℓ

∂z(ℓ)(u, v)
x(ℓ−1)

(
u+∆u, v +∆v

)
, (19)

where z(ℓ) is the pre-activation and (∆u,∆v) is within the kernel’s spatial support. By locality,
Ω(3)(w) covers many small RF footprints in the image; Ω(4)(w) covers fewer but larger footprints;
and Ω(5)(w) spans coarse, near-global footprints. When θ5 is frozen, ∂ℓ

∂w(5) ≡ 0, eliminating global,
coarse-grained adjustments. Error reduction must therefore occur via w(3) and w(4), whose sup-
ports correspond to local neighborhoods. Consequently, parameter updates affect the prediction
predominantly within unions of NR3

and NR4
around high-loss sites, yielding boundary-focused

corrections.

Assumption 3 (Decoder coupling). Hθseg fuses (F3, F4, F5) with a locally Lipschitz atten-
tion/projection ϕ into the F5 space (query/key-value), and the training loss is β-smooth in the
fused features.

Define the alignment energy

E(Φ) =
∑
k

∥∥F5,k − ϕ
(
F4,k; Φ

)∥∥2
2
+

∥∥F5,k − ϕ
(
F3,k; Φ

)∥∥2
2
, (20)

where k indexes spatial locations and Φ collects the decoder’s projection/attention parameters.

Lemma 1 (Descent of alignment energy). If E is L-smooth in Φ, then with step size η ∈ (0, 1/L],
E(Φ+) ≤ E(Φ)− η

2∥∇ΦE(Φ)∥22.

Proof. Standard smoothness (Descent Lemma).

Theorem 1 (Global-to-local gradient flow). Under Assumptions 1–3, freezing θ5 yields: (i) non-
vanishing gradient signals to θ4 (Prop. 1); (ii) updates that are confined to unions of RF neighbor-
hoods determined by R3, R4; (iii) monotone reduction of the alignment mismatch equation 20 for
suitable steps on decoder parameters, which in turn induces localized corrections in F4, F3 that
better agree with the fixed global template F5.

15
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Proof. (i) follows from Prop. 1. (ii) follows from convolutional locality and the fact that θ5 cannot
change. (iii) follows from Lemma 1; the gradient ∇ΦE backpropagates to θ4,θ3 through ϕ and
B4, B3, but the target F5 stays fixed, so corrections occur at sites k with large residuals F5,k−ϕ(Fℓ,k),
i.e., near boundaries/high-error regions.

(a) TARGETED IMAGE (b) NO PRETRAINING (c) RF PRIOR W/O AA (d) RF PRIOR

Figure 7: Attention map (overlaid on the original image) visualization (Selvaraju et al., 2017)
of Fixed Objects sample for each model’s trained backbone, θbb. The mismatch energy E =∑

k ∥F5,k − ϕ(F4/3,k)∥2 (Eq. 3.4), is minimized when attention collapses to the frozen P5 context.
RF Prior steers global prior knowledge toward local objects through attention; with AREAATTENTION
in our MULTI-SCALE ATTENTIVE DECODER, the global–local mismatch decreases and the backbone
outputs become more compact compared to w/o AREAATTENTION.

(a) SCRATCH (b) RF PRIOR W/O AA (c) RF PRIOR

Figure 8: Attention map (overlaid on the original
image) visualization (Selvaraju et al., 2017) of
PolySeg sample for each model’s tuned (Fixed
Objects) backbone, θbb. We define these phe-
nomenon as smooth modulation of LS shift.

(a) SCRATCH (b) RF PRIOR W/O AA (c) RF PRIOR

Figure 9: Attention map (overlaid on the origi-
nal image) visualization (Selvaraju et al., 2017)
of SurfaceMask for each model’s tuned (Fixed
Objects) backbone, θbb. We define these phe-
nomenon as smooth modulation of BS + LS shift.
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Algorithm 1 Automatic BBox-to-Polygon Conversion
Require: Detector-trained image sets with box labels; SAM predictor P ; optional CLIP scorer C; merge

strategy m ∈ {best,union} with IoU threshold τ ; weights α, β, γ; polygon tolerance ε; visualization
limit Nviz.

Ensure: For each image, a polygon label file (YOLO-polygon format).
1: for all dataset directory d in train dirs do
2: images← all files in d/images
3: create folder d/polygon labels if it does not exist
4: for all image I in images with size H ×W do
5: load I and its YOLO label file L; continue if L missing
6: P.set image(I)
7: polys← [ ]
8: for all label line l ∈ L do ▷ l = (class, cx, cy, w, h) in YOLO format
9: (c,B)← YOLOTOXYXY(l,W,H)

10: {Mk}Kk=1 ← P.predict(box = B,multiMask = True)
11: if m = union then
12: M⋆ ←

∨
k: (Mk,B)≥τ Mk ▷ pixelwise OR

13: if no k satisfies (Mk, B) ≥ τ then
14: M⋆ ← argmaxk(Mk, B)
15: end if
16: else
17: for k = 1 to K do
18: k ←

|Mk ∩B|
|Mk ∪B| , Coverk ←

|Mk ∩B|
|Mk|

19: sclipk ←

{
C.score(I,Mk,class name(c)), if C exists
0, otherwise

20: end for
21: normalize k, sclipk , Coverk to [0, 1]: k̃, s̃clipk , C̃overk
22: k⋆ ← argmaxk

(
α̃ k + β s̃clipk + γ C̃overk

)
23: M⋆ ←Mk⋆

24: end if
25: poly ← MASKTOPOLYGON(M⋆, ε)
26: if poly is empty or |poly| < 3 then
27: poly ← rectangle corners of B
28: end if
29: poly ← CLIPPOLYGON(poly,B)
30: coords← NORMALIZEPOLYGON(poly,W,H)
31: append string “c coords” to polys
32: if viz dir specified and #debug images < Nviz then
33: draw poly on a copy of I and push to debug list
34:
35: write polys to d/polygon labels (file name matches I)
36:
37:
38: if viz dir specified and debug list not empty then
39: save montage to viz dir/montage.jpg
40: end if
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