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ABSTRACT

Graph Neural Networks (GNNs) have become essential for learning from graph-
structured data. However, existing GNNs do not consider the conservation law
inherent in graphs associated with a flow of physical resources, such as electri-
cal current in power grids or traffic in transportation networks. To address this
limitation and enhance the performance on tasks where accurate modeling of re-
source flows is crucial, we propose Flow Graph Neural Networks (FlowGNNs).
This novel GNN framework adapts existing graph attention mechanisms to reflect
the conservation of resources by distributing a node’s message among its out-
going edges instead of allowing arbitrary duplication of the node’s information.
We further extend this framework to directed acyclic graphs (DAGs), enabling
discrimination between non-isomorphic flow graphs that would otherwise be in-
distinguishable for standard GNNs tailored to DAGs. We validate our approach
through extensive experiments on two different flow graph domains—electronic
circuits and power grids—and demonstrate that the proposed framework enhances
the performance of traditional GNN architectures on both graph-level classifica-
tion and regression tasks.

1 INTRODUCTION

Graph-structured data represents the complex relationships and interactions between entities as a
set of nodes and edges and is prevalent across many real-world domains, such as social networks
(Fan et al., 2019), recommender systems (Wu et al., 2022), materials science (Reiser et al., 2022)
or epidemiology (Liu et al., 2024). Traditional deep learning methods, which are typically designed
for Euclidean data such as images (Li et al., 2021) or sequences (Lim & Zohren, 2021), fail to fully
exploit the irregular structure of graphs. To address this, graph neural networks (GNNs) (Scarselli
et al., 2008; Kipf & Welling, 2017) have emerged as a powerful framework that extends the scope
of deep learning to graph-based data, enabling models to learn both node-level features as well as
the underlying graph topology through iterative message-passing between neighboring nodes. As
graph data becomes increasingly common, advancing GNN architectures is crucial for improving
performance in tasks such as node classification (Hamilton et al., 2017), graph regression (Gilmer
et al., 2017), or link prediction (Zhang & Chen, 2018).

In many important applications of GNNs, graphs are naturally associated with a flow of physical
resources, such as electrical current in electronic circuits (Sánchez et al., 2023) or power grids (Liao
et al., 2021), traffic in transportation networks (Jiang & Luo, 2022), water in river networks (Sun
et al., 2021), or raw materials and goods in supply chains (Kosasih & Brintrup, 2022). In these
(resource) flow graphs, all nodes, except for source and target nodes, are subject to Kirchhoff’s
first law, which states that the sum of all incoming and outgoing flows must be zero, reflecting
the conservation of resources. By contrast, informational graphs—such as computation graphs,
social networks, or citation networks—are not associated with any physical flow but rather represent
relationships or information transfer. Information can be arbitrarily duplicated and propagated in
these graphs, unlike in flow graphs, where such duplication would violate the conservation law.

As a result, two non-isomorphic graphs may be equivalent as informational graphs (e.g., they rep-
resent the same computation) but non-equivalent as flow graphs (e.g., they represent different elec-
tronic circuits). An example of this is given in Fig. 1. Since the result of the sine operation can
be duplicated without constraints and transmitted to arbitrarily many other operations, the two non-
isomorphic graph structures represent the same computation. However, the two graph structures may
also represent electronic circuits, which are governed by Kirchhoff’s first law. In this case, the two
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Figure 1: Two non-isomorphic graphs that are equivalent in the case of informational graphs, but
different as resource flow graphs. a The two different directed graph structures represent the same
computation (example adapted from Zhang et al. (2019)). b The same graph structures as above
represent different electronic circuits.

circuits are different. Although they can be transformed into each other’s graph structure by combin-
ing or splitting resistors, this would lead to different resistances, i.e., node features. In this case, a
sufficiently expressive GNN should be able to map the graph structures to different representations.

In recent years, many new GNN models have been specifically designed for different graph types
(Thomas et al., 2023). However, despite their fundamental differences, informational graphs and
flow graphs are still treated by the same basic message-passing layers (MPLs), such as GCN (Kipf
& Welling, 2017), GIN (Xu et al., 2019) or GAT (Veličković et al., 2018). In these models, messages
exchanged between neighboring nodes do not depend on the number of message recipients. Instead,
the information is arbitrarily duplicated and passed to all neighbors. Even attention mechanisms,
as applied in GAT, GATv2 (Brody et al., 2022) or Graph Transformer (Shi et al., 2021), are only
normalizing across incoming messages and therefore cannot overcome this limitation.

Many flow graphs, including the example graphs in Fig. 1, can be naturally expressed as directed
acyclic graphs (DAGs), e.g., operational amplifiers (Dong et al., 2023) or material flow networks
(Perera et al., 2018). In these cases, nodes are typically updated sequentially following the partial or-
der of the DAG, and the final target node representation is used as the graph embedding (Zhang et al.,
2019; Thost & Chen, 2021). However, since directed acyclic GNNs are utilizing non-conservational
message-passing schemes resulting in identical target node representations, they are not capable of
distinguishing between non-isomorphic flow graphs such as in Fig. 1.

A possible approach to overcome the problem of indistinguishable flow graphs is to use node in-
dices or random features as input node features (Loukas, 2020; Sato et al., 2021), which makes
the model capable of uniquely identifying each node. However, the resulting GNN model is no
longer permutation invariant, which reduces its generalization capability. Similar problems arise for
Transformer-based models (Vaswani et al., 2017) such as PACE (Dong et al., 2022), which incorpo-
rate the relational inductive bias Battaglia et al. (2018) via positional encodings. A different strategy
would be to introduce Kirchhoff’s first law through an additional physics-informed loss term (Donon
et al., 2020), which is useful if the target variable is the resource flow itself. However, introducing
additional loss terms considerably increases the training complexity and does not overcome the
fundamental limitations of message-passing neural networks in distinguishing non-equivalent flow
graphs.

To overcome the above problems that arise when applying message-passing (directed acyclic) GNNs
to resource flow graphs, we propose a new GNN framework that builds upon attentional GNNs.
Instead of normalizing the attention scores across incoming neighbors, we normalize them across
outgoing neighbors. This simple but effective modification ensures that the message of a specific
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node is distributed among all message recipients and thereby avoids arbitrary message duplication,
reflecting the conservation of physical resources in flow graphs.

Our contributions are the following:

1. GNN framework for flow graphs: We develop a new framework called Flow Graph
Neural Network (FlowGNN) which replaces the standard attention mechanism of existing
GNNs with a flow attention mechanism that ensures the conservation of physical resources
as they traverse through the graph.

2. GNN model for directed acyclic flow graphs: We further extend the new framework
to DAGs, resulting in a model called Directed Acyclic Flow Graph Neural Network
(DAFlowGNN): We show that DAFlowGNN can distinguish non-isomorphic directed
acyclic flow graphs which would otherwise be mapped to the same representation by stan-
dard DAGNNs.

3. Extensive Experiments: We conduct experiments on two different flow graph domains
(electronic circuits and power grids), covering both undirected graphs and DAGs, and show
that our proposed models outperform their standard counterparts on graph-level classifica-
tion and regression tasks across multiple datasets.

The code is available at https://anonymous.4open.science/r/FlowGNN-24.

2 PRELIMINARIES

Graph A directed graph can be defined as a tuple G = (V, E) containing a set of nodes V ⊂ N
and a set of directed edges E ⊆ V × V . Thereby, we define e = (u, v) as the directed edge from
node v to node u. An edge is called undirected if (u, v) ∈ E whenever (v, u) ∈ E ∀ u, v ∈ V .
Furthermore, we call the set Nin(v) = {u ∈ V | (v, u) ∈ E} the incoming neighborhood of v and
the set Nout(v) = {u ∈ V | (u, v) ∈ E} the outgoing neighborhood of v.

Directed Acyclic Graph A graph G is cyclic, if there exists a subgraph
H = ({v1, . . . , vk}, {e1, . . . , ek}) ⊆ G, vi ∈ V, ei ∈ E ∀ i, such that the sequence
of nodes and edges v1, e1, v2, e2, . . . , vk, ek, v1 is a closed path of length k with vi ̸= vj ∀ vi, vj .
Otherwise, it is called acyclic. A directed acyclic graph (DAG) is a graph that is directed and
acyclic. In the context of DAGs, we also call the incoming neighborhood the predecessors of a
node, and the outgoing neighborhood the successors of a node. The set of all ancestors of node v
contains all nodes u ∈ V such that v is reachable from u. Similarly, the descendants are the nodes
u ∈ V that are reachable from v. Finally, the set of nodes without predecessors is called the set of
start or initial nodes, denoted by I ⊂ V , and the set of nodes without successors is called the set of
end or final nodes, denoted by F ⊂ V .

Flow Graph Let S, T ⊆ V be two fixed subsets of V (the sources and targets of V). A flow on G is
a mapping f : E → R that satisfies Kirchhoff’s first law:∑

u∈Nin(v)

f(v, u) =
∑

u∈Nout(v)

f(u, v) ∀ u ∈ V \ {S, T }. (1)

If a graph is associated with a flow f as defined above, we refer to it as a flow graph. In DAGs, the
start nodes are sources and the end nodes are targets: I ⊆ S and F ⊆ T .

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) transfer the concept of traditional neural networks to graph data.
Thereby, the node representations {hi ∈ RF | i ∈ V} with the feature dimension F are updated
iteratively by aggregating information from neighboring nodes via message-passing. The updated
node representations {h′

i ∈ RF | i ∈ V}, i.e., the output of the network layer, are given by

h′
i = ϕ

hi,
⊕

j∈Nin(i)

ψ (hj)

 , (2)

with a learnable message function ψ, an aggregation scheme ⊕, e.g., sum or mean, as well as an
update function ϕ. The choice of ϕ, ⊕, and ψ are defining the design of a specific GNN model.
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2.2 ATTENTIONAL GRAPH NEURAL NETWORKS

An attentional GNN layer takes a set of input node features {hi ∈ RF | i ∈ V} and uses a scoring
function e : RF × RF → R to compute attention coefficients

eij = e (hi,hj) (3)

that indicate the importance of the features of node j to node i. Popular attentional GNNs include
GAT (Veličković et al., 2018), GATv2 (Brody et al., 2022) and Graph Transformer (GT) (Shi et al.,
2021), which mainly differ in the choice of the scoring function e. We briefly discuss these models
in App. A.1.
The computed attention coefficients eij are normalized across all incoming neighboring nodes j
using the softmax function:

αij = softmaxj(eij) =
exp(eij)∑

k∈Nin(i)
exp(eik)

. (4)

Note that, in general, αij ̸= αji for undirected edges due to the normalization, even if the same
attention scores eij = eji are assigned to these two edges, such as in GAT or GATv2. The hidden
states of node i are finally updated using a non-linearity σ:

h′
i = σ

 ∑
j∈Nin(i)

αijWhj

 . (5)

The standard graph attention mechanism is visualized in Fig. 2a.

2.3 DIRECTED ACYCLIC GRAPH NEURAL NETWORKS

The main idea of directed acyclic GNNs is that the nodes are processed and updated sequentially
according to the partial order defined by the DAG. Thereby, the update of a node representation hi is
computed based on the current-layer node representations of node i’s predecessors. Consequently,
the message-passing for a node can only be carried out if all of its predecessors’ hidden representa-
tions have already been computed, which is only possible because the underlying graph is acyclic.
The message-passing scheme of directed acyclic GNNs can therefore be expressed as

h′
i = ϕ

hi,
⊕

j∈Nin(i)

ψ
(
h′
j

) . (6)

The most widely used directed acyclic GNNs are D-VAE (Zhang et al., 2019) and DAGNN (Thost
& Chen, 2021). These models utilize gated recurrent units (GRU) as the update function ϕ and are
briefly explained in App. A.2. As an alternative to sequential models, DAGs can also be encoded
using Transformer-based architectures, such as PACE (Dong et al., 2022).

3 FLOWGNN MODELS

3.1 FLOW GRAPH ATTENTIONAL LAYER

The problem with standard attention mechanisms, when applying them to flow graphs, is that the
attention scores are normalized across all incoming edges. Therefore, a message from node j to
node i does not depend on how many nodes this message is passed to, and thus, non-equivalent
flow graphs as in Fig. 1 are not distinguishable. To fix this problem, we propose to normalize the
attention scores across outgoing edges instead (see Fig. 2b). We call the resulting weights flow
attention weights and denote them as βij in order to distinguish them from the standard attention
weights αij :

βij = softmaxi(eij) =
exp(eij)∑

k∈Nout(j)
exp(ekj)

. (7)
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Figure 2: a Standard graph attention mechanism as it is applied in attentional GNNs. The attention
weights associated with edges of the same color sum to 1. b The proposed flow attention mechanism
applied in FlowGNNs. The flow attention weights associated with edges of the same color sum to
1. c Two snapshots during the reverse and forward pass of the Directed Acyclic Flow Graph Neural
Network (DAFlowGNN). Nodes marked in green have already been updated.

Although the attention scores are normalized across outgoing edges, we still aggregate incoming
messages in order to update the hidden state of node i:

h′
i = σ

 ∑
j∈Nin(i)

βijWhj

 . (8)

However, since the messages are multiplied with the flow attention weights βij , they now also de-
pend on the neighborhood of the message’s sender, i.e., node j. In this way, we ensure that a message
transmitted by any node cannot be duplicated arbitrarily but instead is distributed among all outgo-
ing neighbors. We define a flow graph attentional layer as the message-passing layer described in
Eq. 8 and flow graph neural networks (FlowGNNs) as the family of attentional GNNs, which use
one or more flow graph attentional layers with an arbitrary scoring function. Furthermore, we de-
note the corresponding FlowGNN versions of standard attentional GNNs as FlowGAT, FlowGATv2,
FlowGT, etc.

3.2 DIRECTED ACYCLIC FLOWGNN

Directed acyclic GNNs map two non-isomorphic DAGs to the same representation as long as they
represent the same computation (Zhang et al., 2019). However, we are interested in flow graphs
rather than computational graphs. Therefore, we need to ensure that all non-isomorphic DAG
structures are mapped to different representations. For this purpose, we propose a directed acyclic
FlowGNN (DAFlowGNN), which builds upon DAGNN and incorporates the flow attention mecha-
nism.

A naive approach to a FlowGNN for DAGs would be to start from a DAGNN and then replace the
attention weights αij with flow attention weights βij . When computing these flow attention weights
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associated with the outgoing edges from node j, we only have information about all ancestors of j,
because we are updating the nodes according to the partial order of the DAG. However, since the
flow of some arbitrary physical resource from node j to node i in a flow graph may also depend
on all descendants of the node i, we should also include information about these descendants in the
computation of the βij .

Therefore, we construct a DAFlowGNN layer from two sublayers (see Fig. 2c). In the first sublayer
(we call it the reverse pass), we invert all edges of the DAG G and apply a standard DAGNN layer
to the reverse DAG G̃. This is equivalent to performing the aggregation over all successor nodes in
the original DAG G instead of over all predecessor nodes:

mrv
i =

∑
j∈Nout(i)

αij

(
hi,h

rv
j

)
hrv
j , (9)

αij

(
hi,h

rv
j

)
= softmax

j∈Nout(i)

(
(wrv

1 )
Thi + (wrv

2 )
Thrv

j

)
, (10)

hrv
i = GRU(hi,m

rv
i ). (11)

In the second sublayer, we perform a forward pass on the original DAG G. However, this time we are
applying the flow attention mechanism described in Section 3.1 to compute flow attention weights
βij :

mfw
i =

∑
j∈Nout(i)

βij
(
hrv
i ,h

fw
j

)
hfw
j , (12)

βij
(
hrv
i ,h

fw
j

)
= softmax

i∈Nout(j)

(
(wfw

1 )Thrv
i + (wfw

2 )Thfw
j

)
, (13)

hfw
i = GRU(hrv

i ,m
fw
i ). (14)

Since the hidden states hrv
i of the reverse pass contain information about all descendants of the node

i, and the hidden states hfw
j contain information about all ancestors of the node j, the computation

of the flow attention weights βij essentially takes into account information about all nodes of the
graph that are connected to the node i.

After L DAFlowGNN layers, we compute the graph-level representation from both the reverse pass
representations of the start nodes as well as the forward pass representations of the end nodes and
concatenate across layers:

hG = Max-Pool
i∈I

(
L

∥
l=0

hrv,l
i

)
∥Max-Pool

j∈F

(
L

∥
l=0

hfw,l
j

)
. (15)

The separation of the DAFlowGNN layer into a reverse and a forward pass is necessary due to
the sequential nature of the message-passing in GNNs for DAGs. Note that this architecture is
not required in the undirected setting, because all nodes are updated simultaneously in this case.
Therefore, the ”forward” and ”reverse” passes are performed at the same time and the computation
of the flow attention weights always takes into account information about descendants and ancestors
up to a distance defined by the number of FlowGNN layers. Finally, from a computational point of
view, a DAFlowGNN layer is twice as expensive to compute compared to a DAGNN layer, due to the
additional reverse pass. Therefore, the DAGNN model should have twice as many layers compared
to the DAFlowGNN for a fair comparison of both models.

3.3 EXPRESSIVITY OF DAFLOWGNN

Consider the DAGs from Fig. 1. We can prove that any directed acyclic GNN, e.g., D-VAE or
DAGNN, cannot distinguish between those two DAG structures by drawing the rooted subtrees of
the end nodes. A rooted subtree visualizes the information flow through the graph, or in other words,
the message-passing history that results in the node representation update of the end node. A stan-
dard message-passing GNN can only distinguish between two non-isomorphic node neighborhoods
if the node’s rooted subtrees are different (Xu et al., 2019). However, flow attention weights enable
the distinction of non-isomorphic node neighborhoods despite identical rooted subtrees.
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Figure 3: Rooted subtrees with example (flow) attention weights generated by different directed
acyclic GNNs for two non-isomorphic directed acyclic flow graphs. While D-VAE is not calculating
any attention weights, DAGNN is using a standard attention mechanism and DAFlowGNN is using
the proposed flow attention mechanism. Flow attention weights that are different for the two DAGs
are highlighted in bold. Node colors indicate different node features.

Fig. 3 shows the subtrees rooted at the green end nodes for both graph structures generated by differ-
ent directed acyclic GNNs. Thereby, colors indicate different node features. We also add example
(flow) attention weights to the corresponding edges, where applicable, which can be viewed as an
additional option for distinguishing graphs. For all models, the two subtrees are structurally identi-
cal, so the only option to distinguish the two graphs would be the attention weights. Since D-VAE
does not compute any attention weights, it maps the two graph structures to the same representation.
The attention weights computed by DAGNN are always identical for both graph structures, since
their sum over all incoming neighbors is equal to 1. Note that the attention weights corresponding
to the incoming edges of the green end node depend on the features of the red and orange nodes, re-
spectively. However, they are not affected by the different structures of the graphs. The only model
capable of distinguishing the two DAGs is DAFlowGNN. Instead of normalizing the attention scores
across incoming neighbors, it normalizes them across outgoing neighbors, resulting in different flow
attention weights for the two DAGs.

4 EXPERIMENTS

4.1 DATASETS, TASKS, AND BASELINES

Datasets We perform experiments on two different flow graph datasets. First, we test different
FlowGNNs (FlowGAT, FlowGATv2, and FlowGT) on publicly available power grid data from the
PowerGraph dataset (Varbella et al., 2024), which encompasses the IEEE24, IEEE39, IEEE118,
and UK transmission systems. The graphs contained in these datasets are undirected and cyclic and
represent test power systems with the aim of mirroring real-world power grids. The test systems
differ from each other in scale and topology, covering a wide range of relevant parameters. Sec-
ondly, we test DAFlowGNN on the Ckt-Bench101 dataset from the publicly available Open Circuit
Benchmark (OCB) (Dong et al., 2023), which contains 10,000 operational amplifiers (Op-Amps)
represented as DAGs. The dataset further provides circuit specifications for each Op-Amp, e.g.,
gain and bandwidth, which were obtained from circuit simulations. Further details on all datasets
can be found in App. A.3.

Tasks For the PowerGraph dataset, we train the models to perform cascading failure analysis.
Thereby, we utilize the attributed graphs provided by the PowerGraph dataset, each representing
unique pre-outage operating conditions along with a set of outages corresponding to the removal of
a single or multiple branches. An outage may result in demand not served (DNS) by the grid, and

7
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a cascading failure may occur, meaning that one or more additional branches trip after the initial
outage. In this scenario, we focus on two graph-level tasks: Binary and multiclass classification.
For binary classification, the model is supposed to predict whether the grid is stable (DNS = 0 MW)
or unstable (DNS > 0 MW) after the outage. For multiclass classification, the model should addi-
tionally predict whether a cascading failure occurs, resulting in four distinct categories representing
the possible combinations of stable/unstable and cascading failure yes/no. For Ckt-Bench101, we
perform graph-level regression to predict the properties of the Op-Amps. For this purpose, we train
three separate instances of each model for the prediction of gain, bandwidth, and figure of merit
(FoM), respectively. The FoM is a measure of the circuit’s overall performance and depends on
gain, bandwidth, and phase margin.

Baselines We compare the FlowGNNs on the PowerGraph dataset against their corresponding stan-
dard GNN versions GAT, GATv2, and GraphTransformer. Furthermore, we compare them against
two more widely adopted non-attentional GNNs from the literature: GCN, and GINe (Hu et al.,
2020), a modified version of GIN, which is able to incorporate edge features. In the second ex-
periment, we compare DAFlowGNN against D-VAE, DAGNN, and PACE. As additional baselines,
we further compare to standard GNNs and FlowGNNs not explicitly tailored to DAGs: GCN, GIN,
GAT, GATv2, GT, FlowGAT, FlowGATv2, and FlowGT.

4.2 CASCADING FAILURE ANALYSIS ON POWER GRIDS

Experimental setting We train three different FlowGNNs (FlowGAT, FlowGATv2, FlowGT) and
all baseline models for each test system contained in the PowerGraph dataset. Furthermore, we train
all models on binary and multiclass classification as described in Sec. 4.1. We stick closely to the
original benchmark setting in Varbella et al. (2024) by splitting the datasets into train/validation/test
with ratios 85/5/10% and using the Adam optimizer (Kingma, 2014) with an initial learning rate
of 10−3 as well as a scheduler that reduces the learning rate by a factor of five if the validation set
accuracy stops improving for ten epochs. The negative log-likelihood is used as the loss function and
balanced accuracy (Brodersen et al., 2010) is used as the evaluation accuracy due to the strong class
imbalance (see App. A.3). We train all models with a batch size of 16 for a maximum number of 500
epochs but stop training with a patience of 20 epochs. Each model is trained with varying numbers
of message-passing layers (1, 2, 3) with a hidden dimension of 32. Between subsequent message-
passing layers, we apply the ReLU activation function followed by a dropout of 10%. In order to
obtain graph embeddings from the node embeddings, we apply a global maximum pooling operator
as the readout layer. As a final prediction layer, we use a single linear layer or a two-layer perceptron
with a LeakyReLU activation function in between, depending on which type of prediction layer was
used for the corresponding model in the original PowerGraph benchmark. Each individual training
run is repeated five times with different random seeds.

Discussion The balanced accuracies on the test set are reported for each model on each of the four
test systems for binary and multiclass classification in Tab. 1 and Tab. 2, respectively. First of all,
we notice that the accuracy improves with more message-passing layers, which has already been
observed for power grid data in Ringsquandl et al. (2021). Therefore, we only report the results for
three layers here, while the results for one and two layers can be found in App. A.4. The FlowGNNs
outperform their corresponding standard GNN version in the majority of cases: In both, binary and
multiclass classification, FlowGAT shows a higher balanced accuracy compared to GAT for the test
systems IEEE39 and IEEE118, and only a minimal performance decrease on the other test systems.
In the case of GATv2, the FlowGNN version even outperforms its standard counterpart on all test
systems, while for the transformers, FlowGT performs better than GT on all test systems except
for IEEE118. These results indicate that the flow attention mechanism, which is the only applied
change to the corresponding baselines, may be beneficial when working with flow graph data.

Across all tasks and test systems, GIN turns out to be the strongest baseline. Since GIN is a non-
attentional GNN, our proposed flow attention mechanism cannot be incorporated. However, it still
seems to perform well on flow graphs, which could be explained by the fact that it is a maximally
expressive GNN (Xu et al., 2019). For binary classification, FlowGNNs outperform GIN on two
of four test systems, while for multiclass classification, they outperform GIN on three of four test
systems. Thereby, FlowGT achieves the highest accuracy among all models on the IEEE24 test
system, while FlowGATv2 shows the highest accuracy on IEEE118 as well as on IEEE39 in the
case of multiclass classification.
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Table 1: Binary classification results for the cascading failure analysis on the PowerGraph dataset
using three MPLs for all models. Reported results represent the balanced accuracy on the test set
in %, averaged over five training runs with different random seeds, along with the corresponding
standard deviation. The best result for each test system is marked in bold.

Model IEEE24 IEEE39 IEEE118 UK
GCN 91.3 ± 2.2 89.9 ± 2.5 86.0 ± 4.8 93.8 ± 1.7
GIN 98.1 ± 0.9 97.1 ± 0.4 99.7 ± 0.2 98.8 ± 0.9
GAT 94.7 ± 1.4 93.9 ± 2.1 92.1 ± 10.5 97.5 ± 0.4
GATv2 91.8 ± 1.8 90.3 ± 1.7 90.5 ± 9.8 97.5 ± 0.4
GT 96.9 ± 0.7 95.6 ± 1.4 99.5 ± 0.3 97.7 ± 0.2
FlowGAT 94.0 ± 1.4 95.6 ± 1.4 99.4 ± 0.3 97.4 ± 0.4
FlowGATv2 97.1 ± 0.6 96.8 ± 1.0 99.8 ± 0.1 97.9 ± 0.4
FlowGT 98.5 ± 0.2 96.0 ± 1.3 98.9 ± 0.6 98.3 ± 0.7

Table 2: Multiclass classification results for the cascading failure analysis on the PowerGraph dataset
using three MPLs for all models. Reported results represent the balanced accuracy on the test set
in %, averaged over five training runs with different random seeds, along with the corresponding
standard deviation. The best result for each test system is marked in bold.

Model IEEE24 IEEE39 IEEE118 UK
GCN 90.8 ± 0.7 82.7 ± 3.3 83.6 ± 4.8 89.0 ± 1.5
GIN 97.1 ± 0.9 94.7 ± 2.2 98.4 ± 1.4 98.4 ± 0.5
GAT 92.1 ± 3.4 84.7 ± 7.9 92.7 ± 1.2 94.6 ± 1.2
GATv2 93.7 ± 1.6 88.2 ± 3.8 93.4 ± 1.4 88.4 ± 13.6
GT 96.7 ± 0.9 92.3 ± 1.9 98.7 ± 0.4 96.1 ± 0.7
FlowGAT 92.0 ± 2.6 93.1 ± 1.0 97.0 ± 1.0 93.7 ± 3.0
FlowGATv2 96.7 ± 0.9 95.7 ± 0.7 98.9 ± 0.5 96.8 ± 0.9
FlowGT 98.4 ± 0.5 94.1 ± 0.8 98.3 ± 0.7 97.3 ± 0.5

4.3 PREDICTING PROPERTIES OF OPERATIONAL AMPLIFIERS

Experimental setting We train three versions of each model on the prediction of the Op-Amp prop-
erties gain, bandwidth, and FoM, respectively. Thereby, we split the dataset into train/validation/test
with ratios 80/10/10% and select the same test set as in Dong et al. (2023) for better comparison.
We use the AdamW optimizer (Loshchilov, 2017) with an initial learning rate of 10−4 and train
each model using the mean squared error (MSE) as the loss function with a batch size of 64 for a
maximum of 500 epochs but apply early stopping with a patience of 20 epochs. For the general
GNNs, we use two message-passing layers with a hidden dimension of 301 combined with a ReLU
activation as well as a global mean pooling operator for readout. For the DAG models (D-VAE,
DAGNN, PACE), we use the default parameters from Dong et al. (2023) and the model-specific
readout layers. For DAFlowGNN, we train a single-layer and a two-layer variant (DAFlowGNN-1,
DAFlowGNN-2) and adopt all other model parameters from DAGNN. Since one DAFlowGNN-
layer contains twice as many model parameters compared to a DAGNN-layer, we train a two-layer
and a four-layer-DAGNN (DAGNN-2, DAGNN-4) for a fair comparison. The final prediction is
done using a two-layer perceptron with a ReLU activation in between. Right before these final lay-
ers, we apply a dropout of 50% for regularization purposes. Each individual training run is repeated
ten times with different random seeds.

Discussion The RMSEs on the test set for all models and all OpAmp target properties are presented
in Tab. 3. From the standard message-passing GNNs, GIN and GT perform the best, showing
significantly lower prediction errors compared to GCN and GAT. GATv2 performs equally well on
the prediction of bandwidth and FoM but shows an increased RMSE on gain. However, all of these
models yield higher prediction errors compared to the directed acyclic GNNs (PACE, D-VAE, and
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Table 3: Regression results for the prediction of three different Op-Amp properties from the Ckt-
Bench101 dataset. Reported results represent the RMSE on the test set in %, averaged over ten
training runs with different random seeds, along with the corresponding standard deviation. The
best result for each property is marked in bold.

Model Gain Bandwidth FoM
GCN 0.485 ± 0.081 0.570 ± 0.012 0.578 ± 0.028
GIN 0.281 ± 0.007 0.455 ± 0.008 0.450 ± 0.007
GAT 0.425 ± 0.027 0.590 ± 0.049 0.565 ± 0.046
GATv2 0.324 ± 0.011 0.458 ± 0.020 0.440 ± 0.009
GT 0.271 ± 0.008 0.440 ± 0.024 0.439 ± 0.018
FlowGAT 0.334 ± 0.088 0.470 ± 0.054 0.462 ± 0.049
FlowGATv2 0.340 ± 0.043 0.474 ± 0.020 0.485 ± 0.020
FlowGT 0.405 ± 0.050 0.432 ± 0.016 0.429 ± 0.010
PACE 0.253 ± 0.009 0.443 ± 0.014 0.443 ± 0.009
D-VAE 0.218 ± 0.003 0.426 ± 0.005 0.425 ± 0.007
DAGNN-2 0.216 ± 0.002 0.396 ± 0.006 0.396 ± 0.009
DAGNN-4 0.210 ± 0.003 0.394 ± 0.008 0.394 ± 0.006
DAFlowGNN-1 0.215 ± 0.003 0.388 ± 0.004 0.387 ± 0.005
DAFlowGNN-2 0.209 ± 0.007 0.371 ± 0.008 0.366 ± 0.008

DAGNN), which leverage the sequential nature of DAGs, resulting in significant performance boosts
across all target properties.

Applying FlowGAT, FlowGATv2, and FlowGT to the OpAmps yields mixed results when compar-
ing them to their standard counterparts GAT, GATv2, and GT. While FlowGAT performs signifi-
cantly better than GAT, FlowGATv2, and FlowGT do not show any significant improvements but
rather perform worse compared to GATv2 and GT, especially in predicting the gain. The likely
reason for this is that although the flow attention weights account for resource conservation in flow
graphs, the computed flow attention weights might not be meaningful, since they are conditioned on
ancestor nodes only. Here, classical attention weights might lead to more expressive models in some
cases. Furthermore, these FlowGNNs do not process DAGs sequentially according to their partial
order and instead are restricted to aggregate information from only a k-hop node neighborhood,
where k is the number of MPLs. This explains the significantly higher RMSEs compared to directed
acyclic GNNs. DAFlowGNN solves both of these problems by leveraging the sequential nature of
DAGs and computing meaningful flow attention weights βij , which are conditioned on both ances-
tors of node j and descendants of node i. Consequently, the two-layer variant of this model shows
the best performance on all target properties among all tested models, including DAGNN-4, which
exhibits the same degree of complexity as DAFlowGNN-2. Similarly, DAFlowGNN-1 also shows
lower prediction errors compared to DAGNN-2 and even performs better than DAGNN-4 on two of
the three target properties.

5 CONCLUSION

In this paper, we proposed FlowGNN, a GNN framework based on a flow attention mechanism
that accounts for the conservation of resources in flow graphs. We also extended this framework
to DAGs, resulting in a model called DAFlowGNN, which can distinguish non-isomorphic directed
acyclic flow graphs which were so far indistinguishable for existing GNNs tailored to DAGs. Fur-
thermore, we showed that our models outperform their standard counterparts on graph-level regres-
sion and classification tasks across different flow graph datasets. In the future, it could be interesting
to analyze how the proposed models scale to larger circuits and power grids. Another interesting
direction for future work would be to investigate the performance of the proposed models on node-
and edge-level tasks, as well as on other flow graph data, such as traffic networks or supply chains.
Additionally, more theoretical work is required to gain a deeper understanding of the expressivity of
our models compared to standard GNNs.
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A APPENDIX

A.1 SCORING FUNCTIONS OF ATTENTIONAL GNN BASELINES

In GAT (Veličković et al., 2018), the scoring function is defined as

eGAT (hi,hj) = LeakyReLU
(
aT · [Whi ∥Whj ]

)
. (16)

Thereby, the linear layers a and W are applied consecutively, making it possible to collapse them
into a single linear layer.

In GATv2 (Brody et al., 2022), a strictly more expressive attention mechanism is proposed, in which
the second linear layer a is applied after the nonlinearity:

eGATv2 (hi,hj) = aT LeakyReLU (W · [hi ∥ hj ]) . (17)

Thus, GATv2 is effectively using a multi-layer perceptron (MLP) to compute the attention scores,
allowing for dynamic attention compared to the static attention performed by GAT.

Finally, GT (Shi et al., 2021) is transferring the attention mechanism of the Transformer model
(Vaswani et al., 2017) to graph learning:

qi = Wqhi + bq, (18)
kj = Wkhj + bk, (19)

eGT (hi,hj) =
qT
i · kj√
d

, (20)

where qi ∈ Rd is the query vector, kj ∈ Rd is the key vector and Wq,Wk, bq, bk are trainable
parameters.

All of the above scoring functions can be extended to multi-head attention and are able to incorporate
edge features as well. This characteristic is naturally inherited by the corresponding FlowGNNs.

A.2 DIRECTED ACYCLIC GNN BASELINES

In the encoder of the D-VAE model (Zhang et al., 2019), the aggregation corresponds to a gated sum
using a mapping network m and a gating network g, and the update function ϕ is a gated recurrent
unit (GRU) (Cho et al., 2014):

m′
i =

∑
j∈Nin(i)

g(h′
j)⊙m(h′

j), (21)

h′
i = GRU(hi,m

′
i). (22)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 4: Number of nodes and edges for each test system as well as the number of corresponding
graph samples contained in the PowerGraph dataset (see Varbella et al. (2024)).

Test system No. Nodes No. Edges No. Graphs
IEEE24 24 38 21500
IEEE39 39 46 28000
IEEE118 118 186 122500
UK 29 99 64000

Table 5: Distribution of the classification labels for each test system in the PowerGraph dataset (see
Varbella et al. (2024)). DNS stands for demand not served and c. f. stands for cascading failure,
corresponding to at least one more tripping branch after the initial outage.

Category A Category B Category C Category D
DNS > 0 MW DNS > 0 MW DNS = 0 MW DNS = 0 MW

Test system c. f. no c. f. c. f. no c. f.
IEEE24 15.8% 4.3% 0.1% 79.7%
IEEE39 0.55% 8.4% 0.45% 90.6%
IEEE118 >0.1% 5.0% 0.9% 93.9%
UK 3.5% 0% 3.8% 92.7%

Another popular model is the DAGNN (Thost & Chen, 2021), which also uses a GRU for the update
function but the message function is an attention mechanism with model parameters w1 and w2:

m′
i =

∑
j∈Nin(i)

αij

(
hi,h

′
j

)
h′
j , (23)

αij = softmax
j∈Nin(i)

(
wT

1hi +wT
2h

′
j

)
. (24)

Since the embeddings of the (possibly multiple) end nodes contain information on the whole DAG,
they are typically used for computing the graph-level representations. After L layers, the graph-level
embedding can be obtained by concatenating the end node representations from all layers followed
by a max-pooling across all end nodes:

hG = Max-Pool
i∈F

(
L

∥
l=0

hl
i

)
. (25)

A.3 DETAILS ON POWERGRAPH AND CKT-BENCH101

The PowerGraph dataset contains four different test systems (IEEE24, IEEE39, IEEE118, UK) with
unique graph structures. For the cascading failure analysis, each test system was simulated for
different power grid loading conditions together with a specific initial outage, resulting in a large
number of graph samples. The number of nodes and edges in each test system as well as the number
of graph samples are reported in Tab. 4.

Tab. 5 shows how the classification labels are distributed in the PowerGraph dataset for each test
system. For multiclass classification, models are trained to distinguish all available categories, while
for binary classification, the models only have to predict whether DNS > 0 MW (categories A and
B) or DNS = 0 MW (categories C and D), where DNS is the demand not served. Due to the strong
class imbalance, the balanced accuracy BA is used as the evaluation metric (Brodersen et al., 2010),
which is defined as the mean of sensitivity and specificity:

BA =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
. (26)

Here, TP/FP/TN/FN represent true/false positive/negative predictions.
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Figure 4: Distribution of the number of nodes (left) and number of edges (right) within the Ckt-
Bench101 dataset (Dong et al., 2023).

Table 6: Binary classification results for the cascading failure analysis on the PowerGraph dataset
using a single MPL for all models. Reported results represent the balanced accuracy on the test set
in %, averaged over five training runs with different random seeds, along with the corresponding
standard deviation. The best result for each test system is marked in bold.

Model (1 layer) IEEE24 IEEE39 IEEE118 UK
GCN 70.7 ± 3.3 67.8 ± 1.5 71.9 ± 1.6 81.0 ± 2.3
GIN 92.0 ± 2.1 89.6 ± 1.1 94.0 ± 10.4 97.8 ± 0.6
GAT 82.7 ± 2.2 66.9 ± 2.3 71.9 ± 1.6 86.6 ± 0.3
GATv2 86.5 ± 2.5 73.2 ± 1.6 75.1 ± 1.6 90.3 ± 6.2
GT 85.4 ± 2.8 66.8 ± 3.8 71.9 ± 1.6 90.8 ± 2.0
FlowGAT 92.4 ± 1.8 78.5 ± 2.7 75.5 ± 1.5 97.2 ± 0.6
FlowGATv2 94.3 ± 1.3 86.8 ± 0.8 99.2 ± 0.3 96.3 ± 0.7
FlowGT 95.4 ± 0.7 92.4 ± 0.9 99.1 ± 0.2 97.3 ± 0.3

The CktBench-101 dataset from the Open Circuit Benchmark Dong et al. (2023) contains 10,000
artificially generated operational amplifiers represented as DAGs. Fig. 4 shows the distribution of
the number of nodes and the number of edges among all graphs in the dataset. The average number
of nodes is 9.6 with a standard deviation of 2.1. The average number of edges is 14.5 with a standard
deviation of 5.3. We are using the most recent update of the CktBench-101 dataset, which does not
contain any failed simulations anymore.

A.4 ADDITIONAL RESULTS FOR THE CASCADING FAILURE ANALYSIS

In addition to the results for the cascading failure analysis reported in Tab. 1 and Tab. 2, where
each model contains three MPLs, we also performed similar experiments for one and two MPLs,
respectively. These results are reported in Tab. 6- 9. Interestingly, the increase in performance
of FlowGNNs compared to their standard counterparts is more pronounced for single-layer GNNs.
However, the overall performance drops when using fewer MPLs for almost all models, test systems,
and tasks.

A.5 EFFICIENCY COMPARISON

We compare the average training and inference times for processing the training set of the Ckt-
Bench101 dataset, which contains 8,000 OpAmps graphs. Thereby, we use the same parameters
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Table 7: Binary classification results for the cascading failure analysis on the PowerGraph dataset,
using two MPLs for all models. Reported results represent the balanced accuracy on the test set
in %, averaged over five training runs with different random seeds, along with the corresponding
standard deviation. The best result for each test system is marked in bold.

Model (2 layers) IEEE24 IEEE39 IEEE118 UK
GCN 87.4 ± 1.8 78.2 ± 1.0 73.7 ± 1.9 85.7 ± 4.0
GIN 97.5 ± 1.0 96.9 ± 1.2 99.4 ± 0.4 98.3 ± 0.7
GAT 94.1 ± 2.7 75.4 ± 8.0 81.7 ± 2.1 97.9 ± 0.2
GATv2 91.4 ± 2.9 89.4 ± 4.1 89.6 ± 10.6 97.5 ± 0.7
GT 94.1 ± 1.0 82.4 ± 6.1 79.3 ± 1.1 98.0 ± 0.1
FlowGAT 96.3 ± 0.2 95.5 ± 1.1 99.4 ± 0.4 98.3 ± 0.4
FlowGATv2 96.2 ± 0.8 93.3 ± 2.9 99.5 ± 0.2 97.7 ± 0.3
FlowGT 96.9 ± 2.1 95.1 ± 1.0 99.0 ± 0.5 98.0 ± 0.3

Table 8: Multiclass classification results for the cascading failure analysis on the PowerGraph
dataset, using a single MPL for all models. Reported results represent the balanced accuracy on
the test set in %, averaged over five training runs with different random seeds, along with the corre-
sponding standard deviation. The best result for each test system is marked in bold.

Model (1 layer) IEEE24 IEEE39 IEEE118 UK
GCN 58.0 ± 1.3 65.9 ± 1.8 67.3 ± 1.5 61.8 ± 0.7
GIN 92.0 ± 4.9 86.5 ± 3.5 89.7 ± 10.2 96.3 ± 1.8
GAT 76.0 ± 1.8 63.7 ± 3.1 68.1 ± 1.9 76.0 ± 1.0
GATv2 84.0 ± 3.4 68.5 ± 3.3 73.5 ± 1.9 83.5 ± 7.1
GT 79.0 ± 3.1 68.6 ± 2.9 68.2 ± 1.6 83.4 ± 4.3
FlowGAT 89.7 ± 3.1 74.4 ± 3.4 76.0 ± 1.2 95.5 ± 1.2
FlowGATv2 92.5 ± 1.5 83.6 ± 1.3 97.0 ± 0.9 89.2 ± 2.1
FlowGT 93.5 ± 0.5 88.5 ± 0.8 98.1 ± 0.4 93.3 ± 0.9

that we reported in Sec. 4.3. The results for general GNNs and FlowGNNs are reported in Fig. 5.
We observe that the non-attentional GNNs (GCN and GIN) are slightly more efficient compared
to the attentional GNNs. Furthermore, we can not observe any significant increases in training or
inference time for FlowGNNs compared to their standard counterparts. The reason for this is that
the only modification of the FlowGNNs is the different normalization of the attention scores in the
flow attention mechanism, which does not affect the model’s efficiency.
Fig. 6 shows a similar efficiency comparison for the directed acyclic GNNs. These models are sig-
nificantly more expensive to compute compared to general GNNs due to the sequential message-
passing (DVAE, DAGNN, and DAFlowGNN) or a much higher number of model parameters
(PACE). We observe slight differences in efficiency between these models. However, they are much
harder to compare because we used original implementations from the authors rather than standard
implementations from PyTorch Geometric (Fey & Lenssen, 2019), as in the case of the general
GNNs. Note that the efficiency of PACE can be considerably increased through parallelization
(Dong et al., 2022), which is not reflected in this analysis.
All experiments were carried out on NVIDIA V100 GPUs.
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Table 9: Multiclass classification results for the cascading failure analysis on the PowerGraph
dataset, using two MPLs for all models. Reported results represent the balanced accuracy on the
test set in %, averaged over five training runs with different random seeds, along with the corre-
sponding standard deviation. The best result for each test system is marked in bold.

Model (2 layers) IEEE24 IEEE39 IEEE118 UK
GCN 79.4 ± 8.9 74.6 ± 1.5 70.6 ± 1.3 70.2 ± 6.1
GIN 97.1 ± 0.6 95.2 ± 1.5 97.3 ± 2.3 97.9 ± 0.4
GAT 87.0 ± 6.4 75.7 ± 3.7 78.5 ± 3.0 93.7 ± 0.8
GATv2 90.5 ± 1.0 88.2 ± 1.0 96.2 ± 1.3 92.7 ± 2.0
GT 91.0 ± 1.5 82.4 ± 5.1 74.4 ± 2.4 94.5 ± 0.6
FlowGAT 94.7 ± 1.3 94.8 ± 1.2 98.9 ± 0.4 96.8 ± 0.4
FlowGATv2 96.0 ± 1.1 92.0 ± 1.6 97.2 ± 0.9 95.6 ± 0.4
FlowGT 96.4 ± 0.7 92.2 ± 1.5 98.2 ± 0.7 96.9 ± 0.6
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Figure 5: Training and inference times of different GNN and FlowGNN models for processing the
whole training set (8,000 graphs) from the CktBench101 dataset. Thereby, a batch size of 64 is used.
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Figure 6: Training and inference times of different directed acyclic GNN models for processing
the whole training set (8,000 graphs) from the CktBench101 dataset. Thereby, a batch size of 64 is
used.
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