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ABSTRACT

In this study, we propose a new bandit framework of stochastic matching employ-
ing the Multinomial Logit (MNL) choice model with feature information. In this
framework, agents on one side are assigned to arms on the other side, and each
arm stochastically accepts an agent among the assigned pool of agents based on
its unknown preference, allowing a possible outside option of not accepting any.
The objective is to minimize regret by maximizing the probability of successful
matching. For this framework, we first propose an elimination-based algorithm

that achieves a regret bound of O (K +/rKT) over time horizon T', where K is the
number of arms and r is the rank of feature space. Furthermore, we propose an
approach to resolve the computation issue regarding combinatorial optimization
in the algorithm. Lastly, we evaluate the performances of our algorithm through
experiments comparing with the existing showing the superior performances of
our algorithm.

1 INTRODUCTION

In recent times, the rising prevalence of matching markets, such as ride-hailing services, online job
markets, and online labor markets, has increased the demand for strategies to enhance successful
matching. In ride-hailing services, for instance, the goal is to pair riders with drivers to maximize
the probability of successful matched rides, thereby increasing revenue. In online job markets, the
goal is to maximize successful employment between applicants and employers.

Due to the demand for matching problems, online (bipartite) matching problems have been widely
studied (Karp et al.,|1990; Mehta et al., 2007; 2013} |(Gamlath et al.,|2019; [Fuchs et al.,|2005; Kessel-
heim et al., [2013). In these problems, there are two sides for vertices where vertices are revealed
one at a time. Then the focus is on optimizing to maximize matching. However, there exists a gap
between the models considered in online matching problems and their real-world applications. For
ease of presentation, in what follows, we refer to the vertices on one side as agents and those on the
other side as arms. Previous studies only focused on assigning a single agent to an arm, not allow-
ing the assignment of multiple agents to an arm. More crucially, based on these setups, the focus
has been solely on optimization to maximize matching rather than learning underlying models from
bandit feedback. In real-world applications such as ride-hailing services, however, preferences are
unknown in advance, and learning the latent preferences of drivers is necessary while maximizing
the probability of call acceptance.

Based on the demand for online learning in real-world applications, sequential matching under ban-
dit feedback, referred to as matching bandits, has recently gained attention (Liu et al., 2020; 2021}
Sankararaman et al., 2020; Basu et al., [2021} [Zhang et al., 2022; |[Kong & Li, |2023). The typical
problem setting studied in the matching bandits is as follows. In each round, each agent is assigned
to an arm, and then the arms accept an agent among the assigned pool of agents, which results in
the completed matching(s) of an agent and an arm. Then, stochastic reward feedback correspond-
ing to each match is observed, where the true distributions of rewards are assumed to be unknown.
The objective is to find stable matching based on the preferences as in the stable marriage problems
McVitie & Wilson|(1971)) by learning reward distributions.

However, there is still a gap between models considered in the matching bandit literature and real-
world applications. The previous studies presume that the behavior of arms is deterministic based on
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Figure 1: Tllustration of our stochastic matching process with 4 agents (N = 4) and 3 arms (K = 3).

known preferences without allowing refusal from arms. That is, given the assignments of agents to
arms, the matching outcome is deterministically given by the preferences that each arm has. Based
on the deterministic behavior, the previous work focuses on finding stable matching. However, this
assumption may not align with many practical applications, as seen, for instance, in ride-hailing
services, where there are riders (agents) and drivers (arms). When the dispatch system assigns
riders’ calls to drivers, the choice behavior of drivers for accepting calls from riders is stochastic
rather than deterministic. This stochastic acceptance is not just among multiple calls assigned to
a single driver, but also for single assigned call. That is, the driver may refuse a call according to
some choice preference, which is unknown to riders or even to the dispatch system. Then, a critical
question arises:

How can we maximize the success of matching under this stochastic behavior?

In this work, we introduce a novel and practical online matching framework, termed stochastic
matching bandits, to describe the bandits for matching operating under stochastic matching con-
ditions characterized by unknown preferences. It is important to highlight that our framework is
fundamentally different from existing approaches, such as online matching problems and matching
bandits. We describe our proposed framework with an illustration in Figure[T] as follows. (a) Mul-
tiple agents and arms are involved with unknown utility values between them reflecting the arms’
preferences over agents. (b) In each time step, each agent is assigned to an arm. Note that multiple
agents can be assigned to a single arm. These matching assignments are proposed to the arms, but
the final matching has not yet been confirmed. (¢) Arms accept a suggested matching from an agent
among the assigned pool of agents based on their preferences or reject all of them, making stochastic
decisions under unknown preferences.

For the choice model of arms over agents, we use the multinomial logit (MNL) function with fea-
tures. Significantly, our model incorporates outside options, allowing arms to opt out of accepting
any agents from the assigned pool. This consideration of outside options reflects many real-world
scenarios, such as drivers in ride-hailing services choosing not to accept calls from assigned riders
based on their preferences, or employers in online job markets deciding not to hire any. We high-
light that, in this problem, the success or failure of the match serves as the reward feedback for
agents. Then, our objective is to maximize the probability of successful matching in the systems
while learning unknown preferences in an online manner.

Summary of Our Contributions. In the following, we provide a summary of our contributions.

* We introduce a novel framework of stochastic matching bandits, which incorporates the
stochastic behavior of arms along with the inclusion of outside options (refusals of as-
signed matching). This framework entails the reward of success or failure from stochastic
matching under latent preferences given by a MNL model. Moreover, our feature-based
MNL modeling in the proposed framework allows for generalization and efficient learning
across agents.
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* Under our stochastic matching bandits framework, we propose an elimination-based algo-
rithm SMB that efficiently balances exploration and exploitation.

* We establish the regret bound of our proposed algorithm, achieving (5(K VrK T) regret,
where r is the rank of feature space, K is the number of arms, and 7" is the time horizon.

* Furthermore, we explore a method to address the computation issue regarding combinato-
rial optimization for the algorithm.

* Finally, we demonstrate the numerical outperformances of our algorithm in comparison
with previously proposed matching bandit algorithms.

2 RELATED WORK

Online Matching Problem. In regards to matching optimization, the online matching problem
has been studied by [Karp et al.| (1990); Mehta et al.| (2013; 2007); |(Gamlath et al.| (2019)); [Fuchs
et al.| (2005)); [Kesselheim et al| (2013), in which the objective is to maximize matching from ir-
reversible matching decisions under real-time arrivals. Online bipartite matching was first studied
by |[Karp et al.| (1990), which provided a randomized algorithm for the online matching problem
in a bipartite graph. Subsequent research has expanded upon this foundation, with studies such as
Kesselheim et al.|(2013) addressing weighted bipartite matching and |Gamlath et al.| (2019) explor-
ing the generalized arrival model regarding vertices and edges. In contrast to the typical focus on
optimization in online matching problems, our study, inspired by bandit research, concentrates on
learning preference utilities related to preferences by allowing the assignment of multiple agents
to an arm. Moreover, for the utility values, we explore a more generalized structure with features,
which has not been studied for the online matching problem. Importantly, our approach introduces
a fundamentally different aspect from the online matching problems by addressing the tradeoff be-
tween exploitation and exploration.

Matching Bandits. Here we examine the existing body of literature on matching bandits. The
exploration of regret minimization in matching markets was initially studied by [Liu et al.| (2020).
Their objective was to minimize regret by finding an optimal stable matching by learning agents’
side preferences through stochastic reward feedback. In their work, the Explore-then-Commit-based
algorithm, integrated with the Gale-Shapley platform (Gale & Shapley, [1962)), was proposed. Sub-
sequent studies by Sankararaman et al.| (2020); [Liu et al.| (2021); Basu et al.| (2021) focused on de-
centralized agents within matching bandits. More recently, Zhang et al.| (2022); Kong & Li| (2023)
accomplished improved regret bounds. The previous work does not consider feature information or
general structure, focusing solely on the basic MAB setting. We also note that all of the previous
work only considered N < K.

Our research distinguishes itself from prior work on matching bandits in several aspects. Firstly,
prior work focuses on achieving a stable matching under the assumption that arm behavior is de-
terministic with known preferences. This implies that each arm accepts an agent deterministically
based on its known preference, given the assigned agents without outside options (that is, there is no
option to not choose any agent). In contrast, we posit that arm behavior is stochastic with unknown
preferences, highlighting the importance of learning arms’ preferences. Furthermore, we allow arms
to have outside options (not to accept any agent). Thus, successful matching by avoiding the out-
side option is crucial. This naturally directs focus towards maximizing the likelihood of successful
matches while acquiring preference feedback rather than focusing on stability. This indicates that
our setting does not align with previous research but instead represents a distinct problem. Ad-
ditionally, we consider preference utility as a function of features. Lastly, we do not assume any
relationship between N and K, allowing for N > K or N < K.

MNL-Bandits. As the first MNL bandit method, |Agrawal et al|(2019) proposed an epoch-based
algorithm, followed by subsequent contributions from |Agrawal et al.| (2017b); |Chen et al.| (2023));
Oh & Iyengar|(2019;2021). In our study, we adopt the MNL model for arms’ choice preferences in
matching bandits, which has not been studied before. Unlike selecting an assortment at each time
step, our novel framework for the stochastic matching market mandates choosing at most K distinct
assortments to assign agents to each arm.
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3 PROBLEM STATEMENT

There are N agents and K arms. For each agent n € [N], feature information is known as x,, € R4,
and each arm k € [K] is characterized by latent vector 6, € R?. We define the set of features as
X = [z1,...,zy] € RN and the rank of X as rank(X) = r(< d). At each time t € [T}, every
agent n may be assigned to an arm k,, ; € [K]. Let assortment Si, ; = {n € [N] : k, = k}, which
is the set of agents that are assigned to an arm k at time ¢. We consider that | S, ;| < L for all k£ and
t. Then given an assortment to each arm £ at time ¢, S} ;, each arm k£ randomly accepts an agent
n € Sy according to the arm’s preference specified as follows. The probability for arm k to accept
agent n € Sy, ; follows Multi-nomial Logit (MNL) model (Agrawal et all [2017alb; [Oh & Iyengar,
2019520215 Chen et al., [2023)) given by

exp(z,, 0r)
L+ es,., eXP(@nbk)

We note that z,} 0, represents the preference utility of arm k to agent n. Then at each time ¢, the
agents observe the stochastic matching feedback of the assortments {Sk ¢ } re[x] as Yn,t € {0, 1} for
alln € Sk, k € [K], in which y,,, = 1 when arm k accepts agent n (arm k is matched with agent
n), and otherwise ¥, ; = 0. Importantly, as considered in the previous MNL bandit literature, it is
allowed to have an outside option (ng) for each arm k according to MNL with probability as

1
1+ Zmes exp(x,) 0r)

We define the probability that arm % is matched with any agent in Sy as Ri(Sy) =
> nes,, P(n|Sk,0k). Then, given assortments to every arm k, {Sk}re(x), the expected number
of successful matches at time ¢ is

0
Z Ry (Sk) = Z Z (1] Sk.t,0k) = Z Z +Zj§szex;2x—r9k)

ke[K] K] n€Sk kE[K] n€Sk

(n|Sk ts ek)

p(no|Sk,t,0k) =

The purpose of this problem is to maximize the expected number of successful matches over horizon
time 7" while learning latent 0’s. Here we define the oracle strategy, which is the optimal policy
when 6},’s are known. Define the set of all possible assortments to be M = {{Sk}re[x] : Sk C
[N],|Sk| < LVk € [K]|,S, NS, = @ Vk # l}. Then the oracle strategy is the following:
{Sk kel = argmaxyg,y, o ocnm D opeix) Br(Sk)- Given {Sy i tre(x) € Mforallt € [T1, the
expected regret is defined as

E|> > Ri(Si)— Ri(Sks)

te[T] ke[K]

Then the goal of this problem is to find a policy to minimize the regret. Next, we provide assumptions
for some regularity conditions in this problem as follows.

Assumption 1. ||z,||2 < 1foralln € [N]and ||0k|l2 < 1 forall k € [K].

Assumption 2. There exists k > 0 such that for any n € S and S C [N],
infgera,jo),<2 Pr(n]S, 0)pr(nolS, 0) > k for all k € [K].

It is worth mentioning that these regularity conditions are commonly taken into account in the logis-
tic and MNL bandit literature (Faury et al., 2020; |Abeille et al.,2021; Oh & lyengar, 2019;2021).

Notations. Let [a,b] denote the set of integers from a to b. For a vector z € R? and a positive
definite matrix A € R*?, A-weighted norm of z is denoted by ||z|[4 = Va T Az.

4  ALGORITHM AND REGRET ANALYSIS

To handle the large number of possible matchings between agents and arms while learning prefer-
ences, we propose an elimination-based algorithm (Algorithm I)), taking insights from [Lattimore &
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Algorithm 1 Stochastic Matching Bandit (SMB)

Input: T, K, Cl > 0, CQ >0, C3 >0

Init: t + 1,71 + Cylog(KNT), Mo + M, Ny ¢ [N], 7,7, = @ forall k € [K]. n € [N]

Compute SVD of X = UXV " and obtain U,. = [u1, ..., u,]; Construct z,, < U, z,, forn € [N]

Run Round-robin Warm-up (Algorithm over time steps in 7;(1) (defined in Algorithm for
kelK

for 7 [: ]1, 2...do

for k € [K] do
// Estimation

(1) (2) (2 _ (2)

77%7*1 A 7; U 776,7'—1 where 7;(,‘,7’—1 T UT’E[T*l] UnEN’kJ/ 7:1,]{2,7'/
VkaT_l — 25677617,1 ZnESk,s Z”Z’I
Or,r—1 + argmingep, lg r—1(6) with (D).

// Assortments Construction
{Sz(,i )}ZE[K]

CAargmax gy oM, meS, 2ie(K] RlU’TCLBl(Sl) forall n € Ny —1 with (2)
// Elimination

k

N = {n € Nig,r1 sMAXLG e (k) €M1 Zle[K] Rffﬁ(sl) < Ele[K] RII{TCE(S;,Z ))}

with
// G/D-optimal design
Tk,r 4 aIgMaX, cp(n;, ) logdet ZneN’” T (0)2n 2,

// Exploration
for n € Nj; - do
tug 4 6T [tk o + [re ()T — 1]
while ¢t € 7,%%) do
n,k
Offer {Si. herx) = 182" heiw)
Observe feedback y,,, € {0,1} forall m € S, and [ € [K]
t—t+1

My {{Sk veir) + Sk © Nior, |St] < LYk € [K], S50 S = @ Vk # 1}
L TT+1 <~ 2T7'

Szepesvari (2020) and |Chen et al.| (2023). The main idea of this algorithm is to eliminate feasible
connections between agents and arms delicately that are identified as suboptimal over epochs. The
details are described in the following.

Before advancing on the rounds, the algorithm computes Singular Value Decomposition (SVD) for
feature matrix X = UXVT € RN, From U = [uy,...,uq) € R and rank(X) = r, we can
construct U, = [uy, ..., u,] € R4X" by extracting the left singular vectors from U that correspond
to non-zero singular values. We note that the algorithm does not necessitate prior knowledge of
7 because the value can be obtained from SVD. The algorithm, then, operates within the full-rank
r-dimensional feature space with z,, = U, x,, € R" for n € [N]. The insight behind this approach
is as follows.

Since z,, for n € [N] lies in the subspace U,., we observe that x,, = U,.b,, for some b,, € R". Let
0; = U,’ 0).. Then we have z, 0 = z,! 0} by following z,| 0, = b, U,” 0, = b} (U, U,)U," 6, =
z, U U0, = 205 using U, U, = I;. Therefore, we can reformulate the MNL model using
r-dimensional feature z, € R" and latent §;, € R" in place of d-dimensional x,, € R% and 6;, € R,
respectively, for n € [N] and k € [K]. We note that this procedure is beneficial not only for
reducing feature dimension but also for introducing appropriate regularization for estimators without
imposing any assumption about feature distributions considered in|Oh & Iyengar| (2021}).

Algorithm [T] consists of two stages; warm-up and main. The algorithm initiates the warm-up stage
(Algorithm 2| in Appendix [A.I)) to apply regularization to the estimators, by uniform exploration
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across all agents n € [N] for each arm k € [K]. Subsequently, it proceeds to the main stage, which
comprises multiple epochs denoted by 7. In what follows, we describe the process for constructing
assortments at each time step in the main stage. We first describe the procedure of estimation,
assortments construction, and elimination associated with Lines [5}{9] of Algorithm[I] For each k e
[K], from observed feedback y,,; € {0,1} forn € Sy, t € Ty r—1, where Ty, -_1 is a set of the
exploration time steps regarding arm k before epoch 7, we first define the negative log-likelihood
loss as

U,r—1( Z Z Yn.t log p(n|Sk,¢,0), )
t€Tk,r—1 n€Sy,U{0}
where, with a slight abuse of notation, p(n|Sk.,0) = exp(z, 6)/(1 + 3,5, , ©xP(2,,60)). Then

at the beginning of each epoch 7, the algorithm estimates ék,T_l from the method of Maximum
Likelihood Estimation (MLE).

From the estimator, we define the upper and lower confidence bounds for the matching probability
of assortment Sy, as

RVCB exp(pnk,r—1)
k T— (Sk) and
1 n;g 1+ Zmesk exp(pm,k,ffﬂ
RLCB eXp(bn,k,T—l)
k T— l(Sk) , (2)
n;; 1+ Zmesk exp(bm,k,'rfl)

where pnkr-1 = 2, Okr—1 + ﬁT”Z””VETl_l and by, 1 = 2, O0k,—1 — ﬁTHankaTl_l
with a confidence term B = %\/log(TN K) for some constant C; > 0 and Vj,_1 =
> > ZnZ, .

t€Tk,r—1 n€Sk,t NN

Then the algorithm assesses the eligibility of each assignment (n, k) forn € N, ;1 and k € [K]
as a potential optimal assortment, where N}, ;1 is the active set of agents regarding arm % at epoch
7. To evaluate the assignment (n, k), it constructs a representative assortment of {S l(i’k) hierx) from
an optimistic view as follows:

{8 ey = arg max S RYCE (S, 3)
{Sk}kg[K]EMT 1:MESK ke[K]

Then based on the representative assortments, it obtains N, » by eliminating n € Ny ,_; which
satisfies the elimination condition in Line [9] of Algorithmm:

max > REPG(S) > Y RUSASTY), )

s EM._
{Sthex) Yielk l€[K]

in which (n, k) is excluded if the reward from the optimistic assortment for (n, k) is lower than
that from the pessimistic optimal assortment. From the obtained N, , for all k& € [K], it constructs
an active set of assortments M (Line [T7), which is likely to contain the optimal assortments as
{8} Yre[k] € M (to be shown later).

Following the elimination process outlined above, here we describe the policy of assigning assort-
ment { Sk} ke[ at each time ¢ corresponding to Lines [I0}{16]in Algorithm[I] For each k € [K],
the algorithm utilizes the G/D-optimal design problem (Lattimore & Szepesvari, |2020) to obtain
proportion 7y € P(Nj ) for learning 0} efficiently by exploring agents in N, ,, where P (N ;)
is the probability simplex with vertex set Ny . Then, for all n € N ,, it explores {Sl(f;’k)}le[;q
several times using 7 () which is the corresponding value of n in 7, .. The algorithm repeats
those processes over epochs 7 until it reaches the time horizon 7'. In the following, we provide a
regret bound of this algorithm.

Theorem 1. Algorithm[I|achieves a regret bound of

R(T) = O (iKJrlTT) .
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Proof sketch. Here we provide a proof sketch and the full version is provided in Appendix [A.2] In
this proof, we focus on the regret stemming from the main stage, as the regret incurred during the
warm-up stage exhibits a poly-logarithmic bound regarding 7", which is negligible for large 7.

We first define a concentration bound event E such that for all 7 € [T], k € [K], and n € [N],
2] By — 07) < &2 \/”Z"HV . log(NKT), for some constant C; > 0. Then we can show

that £ holds with high probability. Therefore for the following, we assume that £ holds. Then we
show that for all 7 € [T,

{Sitrerx) € Mr—1. (5)

This can be shown by induction. Suppose {S; } re[x] € M_1. Then, after omitting certain details,
we can show that for any n € S and k € [K],

RUTCB (n k) max LTCB S o
lgl:( l 1 ) {Sl}le K]EMT 1 g}:{] l 1( l)

which implies that n € S}, is not eliminated from the elimination condition in LlneE]of Algorlthml
so that {S} }re[x) € M. With {S] }re(x) € Mo, this concludes the induction.

By using the mean value theorem, we can show that for any S C N 1 for k € [K] and T € [T]
we have

RYSP(S) = Re(S) < 287 mas 2y and By(S) — RESP(S) < 28rmaxleallys -
(N
Then we have

SRS =Y RS

IE[K] IE[K]
< E <RlL7TC_%(Sl*) + 207 max ||z, -1 — RlUTCEi(S(n k)) +2Br max ||zpml, -1 )
mesS; l,7—1 mes(n.k) 1,7—1
l€[K] T

<28r ) - _
< ﬂTle[K](mea;; lzmlly, -+ mgﬁxk) 1zmllv,2 ),

®)
where the first inequality comes from (7) and the last one comes from Zle[ K] Rl B(Sr) <
> ie[K] RUCH (Sl(i "), which can be derived from (@) and (6).
Now we provide a bound for ||zm||v_ B in the last inequality of (8). Define V(m ,) =

> one N 7k, »(n)2n 2, . From the algorlthm we can observe that
Vir = Y ks (n)Trznz, = Co2" 'rlog(KNT)V (. +), )
ne€Ng -+

where the first and second inequalities are obtained from the definition of V}, - and 77, respectively.
From Theorem 21.1 (Kiefer-Wolfowitz) in |Lattimore & Szepesvari|(2020) for the G/D-optimal de-
sign problem, for all k& € [K], we have max, e, . ”Z””%/(wk )1 = 7. Then, for any n € Ni,r we
have ’

Izl = 0 (27772 flzalBr. ) 2 /r108(KNT)) = 02772/ log(KNT)),  (10)

where the first equality comes from (9). Therefore from (8)) and (I0), we have

ST (RU(SH) - Ri(ST)) = 0 (im’”) : (1)

lE[K]
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v

We define 7* to be the smallest 7 € [T such that 3 7 - 1 \’77C | > K> T,_, 27 ~1Cyrlog(KT)

T. Then we have Z:;l 27 =  O(T/rKlog(KNT)), which implies 7% =
O(log(T/rK log(KNT))). Finally, we can conclude the proof from the following:

E > > Ri(Si)— Ri(Sks)

tE[T | ke[K]

61@222! b D RIS = Ru(S)

| =1 ke[K] n€ENE, - I€[K]

O|E fKZZ S OTE 2T

T= 1k€[K]n€NkT
=0 (IE)

1, ~ (1
~K?r § 27/2D =0 (K\/TKT) ,
K K
where the third equality comes from (TI) and the last one comes from the bound of 7*. O

T=1

Algorithm shows sublinear regret with respect to (< d) instead of d from the procedure of SVD.
Moreover, the algorithm demonstrates a tight regret bound concerning 7" and . We also observe
that same as the previous linear-utility MNL bandits in (Oh & Iyengar| (2021; [2019), our regret
bound depends on 1/ which is bounded by O(L?) in the worst case. It remains an open question
whether the dependence on « can be further improved.

We can observe that there may exist a computation issue in the combinatorial optimization of our
algorithm, specifically in (3) and (@), even though the computation is required for each epoch rather
than each round. We address this issue in the following.

5 COMBINATORIAL OPTIMIZATION WITH ov-APPROXIMATION ORACLE

Here we discuss the combinatorial optimization in our algorithm. The exact optimization regarding
(@) and @) can of course be expensive due to its NP-hard nature. To address this, we can utilize
an a-approximation oracle with 0 < o < 1, first introduced in [Kakade et al.| (2007). Instead of
obtaining the exact optimal assortment solution, the a-approximation oracle, denoted by O, outputs
{SK Frerx) satisfying Dy c ) fr(SF) = max(s,}, e Zke[K] a fr(Sk). Such an oracle can be
constructed using a stralghtforward greedy policy as outlined in prior work (Kapralov et al.|, [2013;

Calinescu et al., 2011)).

We introduce an algorithm (Algorithm 3|in Appendix[A.3)) by modifying Algorithm|[I]to incorporate
a-approximation oracles for the optimization. Due to the page limitation, here we explain only the
distinct parts of the algorithm. For testing the assignment (n, k), the algorithm constructs assortment
{ Sla;( k) } 1e[k] (Where n € Sy ’(n ) in an optimistic view with an o-approximation oracle to

resolve computation issue as follows. We define an approximation oracle @(Ly',’ggk) which outputs

{Sﬁ;(""k)}le[lq satisfying

> aRVEE(S) < > RIS (s, (12)

max
S EM,_1:meS
{Sthew S T IE€[K]

which replaces Line [§] in Algorithm [I] For the elimination procedure, we define another o-
approximation oracle, denoted by O¢ 5, which outputs {SlaT} 1e[K) satisfying

max Y aRFEE(S) < Y RITE(ST). (13)
{SthepeMr— l€[K] l1€[K]

Then it updates N, , by eliminating n € N}, r—1 which satisfies the elimination condition of
a,(n,k
Y- arEEE(SE,) > Z RYCE (879, (14)
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which replaces Line [0]in Algorithm[I] We note that the algorithm utilizes the two different types of

approximation oracles, @g’éf;k) and OF - 5. Then the algorithm achieves a regret bound for -regret
defined as RY(T') = E[>_,c 7y Xopepr) VRE(S)) — Ri(Sk,e)] in the following theorem.

Theorem 2. Algorithmachieves a regret bound with v = o as

RY(T) =0 (iKW) .

Proof. The proof is provided in Appendix [AJ3] O

6 EXPERIMENTS
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Figure 2: Experimental results for regret of algorithms

In this section, we present the results of experiments conducted with synthetic datasets to showcase
the performance of our proposed algorithm. For these synthetic datasets, we randomly generate
0r € R for k € [K] and € R? drawing each element from a uniform distribution [—1, 1] and
subsequently normalizing them. The experimental setup involves fixed parameters such as L = 2,
and d = 3 with variations in N and K. We note that = d with probability 1 because each element
in features is generated from the uniform distribution and N > d.

Unfortunately, no dedicated benchmark exists for our stochastic matching bandit scenario. There-
fore, we choose to compare our algorithm (SMB) against Explore-then-Commit with Gale-Shapley
(ETC-GS) and UCB with Gale-Shapley (UCB-GS), proposed for matching bandits by [Liu et al.
(2020). In our adoption of these algorithms, it’s important to note that they require information about
the preferences of arms over agents, which remains unknown in our setting. Therefore, we employ
estimated values for these preferences at each time step. In Figure[2] it is evident that our algorithm
surpasses the benchmarks for various settings. We also include an experimental result using features
from a Gaussian distribution in Appendix [A.3]

7 CONCLUSION

In this work, we consider a novel framework of stochastic matching bandits employing the MNL
choice model with features. We propose an elimination-based algorithm that achieves a regret of
@ (K vVrK T). We also discuss adopting a-approximation oracle in our algorithm to handle compu-
tation issues related to combinatorial optimization. Lastly, we demonstrate the performance of our
algorithms through experiments on synthetic datasets.

Reproducibility Statement. Source code is submitted as supplementary material and complete
proofs of the theorems are included in the appendix.
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A APPENDIX

A.1 WARM-UP STAGE FOR ALGORITHM 1]

Let Amin(A) denote the minimum eigenvalue of matrix A. Then we provide the warm-up stage for
Algorithm[T]in Algorithm 2]

Algorithm 2 Round-robin Warm-up

)\min — )\min(zne[]\[] ZnZ;Lr)
for k € [K] do
tp < t, i+ min{L, N}
Ty <+ (C3N/ik* Ain og(TK)) (r + log(TK))?
T e [t tr + Tho — 1]
fort c Tk(l) do
a< (i(t—1)+1 mod N),b <+ (it mod N)
if ¢ < b then
| Sk« [a,b]
else
L Sk,t < [lab] U [aﬂN}
Construct any .Sy ; for I € [K]/{k} satisfying {Sk ¢} re[x] € Mo
| Offer {Sk ¢} re|x) and observe feedback y,, ; € {0,1} foralln € Sy 4, k € [K]

A.2  PROOF OF THEOREM/[I]
In the following proof, with a slight abuse of notation, we use p(n|S,0) = exp(z,6)/(1 +
> mes €xp(z,,0)). We provide a lemma for a confidence bound.

Lemma 1. Forany 7 € [T), k € [K], and n € [N], with probability at least 1 — 6, for some constant
C > 0, we have

28 Brr = O] < (/) flall? . o6 (TENJD).

Proof. We first provide a bound in the following lemma.

Lemma 2. Foranyn € [N], k € [K], and T € [T, with probability at least 1 — 0, we have

A 24/log(TKN/§
] O a—0)| < PETENTO)

6 5 * A *
”ZnHij+?Hgk,'r_9k||2Hgk,'r(gk-,'r)_gk.fr(ak)”Vk‘ﬁl ||Zn||ka71'
Proof. The proof is deferred to Appendix [A.4.T] O

Then we define

A .. 2\/lg(TKN/5
B = { |l O - 03] < VRO

o (EM Vil

6 4 * N *
+ ?Hekﬁ - 9kH2||gk,7—(9k,7—) - gk,T(ek)”Vk:Tl ”ZnHkaTl Vn € [N]v ke [K]v T E [T]})

which holds at least 1 — 8. Now we provide bounds for || —67||2 and ||gk7(ékT) — k7 (O3 |1
’ kT

Lemma 3 (Lemma 7 in |Li et al.[(2017)). For all k € [K], 7 € [T, with probability at least 1 — ¢
for § > 0, we have

lgrr—1Br1) = grr 10Dy < 4v/2r T Toa(KTN/G).

We define V) = 3> 1) X_,.cs, , 2n%n - Then we have the following lemma.
p .

12
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Lemma 4. For all k € [K], we have A\pin(V) > (Co/r*1log(TKN/8))(r? + log*(TKN/§) +
2rlog(TKN/9)).

Proof. Let X' = (Co/K*Amin log(TK/8))(r? + log*>(TKN/8) + 2rlog(TKN/§)) and recall
Amin = )\min(zn €[N znzz ). From the phase in the warm-up stage (Algorithm , we can observe

that V) contains 2,2, for each n € [N] at least \'. Since 35, 1y ZnZn = D oep] Aslhslls | > We
have V2 = Zteka” Znesm ZnZ,) = Zse[r] MNougus T where N, > X \,. Then from Ayin = Ar,
we can conclude Apin (V) > N Amin. J

Lemma 5 (Lemma 9 in Kveton et al.| (2020)). Suppose Amin(V)) > max{(1/4x%)(rlog(T/r) +
210g(KTN/9)),1} for all k € [K|. Then, for all T € [T and k € [K], we have

P(|10k,r—1 — 652 > 1) < 1/6.

We define Ey = {||0Ak17_1 —6f|l2 < 1Vk € [K],7 € [T]}. Then from Lemmas we have
P(Ey) >1—0.

We also denote by FE3 the event of {||gk,T,1(9Ak,T,1) — gk»7*1(92)||V,:1,1 <
41/2r +1og(KTN/5) V7 € [T],k € [K]}, which hold with probability at least 1 — § from
Lemma[3]

Lemma 6. Under E5 and Es, for any T € [T, k € [K], we have

. 2 2r+1og(TNK/9o)
O r—1— 072 < — .
10k,7—1 — Oxll2 < \/ Noam (V)

Proof. The proof is deferred to Appendix [A:4.2]

Finally, under F; U E5 U E3 which holds with probability at least 1 — 36, we have
|2 (Or.r — 67)]

2y/1og(TKN/9)

< VB el + (6/8) a2 16.r = 0521101, (Ber) = g By,

K
< 2/1og(TKN/9d) N 48(2r + log(KTN/¢))
K2\ [ Amin (V)

= HZnHVk*Tl ||Zn||vk11

K

_ 3\/log(TKN3)

= f“znnvk*j

= 3/w), Tl 1og(TKNJ)

which concludes the proof. O

Then we define event £ = {|z] (0., — 09 < (C’l/n)\/Han%/,l log(TKN) VT € [T,k €
k,T

[K],n € [N]} for some C; > 0, which holds at least 1 — 1/T" with Lemmaand 0 =1/T. In the
following, we provide a lemma for showing that M is likely to contain the optimal assortment.

Lemma 7. Under E, (S,...,S%) € M,_1forallT € [T).
Proof. Here we use induction for the proof. Suppose that for fixed 7, we have (S7,...,5%) € M,

for all & € [K]. Recall that By = (C1/k)+/log(TKN). Since x/(1 4+ x) is a non-decreasing
function for x > —1 and z,;r@kj — BT||zn||Vk_1 < 220,’; < Z;L'—Hkﬁ + 5T||zn||vk_1 from E, we have

13
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RICB(S) > Ry.(S) and RSP (S) < Ry (S) forany S C [N]. Then for k € [K], n € S, and any
(S1,-.,Sk) € M., we have

Z RUCB l(:l-f)l Z RUCB

l€[K]
3" s
lE[K)

> Z Ri(S1)
I€[K]

> > RFEE(S), (15)
le[K]

where the first inequality comes from the elimination condition in the algorithm and (S5,...S5%) €
M, and the third inequality comes from the optimality of (S5, ..., S} ). This implies that n €
Ni,r+1 from the algorithm. Then by following the same statement of (T3) for all n € S} and
k € [K], we have Sj; C N r+1 for all k € [K], which implies (S}, ..., S)) € M,41. Therefore,
with (S, ..., S%) € M1, we can conclude the proof from the induction. O

Lemma 8. Under E, for any S C Ny, ;1 forall k € [K] and T € [T we have
UCB _ )
RYCE\(S) ~ Bu(S) < 267 max ullyr | and

Fu(S) = RESE,(S) < 287 max |z |y, s

k,7—1

Proof. For the proof, we follow the proof steps in Lemma 5 in (Oh & Iyengar| (2021)). Let u, =
ZIGZ From E, we can observe that b, k r—1 < Un ik < Prkr—1, Pnkr—1 — Un b < QBT”ZTL”V—I,
and Uy, — b g r—1 < 25T||zn|\v . Then by the mean value theorem, there exists @, , = (1 —
€)Pn k,r—1 + Clp, i for some ¢ € (0 1) satisfying, for any S C Ny -_1
Znes exp(pnk,r—1) _ Znes exp(Un, k)
1+ Zmes exp(Pmkr—1) 14+ ngs exp(Unm, k)

_ mes €XP(Vm)

B Z Ven (1 + ZmES exp(vm)>

_ (1 + 2 nes €XP(Unk)) (D, e €XP(Unk) (Pnk,r—1 — Un,k))
(14> csexp(Un,k))?

_ (ZnGS eXp(amk))(ZneS eXp(an,k)(pn,k:,Tfl - un,k))
(142 es exp(Un,k))?

Z eXp un k) ) (pn,k,‘l'_l — un,k))

2T Y s oxp (i

< —1 7 Un

= %lgg(pn,k,r 1 u ,k)

< 2(Cy/k)\/1og(KNT) max Hankal
ne ,T—1

Following the same procedure, there exists @, s = (1 — ¢)up i + by k,r—1 for some ¢ € (0,1)
satisfying

RiZE(S) = Ri(S) =

(pn,k,f—l - un,k‘)

VUn="Un, k

Y nes €xp(ln,k)
Rk S *RLgB ne unk*bnkff
(8) = RECE(S0) < 3 gy i (et~ b
< n,k = bn T—
< max(un,k — bnk,r—1)
2(C1/w)\log(KNT) max [zl y, 1 .
which concludes the proof. O

14
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From the above Lemmas|[7]and 8] under £, we have

Z R (ST) Z Ri(S nk) Z RlLTCBl (S) + 267 max HzmHv .

-1

1€[K] le[K] le[K]
- > R S<’:’“>>+2ﬂT max |zmlly;-2
? S(n,k) L, T—1
lI€[K] meSy .
<287 Y (max [|zmlly—1 4+ max |zml,-1 ), (16)
meSF 1,r—1 gk lr—1
le[K) ¢ mes; -
where the last inequality comes from the fact that (S7,...,S%) € M,;_1 and

n,k .
max(s,, . s)eM. 1 Serr] Bis (S < ek RlUTCBl(S( )) from the algorithm.

We define V(mg, ) = ZnENk i} Tk (n)2nz,) and supp(mi..) = {n € Ny : mx-(n) # 0}. Then
we have the following lemma from the G/D-optimal design problem.

Lemma 9 (Theorem 21.1 (Kiefer-Wolfowitz) in [Lattimore & Szepesvari| (2020)). For all T € [T
and k € [K], we have

[,y = 7 and [supp(me )| < T+ 1)/2.

From the definition of V}, » and T, we have

.
Vi,r = Z Z g (0) Tpr 2 2y

T'=1neNy ./
= Co2" 1rlog(KNT)V (1 7). 17)
Then from Lemma[9and (T7), for any n € N, , we have

Brllznlly 1 = (1/x) \/Ilznllv-llog(KNT)
O (/w2 flznlr i /7)

=0((1/r)277/?). (18)
Therefore under E, from (16) and (I8), for 7 > 1, we have

> (R(S]) = Ru(S[EM) = O((1/r) K277/2).

l€[K]

We define 7* is the smallest 7 € [T'] such that

> T2 > Z > 27 Y (1/k)Cor log(KNT) > T.

kE[K] T'=1ke[K]
Then we have Z:;l > kelK] 27 =  O(T/rlog(KNT)), which implies 7% =
O(log(T/rK log(KNT))).
We have
R(T)=E | > Y Ri(Si) — Ri(Ske)
LtE[T] kE[K]
<E Z Z Z Ri(S;) — Re(Ske) + Z Z Z Ri(Sy) — Ri(Sk.) |
le[K] te;V ke[K] l€[K] tETz(?* ke[K]

19)

15



Under review as a conference paper at ICLR 2025

which consists of regret from the stage of warming up and main. We first analyze the regret from
the warming-up as follows:

> >0 D Ri(S;) — Ri(Ska)| <E {Z KTl]

le[K] te?’l(” ke[K] le[K]

= O(2K2N/(min{L, N} ). (20)

For the regret bound from the main part of the algorithm, with large enough 7', we have

E{> Y > Ri(Si) — Ri(Sk)

le[K] teT(z) ke[K]

SEIY Y D (Be(S)) — Ru(Ske) L(E)

l€[K] tETz(Z)* kE[K]

51050 S S CACIRVNCIFES

le[K]teT@) ke[K]

T= 1leK]n€/\/}T

=0 K/EZZ ST 2

T=11€[K|neEN, +

=0 | (K/k) Z SN T8 e T/2> + O(rKlog(NKT)) + O(K)

-0 (K/mz S+ |Supp<m,f>|>2-”2)

T=11€[K]

=0 ((KQ/H) TZ(TQT/Z + r22f/2)>

T=1

K/ﬁ)\/KrT) : Q1)

where the third last equality comes from Lemma [9] and the last equality comes from 7% =
O(log(T/rK)). From (19), 20, (Z1), for large enough T', we can conclude that

R(T) =0 ((K/H)\/W) .
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A.3  a-APPROXIMATION ORACLE

A.3.1 ALGORITHM

Algorithm 3 Elimination-based Stochastic Matching Bandit with a-Approximation Oracle
Input: N,L K, T,k,C; >0,Cy >0, 03 >0
Init: t + 1,71 + C3log(NKT), Nio < [N, T,y = @ forall k € [K]. n € [N]
Find SVD of X = UXV " and obtain U, = [uy, . .., u,]
2p Uz, forn € [N]
Run Warm-up (Algorithm over time steps in 7;(1) (defined in Algorithm for k € [K]
forr =1,2...do
// Estimation

1 2 2 2
77%"'_1 — 779( ) U 7;@(,7')71 for k- € [K] where 7—];3(,7')71 = UT’E[T*I] Une./\/.k,,_/ 7:1(,13,7"
‘A/;m,l — Zsen,,l Znesk,s Znz, fork € [K]
ek’-r,1 — arg mingegr l;m,l(é‘) for k € [K] where lk,771(9) =

- 2567’1“—71 Enesk’su{o} Yn,s Ing(nISk,sa 9)
// Assortments Construction
{Sloj;("’k)}le[m — 0P from () for n € Ny r—q and k € [K]
// Elimination
{50 herx) < 0% ¢ p from (13)
a,(n,k

Nir < {n € Ngr—1: 2 ieK] aR{:EE(SﬁT) < D leK] RZI{TCE(SI,T( ))} for k € [K]
// G/D-optimal design
T, ¢ ArgMaX cp(n;, ) logdet Do cr Tk (n)2nz, fork € [K]

// Exploration
for k € [K] do
for n € Ny, do

tn,k: —t, 7:5’2]37.,- — [tn,kytn,k + |_7”7T]€7-,—(’I’L)T‘,——| - 1]
while ¢ € 7:1(2,3T do
Offer {Sk.t}rex]) = {Sl(:’k)}le[;q and observe feedback y,, ; € {0,1} for all m €

Sl,t,le[K]
t—t+1

L TT+1 — 2TT

A.3.2 PROOF OF THEOREM[2]

In this proof, we provide only the parts that are different from the proof of Theorem I}

Lemma 10. Under E, (S%,...,S%) € M,_1 forall T € [T).

Proof. Here we use induction for the proof. Suppose that for fixed 7, we have (S7,...,S%)

T

M. for all k € [K]. Since /(1 + x) is a non-decreasing function for x > —1 and z, 0} ,

BTHZnHVk—,T1 < 2,0 < Z;{ék'r + BT||Zn||kaj’ we have Rg,(er(S) > Rk(S) and RIIS,QB(S)

m

IN
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Ry, (S) for any S C [N]. Then for k € [K], n € S}, and any (S, .., Sk) € M, we have

RUCB a,(n,k) ) > max QRUCB(SZ)
lezl:(] l T+ {Sk}reik)EM+nES) lg;(]

> Z O[RUCB

l€[K]

Z Ole Sl

l€[K]

Z Ole Sl.,_

l€[K]

> aRFEE(SE) (22)
l€[K]

Y]

v

v

where the first inequality comes from (12)), the second one comes from (S7,...S}) € M., and
the firth one comes from the optimality of (S7,...,S%). This implies that n € N 41 from
the algorithm. Then by following the same statement of 22) for all n € S} and k € [K], we
have S} C N 41 for all k& € [K], which implies (S7,...,S%) € M,4q. Therefore, with
(S5,...,8%) € My, we can conclude the proof from the induction. O

From Lemmas[T0]and[8] under E, we have

n, k
S @?Ri(S7) Z RSNy < 37 o®RECE (S7) + 267 max [lzmlly, 2

1€[K] 1€[K]
k
= >0 RIERGSE™) 4280 max lzlly1
I€[K] mES(
< 3 aREEE(SE,) + 280 max [zl
s meSs; l,r—1
le[K]
k
= 2 REPASE) + 280 max
lE[K] mesi ’

<260 S (max omlly—r |+ max famllyr ),
le[K] mes; 1 - mes{*) "W

(23)
where the second inequality comes from @) and last inequality comes from the fact that

Si,...,S%) € M,_; and aREC < RUCEB S(n *)) from the algorithm.
1 lE[K) l,7— 1 lT le[K] Y, 7—1

Then by following the proof in Theorem we can conclude that with v = a2,

RY(T) = O((1/k)KVrKT).

A.4 PROOF OF LEMMAS
A.4.1 PROOF OF LEMMA ]

For the poof, we follow the proof steps in (Bounding the Prediction Error) Oh & Iyengar| (2021).
We define

Hy - (0) = Z Z p(n|Sk.t,0) Z Z (n|Sk,t,0) (m|Sk’t79)znz;

t€Tk,» \NESk,: nESk,t mESk ¢

18
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We note that gir(61) — gk, (02) = > ieq D ones, , (P [Skt, 01) — p(n, [Sk,¢e,02))2n. Then
from the mean value theorem, there exists § = cf; + (1 — ¢)f, with some ¢ € (0, 1) such that
gk,7(91> - gk,‘r(92)
= vegkﬂ'(o)‘g:g(el - 02)

S D p(n]Sks.0) = > > p(nfSk,0)p(ml Sk, 0)znz,, | (01 — 02)

t€7—k,7- nesk,,t HGSk + mESk +

= Hy +(0)(01 — 62) (24)

We define Ly, = Hy - (6}) and By, » = Hkﬂ.(ék) — Hy, -(6}) where 0, = ety +(1— c)ékJ for
some constant ¢ € (0,1).

From (24) we have gk,T(ék’T) — gk, (05) = (Lg,- + Ek,T)(ék’T — 0;). Then, for any z € R", we

have

2 Ok = 03) = 2" (Lir + Erir) ™ (gkr (Ok.r) — g5.-(67))

= ZTLI;,i(gk,T(ék,'r) — gk, (0%)) — ZTLI;,lTEkyT(Lk,'r + Ek,'r)il(gk;r(ék,'r) — Gk, (0%))-

(25)

For obtaining a bound for |27 (64, — 6;)|, we analyze the two terms in (23). We first provide a

bound for |zTL,;17(gk,T(9Ak,T) — g (09))]- Let €n,p = Ynt — (0| Sk, 05) for n € Sy ;. Since Gk -

is the solution from MLE such that >-, .. >~ g (P(n]Sk 1, Or.r) — Yn.kr)zn = 0, we have

9k, T(ék‘ T) — Gk, T(QZ)

= > Y (0lSktsOrr) — (1ISk,67)) 20

t€Tk,r NESk ¢

=y > ( (1| Sk,t+ Orr) — yn,k,t> + 3 Wnkr — p(n]Sk4,07)) 20

t€Tk, n€Sk,¢ t€Tk,r NESk,¢

=0+ Z Z €n,tin (26)

t€Tk,r NE€Sk ¢t

We define
Ziy = [2n i € Spy) T € RIS fort € T, 1,

[Sk,t])xT

)

Dyr=1[Zkst:teTg T] € R e,

(c/‘kt—[ﬁnt nESkt] R‘Skfl

Then using Hoeffding inequality, we have

P2 Ly 2 (ke O r) = grr (G| Z0) =P (| D 2T L 2] Ek| > v
t€7-k,7'

<9 202
S zeXp | — —
Sien. V2(2TL 7] 12)?

2 v
=28Xp | — =777 2
z k7 k7112

K212

)

< 2exp (27)
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where the last inequality is obtained from the fact that

Liz= > | D p0lSke00)znzn — > > p(lSk, 05)p(m|Sk.r, 05) 202,

t€Tk,» \MESk.t n€Sk,t MESk ¢

= Z Z p(n|Sk,t,9}:)znzT—f Z Z (1| Sk.t, 05)p(m| Sk.t, 05) (2020 + 2z, )

t€Tk,» \MESk.t nESk + MESk ¢
* T * T T
= Z Z p(n| Sk, 0k)2n2n — Z Z (1| Sk,t; 0%)p(m| Sk, 05) (22 + Zmzm)
t€Tk,» \MESk.t nESk t MESk ¢
= | D p0lSke 6i)zmz, — D > p(nlSka, 05)p(m|Sk., 05)2nz,
t€Tk,» \MESk.t n€Sk,t MESk ¢

= > | Do plSks: 00)p(nolSk.i,07) 20z, | = kDI Dy(= £V 7),

t€Tk,» \MESk.t

T T

where the first inequality is obtained from (2, — 2, ) (20— 2m) T = 202, +2m 2,0, — 202 — Zm 2} =

0.

Then from using v = (1/k)/log(2T K N/$) HzHkal and the union bound, with probability at
least 1 — 4, for all 7 € [T], k € [K], we have 7

2\/1og(TKN/3)

|ZTLI;1—(gk,T(ék,T) - gk,T(GZ)” < -

HZHijj- (28)
Now we provide a bound for the second term in (23)) of |zTL,;17Ek,T(Lk,T + Err) Ygrr(Opr) —
gk, (05))|. We have
12" Lyt Br e (L e + Err) (g Orr) — 91,0 (07))]
<l Iy Br (Lo + Bor) ™ L 2l gir (Or.r) = gir (0] 1
(1/&)\\z|\v Ly B (Lir + Br) 7 L lallgnr Onr) = ger (00,00 (29)

Then it follows that
1Ly 2 Err (Liesr + Brr) P L2
= | Ly Brr (L s = Lyt B (Liyr + Eg ) 7 LY
<Ny 2B L2 o+ 1L Brr L M g B (L + ) T Ly 22,
which implies
||L 1/2Ek7—L 1/2||2
1/2

(IR ey oS [
< 2L 2B L 2

1L 2 Eg v (L + Br ) ' Li/2 2 <

6 4 *
< EHek,T — 0kll2, (30)
where the last inequality is obtained from (17) and (18) in|Oh & Iyengar] (2021). Then from (29),

(30), we have

|zTL];},-Ek,T(Lk,T + Ek,‘r)_l(gk,‘r(ék,‘r) - gk;r(elf;))l

6 - . - .
< S0 — 021k () — 960Dy 2l 61)
We can conclude the proof from 28)) and (3T).
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A.4.2 PROOF OF LEMMAI6]

We note that gy -(61) — gr,r(02) = > se7  Dones,, (P(n, [Ske,01) — p(n, |Sk,t, 02))2n. Define

Hir0) = Yrer,, (Snese, P18k 0)202] —~ Scs,, Smes,, 21k 0p(m|Ser. 0)z02).
Then we can show that there exists § = cf; + (1 — ¢)f, with some ¢ € (0, 1) such that

Gr,7(01) — gr,(62)
= Vegk,r(9)|g:§(91 —02)

=y (Z Pk, 0)znz) — > > p(n|Sk, O)p(m|Sk.s, 0)zn )(91—92)

t€Tk,» \MESk.t neESk,t MESk ¢

= Hy..(8) (61 — 6,). (32)

Define Hj, ,(0) = D teTh s Lonesy p(n]Sk.t,0)p(no|Sk.t,0)znz, . Then we have Hy -(0) =
Hj, - (0) from the following.

Z Z p(n|Sk,., 0 Z Z (n|Sk,t, 0)p(m|Sk, t,9)znz;—l

t€Tk,r \nESk,t nESk,t MESk,¢

= > | D p0dSke.Oznzg — D D p(nlSks, Op(m|Ske, 0)znzy,
tETk,» \NESk,: nESk,s mESk,¢

= Z Z P(”|Sk,t7§)2n2—r—* Z Z (1| Sk.t, 0)p(m|Sk.t, ) (202, + 2m2,y)
t€Tk,» \NESk,t n€ESk,+ MESk ¢

= Z Z p(”|5k,t7§)2n2—r—* Z Z (1) Sk.t, 0)p(m|Sk.t,0)(2nz,) + 2mz,)
t€Tk,r \NESk.t nESy,t mESk ¢

= > | Y oSk O)znzy — D D p(lSke O)p(m| Sk, 0)znz,
t€Tk,» \NESk,¢ nESk,: MESk

= > | Y oSk O)p(nolSk.0)znz,) | (33)
t€7—k,7 nESk ¢

where the inequality is obtained from (z, — 2y )(2n — zm)" = 0. Under E;, we have || ;|2 —
165112 < 1 implying -l < 1+ 672 = 1+ |07 6llz < 2. Then for 0 = ., + (1 —
c)0; for some ¢ € (0,1), we have |U,.0|2 < 2. Then from Assumpt10nland p(n|Sk.t,0) =
exp(z]0)/(1 + Sones, , xp(zh0)) = exp(ey (U,0))/(1+ Xynes, , explan,(U,0))), we can
show that Hy, ,(0) = KV}, which implies Hy, ,(0) = Hy - (0) = &V .

Then we have

105, — 02113 < (1/Ammin (Vie,r)) Orer — 07) " Vs (O, — 05)
< (1/KkAmin(V2)) Ok - — 63) T Hi 2 (0) Ok~ — 67)
< (/6 Amin (V) Onr — 03) T Hye - (0 )H ( 0)~" Hy - (0) 0k~ — 6})
< (1/6 Xnin (V) (ke Onr) = gior (03)) Vi Hgk,r Okr) = i (07))
< (/K Anin (V) g7 (B ) — RGN (34)

Then from E5, we can conclude that

. 4 [2r +1og(KTN/o)
Or» —0il2 < — .
|| k k”2 = \/ )\min(VkO’f,-)
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A.5 ADDITIONAL EXPERIMENTS FOR GAUSSIAN DISTRIBUTION FOR FEATURES

We conduct experiments using features drawn from a Gaussian distribution with a mean of zero
and a variance of one. After generation, the features are normalized. The results are presented in

Figure[3]

—¥— UCB-GS —#®— ETC-GS SMB

le2 N=4, K=2 le2 N=4, K=3 le2 N=4, K=4

o N B~ O

i 0=
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Time step t Time step t Time step t

Figure 3: Experimental results for regret of algorithms under Gaussian distribution for features
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