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Abstract

Batch Normalization (BN) is commonly used in modern deep foundation models1

to improve stability and speed up convergence in centralized training. In federated2

learning (FL) with non-IID decentralized data, previous works observed that train-3

ing with BN could hinder performance due to the mismatch of the BN statistics4

between training and testing. Group Normalization (GN) is thus more often used5

in FL as an alternative to BN. In this paper, we identify a more fundamental issue6

of BN in FL that makes BN inferior even with high-frequency communication be-7

tween clients and servers. We then propose a frustratingly simple treatment, which8

significantly improves BN and makes it outperform GN across a wide range of FL9

settings. Along with this study, we also reveal an unreasonable behavior of BN in10

FL. We find it quite robust in the low-frequency communication regime where FL11

is commonly believed to degrade drastically. We hope that our study could serve12

as a valuable reference for future practical usage and theoretical analysis in FL.13

1 Introduction14

Foundation models [1] are normally very deep neural networks (DNNs) trained via stochastic gradient15

descent (SGD). FEDAVG [2] is arguably the most widely used training algorithm in an FL setting.16

FEDAVG iterates between two steps: parallel local SGD at the clients, and global model aggregation17

at the server. In the extreme case where global aggregation takes place after every local SGD step,18

FEDAVG is very much equivalent to centralized SGD for training simple DNN models like multi-layer19

perception [3, 4, 5, 6, 7]. Of course, due to the communication costs in practice, it is unlikely for20

clients to communicate at such a high frequency. Many existing works have thus focused on how21

to train DNNs at a lower communication frequency (e.g., once after local SGD for a few epochs),22

especially under the challenging condition where the data across clients are non-IID [8, 9, 10, 11].23

In this paper, we specifically focus on DNN models that contain Batch Normalization (BN) layers [12].24

In centralized training, especially for deep feed-forward models like ResNet [13], BN has been widely25

used to improve the stability of training and speed up convergence. In the literature on FL, however,26

many of the previous experiments have focused on shallow ConvNets (CNN) without BN; only a27

few works have particularly studied the usage of BN in FL [14, 15]. In [14], the authors pointed28

out the mismatch between the feature statistics (i.e., the means and variances in BN) estimated on29

non-IID local data (during training) and global data (during testing), and argued that this cannot30

be addressed by using larger mini-batch sizes or other sampling strategies. Hsieh et al. [14] thus31

proposed to replace BN with Group Normalization (GN) [16] and showed its superior performance32

in some extreme non-IID settings. Such a solution has since been followed by a long non-exhaustive33

list of later works [17, 18, 19, 20, 21, 22, 23, 24].34

With that being said, replacing BN with GN in FL is more like an ad hoc solution rather than a35

cure-all. First, in centralized training, BN typically outperforms GN empirically. Replacing BN with36
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GN in FL thus seems like a compromise. Second, several recent works [25, 26, 27, 11] have reported37

that BN is still better than GN in their specific FL settings. Third, changing the normalization38

layer may create a barrier between the communities of centralized learning and FL. To illustrate, in39

centralized training, many publicly available pre-trained checkpoints [28, 29] are based on popular40

CNN architectures even recent transformers [30] with BN; most understanding [31, 32, 33], empirical41

studies [34], and theoretical analysis [35] about normalization in DNNs are built upon BN rather42

than GN. These prior results may become hard to be referred to in the FL community.43

Figure 1: Our simple two-stage treat-
ment FIXBN largely bridges the gaps
of using BN in FL and centralized
learning. Please see section 3 and sub-
section C.4 for more details about
FIXBN (⋆: with SGD momentum) and
this non-IID CIFAR-10 experiments.

Last but not least, after a careful study of recent works that44

reported poor performance of BN [36, 37, 38], we found that45

the huge gap between centralized learning and FL cannot be46

closed even if clients communicate right after every local SGD47

step. Such a finding sharply contradicts what is observed on48

DNNs without BN. In other words, the issue with applying BN49

in FL seems to be more fundamental than previously believed.50

Contributions. Building upon these aspects, we strive to an-51

swer the following questions towards a more holistic under-52

standing of BN in FL, especially under non-IID settings.53

1. Why does BN degrade so drastically in FL compared to54

centralized training or other normalizers? (section 3)55

2. Is there a way to properly use BN in FL to bridge the per-56

formance gap w.r.t. centralized training? (section 4)57

3. Is there a comfort zone and danger zone for BN (and other58

normalization methods) in FL? (Appendix B)59

To begin with, we investigate several different perspectives to understand the issue of BN in FL,60

including BN statistic dynamics, the training/test mismatch of statistics, and the gradient w.r.t. the61

input of a BN layer under non-IID settings. Notably, we show that even if clients communicate62

after every local step, the dependency of the gradient on the local mini-batch prevents FEDAVG63

from recovering the gradient computed in the centralized training setting. We note that this does not64

happen to DNNs with GN, as GN does not use mini-batch statistics to normalize features. Taking65

this insight into account, we propose a simple yet highly effective treatment named FIXBN, which66

requires no architecture change, no additional training, and no extra communication costs.67

2 Related Work68

Normalization layers in centralized training. The benefits of BN [12] have been extensively studied69

in centralized training such as less internal covariate shift [12], smoother optimization landscape [32],70

robustness to hyperparameters [31] and initialization [35], accelerating convergence [12], etc. The71

noise of the estimated statistics of BN in mini-batch training is considered a regularizer [33] that72

improves generalization [12]. A recent study [39] shows that BN is still the irreplaceable normalizer73

vs. a wide range of alternative choices in general settings. Note that, unlike in FL, BN often74

outperforms GN in standard centralized training.75

Existing use of normalizers in FL. In the context of FL, [14] is the first to suggest replacing BN with76

GN for non-IID decentralized learning. Several works [15, 40] report that LN can be competitive77

to GN. [41] enhances adversarial robustness by using statistics from reliable clients but not for78

improving performance. HETEROFL [42] proposed to simply normalize batch activations instead of79

tracking running statistics for the scenario that the clients have heterogeneous model architectures.80

These works aim to replace BN while we analyze BN and reclaim its superiority.81

Several works [43, 44] propose dedicated server aggregation methods for BN statistics (separated82

from other model parameters) for specific tasks. For multi-modal learning, [45] proposes to maintain83

each modality as a different BN layer instead of sharing a single one. In personalized FL, [46, 47, 48]84

propose to maintain each client’s independent BN layer, inspired by the practice of domain adaptation85

in centralized training [49]. [50] leverages BN statistics to guide aggregation for personalization. The86

goals of these works are orthogonal to ours.87
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3 Rethinking Batch Normalization in FL88

3.1 Background89

Batch Normalization (BN). The BN layer is widely used as a building block in feed-forward DNNs.90

Given an input feature vector h, the BN layer normalizes the feature (via the mean µB and variance91

σ2
B computed on a batch of features B), followed by a learnable affine transformation (via γ,β):92

ĥ = fBN(h; (γ,β), (µB,σ
2
B)) = γ h−µB√

σ2
B+ϵ

+ β. ϵ is a small constant. In standard training, the93

statistics µB and σ2
B are computed on each training mini-batch during the forward passes. These94

mini-batch statistics are accumulated during training by the following exponential moving average95

(controlled by α) to replace µB and σ2
B in the equation above for testing:96

µ := αµ+ (1− α)µB, σ2 := ασ2 + (1− α)σ2
B. (1)

Federated averaging (FEDAVG). Federated learning (FL) learns a model parameterized by θ on97

the decentralized data Dm,∀m ∈ [M ] of M clients. For DNNs with BN layers θ includes learnable98

weights and the statistics {(γ,β),S} of all BN layers, where S = (µ,σ2) are the BN means and99

variances. The fundamental FL algorithm FEDAVG [2] solves it by multiple rounds of parallel local100

updates at the clients and global model aggregation at the server. Given an initial model θ̄(0), for101

round t = 1, ..., T , FEDAVG performs:102

Local: θ(t)
m = ClientUpdate(Lm, θ̄(t−1)); Global: θ̄(t) ←

M∑
m=1

|Dm|
|D|

θ(t)
m . (2)

During local training, the clients update the model parameters received from the server, typically by103

minimizing each client’s empirical risk Lm with several steps (denoted as E) of mini-batch SGD. For104

the locally accumulated means and variances in BN, they are updated by Equation 1. During global105

aggregation, all the parameters in the locally updated models {θ(t)
m }, including the BN statistics, are106

averaged element-wise over clients. Typically, E ≫ 1 due to communication constraints.107

3.2 Problem: BN in FL cannot recover centralized performance108

The non-IID issue is particularly problematic for DNNs with BN layers in FEDAVG since they depend109

on the activation mean and variance estimation computed on non-IID mini-batches.110

Table 1: FL with communication every
step (E = 1). We train a ResNet20 with
either BN or GN on the non-IID CIFAR-
10 dataset (5 clients, 2 classes per client).
Both the FL and centralized training use
SGD without momentum.

Norm Centralized Acc. FL Acc.

GN 87.46±0.57 87.37±1.16
BN 89.30±0.89 42.93±2.75

We first consider communicating after every SGD step. That111

is, in the local training in Equation 2, we only perform a112

single mini-batch SGD update in each round, i.e., E = 1.113

At first glance, this should recover mini-batch SGD in cen-114

tralized learning (e.g., training on multi-GPUs with local115

shuffling). However, as shown in Table 1 and Figure 1, even116

with high-frequency communication after every SGD step,117

there is a huge accuracy gap (about 45%) between centralized118

and federated learning for DNNs with BN. As a reference,119

such a gap very much disappears for DNNs with GN. Intrigued by this observation, we investigate120

the potential reasons from three aspects below, focusing on the non-IID FL setting.121

3.3 BN training dynamics122

We first consider the properties of BN in standard training. We note that BN normalizes the activations123

in the forward pass to ensure stable forward and backward propagation [39]. A naive workaround124

for the non-IID issue is to force all clients to normalize with the same statistics. We investigate this125

idea by “decoupling” the updates of the model weights and the BN statistics. Specifically, under the126

high-frequency communication setting with E = 1, we modify Equation 2 as follows. (a) At round t,127

given frozen weights in θ̄(t), we update local statistics {S(t+1)
m }Mm=1 via Equation 1 and aggregate128

them into S̄(t+1). (b) We then locally update the model weights in the evaluation mode, using the129

global statistics S̄(t+1) to normalize the activations. (c) Finally, we aggregate the local models into130

θ̄(t+1). In the same FL experiment of subsection 3.2, we observe it achieves 52% accuracy, still far131

from the BN centralized performance 89%.132
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We hypothesize the weights and statistics need to collaborate carefully to enjoy the benefits of133

BN dynamics. First, using fixed statistics in local training sacrifices the “sampling” noise of the134

estimated statistics from different mini-batch SB = (µB,σ
2
B), which is believed to help search a135

flatter loss landscape [33]. Second, using fixed statistics cannot properly normalize the activations in136

a mini-batch and could make DNN training fragile due to gradient explosion, especially in the earlier137

rounds of FEDAVG when the model weights and intermediate activations are changing rapidly.138

3.4 Re-examining the BN statistics mismatch between training and testing139

The reason why BN degrades in FL is believed to be the statistics mismatch issue pointed out140

by [14]. In section 5 of [14], the authors argued that since the local accumulated statistics141

{Sm = (µDm ,σ2
Dm

)} are estimated on each of the non-IID local data {Dm}, their average could142

be significantly different from the true statistics of the global data D = ∪mDm. In other words, the143

average of {Sm} (over m) may not be ideal in testing. To verify its impact on performance, we144

design a simple experiment (details in Appendix B) aiming to remove the statistics mismatch.145

After the entire FEDAVG is finished, we re-accumulate the statistics {(µ,σ2)} per BN layer directly146

on the aggregated training data D = ∪mDm over clients, using Equation 1. Interestingly, we see a147

fairly small gain, i.e., less than 1% accuracy gain even on extreme non-IID settings.148

Based on the verification, we surmise that while the statistics mismatch problem indeed has a minor149

impact, it seems unlikely to account for the primary performance drops of BN in FL.150

3.5 BN makes the gradients biased in local training151

We hypothesize that under the non-IID settings, the major reason for the performance drop comes from152

BN’s influence on local model training. As a simple illustration, we derive the forward-backward pass153

of the plain BN layer fBN (see BN equation in subsection 3.1) for one example xi in a mini-batch B.154

Forward: ℓ(x̂i) = ℓ(fBN(xi; (γ,β), (µB,σ
2
B))) = ℓ(γ

xi − µB√
σ2
B + ϵ

+ β) = ℓ(γx̃i + β); (3)

Backward:
∂ℓ

∂xi
=
|B| ∂ℓ∂x̃i

−
∑|B|

j=1
∂ℓ
∂x̃j
− x̃i ·

∑|B|
j=1

∂ℓ
∂x̃j
· x̃j

|B|
√

σ2
B + ϵ

, (4)

where ℓ is an arbitrary loss function on the BN layer’s output x̂i, “·” is element-wise multiplication,155

and ∂ℓ
∂x̃ = γ ∂ℓ

∂x̂ . Please see Section 3 of [12] for the derivation of the gradient.156

We can see that many terms in Equation 4 (colored in red) depend on the mini-batch features {xj}|B|
j=1157

or statistics (µB,σ
2
B). The background gradient ∂ℓ

∂xi
w.r.t. the input vector xi is thus sensitive to158

what other examples in the mini-batch are. This is particularly problematic in FL on DNNs when159

clients’ data are non-IID. Suppose xi belongs to client m, the gradient ∂ℓ
∂xi

will be different when it160

is calculated locally with other data sampled only from Dm and when it is calculated globally (in161

centralized training) with other data sampled fromD = ∪mDm. Such bias will propagate to the latter162

layers in a DNN. Namely, even if communicating after every mini-match SGD step, how a particular163

data example influences the DNN parameters is already different between FL and centralized training.164

We surmise that this is the fundamental reason why DNNs with BN degrade in FL. Although it165

becomes quite intuitive after our elaboration, to our surprise, such a gradient issue was not explicitly166

pointed out by previous works1. They mostly referred to the mismatch problem in [14].167

4 FIXBN: Towards a Proper Use of BN in Federated Learning168

4.1 On fixing BN in FL169

Given the analysis in section 3, we ask, Is there a way to bypass the issues of BN in FL to reclaim its170

superior performance in centralized training? We start our exploration by taking a deeper look into171

1We recently noticed that a concurrent work [51] pointed out this finding as well. Nevertheless, our analysis
and solution are quite different from theirs.
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(a) (b) (c)
Figure 2: (a) Changes of global (∥S̄(t+1) − S̄(t)∥1) and local mini-batch statistics (∥Sm,B

(t+1) − S̄(t)∥1). (b)
Variances (running over t− 200 to t) of local statistics S(t)

m . (c) Loss of global model on the training data and
final-round accuracy when freezing BN statistics at different intermediate rounds (CIFAR-10, E = 100).

the dynamics of BN statistics during standard FEDAVG training. Under the same E = 1 experiments172

in subsection 3.2, we highlight two critical observations from Figure 2 (details in the captions).173

First, as shown in Figure 2 (a), the local mini-batch statistics remain largely different from the global174

statistics, even at later rounds, which results from the discrepancy between non-IID local data. This is175

not surprising. However, it re-emphasizes the potentially huge impact of the issue in subsection 3.5.176

Second, still in Figure 2 (a), we look at each curve alone. We find that both the global and local177

mini-batch statistics essentially converge. We further show the variances of the local statistics within178

each client become static in Figure 2 (b). This opens up the possibility to revisit the “decoupling”179

attempt in subsection 3.3.180

Concretely, if local mini-batch statistics remain almost static in later rounds, replacing them with181

the fixed global statistics in local training may not degrade the benefits of BN. In contrast, it may182

fundamentally resolve the issue in subsection 3.5 — using the fixed global statistics in Equation 4183

could prevent local gradients from diverging. We investigate this idea by replacing local mini-batch184

statistics with fixed global statistics starting at different rounds. As shown in Figure 2 (c), if the round185

is chosen properly, the final accuracy can be largely improved. Based on this insight, we propose our186

FIXBN method to address the issues in section 3.187

4.2 Two-stage training188

·

(a) CIFAR-10

(b) Tiny-ImageNet
Figure 3: Non-IID parti-
tions with E = 100 steps.

To address the drawbacks discussed in section 3 simultaneously, we189

propose to divide FEDAVG training with BN into two stages, separated190

at round T ⋆, inspired by the widely-used decay learning strategy for191

SGD [52]. Supported by the insight in subsection 4.1, we first follow192

standard FEDAVG to explore a decent model solution space, thanks to193

BN’s important training dynamics as studied in subsection 3.3. Next, we194

propose to fine-tune the model for the rest of the training with the BN195

statistics fixed. This eliminates the statistics mismatch problem in sub-196

section 3.4 since now training and test share the same BN statistics. It197

also addresses the biased gradients caused by non-IID statistics in sub-198

section 3.5 as the local gradients no longer rely on mini-batches.199

Stage I: Exploration. This stage is the standard FEDAVG with BN for200

two purposes: (a) to explore a proper model subspace without sacrificing201

BN’s benefits on optimization [12]; (b) to burn in the model and make it fitted to the training data. At202

the end, we save the aggregated statistics S̄(T⋆) of each BN layer from the average model θ̄(T⋆).203

Stage II: Calibration. We anticipate that the exploration stage already finds a proper region of the204

model solution, and calibrated fine-tuning is needed to further improve the performance. Starting205

from round T ⋆ + 1, we use the saved statistics as approximated global statistics to normalize the206

activations in local training. Since the model has been burned in, training with the fixed statistics is207

unlikely to suffer from the mentioned instability issue. In Figure 2 (c), we evaluate the training loss208

of the global model θ̄(T⋆). It typically reaches a small loss after the first learning rate decay. Thus, in209

experiments, we will simply fix the BN statistics since 50% of the total rounds of the FL training.210

While fairly simple, FIXBN cleverly leverages the global statistics to resolve the concerns in section 3,211

with no architecture and objective change, no additional training and communication costs.212
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Table 4: Comparison to other FL normalizer meth-
ods. Test accuracy (%) of ResNet20 on CIFAR-10 given
# of rounds. The setting follows [51].

FL Scheme #R IID Non-IID
Centralized+BN - 91.53
Centralized+FIXBN - 91.62
FEDTAN [51] 580K 91.26 87.66
FEDAVG +BN 10K 91.35 45.96
FEDAVG +GN 10K 91.26 82.66
HETEROFL [42] 10K 91.21 30.62
FEDDNA [43] 10K 91.42 76.01
FEDAVG +FIXBN (Ours) 10K 91.35 87.71

Table 5: ResNet20 with different normalization
layers FL on CIFAR-10 (Shards, E = 100).

Normalization Layer Acc (%)

BN [12] 53.97 ± 4.18
GN [16] 59.69 ± 0.76
GN +WN [60] 66.90 ± 0.81
LN [61] 54.54 ± 1.21
IN [62] 59.76 ± 0.43
FIXUP [63] 70.66 ± 0.24

FIXBN (Ours) 76.56 ± 0.66

5 Experiments (more in the appendix)213

Results on CIFAR-10 and Tiny-ImageNet. We experiment on the FL benchmark CIFAR-10 [53]214

and Tiny-ImageNet [54] with 5/10 clients, ResNet20/ResNet18 [13], respectively. For the hyperpa-215

rameters, we generally follow [14] to use the SGD optimizer with 0.9 momentum, learning rate 0.02216

(decay by 0.1 at 50% and 75% of the total rounds, respectively), batch size 20, and full participation,217

E = 100. We train fixed 128 epochs of total local SGD updates over all the clients and communica-218

tion rounds. We consider different non-IID degrees including IID, Dirichlet(0.1, 0.3, 0.6) sampling219

follows [55], and Shards that each client only has data for 20% of the classes. We show FIXBN220

consistently outperforms BN and GN in Figure 3, especially in severe non-IID cases. Surprisingly,221

we found BN can sometimes outperform GN. A fine-grained comparison is in Appendix B.222

Table 2: Class-non-IID ImageNet.
Method Network Acc. ∆-BN

GN ResNet18
[13]

33.33± 0.57
BN 48.30± 1.21
FIXBN 52.43± 0.68 (+4.1)

Table 3: Pixel-wise accuracy and mean IoU (%)
of image segmentation on Cityscapes.

Method Backbone Mean IoU ∆-BN

GN MobileNet-v2
[56]

43.2±0.33
BN 48.9±0.36
FIXBN 54.0±0.29 (+5.1)

GN ResNet18
[13]

47.8±0.30
BN 52.6±0.38
FIXBN 57.2±0.32 (+4.6)

Results on ImageNet. We extend FIXBN to223

ImageNet-1K [57] dataset which is split into 100224

clients Dirichlet (0.1) non-IID over classes. We learn225

a ResNet18 with 10% randomly sampled clients per226

round, 20 batch size, 0.1 learning rate (decay by 0.1227

every 30% of the total rounds), 2 local epochs, and 64228

epochs in total. Results in Table 2 show that FIXBN229

also perform the best.230

Comparison on realistic non-IID Cityscape. We231

further consider a natural non-IID setting on the im-232

age segmentation dataset Cityscape [58]. We make233

each “city” a client and train 100 FEDAVG rounds234

using DeepLab-v3+ [59]. More details are in the235

appendix. Results in Table 3 show that FIXBN’s ef-236

fectiveness is generalized to different architectures237

and vision tasks.238

Other FL baselines. We reproduce Table 1 in FEDTAN [51] to compare to other BN variants FL239

methods in Table 4. We note that FEDTAN requires communication rounds linear to the numbers of240

BN layers L as Θ(3L+ 1), which is much more expensive than FIXBN. HETEROFL [42] directly241

normalizes the activations, which cannot resolve the non-IID issue.242

Beyond BN & GN, is there any FL-friendly alternative? So far, we mainly focus on BN. Here243

we further compare to other normalization layers in Table 5. FIXBN still outperforms others.244

Interestingly, the normalization-free FIXUP [63] initialization for residual networks2 performs much245

better than GN, suggesting a new alternative in FL besides FIXBN.246

6 More Discussions and Conclusion247

We revisit the use of BN layers and its common alternative, GN, in non-IID federated deep learning248

and conduct an in-depth analysis. We dissect the issues of BN in FL and propose a simple yet249

highly effective treatment named FIXBN to bridge the performance gap between FL and centralized250

training. We hope our study provides the community with a good foundation for the full (theoretical)251

understanding of the effectiveness of BN towards training deeper models in FL.252

2Another concurrent work [64] also reports improving by replacing BN with scaled weight normalization,
similar to [60] in Table 5.

6



References253

[1] Bommasani, R., D. A. Hudson, E. Adeli, et al. On the opportunities and risks of foundation254

models. arXiv preprint arXiv:2108.07258, 2021.255

[2] McMahan, H. B., E. Moore, D. Ramage, et al. Communication-efficient learning of deep256

networks from decentralized data. In AISTATS. 2017.257

[3] Zhou, F., G. Cong. On the convergence properties of a k-step averaging stochastic gradient258

descent algorithm for nonconvex optimization. arXiv preprint arXiv:1708.01012, 2017.259

[4] Stich, S. U. Local sgd converges fast and communicates little. In ICLR. 2019.260

[5] Haddadpour, F., M. Mahdavi. On the convergence of local descent methods in federated learning.261

arXiv preprint arXiv:1910.14425, 2019.262

[6] Li, X., K. Huang, W. Yang, et al. On the convergence of fedavg on non-iid data. In ICLR. 2020.263

[7] Zhao, Y., M. Li, L. Lai, et al. Federated learning with non-iid data. arXiv preprint264

arXiv:1806.00582, 2018.265

[8] Li, T., A. K. Sahu, M. Zaheer, et al. Federated optimization in heterogeneous networks.266

Proceedings of Machine Learning and Systems, 2:429–450, 2020.267

[9] Karimireddy, S. P., S. Kale, M. Mohri, et al. Scaffold: Stochastic controlled averaging for268

federated learning. In ICML. 2020.269

[10] Acar, D. A. E., Y. Zhao, R. Matas, et al. Federated learning based on dynamic regularization. In270

ICLR. 2021.271

[11] Chen, H.-Y., W.-L. Chao. Fedbe: Making bayesian model ensemble applicable to federated272

learning. In ICLR. 2021.273

[12] Ioffe, S., C. Szegedy. Batch normalization: Accelerating deep network training by reducing274

internal covariate shift. In International conference on machine learning, pages 448–456.275

PMLR, 2015.276

[13] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In CVPR. 2016.277

[14] Hsieh, K., A. Phanishayee, O. Mutlu, et al. The non-iid data quagmire of decentralized machine278

learning. In International Conference on Machine Learning, pages 4387–4398. PMLR, 2020.279

[15] Du, Z., J. Sun, A. Li, et al. Rethinking normalization methods in federated learning. In280

Proceedings of the 3rd International Workshop on Distributed Machine Learning, pages 16–22.281

2022.282

[16] Wu, Y., K. He. Group normalization. In Proceedings of the European conference on computer283

vision (ECCV), pages 3–19. 2018.284

[17] Jin, J., J. Ren, Y. Zhou, et al. Accelerated federated learning with decoupled adaptive opti-285

mization. In International Conference on Machine Learning, pages 10298–10322. PMLR,286

2022.287

[18] Charles, Z., Z. Garrett, Z. Huo, et al. On large-cohort training for federated learning. Advances288

in neural information processing systems, 34:20461–20475, 2021.289

[19] Lin, T., L. Kong, S. U. Stich, et al. Ensemble distillation for robust model fusion in federated290

learning. In NeurIPS. 2020.291

[20] Yuan, H., W. Morningstar, L. Ning, et al. What do we mean by generalization in federated292

learning? In ICLR. 2021.293

[21] Reddi, S., Z. Charles, M. Zaheer, et al. Adaptive federated optimization. In ICLR. 2020.294

[22] Hyeon-Woo, N., M. Ye-Bin, T.-H. Oh. Fedpara: Low-rank hadamard product for295

communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.296

[23] Yu, F., W. Zhang, Z. Qin, et al. Fed2: Feature-aligned federated learning. In Proceedings of297

the 27th ACM SIGKDD conference on knowledge discovery & data mining, pages 2066–2074.298

2021.299

[24] Hosseini, H., H. Park, S. Yun, et al. Federated learning of user verification models without300

sharing embeddings. In International Conference on Machine Learning, pages 4328–4336.301

PMLR, 2021.302

7



[25] Mohamad, M., J. Neubert, J. S. Argayo. Fedos: using open-set learning to stabilize training in303

federated learning. arXiv preprint arXiv:2208.11512, 2022.304

[26] Tenison, I., S. A. Sreeramadas, V. Mugunthan, et al. Gradient masked averaging for federated305

learning. arXiv preprint arXiv:2201.11986, 2022.306

[27] Yang, S., H. Hwang, D. Kim, et al. Towards the practical utility of federated learning in the307

medical domain. arXiv preprint arXiv:2207.03075, 2022.308

[28] PyTorch. Pytorch hub. https://pytorch.org/hub/, 2023.309

[29] ONNX. Open neural network exchange (onnx) model zoo. https://github.com/onnx/310

models, 2023.311

[30] Li, Y., G. Yuan, Y. Wen, et al. Efficientformer: Vision transformers at mobilenet speed. Advances312

in Neural Information Processing Systems, 35:12934–12949, 2022.313

[31] Bjorck, N., C. P. Gomes, B. Selman, et al. Understanding batch normalization. Advances in314

neural information processing systems, 31, 2018.315

[32] Santurkar, S., D. Tsipras, A. Ilyas, et al. How does batch normalization help optimization?316

Advances in neural information processing systems, 31, 2018.317

[33] Luo, P., X. Wang, W. Shao, et al. Towards understanding regularization in batch normalization.318

In ICLR. 2019.319

[34] Garbin, C., X. Zhu, O. Marques. Dropout vs. batch normalization: an empirical study of their320

impact to deep learning. Multimedia Tools and Applications, 79(19):12777–12815, 2020.321

[35] Yang, G., J. Pennington, V. Rao, et al. A mean field theory of batch normalization. arXiv322

preprint arXiv:1902.08129, 2019.323

[36] Wang, Y., Y. Xu, Q. Shi, et al. Quantized federated learning under transmission delay and324

outage constraints. IEEE Journal on Selected Areas in Communications, 40(1):323–341, 2021.325

[37] Zheng, S., C. Shen, X. Chen. Design and analysis of uplink and downlink communications326

for federated learning. IEEE Journal on Selected Areas in Communications, 39(7):2150–2167,327

2020.328

[38] Chai, Z., Y. Chen, A. Anwar, et al. Fedat: a high-performance and communication-efficient fed-329

erated learning system with asynchronous tiers. In Proceedings of the International Conference330

for High Performance Computing, Networking, Storage and Analysis, pages 1–16. 2021.331

[39] Lubana, E. S., R. Dick, H. Tanaka. Beyond batchnorm: towards a unified understanding of332

normalization in deep learning. Advances in Neural Information Processing Systems, 34:4778–333

4791, 2021.334

[40] Zhang, G., M. Beitollahi, A. Bie, et al. Normalization is all you need: Understanding layer-335

normalized federated learning under extreme label shift. arXiv preprint arXiv:2308.09565,336

2023.337

[41] Hong, J., H. Wang, Z. Wang, et al. Federated robustness propagation: Sharing adversarial338

robustness in federated learning. arXiv preprint arXiv:2106.10196, 1, 2021.339

[42] Diao, E., J. Ding, V. Tarokh. Heterofl: Computation and communication efficient federated340

learning for heterogeneous clients. In ICLR. 2020.341

[43] Duan, J.-H., W. Li, S. Lu. Feddna: Federated learning with decoupled normalization-layer ag-342

gregation for non-iid data. In Joint European Conference on Machine Learning and Knowledge343

Discovery in Databases, pages 722–737. Springer, 2021.344

[44] Idrissi, M. J., I. Berrada, G. Noubir. Fedbs: Learning on non-iid data in federated learning345

using batch normalization. In 2021 IEEE 33rd International Conference on Tools with Artificial346

Intelligence (ICTAI), pages 861–867. IEEE, 2021.347

[45] Bernecker, T., A. Peters, C. L. Schlett, et al. Fednorm: Modality-based normalization in348

federated learning for multi-modal liver segmentation. arXiv preprint arXiv:2205.11096, 2022.349

[46] Li, X., M. JIANG, X. Zhang, et al. Fed{bn}: Federated learning on non-{iid} features via local350

batch normalization. In ICLR. 2021.351

[47] Andreux, M., J. O. d. Terrail, C. Beguier, et al. Siloed federated learning for multi-centric352

histopathology datasets. In Domain Adaptation and Representation Transfer, and Distributed353

and Collaborative Learning, pages 129–139. Springer, 2020.354

8

https://pytorch.org/hub/
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models


[48] Jiang, M., X. Zhang, M. Kamp, et al. Tsmobn: Interventional generalization for unseen clients355

in federated learning. arXiv preprint arXiv:2110.09974, 2021.356

[49] Li, Y., N. Wang, J. Shi, et al. Revisiting batch normalization for practical domain adaptation.357

arXiv preprint arXiv:1603.04779, 2016.358

[50] Lu, W., J. Wang, Y. Chen, et al. Personalized federated learning with adaptive batchnorm for359

healthcare. IEEE Transactions on Big Data, 2022.360

[51] Wang, Y., Q. Shi, T.-H. Chang. Why batch normalization damage federated learning on non-iid361

data? arXiv preprint arXiv:2301.02982, 2023.362

[52] Robbins, H., S. Monro. A stochastic approximation method. The annals of mathematical363

statistics, pages 400–407, 1951.364

[53] Krizhevsky, A., G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.365

[54] Le, Y., X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.366

[55] Hsu, T.-M. H., H. Qi, M. Brown. Measuring the effects of non-identical data distribution for367

federated visual classification. arXiv preprint arXiv:1909.06335, 2019.368

[56] Sandler, M., A. Howard, M. Zhu, et al. Mobilenetv2: Inverted residuals and linear bottlenecks.369

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages370

4510–4520. 2018.371

[57] Deng, J., W. Dong, R. Socher, et al. Imagenet: A large-scale hierarchical image database. In372

2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255. 2009.373

[58] Cordts, M., M. Omran, S. Ramos, et al. The cityscapes dataset. In CVPR Workshop on The374

Future of Datasets in Vision. 2015.375

[59] Chen, L.-C., Y. Zhu, G. Papandreou, et al. Encoder-decoder with atrous separable convolution376

for semantic image segmentation. In Proceedings of the European conference on computer377

vision (ECCV), pages 801–818. 2018.378

[60] Qiao, S., H. Wang, C. Liu, et al. Micro-batch training with batch-channel normalization and379

weight standardization. arXiv preprint arXiv:1903.10520, 2019.380

[61] Ba, J. L., J. R. Kiros, G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,381

2016.382

[62] Ulyanov, D., A. Vedaldi, V. Lempitsky. Instance normalization: The missing ingredient for fast383

stylization. arXiv preprint arXiv:1607.08022, 2016.384

[63] Zhang, H., Y. N. Dauphin, T. Ma. Fixup initialization: Residual learning without normalization.385

arXiv preprint arXiv:1901.09321, 2019.386

[64] Zhuang, W., L. Lyu. Is normalization indispensable for multi-domain federated learning? arXiv387

preprint arXiv:2306.05879, 2023.388

[65] LeCun, Y., L. Bottou, Y. Bengio, et al. Gradient-based learning applied to document recognition.389

Proceedings of the IEEE, 86(11):2278–2324, 1998.390

[66] Karimireddy, S. P., M. Jaggi, S. Kale, et al. Mime: Mimicking centralized stochastic algorithms391

in federated learning. arXiv preprint arXiv:2008.03606, 2020.392

9



Appendix393

We provide details omitted in the main paper.394

• Appendix A: details of experimental setups (cf. Appendix B and section 4 of the main395

paper).396

• Appendix B: experimental results and analysis for BN vs GN (cf. section 5 and section 4 of397

the main paper).398

• Appendix C: additional experimental results and analysis for BN parameters and other399

ablation studies (cf. Appendix B and section 4 of the main paper).400

Table F: Summary of datasets and setups.
Dataset Task #Class #Training #Test/Valid #Clients Resolution Networks

CIFAR-10 Classification 10 50K 10K 5 ∼ 100 322 LeNet-CNN, ResNet-20

Tiny-ImageNet Classification 200 100K 10K 10 642 ResNet-18

ImageNet Classification 1,000 1, 200K 100K 100 2242 ResNet-18

Cityscapes Segmentation 19 3K 0.5K 18 7682
DeepLabv3 +

{MobileNet-v2, ResNet-50}

Table G: Default FL settings and training hyperparameters in the main paper.
Dataset Non-IID Sampling Optimizer Learning rate Batch size T ⋆ for FIXBN

CIFAR-10
Shards,

Dirichlet({0.1, 0.3, 0.6}),
IID

10 ∼ 100%
SGD +

0.9 momentum 0.2/0.02 20 50% of total rounds

Tiny-ImageNet
Shards,

Dirichlet({0.1, 0.3, 0.6}),
IID

50% SGD +
0.9 momentum 0.02 20 50% of total rounds

ImageNet Dirichlet 0.1 10%
SGD +

0.9 momentum 0.1 20 50% of total rounds

Cityscapes Cities 50% Adam 0.01/0.001 8 90th round

A Experiment Details401

A.1 Datasets, FL settings, and hyperparameters402

We use FEDAVG for our studies, with weight decay 1e−4 for local training. Learning rates are403

decayed by 0.1 at 50%, 75% of the total rounds, respectively. Besides that, we summarize the404

training hyperparameters for each of the federated experiments included in the main paper in Table G.405

Additionally, for the Cityscape experiments in Table 3, we make each “city” a client and run 100406

rounds, with local steps to be 5 epochs. More details about the datasets are provided in Table F.407

For pre-processing, we generally follow the standard practice which normalizes the images and408

applies some augmentations. CIFAR-10 images are padded 2 pixels on each side, randomly flipped409

horizontally, and then randomly cropped back to 32× 32. For Tiny-ImageNet, we simply randomly410

cropped to the desired sizes and flipped horizontally following the official PyTorch ImageNet training411

script. For the Cityscapes dataset, we use output stride 16. In training, the images are randomly412

cropped to 768× 768 and resized to 2048× 1024 in testing.413

B A Detailed Study of BN vs. GN414

Results in section 5 come to an unexpected finding: BN outperforms GN in many cases, contradicting415

the common belief that one should replace BN with GN in FL proposed in [14] and followed by416
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(a) Fixed 128 epochs (b) Fixed 128 rounds
Figure D: Is GN always better than BN? No. We compare their test accuracy in various FL settings on
CIAFR-10 and Tiny-ImageNet, including different non-IID partitions and numbers of local steps E. Fixed
budget of the total number of SGD updates (e.g., for CIFAR-10, 20 E×5 clients ×3200 rounds = 128 epochs)
or the number of total rounds (128 rounds) are given.

many works summarized in section 1 and section 2. To answer this question, we revisit the study417

in [14] (which considers mere one FL setting) and provide a detailed study to compare BN and GN418

by varying several critical factors in FL to have a more complete picture.419

Experiment setup. We focus on CIFAR-10 [53] and Tiny-ImageNet [54] datasets, following the420

setup in section 5. We consider more factors like (1) degrees of non-IID, ordered in increasing421

skewness: IID, Dirichlet(0.1, 0.3, 0.6), and Shards. As practical FL is constrained on computation,422

we consider two (2) budget criteria: fixed 128 epochs of total local SGD updates over all the clients423

and communication rounds, and fixed 128 rounds of communication. In every round, each client424

runs {1, 20, 100, 500, 2500} of (3) local steps (E). We further include LeNet-like CNN [65] for425

CIFAR-10.426

B.1 Resvisiting: Is GN really better than BN?427

Observations. We highlight the following observation from Figure D, augmenting the findings428

in [14]:429

• No definite winners. GN is often considered the default replacement for BN in previous FL works430

(section 1 and section 2). However, according to Figure D, GN is not always better than BN.431

• BN often outperforms GN. Instead, in most settings, BN outperforms GN. This can be seen from432

the green cells in “Acc(GN)-Acc(BN)” heatmaps of Figure D.433

• GN outperforms BN merely in extreme cases. We find that GN outperforms BN (the purple434

cells in “Acc(GN)-Acc(BN)” heatmaps) only in the extreme non-IID (e.g., Shards) and highly435

frequent communication (e.g., E = 1) settings. When clients cannot communicate frequently, the436

case where many existing FL works focus on, BN seems to be the better choice for normalization.437

• The trends along the number of local steps E per communication round. It is a perhaps well-438

known fact that increasing the number of local steps leads to greater drift as the local models become439

more biased [9]. However, using more local steps also allows for more updates to the local models,440

potentially leading to an improved average model. To balance these competing considerations, we441

will discuss two criteria. For (a) fixed epochs over all communication rounds, a larger number442

of local steps means fewer communication rounds, in which GN degrades monotonically “as443

expected”. Interestingly, BN has an opposite trend. BN actually improves and outperforms GN444

with larger Es. For (b) fixed rounds, understandably, using more local steps improves both GN445

and BN, since more local SGD updates are made in total. Nevertheless, the improvement saturates446

(e.g., E ≥ 500).447

• Small difference from statistics mismatch. In subsection 3.4, we discuss that the BN statistics448

mismatch problem might be minor. We re-estimate the statistics on global data and see a negligible449

accuracy gain from 44.09% to 44.87% on the Tiny-ImageNet (Dir(0.1), fixed epochs, E = 100).450

• More settings. We verify in the next section that factors like participation rates and the number of451

clients for partitioning the data do not change the above observation.452

Additional figures. At the beginning of this section, we provide a detailed empirical study to compare453

BN and GN across various FL settings to understand their sweet spots. Here we provide a closer454

look at the observations we summarized above.455
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• The trends along the number of local steps E per communication round. In subsec-456

tion B.2, we identify the opposite trends along #local steps E between BN and GN. As457

shown in Figure F, we see GN drops with less communication as expected due to the458

well-known non-IID model drift problem in FL. Interestingly, we found that BN can actually459

improve within a certain range of communication frequencies (for local steps in [1,500]),460

which suggests that further investigation and theoretical analysis are required for BN in FL.461

• More settings. We further verify that factors such as participation rate and the number of462

clients for partitioning the data in Figure G. As expected, the results are consistent with the463

observations summarized in subsection B.1, particularly in that there is no definite winner464

between BN and GN while BN often outperforms GN.465

(a) CIFAR-10 (b) Tiny-ImageNet
Figure F: The opposite trends along #local steps E. We consider the (Shards, fixed epochs) setting: the more
the local step E is, the fewer the total number of communication rounds is. GN drops with less communication
as expected, while BN can improve.

(a) Participation (%) × #Rounds (b) Different #clients

Figure G: More settings. We consider more clients (M = 5 ∼ 100, E = 100) for partitioning CIFAR-10
(Shards) with fixed epochs and varying the participation rate of clients every round.

B.2 Effects of communication frequency466

The constraint in communication, i.e., clients cannot aggregate the gradients frequently, is commonly467

believed as a major reason that hinders the performance of FL due to model drift [9]. As BN cannot468

recover the centralized gradient even with high communication frequency and is outperformed by GN469

in such a setting, one may expect that BN will be consistently surpassed by GN when the frequency470

drops. But surprisingly, as observed in subsection B.1, BN is unreasonably effective when training471

with fewer communication rounds but more local steps per round.472
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(a) GN

(b) BN
Figure E: Test accuracy on
CIFAR-10 for different local steps
(E) per communication given a
fixed number of SGD steps.

In Figure E, we vary the number of local SGD steps per communi-473

cation round (i.e., E) but fix the total number of SGD steps. We see474

the drastically different effect of E on BN and GN. In particular,475

while the performance of GN drops along with increasing E, BN476

somehow benefits from a larger E. Such a discrepancy suggests the477

need for a deeper (theoretical) analysis of the usage of BN in FL.478

C Additional experimental results and analysis479

C.1 Additional study of fixing BN parameters480

In subsection 3.4, we discuss that the BN statistics are the main crit-481

ical parameters in FL and thus motivate our design in FIXBN to fix482

the BN statistics to be the global aggregated ones after certain rounds.483

Here we include a further study to confirm the importance of BN484

statistics by comparing them with the learnable affine transformation485

parameterized by (γ,β).486

For FIXBN, besides fixing the BN statistics at round T ⋆, we consider487

fixing the (γ,β) alone or together. The results on CIFAR-10 (Shards,488

fixed epochs, E = 100) setting using ResNet20 is in Table H. We489

observe that fixing the (γ,β) only has slight effects on the test accuracy either in combination with490

fixing (γ,β) or not, validating that the statistics are the main reason making it suffers more in FL,491

compared to the affine transformation. Fixing (γ,β) alone cannot match the performance of the492

originally proposed FIXBN.493

Table H: Fixing different parameters as in FIXBN. We consider fixing the BN statistics (µ,σ) as in original
FIXBN or fixing the parameters (γ,β) of the affine transformation in BN layers. on CIFAR-10 (Shards, fixed
epochs, E = 100) setting using ResNet20.

(µ,σ) (γ,β) Acc (%)

✓ ✓ 75.22
✓ ✗ 76.56
✗ ✓ 55.33
✗ ✗ 53.97

C.2 Different # of groups for GN494

For experiments in our study, we set the # of groups = 2 for GN layers. We did not find the group495

size a significant factor for the performance, as confirmed in Table I.496

Table I: Effects of the groupsize for GN. We experiment with different # of groups (2 ∼ 8) to divide the
channels in GN layers in the CIFAR-10 (Shards, E = 100) with fixed epochs setting.

Groupsize Acc(%)

2 59.42
4 57.61
8 58.86

C.3 Effects of Batch Size for BN497

We experiment with various batch sizes for both BN and FIXBN in the CIFAR-10 (Shards, E = 1)498

setting and saw FIXBN maintains the advantage over standard FEDAVG +BN.499
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Figure H: FIXBN maintains advantage over different batch size selections.

C.4 Maintained SGD momentum further bridge FL to centralized performance500

·

(a) CIFAR-10

(b) Tiny-ImageNet

Figure I: Maintained momentum. Normaliz-
ers augmented with maintained global momen-
tum (†) and local momentum (⋆) with different
numbers of local steps per communication E.

Maintained SGD momentum. Besides BN, we iden-501

tify another gap between FEDAVG and centralized train-502

ing. While using SGD momentum in standard FEDAVG503

during local training is common, it will be discarded504

at the end of the round and re-initialized (along with505

any optimizer states) at the beginning of the next round506

of local training in FEDAVG. That is, the first several507

SGD steps in a round cannot benefit from it.508

To further bridge the gap, we present a fairly simple509

method, which is to keep the local momentum without510

re-initialization after the end of the local training in511

each round. This makes it a stateful method suitable for512

cross-silo FL. Another stateless choice is to maintain513

global momentum [66] by uploading the local mo-514

mentum to the server in every round and aggregating515

it with Equation 2, for initializing the momentum of516

the next round of local training, with the cost of double517

message size. Empirically, we found the two methods518

yield similar gains (as will be shown in Figure I) and re-519

cover centralized performance if communicating every520

step (Figure 1).521

Experimental Results. We combine each normalizer522

with the maintained local momentum and global mo-523

mentum proposed in subsection C.4, respectively. We524

show FIXBN’s effectiveness against BN and GN in Figure I in the (Shards, fixed epoch) setting with525

different numbers of local steps per communication E of {1, 20, 100, 500, 2500}. We see FIXBN per-526

forms consistently better. More importantly, FIXBN remains highly accurate in fast communication,527

unlike BN, confirming that it mitigates the deviation issue in subsection 3.5 well. The improvements528

of using maintained global/local momentum are similar, providing the flexibility of stateless/stateful529

use cases. More gains are at small E, supporting our motivation to fix the zero initialization issue of530

the momentum. Across different settings, we see FIXBN ≥ BN > GN in performance, consistent531

with Figure 3.532

Both of them improve BN notably, especially at small E, supporting our motivation to fix the zero533

initialization issue of the local SGD momentum to stabilize the gradients. Indeed, in Figure 1 with534

E = 1, we show FIXBN largely recovers centralized performance, making BN much more applicable535

in FL.536

C.5 Training curves537

We provide the training curves of FIXBN and other normalizers under various settings in fixed 128538

epochs using ResNet20 in Figure J, Figure K, Figure L, and Figure M, corresponding to Appendix B.539
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Figure J: Convergence curves of the test accuracy of CIFAR-10 with fixed epoch and Shards non-IID partitions,
with E = 1 ∼ 500.

Figure K: Convergence curves of the test accuracy of CIFAR-10 in fixed epoch, different non-IID partitions,
and E = 1 setting.
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Figure L: Convergence curves of the test accuracy of CIFAR-10 in fixed epoch, different non-IID partitions,
and E = 20 setting.

Figure M: Convergence curves of the test accuracy of CIFAR-10 in fixed epoch, different non-IID partitions,
and E = 100 setting.
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