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ABSTRACT

Autoregressive language models are the currently dominant paradigm for text
generation, but they have some fundamental limitations that cannot be remedied
by scale—for example inherently sequential and unidirectional generation. While
alternate classes of models have been explored, we have limited mathematical
understanding of their fundamental power and limitations. In this paper we focus
on Generative Masked Language Models (GMLMs), a non-autoregressive paradigm
in which we train a model to fit conditional probabilities of the data distribution
via masking, which are subsequently used as inputs to a Markov Chain to draw
samples from the model. These models empirically strike a promising speed-
quality trade-off as each step can be typically parallelized by decoding the entire
sequence in parallel. We develop a mathematical framework for analyzing and
improving such models which sheds light on questions of sample complexity and
inference speed and quality. Empirically, we adapt the T5 model for iteratively-
refined parallel decoding, achieving 2-3x speedup in machine translation with
minimal sacrifice in quality compared with autoregressive models. We run careful
ablation experiments to give recommendations on key design choices, and make
fine-grained observations on the common error modes in connection with our
theory. Our mathematical analyses and empirical observations characterize both
potentials and limitations of this approach, and can be applied to future works on
improving understanding and performance of GMLMs. 1

1 INTRODUCTION

The current dominant approach to language modeling is autoregressive (AR): to generate a sequence
of tokens, the language model starts by predicting the leftmost token, and then proceeds from left to
right, each step predicting the next token based on everything on its left (Raffel et al., 2020; Brown
et al., 2020; Touvron et al., 2023). AR models are not without limitations: (1) Lack of parallelism: To
generate a sequence of N tokens, AR language models need N sequential decoding steps. Each step
consists of a forward pass of the decoder component. When N is large, N sequential decoding steps
incur high latency. (2) Quality: When predicting each token, the model cannot access its right hand
side context, and has no natural way to revise earlier predictions on the left. This intuitive limitation
was more formally explored in prior theoretical works (Li & Risteski, 2021; Lin et al., 2021).

One promising alternative is based on Generative Masked Language Models (GMLMs). They are
trained to fit conditional probabilities for parts of the sequence (by applying a mask), conditioned on
the rest. To produce samples, these conditionals are used as oracles for running Markov Chain, e.g. a
Gibbs sampler (Wang & Cho, 2019; Goyal et al., 2022). Alternatively, we can think of these steps
as an iterative refinement process, typically starting with pure noise (i.e. all tokens are masked or
randomized). One can even fit conditional probabilities for noised versions of the input distribution,
and use them as inputs to a denoiser to get certain types of discrete diffusion models (Austin et al.,
2021). In GMLMs, typically one step of the Markov Chain is operationalized by a Transformer that
generates the sequence in parallel (i.e. parallel decoding (Ghazvininejad et al., 2019; Gu & Kong,
2021; Savinov et al., 2022) ). Hence, if the total number of steps is small, the latency is low. We
discuss other related works in Appendix C.

∗Equal theoretical / empirical contribution.
1Preliminary draft. Updates will be posted at cs.cmu.edu/~yuchenl4
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However, none of these approaches robustly surpass autoregressive models in both speed and quality
for a wider range of language generation tasks beyond machine translation. Thus, the following
questions naturally arise: (Q1) GMLMs are trained to learn conditional probabilities. When does
it also imply learning the joint probability? (Q2) What properties of the data distribution and
training/inference algorithm govern the quality of the learned model and its generated samples? (Q3)
What are the best practices for training GMLMs, and can we use theory to elucidate the design space
of losses, training and inference procedures?

Our contributions. Towards answering the questions above, we introduce a theoretical framework
to characterize the potentials and limitations of GMLMs, for both training and inference. Precisely,
• The asymptotic sample complexity for estimating the parameters of a distribution via a broad

class of masked-prediction losses can be related to the mixing time of a corresponding Markov
Chain that can be used to sample from the distribution (Section 2.2). Furthermore, we prove that
training with larger masks always improves statistical efficiency (Theorem 1).

• We show finite-sample bounds that translate bounds on how closely the conditional distributions
of the data distribution are learned, to how well the joint distribution is learned (Section 2.3) if we
have some capacity control over the distribution class being learned (e.g. covering number bounds).

• Transformers for parallel decoding has certain limitations, preventing it from efficiently sampling
even simple distributions with strong correlations between the coordinates (Section 3).

We accompany these theoretical findings with an extensive set of empirical investigations detailing
important components and common error modes. Precisely:
• Our experiments (Section 4) suggest the empirically critical components include large masking

ratio (c.f. theory in Section 2.2), custom vocabulary, distillation from AR models, and architecture
improvements like positional attention. Related findings exist in prior works (Appendix C).

• GMLMs with parallel-decoding work well on machine translation: in fact, even one single
forward pass can often produce reasonable translations. This aligns with our theoretical framework,
as machine translation tasks typically involve unimodal, lower-entropy outputs.

• Common error modes (“stuttering") suggest limitations for parallel-decoding GMLMs for model-
ing strong dependencies (c.f. theory in Section 3), which we empirically quantify (Section 4.3).

Jointly, our theoretical and empirical findings suggest synergistically designing better Markov Chains
that mix fast in the presence of strong correlations in the target, and corresponding losses that inherit
good statistical behavior.

2 THEORETICAL FRAMEWORK

We develop a mathematical framework for reasoning about the core ingredients for successfully
training and using GMLMs: the statistical complexity to learn the model, and the speed of inference.
We show that these two are surprisingly closely related: namely, we understand both the asymptotic
and finite-sample statistical complexity through functional inequalities (e.g. Poincaré, approximate
tensorization of entropy) corresponding to the Markov Chains we would use at inference time—which
in turn characterize the mixing time of these chains. This picture closely mirrors an emerging picture
in the continuous case for score-based (diffusion) models Koehler et al. (2023); Qin & Risteski
(2023)—though with fairly different proof techniques.

2.1 ASYMPTOTIC SAMPLE EFFICIENCY VIA FUNCTIONAL INEQUALITIES

The most classical way of fitting distributions from data is maximum likelihood, which is asymp-
totically the most sample-efficient (Hájek, 1972) . However, optimizing maximum likelihood is
computationally challenging for many families of distributions. Thus, alternate strategies and losses
to fit the parameters have been developed.

For continuous distributions, a common choice is the score matching loss. For discrete distributions,
a closely related strategy is learning the conditionals of subsets of variables. Operationalizing this as
a loss gives us the pseudolikelihood loss (Besag, 1975). More recently, this strategy has been used in
conjuction with neural models to both learn useful features in the guise of masked language modeling
(MLM) (Devlin et al., 2019), which can be also used to produce a generative model (Wang & Cho,
2019). The latter is done by using the learned conditionals inside a Gibbs sampler. However, when
the conditionals are not consistent, i.e. there is not a joint distribution that satisfies these conditionals,
Gibbs sampler may amplify errors. In general, mathematical understanding about sampling from
masked language models is still lagging substantially behind.
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Setup: Let Ω be a finite discrete set. Let p denote a distribution over a sequence of N variables
X = X1 · · ·XN ∈ ΩN . 2 We consider learning parameters θ parametrizing some distribution pθ, for
θ ∈ Θ. The classical way of fitting θ is to maximize the likelihood of the training data:
Definition 1 (MLE, Van der Vaart (2000)). Given i.i.d. samples x1, . . . , xn ∼ pθ, the max likelihood
estimator is θ̂MLE = argmaxθ′∈Θ Ê [log pθ′(X)], where Ê denotes the expectation over the samples.

As n → ∞ and under regularity conditions, we have
√
n
(
θ̂MLE − θ

)
→ N (0,ΓMLE), where

ΓMLE := I−1 , I is the Fisher information matrix.

A classical result due to Hájek-Le Cam (for modern exposition see Van der Vaart (2000)) is that
maximum likelihood is the asymptotically most sample-efficient estimator among all “sufficiently
regular” estimators (Section 8.5 in Van der Vaart (2000)) — so we will treat it as the “gold standard”
against which we will compare other estimators. The class of estimators we will be focusing most is
the a broad generalization of the pseudo-likelihood estimator (Besag, 1975).

For any K ⊂ [N ] denoting the set of masked positions in X ∈ ΩN , let p(XK |X−K) denote the
conditional probability of the subsequence (Xi | i ∈ K) given all other variables (Xi | i /∈ K). 3

Definition 2 (α-weighted pseudolikelihood). Denote a collection of sets K := {K1, . . . ,K|K|}
such that ∪iKi = [N ], corresponding to probabilities α := {α1, . . . , α|K|}. Given iid samples
of sequences SX := {X(i)|X(i) ∼ p}, suppose each X(i) is assigned a sequence of |SK| mask
configurations SK

(i) := (K
(i)
1 . . .K

(i)
|SK|) in which K

(i)
j is sampled iid from K according to α. 4 Then,

the α-weighted maximum pseudolikelihood estimator (MPLE) is θ̂PL := argminθ LPL(θ;SX ,SK)

where LPL(θ;SX ,SK) :=
∑|SX |

i=1

∑|SK|
j=1 lPL(θ;X

(i),K
(i)
j ), lPL(θ;X,K) := − log pθ(XK |X−K).

The population loss is 5 LPL(θ) := EX∼p,K∼α [lPL(θ;X,K)]. Let p̃ denote the (noisy) observed
counterparts of p, we also consider L̃PL(θ) := EX∼p̃,K∼α [lPL(θ;X,K)]

As a special case, if K contains all subsets of a certain size k, with uniform weights, and |SK| = 1,
we get the classical k-pseudolikelihood estimator: In fact, for Ising models, the corresponding loss is
even convex (Appendix A.1).
Definition 3 (k-pseudolikelihood (Huang & Ogata, 2002)). Same as Definition 2 except that K :=
{K ⊆ [N ] | |K| = k}, α = Unif(K), and |SK| = 1.

Informally, we predict the variables in positions K ∈ K, conditioned on the remaining variables. The
benefit is that parametrizing conditionals over smaller subsets K is often computationally cheaper.
For instance, if pθ(x) is an undirected graphical model, i.e. pθ(x) ∝ exp(

∑
C ϕC,θ(xC)), where the

sum is over all maximal cliques C of the graph describing the distribution, the conditional distribution
of K only depends on its Markov blanket, which can be very small for sparse graphs and small sets
K. Thus, computing the partition function corresponding to p(xK |x−K) takes time exponential
in this Markov blanket. By contrast, computing the likelihood requires calculating the partition
function of pθ(x), which takes time exponential in the dimension of X . In fact, for Ising models, the
corresponding loss is even convex (Appendix A.1). A similar tradeoff exists for masked language
models: fitting the conditionals for larger masks would likely require a larger model, thus would be
computationally more expensive.

2.2 SAMPLE COMPLEXITY VIA MIXING TIME BOUNDS

We provide a framework for bounding the asymptotic sample complexity of learning the parameters
θ of a discrete probability distribution with a broad family of “masked prediction” objectives. We
will measure the quality of an estimator in terms of parameter recovery. To make this formal, we first
recall that under mild technical conditions, the estimator will be asymptotically normal:

2In language models, Ω is the set of tokens in the vocabulary.
3p(XK |X−K) is motivated by the masked language modeling objective in Bert (Devlin et al., 2019).
4The set of mask configurations SK

(i) can be different for different X(i), but technically SK
(i) does not depend

on the content of X(i). It just depends on the index i of X(i) in SX . For simplicity, assume that each sample
X(i) observes the same number of mask configurations, i.e. the size |SK| is the same constant for all X(i).

5This is equivalent to minimizing the KL divergence of the groundtruth conditional distribution p(XK |X−K)
from the predicted conditional distribution pθ(XK |X−K): EX∼p [EK∼α [DKL (p(·|X−K), pθ(·|X−K))]]
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Lemma 1 (Asymptotic normality (Van der Vaart, 2000)). For the α-weighted MPLE in
Definition 2, fix |SK| = 1, and define θ∗ ∈ argminθ LPL(θ). Under mild regu-

larity conditions (Lemma 3 in Appendix A.3), as |SX | → ∞,
√
|SX |(θ̂PL − θ∗)

d−→
N (0, (∇2

θLPL(θ
∗))−1Cov(∇θlPL(θ

∗))(∇2
θLPL(θ

∗))−1)

If we know
√
|SX |(θ̂PL − θ∗)

d−→ N (0,ΓPL), we can extract bounds on the expected ℓ22 distance
between θ̂n and θ∗. Namely, from Markov’s inequality, (see e.g., Remark 4 in Koehler et al. (2023)),
for sufficiently large |SX |, with probability at least 0.99 it holds that ∥θ̂PL − θ∗∥22 ≤ Tr(ΓPL)

|SX | .

2.2.1 MASKING MORE IS (STATISTICALLY) BETTER

We prove that increasing the number of variables k we predict in k-pseudolikelihood (Definition 3)
strictly improves the statistical efficiency of the resulting estimator. Note, for larger k, we expect the
computational cost to optimize the corresponding loss to be larger, and when k = N we just get max
likelihood. Thus, this naturally formalizes a computational/statistical tradeoff in choosing k.
Assumption 1. ∀θ ∈ Θ, x ∈ ΩN ,K ⊂ [N ], the norms of the gradient ∥∇θ log pθ(xK |x−K)∥2 and
the Hessian ∥∇2

θ log pθ(xK |x−K)∥F exist and are finite .

Theorem 1 (Masking more is (statistically) better). Under Assumption 1, for every k ∈ [N − 1], let
Γk
PL denote the asymptotic variance of the k-MPLE estimator (Definition 3). We have:6 Γk+1

PL ⪯ Γk
PL

Remark 1. By monotonicity of trace, Thm 1 implies Tr(Γk+1
PL ) ≤ Tr(Γk

PL). Thm 1 also implies

larger k gives stronger asymptotic l2 bound for learning θ since Ex1:n,s1:n

[
∥θ̂kPL − θ∥22

]
→ Tr(Γk

PL)
|SX | .

The main lemma for Theorem 1 is that the two matrices in the asymptotic covariance of MPLE,
∇2

θLPL(θ) and Cov(∇θlPL(θ)) are actually equal. For MLE (namely, when k = N ) this is well-
known and called the information matrix equality. Proofs of Lemma 2 and Theorem 1 are in
Appendix A.2 and Appendix A.4, respectively.
Lemma 2 (Generalized information matrix equality). Under Assumption 1, the α-weighted pseudo-
likelihood loss (Definition 2) verifies: ∇2

θLPL(θ) = Cov(∇θlPL(θ))

As a consequence, the pseudolikelihood estimator θ̂n is asymptotically normal with the following
asymptotic covariance matrix:

√
|SX |(θ̂PL − θ∗) → N (0,

(
∇2

θLPL(θ
∗)
)−1

)

2.2.2 STATISTICAL EFFICIENCY BOUNDS VIA MIXING TIME BOUNDS

We could in general conceive of masking strategies where certain subsets of variables get masked
with different probabilities. For instance, in language, nearby words will tend to be more correlated;
grammatical constraints will dictate the parts-of-speech that can occur in different positions. We
would then like to have theoretical guidance on what choices of masking distributions are better.
Remarkably, it turns out that we can relate the statistical efficiency — in the sense of E∥θ̂ − θ∗∥2
for the resulting estimator θ̂ — and the mixing time of an appropriately chosen Markov Chain. In
fact, this is the Markov Chain that would be typically chosen at inference time. Towards making this
formal, we will need several preliminary concepts and results for Markov chains. Recall, a Markov
chain on a state space Ω is described by a (row-stochastic) transition matrix P . Moreover, we can
assign a natural bilinear form called the Dirichlet form:
Definition 4 (Dirichlet form). Let M be an ergodic, reversible Markov chain with transition matrix
P on state space Ω. Let µ be its unique stationary distribution. ∀f, g : Ω → R the associated
Dirichlet form is EP (f, g) = ⟨f, (I − P )g⟩µ = 1

2Σx,y∈Ωµ(x)P (x, y)(f(x)− f(y))(g(x)− g(y))

Mixing time of the Markov chain can be bounded in χ2 sense by the gap between the 1st and 2nd
eigenvalue of the Laplacian matrix I − P , expressed as Poincaré inequality:
Definition 5 (Poincaré inequality). We say that a Markov chain satisfies a Poincaré inequality with
constant C if for all f : Ω → R, we have EP (f, f) ≥ 1

CVarµ(f).

6The notation A ⪯ B means B −A is positive semidefinite.
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The Poincaré inequality implies exponential ergodicity of the Markov chain in χ2-divergence, pre-
cisely χ2(pt, µ) ≤ e−2t/Cχ2(p0, µ), where µ is the stationary distribution of the chain and pt is
the distribution after running the Markov process for time t, starting at p0. We will be particularly
interested in several generalizations of Gibbs sampling:
Definition 6 (α-weighted block dynamics (Caputo & Parisi (2021))). Let K := {K1, . . . ,K|K|} be a
collection of sets (or blocks) such that ∪iKi = [N ]. A block dynamics with blocks K is a Markov
chain that picks a block K in each step according to some distribution 7 α, and then updates the con-
figuration in K according to the conditional measure given the configuration in −K := [N ] \K. The
Dirichlet form corresponding to this chain is: EPα(f, g) =

∑
K∈K α(K)EX−K

[
CovXK |X−K

(f, g)
]

The crucial result we show is that the statistical efficiency of the α-weighted MPLE (Definition 2)
as captured by the asymptotic variance can be related to the Poincaré constant of the corresponding
α-weighted Block dynamics (Definition 6). Proof of Theorem 2 is in Appendix A.5.
Theorem 2 (Asymptotic variance under a Poincaré Inequality). Suppose the distribution pθ∗ satisfies
a Poincaré inequality with constant C with respect to the α-weighted Block dynamics. Then the
asymptotic variance of the α-weighted MPLE can be bounded as: ΓPL ⪯ CI−1 where I is the
Fisher Information matrix (Definition 1).

2.3 FINITE SAMPLE BOUNDS AND DISTRIBUTIONAL DISTANCE

The framework in Section 2.2 was asymptotic in nature, and used parameter closeness as a notion of
“quality” of the estimator. In this section, we remove both requirements, at the cost of the bounds
depending on a notion of “complexity” of the parametric class we are fitting. It turns out that we
can prove very similar results, with the notion of “mixing” — as captured by the Poincaré constant
— being replaced by a different constant called the “approximate tensorization constant”. We first
introduce several preliminary concepts.
Definition 7 (Approximate tensorization of entropy (Marton, 2013; 2015; Caputo et al.,
2015)). We say the distribution q on ΩN satisfies approximate tensorization of entropy
with constant CAT (q) if for any distribution r on ΩN , it holds that: DKL(r, q) ≤
CAT (q)EX∼r

[∑N
i=1 DKL

(
r(· | X−{i}), q(· | X−{i})

)]
This inequality is closely related to the mixing time of Glauber dynamics. Namely, the inequality
is sandwiched between two discrete versions of the log-Sobolev inequality (Proposition 1.1 of
Caputo et al. (2015)): it is weaker than the standard discrete version of the log-Sobolev inequality
(Diaconis & Saloff-Coste, 1996) and stronger than the Modified Log-Sobolev Inequality (Bobkov &
Tetali, 2006) which implies exponential ergodicity of Glauber dynamics in KL divergence, namely8

KL(pt, µ) ≤ e−2t/CAT (q)KL(p0, µ). This notion can be generalized to conditional distribution of
more than one variables:
Definition 8 (Block-generalized approximate tensorization of entropy (Caputo & Parisi, 2021)). The
distribution q over ΩN and the distribution α over binary masks K satisfies the block-generalized
approximate tensorization of entropy with constant C̄AT (q, α) if for any distribution r over ΩN ,
DKL(r, q) ≤ C̄AT (q, α) · EX∼r [EK∼α [DKL (r(· | X−K), q(· | X−K)]]

Similarly as the standard approximate tensoriation constant (Definition 7), it implies exponential
ergodicity of the block Gibbs dynamics (Definition 6). Our results will also require two mild
assumptions on the distribution we are fitting. First, we assume that when the ground-truth conditional
probability is nonzero, the learned conditional probability is uniformly lower-bounded by a constant:
Assumption 2 (Support margin). There exists constant β ∈ (0, 1) such that ∀X ∼ p̃, ∀K ⊂ [N ]
such that |K| = k, if p̃(XK |X−K) > 0, then pθ(XK |X−K) ≥ β,∀θ ∈ Θ.

We also assume that the parameter space can be discretized into a finite grid such that: (1) within the
same grid cell, the parameters correspond to distributions with similar losses; (2) the cardinality of
the grid is small. This is a relatively weak assumption because the population loss L̃PL(θ) and the
sample loss LPL(θ;SX ,SK) are bounded within [0, ln 1

β ] (by Proposition 7 in Appendix A.6).

7This is analogous to the training objective setting in Definition 2.
8This in turns, also implies a Poincaré inequality and exponential ergodicity in χ2 divergence.
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Assumption 3 (Covering bound and Lipschitzness). ∀ϵ > 0, there exists a finite parti-
tion Parϵ(Θ) = {Θ1, · · · ,Θ|Par(Θ)|} of Θ, ∀i,∀θ1, θ2 ∈ Θi,

∣∣∣L̃PL(θ1)− L̃PL(θ2)
∣∣∣ ≤ ϵ

2 ,

|LPL(θ1;SX ,SK)− LPL(θ2;SX ,SK)| ≤ ϵ
2 Moreover, Cϵ(Θ) denote the smallest possible car-

dinality among such partitions Parϵ(Θ).

With this setup, we can prove the following finite-sample bound on the closeness of the learned
distribution, provided the α-weighted pseudolikelihood (Definition 2) is small:

Theorem 3 (Generalization bound for learning the joint distribution). Let θ̂ := θ̂PL. Under Assump-
tion 2 and Assumption 3 (in Appendix A.6), ∀ϵ > 0, ∀δ ∈ (0, 1), with probability at least 1 − δ

over the randomness of SX and SK, we have DTV

(
pθ̂, p

)
<

√
1
2 C̄AT (pθ̂)

(
A+B · ln 1

β + ϵ
)
+ C

where A = LPL(θ̂;SX ,SK), B =
√

23NCϵ(Θ)
|SK|·δ +

√
ln

8Cϵ(Θ)
δ

2|SX | , and C =
√

|Ω|3N
8δ|SX | .

Proof of Theorem 3 is in Appendix A.6. We can compare the statement to Theorem 2: (1) On the
LHS, rather than parameter distance, we have total variation distance between the learned distribution
and p. (2) On the RHS, rather than a Poincaré inequality, we have the C̄AT (pθ̂) constant. (3) On the
RHS, instead of the Fisher information matrix, we have quantities capturing the generalization error,
through a notion of complexity of the class (Cϵ(Θ)).

3 SAMPLING EFFICIENCY VIA GIBBS-LIKE ALGORITHMS

In this section, we focus on inference, and the quality and limitations of different sampling procedures.
In particular, we focus on Gibbs-like algorithms, implemented by Transformer-based architectures,
and derive fine-grained differences between several natural variants we consider. We consider the
following variants of per-step update rules:

1. k-Gibbs sampler. Definition 6 when K := {K ⊆ [N ] | |K| = k}, and α = Unif(K).

X
(t+1)
K ∼ p(· | X(t)

−K), X
(t+1)
j = X

(t)
j ∀j /∈ K (1)

2. Independent parallel. Perform coordinate-wise for all i in parallel, to speed up the process. 9

∀i ∈ [N ], X
(t+1)
i ∼ p(· | X(t)

−{i}) (2)

Among existing language generation approaches via iterative refinement, Wang & Cho (2019) uses
1-Gibbs sampler, Ghazvininejad et al. (2019) is similar to performing k-Gibbs sampler for a predicted
subset of indices K. 10 Savinov et al. (2022) and our experiments are similar to running N -Gibbs
sampler (see Remark 6 in Appendix A.11 for more details). However, all of these methods rely on the
learned parameterized conditional distributions p̂, which is different from the groundtruth distribution
p, due to limitations in model expressivity and optimization process. Moreover, empirically, p̂ may
not admit a consistent joint distribution (Young & You, 2022; Torroba Hennigen & Kim, 2023). To
formally reason about iterative refinement, we will relax some of these limitations to focus on several
underlying theoretical obstacles that these methods face.

3.1 CAN TRANSFORMERS IMPLEMENT MARKOV CHAINS VIA PARALLEL DECODING?

In this section, we characterize the power and restrictions of Transformers at inference time, and in
particular when they are restricted to decoding the tokens of the sequence in parallel. The inference
algorithms for a model that has access to approximate conditional probabilities typically look like
steps of a Gibbs sampler (e.g. Definition 6). More generally, we can consider inference algorithms
that perform several steps of a Markov Chain of our choosing. Note that while there are well-known
prior results about the expressive power of Transformers as sequence-to-sequence modelers (Yun

9The stationary distribution of this chain is unclear: in fact, it is not even clear the chain is ergodic.
10Subject to implementation details: for example, if attention masks are added to prevent any masked position

from receiving attention.
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et al., 2020), representing steps of a Markov Chain with parallel decoding is more subtle, due to the
fact that a step of a Markov Chain requires randomness. First, we state a result characterizing the
power of Transformers to approximate “deterministic” Markov Chains: that is, Markov Chains whose
transition distributions are delta functions. Unsurprisingly, standard universal approximation results
apply to understand such Markov Chains. We show:
Proposition 1 (informal). Transformers (with sufficient depth and width) can implement any number
of transitions of any deterministic Markov Chain over sequences in ΩN .

On the other hand, Transformers using parallel decoding cannot implement general Markov chains
over ΩN . In fact, they can only implement Markov Chains for which the transition probabilities are
product distributions:
Proposition 2 (informal). The class of Markov chains over sequences in ΩN implementable by
(sufficiently wide and deep) Transformers is those whose next-state transition probability distributions
are product distributions over the positions, conditioned on the current state.

For readability, we defer background information on the Transformer architecture as well as further
explanations of Proposition 1 and Proposition 2 to Appendix A.11. Note that this does not mean one
can only simulate Markov Chains whose stationary distribution is a product distribution. In fact, the
standard 1-Gibbs sampler, by virtue of the fact that it only updates one coordinate at a time, encodes
a product distribution for each transition. On the other hand, under fairly mild conditions on a joint p,
the 1-Gibbs sampler corresponding to p is ergodic and has p as a stationary distribution. On the other
hand, a step of a k-Gibbs sampler for k > 1 is in general not a product distribution, and will not be
implementable by a Transformer with parallel decoding.

3.2 ACCURATELY APPROXIMATING CONDITIONALS CAN BE (MUCH) BETTER

Next, we show that being able to take Markov Chain steps that depend on conditionals of (large)
sets of coordinates can result in Markov Chains that reach the mode of the distribution much faster.
Intuitively, in cases where there is a strong dependence between subsets of variables, jointly updating
them will bring us much faster to their modes.

The toy probabilistic family to elicit this phenomenon will be Ising models. Specifically, we consider
an undirected graphical model G that can be represented by the union of a clique CG (in which
|CG| ≥ 2, and the dependency among variables is strong) and a set of N −|CG| independent vertices.
More formally, we consider: pG : {±1}N → R+,

pG(x) =
1

ZG
exp

∑
i∈[N ]

hixi +
∑

i ̸=j∈CG

Jxixj

 (3)

in which ZG is the partition function, and hi ∈ R s.t.
∑

i∈CG
hi > 0 and J > 0 are scalar constants.

This is a ferromagnetic Ising model (i.e. the pairwise interactions prefer the variables to have the
same value), and when J ≫ ∥h∥1, the two “modes" of the distribution pG are such that all variables
have the same value:

R1 := {X ∈ {−1, 1}N |Xi = 1∀i ∈ CG} (4)

R−1 := {X ∈ {−1, 1}N |Xi = −1 ∀i ∈ CG} (5)

The above distribution can be seen as a simple prototype of language tasks in which grammatical
rules or semantic constraints create “clusters” of positions in which changing isolated words leads to
very unlikely sentences. Next, we formalize the concentration around the “modes”:
Assumption 4 (Strongly ferromagnetic Ising model). There exist constants hG > 0, J0 > 0 such
that hG :=

∑
i∈CG

hi >
∑

i/∈CG
|hi|, J − ∥h∥1 ≥ J0.

Informally, under Assumption 4, sequences in R1 are much more likely under the groundtruth
distribution than those in R−1, which are further much more likely than all other sequences. The
formal statement and proof are in Appendix A.7. As a result, we can think of sampling from
R1 as analogous to sampling a high-quality sentence, and moreover, not reaching R1 implies the
Markov chain sampling process has not mixed to the groundtruth distribution yet. In the analogy to
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language tasks, in tasks like machine translation, for each source sentence, sampling one high-quality
target sentence is potentially good enough. In some other tasks like creative writing, producing
well-calibrated samples might be desirable—so mixing would be needed.

We show that running k-Gibbs sampler requires a small number of steps to reach R1. This implies
that if a model can efficiently approximate one step of k-Gibbs sampler, then it is fast to sample a
high-probability sequence by iteratively applying the model. Proof is in Appendix A.8.
Proposition 3 (k-Gibbs sampler sampling can reach the mode fast). On Ising model G in Equation (3)
under Assumption 4, with any initial X(0), ∀δ ∈ (0, 1), with probability at least 1 − δ, after

T :=
⌈
logcR1

δ
⌉

steps of k-Gibbs sampler (Gibbs sampler 1) with k ≥ |CG|, we have {X(t)|t ∈

[T ]} ∩ R1 ̸= ∅ in which the constant cR1
∈ (0, 1), cR1

:= 1−
(N−|CG|
k−|CG|)
(Nk)

e2(J0+hG)

e2(J0+hG)+e2J0+2|CG|−2

By contrast, we show that for nontrivial probability over the randomness in the initial sequence,
running independent parallel requires a large number of steps to reach the largest mode R1 of the
distribution. This implies that the sampling process may not reach a high-probability sequence in less
than exponentially large number of iterations.
Proposition 4 (Independent parallel sampling stuck in bad samples). On Ising model G in Equa-
tion (3) under Assumption 4, if the initial X(0) is such that

∑
i∈CG

X
(0)
i ≤ −2, ∀δ ∈ (0, 1), with

probability at least 1−δ, after T :=
⌊

δ
2 exp (cstuck)

⌋
steps of independent parallel (Gibbs sampler 2),

we have ∀t ∈ [T ],
∑

i∈CG
X

(t)
i ≤ −2, in which cstuck :=

2

(
−1+

1−exp (−2J0)

exp (−2J0)+1

|CG|
2

)2

|CG|

The proof is in Appendix A.9. Combining Proposition 3 and Proposition 4 leads to a separation result
between k-Gibbs sampler and independent parallel, in particular when the clique size in G is large
and dependency is strong within the clique: with high probability, while the former reaches R1 in 1
step, the latter cannot do so in arbitrarily large number of steps. Proof is in Appendix A.10.

4 EXPERIMENTS

4.1 PARALLEL DECODING BY ITERATIVE REFINEMENT (PADIR)

We consider an encoder-decoder architecture, in which the decoder is modified to be non-
autoregressive: instead of iteratively predicting the next token, each of our decoder forward pass
predicts an update to all target positions in parallel. The encoder extracts features from the source
sequence, and based on these features, each decoder forward pass refines its current hypothesis of
the target sequence. The initial decoder hypothesis is a purely random sequence, and more decoder
forward passes correspond to more steps of refinement. Note that we are not the first in the literature
to propose this language modeling paradigm. Our focus in this paper is to provide theoretical and
empirical analyses to characterize its potentials, limitations and document useful training practices.

One-stage training Given source sequence Xsource and target sequence X target in the supervised
training data Dtrain, we use a preprocessing rule to create the initial hypothesis target sequence
X(0). 11 The training objective is L(1) =

∑
Xsource,X target∈Dtrain

l(f dec
θd

(X(0), f enc
θe

(Xsource)) where l is
the cross-entropy loss applied to each position.

Multi-stage training One limitation of the one-stage training is that the inference situation is
out-of-distribution: when decoder step t > 1, the model needs to refine its own predictions in step
t − 1, which is not reflected in the training objective. Therefore, we use the multi-stage training
objective (Ghazvininejad et al., 2020; Savinov et al., 2022): L(S) = 1

S

∑
s∈[S] L

(s) where S is the
number of training stages, and L(s) =

∑
Xsource,X target∈Dtrain

l(f dec
θd

(X(s−1), f enc
θe

(Xsource))
4.2 TRAINING RECIPE AND EVALUATION

We train models on machine translation datasets, provide practical recommendations based on our
empirical observations, and discuss their connections to our theory.

11Each position in X(0) may contain a [MASK] token, a random token, or the correct token in X source, dependning
on the preprocessing rule.
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Model training We use Transformer encoder-decoder with size similar to Transformer-Base
(Vaswani et al., 2017) and T5-Small-1.0 (Raffel et al., 2020): 6 encoder and decoder layers, 8
attention heads, 512 embedding dimensions and 2048 FFN hidden dim. We add a positional attention
mechanism (Gu et al., 2018; Kreutzer et al., 2020) in each Transformer layer and use learnt positional
embeddings. The total number of parameters is 67M. We initialize model parameters randomly
and train using a batch size of 2048 for 500k iterations, with a 10% dropout rate, 15% unmasking
rate and 2 training stages. The optimizer is AdaFactor (Shazeer & Stern, 2018), with default T5X
hyperparameters (Roberts et al., 2022). The learning rate peaks at 0.003 with a linear rampup for 10k
steps followed by cosine decay, from and to a minimum value of 1e− 5. Unlike most prior work, we
do not use a remasking schedule; 12 we simply remask token-level stutter (i.e., consecutive repeated
tokens) across iterations and drop repeated tokens after the final iteration. As commonly done, we
distill our models by training on the output of an autoregressive model. For simplicity, we use a
Translation API 13 to generate this distillation data.

Datasets We evaluate our models on machine translation benchmarks commonly used in the non-
autoregressive modeling literature. We conduct experiments on both directions of three WMT datasets:
WMT14 DE↔EN (4.5M examples) (Bojar et al., 2014), WMT16 RO↔EN (610k examples) (Bojar
et al., 2016) and WMT17 ZH↔EN (20M examples) (Bojar et al., 2017). We load the data from the
tensorflow_datasets library and do not apply any preprocessing other than sentence piece
tokenization (Kudo & Richardson (2018)). Bilingual vocabularies of 32k tokens are created using the
training sets of each language pair.

Benchmarking PaDIR models and AR models reach similar BLEU and BLEURT scores. Quanti-
tative experimental results and common baselines are shown in Table 1 and Table 2 in Appendix B.3.
We discuss several considerations for evaluation metrics in Appendix B.2.

Speed The average target length in all datasets ranges between 28 and 33 tokens, including the EOS
token. As such a non-autogressive model using 4 decoding steps does 7 to 8 times fewer decoder
passes. In practice we see an end-to-end speedup greater than >2x for the median and >5x for the
99th percentile latency on the same hardware 14 (with 4 decoding steps and batch size 1). The gap
between expected and observed speedup is due to fixed costs (input tokenization, encoding, etc.) as
well as a better optimization of AR decoding (e.g. through caching of intermediate results). For longer
sequences, the constant number of decoding passes in GMLM is advantageous. For completeness, it
is worth noting that the number of decoder passes necessary to achieve good quality (and thus model
speed) is application dependent, with some tasks like non-autoregressive text in-painting remaining
slower than their autoregressive counterparts, as shown in Savinov et al. (2022).

4.3 CONNECTING TO THEORY: QUANTIFYING DEPENDENCY VIA ATTENTION SCORES

Our theory suggests that stronger dependency between target positions leads to worse generalization
guarantee and sampling efficiency. However, it is unclear how to measure such dependency for
Transformer-based language models trained on natural language data. In this section, we empirically
investigate: how to predict what target positions have strong dependency which may be challenging
for Transformers? We test the following two hypotheses: (1) Strongly dependent target positions
have larger decoder self-attention between each other. (2) Strongly dependent target positions have
similar cross-attention distribution to source tokens.

For a pair of target positions, to measure how well their dependency is modeled in the generated
output, we focus on adjacent repetitive tokens, a.k.a. stutter. Stuttering is a common error mode
among parallel decoding models, and we use it as one reasonable proxy for measuring failures
in modeling target-side dependency. We show Hypothesis 1 is unlikely to hold: even on average,
stuttering positions do not have larger decoder self-attention between each other, compared with
non-stuttering adjacent positions. 15 By contrary, Hypothesis 2 is potentially promising: with various
of distribution distance measures, stuttering positions in the generated output have more similar
cross-attention distributions to source tokens, compared with non-stuttering adjacent positions.
Details are in Table 4 and Table 5 in Appendix B.

12We experimented with various remasking schedules but the results were not visibly affected.
13The AR baseline model is trained on the output of the same API, by distillation. During anonymous review, we

remove the service name to avoid unnecessary associations.
14Full hardware detail will be provided for camera-ready paper.
15Since all stuttering positions are by definition adjacent, we think a fair comparison should only consider adjacent

positions for non-stuttering position pairs.

9



Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop, ICLR 2024

REFERENCES

Nima Anari, Yizhi Huang, Tianyu Liu, Thuy-Duong Vuong, Brian Xu, and Katherine Yu. Parallel
discrete sampling via continuous walks. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC 2023, pp. 103–116, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9781450399135. doi: 10.1145/3564246.3585207. URL
https://doi.org/10.1145/3564246.3585207.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=h7-XixPCAL.

Julian Besag. Statistical analysis of non-lattice data. Journal of the Royal Statistical Society Series D:
The Statistician, 24(3):179–195, 1975.

Sergey G Bobkov and Prasad Tetali. Modified logarithmic sobolev inequalities in discrete settings.
Journal of Theoretical Probability, 19(2):289–336, 2006.

Ond rej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri,
Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia
Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 conference
on machine translation. In Proceedings of the First Conference on Machine Translation, pp.
131–198, Berlin, Germany, August 2016. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W/W16/W16-2301.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Ale s Tamchyna. Findings of the 2014 workshop on statistical machine translation.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58, Baltimore,
Maryland, USA, June 2014. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/W/W14/W14-3302.
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A PROOFS AND THEORETICAL BACKGROUNDS

A.1 OPTIMIZATION LANDSCAPE FOR FITTING THE CONDITIONAL DISTRIBUTIONS

We explain a comment in Section 2.

Is the pseudo-likelihood training objective LMLPE(θ;SX ,SK) (Definition 2) intrinsically harder to
optimize? We show that it is not the case: training a classic parameteric model for distributions
(namely, Ising models) on LMLPE(θ;SX ,SK) is in fact convex: 16

Ising models. For random variables X = {Xi ∈ {−1, 1} : i ∈ [N ]}, an Ising model with
parameters J ∈ RN×N and h ∈ RN has joint distribution

p(X = x) =
1

Z
exp (

∑
i∈[N ]

hixi +
∑

i ̸=j∈[N ]

Jijxixj), (A.6)

in which Z is the partition function.
Proposition 5 (Fitting an Ising model over the conditional distributions is convex). When pθ is an
Ising model (Equation (A.6)), i.e. θ = (J ,h). The objective LMLPE(θ;SX ,SK) is convex in θ.
Remark 2. When the parameterization of pθ admits a benign loss landscape and is sufficiently
expressive, Proposition 5 suggests that there exists efficient algorithms for finding θ̂ such that
LMLPE(θ̂;SX ,SK) is small. In Section 2.3 we will show that this also implies generalization guarantee
on the learned joint distribution pθ̂.

Proof. Recall that

LMLPE(θ;SX ,SK) =
1

|SX |
∑

j,X∈SX

1

|SK(j)|
∑

K∈SK(j)

DKL (p̃(·|X−K), pθ(·|X−K))

Hence it suffices to prove that DKL (p̃(·|X−K), pθ(·|X−K)) is convex in θ. Note that

DKL (p̃(·|X−K), pθ(·|X−K)) =
∑

XK∈Ω|K|

p̃(XK |X−K) ln
p̃(XK |X−K)

pθ(XK |X−K)

=
∑

XK∈Ω|K|

p̃(XK |X−K) [ln p̃(XK |X−K)− ln pθ(XK |X−K)]

Hence it suffices to prove that − ln pθ(XK = xK |X−K = x−K) is convex in θ.

When pθ is an Ising model (Equation (A.6)),

− ln pθ(xK |x−K) = − ln
exp (

∑
i∈[N ] hixi +

∑
i̸=j∈[N ] Jijxixj)

Z(x−K)

= −(
∑
i∈[N ]

hixi +
∑

i ̸=j∈[N ]

Jijxixj) + lnZ(x−K)

in which the denominator

Z(x−K) =
∑

XK∈Ω|K|

exp

(∑
i∈K

hiXK +
∑

i∈[N ]\K

hixi

+
∑

i̸=j∈[K]

JijXiXj +
∑

i∈K,j∈[N ]\K

JijXixj +
∑

i ̸=j∈[N ]\K

Jijxixj

)

Note that −(
∑

i∈[N ] hixi +
∑

i̸=j∈[N ] Jijxixj) is linear in (h, J) and lnZ(x−K) is convex in
(h, J), so − ln pθ(XK = xK |X−K = x−K) is convex in (h, J), which completes the last piece of
the proof.

16A known fact which has been used to design (provably) efficient algorithms for learning bounded-degree Ising
models (Ravikumar et al., 2010; Vuffray et al., 2016).
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A.2 PROOF OF LEMMA 2: GENERALIZED INFORMATION MATRIX EQUALITY

Lemma 2 (Generalized information matrix equality). Under Assumption 1, the α-weighted pseudo-
likelihood loss (Definition 2) verifies: ∇2

θLPL(θ) = Cov(∇θlPL(θ))

As a consequence, the pseudolikelihood estimator θ̂n is asymptotically normal with the following
asymptotic covariance matrix:

√
|SX |(θ̂PL − θ∗) → N (0,

(
∇2

θLPL(θ
∗)
)−1

)

Proof. Step 1: Assumption 1 allows us to change the order of expectation and derivatives

First, since Ω, [N ], and K ⊂ [N ] are both discrete finite, the conditions for the Dominated Conver-
gence Theorem holds under Assumption 1: there exists function f : Θ×Ω×K 7→ R such that ∀θ ∈ Θ,
EX,K [f(θ,X,K)] < ∞, ∥∇θ log pθ(xK |x−K)∥2 ≤ f(θ,X,K), and ∥∇2

θ log pθ(xK |x−K)∥F ≤
f(θ,X,K).

Therefore,
∂

∂θj
ES,xS ,x−S

[log pθ(xS |x−S)] = lim
h→0

1

h

(
ES,xS ,x−S

[
log pθ+ejh(xS |x−S)

]
− ES,xS ,x−S

[log pθ(xS |x−S)]
)

= lim
h→0

ES,xS ,x−S

[
log pθ+ejh(xS |x−S)− log pθ(xS |x−S)

h

]
By Mean Value Theorem, there exists ξ(h) ∈ (0, h) such that

log pθ+ejh(xS |x−S)− log pθ(xS |x−S)

h
=

∂

∂θj
log pθ+ejξ(h)(xS |x−S)

So
∂

∂θj
ES,xS ,x−S

[log pθ(xS |x−S)]

= lim
h→0

(
ES,xS ,x−S

[
∂

∂θj
log pθ+ejξ(h)(xS |x−S)

])
= ES,xS ,x−S

[
lim
h→0

(
∂

∂θj
log pθ+ejξ(h)(xS |x−S)

)]
(Dominated Convergence Thm and Assumption 1)

= ES,xS ,x−S

[
∂

∂θj
log pθ(xS |x−S)

]
So

∇θES,xS ,x−S
log pθ(xS |x−S) = ES,xS ,x−S

∇θ log pθ(xS |x−S)

Likewise, by Mean Value Theorem, Dominated Convergence Thm and Assumption 1,

∂2

∂θi∂θj
ES,xS ,x−S

[log pθ(xS |x−S)] = ES,xS ,x−S

[
∂2

∂θi∂θj
log pθ(xS |x−S)

]
and so

∇2
θES,xS ,x−S

log pθ(xS |x−S) = ES,xS ,x−S
∇2

θ log pθ(xS |x−S)

Step 2: rewrite ∇2
θLPL(θ)

∇2
θLPL(θ) = −∇2

θES,xS ,x−S
log pθ(xS |x−S)

1
= −ES,xS ,x−S

∇2
θ log pθ(xS |x−S)

2
= ES,xS ,x−S

∇θ log pθ(xS |x−S)∇θ log pθ(xS |x−S)
⊤ − ∇2

θpθ(xS |x−S)

pθ(xS |x−S)

3
= ES,xS ,x−S

∇θ log pθ(xS |x−S)∇θ log pθ(xS |x−S)
⊤
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where 1 follows by exchanging the order of expectation and Hessian (S ∈ Sk and x ∈ Ω are finite),
and this is valid by Step 1 above , 2 by an application of chain rule. The last equality 3 follows by
a similar calculation as the proof of the classical information matrix equality:

ES,xS ,x−S

∇2
θpθ(xS |x−S)

pθ(xS |x−S)
= ESEx−S

ExS |x−S

∇2
θpθ(xS |x−S)

pθ(xS |x−S)

= ESEx−S

∫
∇2

θpθ(xS |x−S)dxS

= ESEx−S
∇2

θ

∫
pθ(xS |x−S)dxS

= 0

where the last equality follows since
∫
pθ(xS |x−S)dxS = 1 (so doesn’t depend on θ).

Similarly, we have

ES,xS ,x−S
∇θ log pθ(xS |x−S) = ESEx−S

ExS |x−S

∇θpθ(xS |x−S)

pθ(xS |x−S)

= ESEx−S

∫
∇θpθ(xS |x−S)dxS

= ESEx−S
∇θ

∫
pθ(xS |x−S)dxS

= 0

where the last equality follows since
∫
pθ(xS |x−S)dxS = 1 (so doesn’t depend on θ). Plugging this

into the definition of covariance, we have:

Cov(∇θlPL(θ)) = ES,xS ,x−S
∇θ log pθ(xS |x−S)∇θ log pθ(xS |x−S)

⊤

− ES,xS ,x−S
∇θ log pθ(xS |x−S)ES,xS ,x−S

∇θ log pθ(xS |x−S)
⊤

= ES,xS ,x−S
∇θ log pθ(xS |x−S)∇θ log pθ(xS |x−S)

⊤

The proof of the lemma thus follows.
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A.3 LEMMA 3: REGULARITY CONDITIONS FOR ASYMPTOTIC BEHAVIOR OF PARAMETER
ESTIMATION

With infinite samples, estimators like max likelihood or max pseudolikelihood converge in distribution
to a normal distribution, under mild regularity conditions:
Lemma 3 (Van der Vaart (2000), Theorem 5.23; adopted precise statement in Qin & Risteski (2023)).
Consider a loss L : Θ 7→ R, such that L(θ) = Ep[ℓθ(x)] for lθ : X 7→ R. Let Θ∗ be the set of global
minima of L, that is

Θ∗ = {θ∗ : L(θ∗) = min
θ∈Θ

L(θ)}

Suppose the following conditions are met:

• (Gradient bounds on lθ) The map θ 7→ lθ(x) is measurable and differentiable at every θ∗ ∈
Θ∗ for p-almost every x. Furthermore, there exists a function B(x), s.t. E

[
B(x)2

]
< ∞

and for every θ1, θ2 near θ∗, we have:

|lθ1(x)− lθ2(x)| < B(x)∥θ1 − θ2∥2

• (Twice-differentiability of L) L(θ) is twice-differentiable at every θ∗ ∈ Θ∗

with Hessian ∇2
θL(θ

∗), and furthermore ∇2
θL(θ

∗) ≻ 0.

• (Uniform law of large numbers) The loss L satisfies a uniform law of large numbers, that is

sup
θ∈Θ

∣∣∣Ê[lθ(x)]− L(θ)
∣∣∣ p−→ 0

Then, for every θ∗ ∈ Θ∗, and every sufficiently small neighborhood S of θ∗, there exists a sufficiently
large n, such that there is a unique minimizer θ̂n of Ê[lθ(x)] in S. Furthermore, θ̂n satisfies:

√
n(θ̂n − θ∗)

d−→ N
(
0, (∇2

θL(θ
∗))−1Cov(∇θℓ(θ

∗;x))(∇2
θL(θ

∗))−1
)
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A.4 PROOF OF THEOREM 1: MASKING MORE IS (STATISTICALLY) BETTER

Theorem 1 (Masking more is (statistically) better). Under Assumption 1, for every k ∈ [N − 1], let
Γk
PL denote the asymptotic variance of the k-MPLE estimator (Definition 3). We have:17 Γk+1

PL ⪯
Γk
PL

Proof. By Lemma 2, we have:

∇2
θL

k
PL = ES∼αExS ,x−S

∇θ log pθ(xS |x−S)∇θ log pθ(xS |x−S)
⊤

Let Sk denote the set
{K ⊂ [N ] | |K| = k}

Moreover, for every T ∈ Sk+1 and a ∈ T

log p(xT |x−T ) = log p(xS , xa|x−S\{a}) where S = T\{a}
= log p(xa|x−S\{a}) + log p(xS |x−S)

Using this, we can write:

∇2
θL

k+1
PL = ET∼Sk+1

ExT ,x−T
∇θ log pθ(xT |x−T )∇θ log pθ(xT |x−T )

⊤

= ES∼Sk
Ea ̸∈SExS ,xa,x−S\{a}∇θ log pθ(xT |x−T )∇θ log pθ(xT |x−T )

⊤

= ES∼Sk
Ea ̸∈SExS ,xa,x−S\{a} [∇ log p(xa|x−S\{a}) +∇ log p(xS |x−S)][∇ log p(xa|x−S\{a})

+∇ log p(xS |x−S)]
⊤ (A.7)

Let us denote:


A = ES∼Sk

Ea̸∈SEx∇ log p(xS |x−S)∇ log p(xS |x−S)
⊤

B = ES∼Sk
Ea̸∈SEx∇ log p(xa|x−S\{a})∇ log p(xS |x−S)

⊤

C = ES∼Sk
Ea ̸∈SEx∇ log p(xa|x−S\{a})∇ log p(xa|x−S\{a})

⊤

By expanding the previous expression, we have ∇2
θL

k+1
PL = A+B +B⊤ + C.

Consider A first. Note that for a fixed S ∈ Sk, Ex∇ log p(xS |x−S)∇ log p(xS |x−S)
⊤ is independent

of a ̸∈ S and therefore:

A = ES∼Sk
Ea̸∈SEx∇ log p(xS |x−S)∇ log p(xS |x−S)

⊤

= ES∼Sk
Ex∇ log p(xS |x−S)∇ log p(xS |x−S)

⊤

= ∇2
θL

k
PL

Proceeding to B, for a given S ∈ Sk, x−S , we have ExS |x−S
[∇θ log p(xS |x−S)] = 0 therefore:

B = ES∼Sk
Ea ̸∈SExS ,xa,x−S\{a} [∇ log p(xa|x−S\{a})∇ log p(xS |x−S)

⊤]

= ES∼Sk
Ea ̸∈SExa,x−S\{a} [ExS |x−S

(∇ log p(xa|x−S\{a})∇ log p(xS |x−S)
⊤)]

= ES∼Sk
Ea ̸∈SExa,x−S\{a} [∇ log p(xa|x−S\{a})ExS |x−S

∇ log p(xS |x−S)
⊤]

= 0

Finally, each term ∇ log p(xS |x−S)∇ log p(xS |x−S)
⊤ ⪰ 0 therefore C ⪰ 0.

Plugging this back in (A.7), we have:

∇2
θL

k+1
PL = ∇2

θL
k
PL + C ⪰ ∇2

θL
k
PL

Consequently, by monotonicity of the matrix inverse, we have

Γk+1
PL =

(
∇2

θL
k+1
PL

)−1 ⪯
(
∇2

θL
k
PL

)−1
= Γk

PL

as we need.

17The notation A ⪯ B means B −A is positive semidefinite.
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A.5 PROOF OF THEOREM 2: ASYMPTOTIC VARIANCE UNDER A POINCARÉ INEQUALITY

Theorem 2 (Asymptotic variance under a Poincaré Inequality). Suppose the distribution pθ∗ satisfies
a Poincaré inequality with constant C with respect to the α-weighted Block dynamics. Then the
asymptotic variance of the α-weighted MPLE can be bounded as: ΓPL ⪯ CI−1 where I is the
Fisher Information matrix (Definition 1).

Proof. Let θ̂n ∈ argminθ LPL(θ;SX ,SK) (Definition 2). Let dΘ denote its dimensionality, i.e.
θ̂n ∈ RdΘ .

As a consequence of ∇2
θLPL(θ) = Cov(∇θlPL(θ)) (Lemma 2), we have:√

|SX |(θ̂n − θ∗) → N (0, (Cov(∇θlPL(θ)))
−1) (A.8)

Now we relate Cov(∇θlPL(θ)) to I = Cov(∇θlMLE(θ)). Consider a test vector v ∈ RdΘ ,

v⊤Cov(∇θlPL(θ))v

= v⊤ES,xS ,x−S
∇θ log pθ(xS |x−S)∇θ log pθ(xS |x−S)

⊤v

= ES,xS ,x−S
(∇θ log pθ(xS |x−S)

⊤v)2

= ESEx−S
[VarxS |x−S

(∇θ log pθ(xS |x−S)
⊤v) + (ExS |x−S

∇θ log pθ(xS |x−S)
⊤v)2]

≥ ESEx−S
VarxS |x−S

(∇θ log pθ(xS |x−S)
⊤v) + 0

≥ 1

C
Varx(∇θ log pθ(x)

⊤v) (by Definition 6)

=
1

C
v⊤Iv

Therefore, we have

Cov(∇θlPL(θ)) ⪰
1

C
I

Plugging into Equation (A.8), we obtain an upper bound on the asymptotic variance of our estimator:

ΓPL ⪯ CI−1
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A.6 PROOF OF THEOREM 3: GENERALIZATION BOUND FOR LEARNING THE JOINT
DISTRIBUTION

We first state our overall structure of the proof of Theorem 3, and then state and prove the key lemmas
mentioned therein.
Theorem 3 (Generalization bound for learning the joint distribution). Let θ̂ := θ̂PL. Under Assump-
tion 2 and Assumption 3 (in Appendix A.6), ∀ϵ > 0, ∀δ ∈ (0, 1), with probability at least 1 − δ

over the randomness of SX and SK, we have DTV

(
pθ̂, p

)
<

√
1
2 C̄AT (pθ̂)

(
A+B · ln 1

β + ϵ
)
+ C

where A = LPL(θ̂;SX ,SK), B =
√

23NCϵ(Θ)
|SK|·δ +

√
ln

8Cϵ(Θ)
δ

2|SX | , and C =
√

|Ω|3N
8δ|SX | .

Remark 3. Building on Remark 2 in Appendix A.1, if additionally suppose the sample size |SX |
and the number of mask configurations |SK| trained per sequence are large, then both terms on the
right hand side of Theorem 3 are small, implying a generalization guarantee for learning the joint
distribution.

Proof. Theorem 3 follows by combining the following steps.

Step 1: relating closeness of the conditional distributions (i.e. the loss) to closeness of the
joint distribution. The connection is established through the definition of the block-generalized
approximate tensorization of entropy in Definition 8, by which we get:

DKL

(
p̃, pθ̂

)
≤ C̄AT (pθ̂)L̃PL(θ̂)

The details are in Proposition 6 in Appendix A.6. By Pinsker’s inequality, this implies

DTV

(
p̃, pθ̂

)
≤
√

1

2
DKL

(
p̃, pθ̂

)
≤
√

1

2
C̄AT (pθ̂)L̃PL(θ̂) (A.9)

Step 2: generalization bound for learning the conditional distributions. We show that Assump-
tion 2 and Assumption 3 imply a generalization guarantee for learning the conditional distributions
from a finite sample of sequences and masked positions. We show that with probability at least 1− δ

2 ,
we have∣∣∣LPL(θ̂;SX ,SK)− L̃PL(θ̂)

∣∣∣ <
√23NCϵ(Θ)

|SK| · δ
+

√
ln 8Cϵ(Θ)

δ

2|SX |

 · ln 1

β
+ ϵ (A.10)

Proof detail are in Corollary 2 in Appendix A.6.

Step 3: empirical joint distribution converges to population joint distribution. Proof is standard
and details are in Lemma 6 in Appendix A.6. With probability at least 1− δ

2 , we have

DTV (p̃, p) <

√
|Ω|3N

8δ |SX |
(A.11)

Step 4: union bound and triangle inequality By union bound, with probability at least 1− δ, both
Equation (A.10) and Equation (A.11) hold. Therefore, putting together the previous steps, we get:
DTV

(
pθ̂, p

)
≤ DTV

(
p̃, pθ̂

)
+DTV (p̃, p) (by triangle inequality)

≤
√

1

2
C̄AT (pθ̂)L̃PL(θ̂) +

√
|Ω|3N

8δ |SX |
(by Equation (A.9) and Equation (A.11))

<

√√√√√1

2
C̄AT (pθ̂)

LPL(θ̂;SX ,SK) +

√23NCϵ(Θ)

|SK| · δ
+

√
ln 8Cϵ(Θ)

δ

2|SX |

 · ln 1

β
+ ϵ

+

√
|Ω|3N

8δ |SX |

(by Equation (A.10))
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Proposition 6. DKL (p, pθ) ≤ C̄AT (pθ)LPL(θ) and DKL (p̃, pθ) ≤ C̄AT (pθ)L̃PL(θ)

Proof. By definition of block-generalized approximate tensorization of entropy in Definition 8

DKL(p, pθ) ≤ C̄AT (pθ)EX∼p

[
EK⊂[N ] [DKL (p(· | X−K), pθ(· | X−K)]

]
= C̄AT (pθ)LPL(θ)

Likewise the latter holds when we replace p with p̃.

Proposition 7 (KL is bounded). Under Assumption 2,

DKL (p̃(·|X−K), pθ(·|X−K)) ∈ [0, ln
1

β
]

Proof. By definition of DKL,

0 ≤ DKL (p̃(·|X−K), pθ(·|X−K)) =
∑

XK∈Ω|K|

p̃(XK |X−K) ln
p̃(XK |X−K)

pθ(XK |X−K)

≤
∑

XK∈Ω|K|

p̃(XK |X−K) ln
1

pθ(XK |X−K)

≤
∑

XK∈Ω|K|

p̃(XK |X−K) ln
1

β
(by Assumption 2)

= ln
1

β

Lemma 4 (Hoeffding’s inequality (Hoeffding, 1994)). Let Y1, · · · , Yn be independent random
variables such that a ≤ Yi ≤ b almost surely. Consider the sum of these random variables,

Sn = Y1+· · ·+Yn whose expectation is E [Sn]. Then, ∀t > 0, with probability at least 1−2e
− 2t2

n(b−a)2 ,
we have

|Sn − E [Sn]| < t

Proof. See Hoeffding (1994).

Lemma 5 (Point-wise generalization bound for learning conditional distributions). Fix a θ ∈ Θ

satisfying Assumption 2. ∀ϵ > 0, t > 0, with probability at least 1 − 2N−2

ϵ2|SK| − 2e
− 2t2

|SX |·(ln 1
β )

2

, we
have ∣∣∣LPL(θ;SX ,SK)− L̃PL(θ)

∣∣∣ < 2N ϵ · ln 1

β
+

t

|SX |

Proof. Step 1: concentration over masked configurations SK.

We first prove that LPL(θ;SX ,SK) (Definition 2) converges to the expectation over masked positions
K as |SK| increases. 18

Denote
f(X) := EK [DKL (p̃(·|X−K), pθ(·|X−K))] (A.12)

18Note that the terms DKL (p̃(·|X−K), pθ(·|X−K)) are (generally) not independent for different K. Besides, the
terms

∑
K∈SK

DKL (p̃(·|X−K), pθ(·|X−K)) are (generally) not independent for different SK.
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Then the expectation of LPL(θ;SX ,SK) over the randomness of SK is:

E{SK(j) | j∈[|SX |]} [LPL(θ;SX ,SK)] =
1

|SX |
∑

j,X∈SX

1

|SK|
ESK(j)

 ∑
K∈SK(j)

DKL (p̃(·|X−K), pθ(·|X−K))


=

1

|SX |
∑

j,X∈SX

EK [DKL (p̃(·|X−K), pθ(·|X−K))]

=
1

|SX |
∑

X∈SX

f(X) (A.13)

Moreover, for each K, the empirical probability pS(K) of training on p̃(·|X−K) converges to the true
probability p(K) as |SK| increases, because the count, pS(K) |SK| follows the binomial distribution

Binomial(|SK| , p(K))

More specifically, by Chebyshev’s inequality, ∀ϵ > 0:

P {|pS(K)− p(K)| ≥ ϵ} = P {pS(K) |SK| − p(K) |SK| ≥ ϵ |SK|}

≤ Var (pS(K) |SK|)
ϵ2 |SK|2

(Chebyshev’s inequality)

=
|SK| p(K)(1− p(K))

ϵ2 |SK|2
(since pS(K) |SK| ∼ Binomial(|SK| , p(K)))

=
p(K)(1− p(K))

ϵ2 |SK|

≤ 1

4ϵ2 |SK|

Applying union bound over K ∈ {0, 1}N ,

P
{
|pS(K)− p(K)| < ϵ, ∀K ∈ {0, 1}N

}
≥ 1− 2N

4ϵ2 |SK|
= 1− 2N−2

ϵ2 |SK|
(A.14)

Plugging into Equation (A.12) and Equation (A.13), we get with probability at least 1− 2N−2

ϵ2|SK| ,∣∣∣∣∣LPL(θ;SX ,SK)−
1

|SX |
∑

X∈SX

f(X)

∣∣∣∣∣
=

∣∣∣∣∣∣ 1

|SX |
∑

j,X∈SX

1

|SK(j)|
∑

K∈SK(j)

DKL (p̃(·|X−K), pθ(·|X−K))− 1

|SX |
∑

X∈SX

EK [DKL (p̃(·|X−K), pθ(·|X−K))]

∣∣∣∣∣∣
≤ 1

|SX |
∑

j,X∈SX

∑
K∈{0,1}N

|pS(K)− p(K)| ·DKL (p̃(·|X−K), pθ(·|X−K)) (triangle inequality)

<
1

|SX |
∑

j,X∈SX

∑
K∈{0,1}N

ϵ ·DKL (p̃(·|X−K), pθ(·|X−K)) (by Equation (A.14))

≤ 1

|SX |
∑

j,X∈SX

∑
K∈{0,1}N

ϵ · ln 1

β
(by Proposition 7)

=
1

|SX |
∑

j,X∈SX

2N ϵ · ln 1

β
= 2N ϵ · ln 1

β
(A.15)

Step 2: concentration over sequences X in training data.

Recall f(X) defined in Equation (A.12).

27



Navigating and Addressing Data Problems for Foundation Models (DPFM) Workshop, ICLR 2024

In the following we prove that 1
|SX |

∑
X∈SX

f(X) converges to:

E [f(X)] = EX∼p̃

ESK(X)∼size-k subsets of [N ]

 1

|SK(X)|
∑

K∈SK(X)

DKL (p̃(·|X−K), pθ(·|X−K))


= EX∼p̃

[
EK⊂[N ],|K|=k [DKL (p̃(·|X−K), pθ(·|X−K))]

]
= L̃PL(θ)

Note that f(X) ∈ [0, ln 1
β ] by Proposition 7.

Thus, applying Hoeffding’s inequality (Lemma 4), ∀t > 0, with probability at least 1 −

2e
− 2t2

|SX |·(ln 1
β )

2

, we have ∣∣∣∣∣ 1

|SX |
∑

X∈SX

f(X)− E [f(X)]

∣∣∣∣∣ < t

|SX |
(A.16)

Step 3: combining results: concentration over both masks K and sequences X .

By union bound, with probability at least

1− 2N−2

ϵ2 |SK|
− 2e

− 2t2

|SX |·(ln 1
β )

2

both Equation (A.15) and Equation (A.16) hold, giving us,∣∣∣LPL(θ;SX ,SK)− L̃PL(θ)
∣∣∣

≤

∣∣∣∣∣LPL(θ;SX ,SK)−
1

|SX |
∑

X∈SX

f(X)

∣∣∣∣∣+
∣∣∣∣∣ 1

|SX |
∑

X∈SX

f(X)− L̃PL(θ)

∣∣∣∣∣ (triangle inequality)

< 2N ϵ · ln 1

β
+

t

|SX |

Remark 4. The two terms in the bound given by Lemma 5, i.e. 2N ϵ · ln 1
β and t

|SX | , can be controlled
by setting appropriate ϵ and t based on |SK| and |SX |, respectively. These two terms can reduce by
increasing |SK| and |SX |, respectively, as we will show in the subsequent corollary. This is intuitive:
we expect a smaller generalization gap when the model is trained on more mask configurations for
each sequence, and when more sequences are included in the data. The first term grows with N —
this is also intuitive: when the sequences are longer, it is natural to require observing more mask
configurations.

Corollary 1 (Point-wise generalization bound for learning conditional distributions, special case).
Fix a θ ∈ Θ satisfying Assumption 2. with probability at least 1− δ, we have

∣∣∣LPL(θ;SX ,SK)− L̃PL(θ)
∣∣∣ <

√ 23N−1

|SK| · δ
+

√
ln 4

δ

2|SX |

 · ln 1

β

Proof. Apply Lemma 5 with ϵ and t satisfying

δ

2
=

2N−2

ϵ2 |SK|

δ

2
= 2e

− 2t2

|SX |·(ln 1
β )

2
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which solves to

ϵ =

√
2N−1

|SK| · δ

t =

√
ln 4

δ · |SX |
2

ln
1

β

Therefore, by Lemma 5, with probability at least 1− δ, we have∣∣∣LPL(θ;SX ,SK)− L̃PL(θ)
∣∣∣

< 2N ϵ · ln 1

β
+

t

|SX |

=

√ 23N−1

|SK| · δ
+

√
ln 4

δ

2|SX |

 · ln 1

β

Corollary 2 (Uniform convergence generalization bound for learning conditional distributions).
Under Assumption 2 and Assumption 3, ∀δ ∈ (0, 1), ∀ϵ > 0, with probability at least 1− δ, we have

∣∣∣LPL(θ;SX ,SK)− L̃PL(θ)
∣∣∣ <

√23N−1Cϵ(Θ)

|SK| · δ
+

√
ln 4Cϵ(Θ)

δ

2|SX |

 · ln 1

β
+ ϵ

Proof. By Assumption 3, let Cϵ(Θ) denote the complexity of parameter space Θ, with the corre-
sponding partition Parϵ(Θ) = {Θ1, · · · ,ΘCϵ(Θ)}. Moreover, for each i ∈ [Cϵ(Θ)], arbitrarily select
any point θ∗i ∈ Θi (as a “representative" of that region of the parameter space). Let the set of
“representative points" be Θ∗ = {θ∗i | i ∈ [Cϵ(Θ)]}.

By Corollary 1, fixing any θ ∈ Θ satisfying Assumption 2, then with probability at least 1− δ
Cϵ(Θ) ,

we have

∣∣∣LPL(θ;SX ,SK)− L̃PL(θ)
∣∣∣ <

√23N−1Cϵ(Θ)

|SK| · δ
+

√
ln 4Cϵ(Θ)

δ

2|SX |

 · ln 1

β

Applying union bound over θ∗i ∈ Θ∗, since |Θ∗| = Cϵ(Θ), with probability at least 1− δ,

∀i ∈ [Cϵ(Θ)],
∣∣∣LPL(θ

∗
i ;SX ,SK)− L̃PL(θ

∗
i )
∣∣∣ <

√23N−1Cϵ(Θ)

|SK| · δ
+

√
ln 4Cϵ(Θ)

δ

2|SX |

 · ln 1

β

(A.17)

Finally, by Assumption 3, ∀θ ∈ Θ, there exists i ∈ [Cϵ(Θ)] such that θ ∈ Θi (i.e. θ falls into that
partition), and ∣∣∣L̃PL(θ)− L̃PL(θ

∗
i )
∣∣∣ ≤ ϵ

2

|LPL(θ;SX ,SK)− LPL(θ
∗
i ;SX ,SK)| ≤

ϵ

2
(A.18)
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Combining Equation (A.17) and Equation (A.18) gives∣∣∣LPL(θ;SX ,SK)− L̃PL(θ)
∣∣∣

≤ |LPL(θ;SX ,SK)− LPL(θ
∗
i ;SX ,SK)|+

∣∣∣LPL(θ
∗
i ;SX ,SK)− L̃PL(θ

∗
i )
∣∣∣

+
∣∣∣L̃PL(θ

∗
i )− L̃PL(θ)

∣∣∣ (by triangle inequality)

<
ϵ

2
+

√23N−1Cϵ(Θ)

|SK| · δ
+

√
ln 4Cϵ(Θ)

δ

2|SX |

 · ln 1

β
+

ϵ

2
(by Equation (A.17) and Equation (A.18))

=

√23N−1Cϵ(Θ)

|SK| · δ
+

√
ln 4Cϵ(Θ)

δ

2|SX |

 · ln 1

β
+ ϵ

Lemma 6 (Empirical PMF converges to population PMF). Let the population joint distribution p,
the finite set of training samples SX drawn IID from p, and the (noisy) empirical joint distribution p̃
on SX be defined as in Section 2. Then, ∀δ > 0, with probability at least 1− δ, we have

DTV (p̃, p) <

√
|Ω|3N

16δ |SX |

Proof. ∀X ∈ ΩN , the number of times that X appears in the training data SX follows the binomial
distribution

p̃ |SX | ∼ Binomial(|SX | , p(X))

with mean |SX | p(X) and variance |SX | p(X)(1−p(X)). Hence, by Chebyshev’s inequality, ∀ϵ > 0

P {|p̃(X)− p(X)| ≥ ϵ} = P {p̃(X) |SX | − p(X) |SX | ≥ ϵ |SX |}

≤ Var (p̃(X) |SX |)
ϵ2 |SX |2

(Chebyshev’s inequality)

=
|SX | p(X)(1− p(X))

ϵ2 |SX |2
(since p̃(X) |SX | ∼ Binomial(|SX | , p(X)))

=
p(X)(1− p(X))

ϵ2 |SX |

≤ 1

4ϵ2 |SK|

Applying union bound over X ∈ ΩN ,

P
{
|p̃(X)− p(X)| < ϵ, ∀X ∈ ΩN

}
≥ 1− |Ω|N

4ϵ2 |SX |
(A.19)

Hence, we get with probability at least 1− |Ω|N
4ϵ2|SX | ,

DTV (p̃, p) =
1

2

∑
X∈ΩN

|p̃(X)− p(X)| < 1

2

∑
X∈ΩN

ϵ =
1

2
|Ω|N ϵ (A.20)

Finally, aligning the probabilities: solving for

δ =
|Ω|N

4ϵ2 |SX |
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gives

ϵ =

√
|Ω|N

4δ |SX |
Therefore, by Equation (A.19), with probability at least 1− δ, we have

DTV (p̃, p) <
1

2
|Ω|N ϵ =

√
|Ω|3N

16δ |SX |
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A.7 PROOF OF PROPOSITION 8: MODES OF THE STRONGLY FERROMAGNETIC ISING MODEL

This section provides additional information for the discussion under Assumption 4 in Section 3.2.
Proposition 8 (Modes of the strongly ferromagnetic Ising model). On Ising model G in Equa-
tion (3) under Assumption 4, the high-probability regions R1 and R−1 defined in Equation (4) and
Equation (5) satisfy

1. ∀x ∈ R1, ∀y ∈ R−1, ∀z ∈ {−1, 1}N\R1\R−1, pG(x) > pG(y) > e2J0pG(z)

2. There exists a bijection f : R1 7→ R−1 such that ∀x ∈ R1, pG(x) = e2hGpG(f(x))

Proof. ∀x ∈ R1,∀y ∈ R−1,

pG(x)

pG(y)
=

exp
(∑

i∈[N ] hixi +
∑

i̸=j∈CG⊂[N ] Jxixj

)
exp

(∑
i∈[N ] hiyi +

∑
i̸=j∈CG⊂[N ] Jyiyj

)
=

exp
(∑

i∈[N ] hixi

)
exp

(∑
i∈[N ] hiyi

) (since xixj = yiyj = 1∀x ∈ R1,∀y ∈ R−1)

=
exp

(∑
i∈CG

hixi +
∑

i/∈CG
hixi

)
exp

(∑
i∈CG

hiyi +
∑

i/∈CG
hiyi

)
=

exp
(∑

i∈CG
hi +

∑
i/∈CG

hixi

)
exp

(
−
∑

i∈CG
hi +

∑
i/∈CG

hiyi

) (since x ∈ R1,y ∈ R−1)

≥
exp

(∑
i∈CG

hi −
∑

i/∈CG
|hi|
)

exp
(
−
∑

i∈CG
hi +

∑
i/∈CG

|hi|
) (since xi,yi ∈ ±1)

= exp

2
∑
i∈CG

hi − 2
∑
i/∈CG

|hi|


> exp (0) = 1 (by Assumption 4)

∀y ∈ R−1,∀z ∈ {−1, 1}N\R1\R−1,

pG(y)

pG(z)
=

exp
(∑

i∈[N ] hiyi +
∑

i̸=j∈CG⊂[N ] Jyiyj

)
exp

(∑
i∈[N ] hizi +

∑
i ̸=j∈CG⊂[N ] Jzizj

)
=

exp
(∑

i∈[N ] hiyi +
∑

i̸=j∈CG⊂[N ] J
)

exp
(∑

i∈[N ] hizi +
∑

i ̸=j∈CG⊂[N ] Jzizj

) (since yiyj = 1∀y ∈ R−1)

≥
exp

(∑
i∈[N ] hiyi +

∑
i ̸=j∈CG⊂[N ] J

)
exp

(∑
i∈[N ] hizi +

∑
i ̸=j∈CG⊂[N ] J − 2(|CG| − 1)J

)
(since z ∈ {−1, 1}N\R1\R−1 and consider min edge number in bipartite graph)

=
exp

(∑
i∈[N ] hiyi

)
exp

(∑
i∈[N ] hizi − 2(|CG| − 1)J

) ≥
exp

(∑
i∈[N ] hiyi

)
exp

(∑
i∈[N ] hizi − 2J

) ≥ exp (−∥h∥1)
exp (∥h∥1 − 2J)

= exp (2(J − ∥h∥1)) ≥ exp (2J0) (by Assumption 4)

For part 2, let f : R1 7→ R−1 be defined as

∀x ∈ R1, f(x)i =

{
−1, if i ∈ CG

xi, if i /∈ CG
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Let w := f(x). Then,

pG(x)

pG(w)
=

exp
(∑

i∈[N ] hixi +
∑

i̸=j∈CG⊂[N ] Jxixj

)
exp

(∑
i∈[N ] hiwi +

∑
i ̸=j∈CG⊂[N ] Jwiwj

)
=

exp
(∑

i∈[N ] hixi

)
exp

(∑
i∈[N ] hiwi

) (since xixj = wiwj = 1∀x ∈ R1,∀w ∈ R−1)

=
exp

(∑
i∈CG

hixi +
∑

i/∈CG
hixi

)
exp

(∑
i∈CG

hiwi +
∑

i/∈CG
hiwi

)
=

exp
(∑

i∈CG
hi +

∑
i/∈CG

hixi

)
exp

(
−
∑

i∈CG
hi +

∑
i/∈CG

hiwi

) (since x ∈ R1,w ∈ R−1)

=
exp

(∑
i∈CG

hi

)
exp

(
−
∑

i∈CG
hi

) (since wi = xi, ∀i /∈ CG)

= exp

(
2
∑
i∈CG

hi

)
= exp (2hG) (by Assumption 4)
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A.8 PROOF OF PROPOSITION 3: k-GIBBS SAMPLER CAN REACH THE MODE FAST

Proposition 3 (k-Gibbs sampler sampling can reach the mode fast). On Ising model G in Equation (3)
under Assumption 4, with any initial X(0), ∀δ ∈ (0, 1), with probability at least 1 − δ, after

T :=
⌈
logcR1

δ
⌉

steps of k-Gibbs sampler (Gibbs sampler 1) with k ≥ |CG|, we have {X(t)|t ∈

[T ]} ∩ R1 ̸= ∅ in which the constant cR1
∈ (0, 1), cR1

:= 1−
(N−|CG|
k−|CG|)
(Nk)

e2(J0+hG)

e2(J0+hG)+e2J0+2|CG|−2

Proof. At any step, let K (with |K| = k) denote the set of coordinates to re-sample. We first consider
the probability of CG ⊂ K, which allows the whole CG to be updated jointly:

P {CG ⊂ K} =

(
N−|CG|
k−|CG|

)(
N
k

) (A.21)

∀t ∈ N,∀X(t) ∈ {−1, 1}N , and K ∈ [N ] such that |K| = k and CG ⊂ K, consider X(t+1)
K ∼

pG(· | X(t)
−K). There are three cases (a partition of all possibilities):

1. X(t+1) ∈ R1

2. X(t+1) ∈ R−1

3. X(t+1) ∈ {−1, 1}N\R1\R−1

Then by Proposition 8 we show that Case 1 occurs with probability at least a (not arbitrarily small)
constant,

P
{
X(t+1) ∈ R1

}
= e2hGP

{
X(t+1) ∈ R−1

}
P
{
X(t+1) ∈ R−1

}
P
{
X(t+1) ∈ {−1, 1}N\R1\R−1

} ≥ e2J0
|R−1|

|{−1, 1}N\R1\R−1|
=

e2J0

2|CG| − 2

Since the probabilities of the three cases sum up to 1,

P
{
X(t+1) ∈ R1

}
≥ e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2

Therefore, ∀t ∈ N,∀X(t) ∈ {−1, 1}N , combined with Equation (A.21),

P
{
X(t+1) ∈ R1

}
≥ P

{
CG ⊂ K,X(t+1) ∈ R1

}
≥

(
N−|CG|
k−|CG|

)(
N
k

) e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2
:= 1−cR1

i.e. let constant cR1 denote the above upper bound of P
{
X(t+1) /∈ R1

}
. Then

P
{
{X(t)|t ∈ [T ]} ∩ R1 = ∅

}
≤ cTR1

Therefore, when T ≥ logcR1
δ,

P
{
{X(t)|t ∈ [T ]} ∩ R1 = ∅

}
≤ δ
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A.9 PROOF OF PROPOSITION 4 INDEPENDENT PARALLEL SAMPLING STUCK IN BAD SAMPLES

Proposition 4 (Independent parallel sampling stuck in bad samples). On Ising model G in Equa-
tion (3) under Assumption 4, if the initial X(0) is such that

∑
i∈CG

X
(0)
i ≤ −2, ∀δ ∈ (0, 1), with

probability at least 1−δ, after T :=
⌊

δ
2 exp (cstuck)

⌋
steps of independent parallel (Gibbs sampler 2),

we have ∀t ∈ [T ],
∑

i∈CG
X

(t)
i ≤ −2, in which cstuck :=

2

(
−1+

1−exp (−2J0)

exp (−2J0)+1

|CG|
2

)2

|CG|

Proof. Suppose at step t, X(t) is such that
∑

i∈CG
X

(t)
i ≤ −2 (satisfied at t = 0), then

∀j ∈ CG,
∑

i∈CG,i̸=j

X
(t)
i ≤ −1 (A.22)

Hence its next-step distribution X
(t+1)
j ∼ p(· | X(t)

−{j}) satisfies

P
{
X

(t+1)
j = 1

}
P
{
X

(t+1)
j = −1

} =
exp

(∑
i∈[N ] hixi +

∑
i ̸=j∈CG⊂[N ] Jxixj

)
|xj=1

exp
(∑

i∈[N ] hixi +
∑

i ̸=j∈CG⊂[N ] Jxixj

)
|xj=−1

(by definition in Equation (3))

=
exp

(
hj +

∑
i∈CG,i̸=j Jxi

)
exp

(
−hj −

∑
i∈CG,i̸=j Jxi

) (canceling the same terms)

= exp

2hj + 2J
∑

i∈CG,i̸=j

xi


≤ exp (2hj − 2J) (by Equation (A.22))
≤ exp (−2J0) (by Assumption 4)

Therefore

X
(t+1)
j =

{
1, with prob ≤ exp (−2J0)

exp (−2J0)+1

−1, with prob ≥ 1
exp (−2J0)+1

(A.23)

Denote

Yj :=
X

(t+1)
j + 1

2
(A.24)

Note that {Yj | j ∈ [N ]} are independent Bernoulli random variables.

By Lemma 4, ∀r > 0, with probability at least 1− 2e
− 2r2

|CG| ,

1

|CG|
∑
j∈CG

Yj < Ej∈CG
[Yj ] +

r

|CG|
(by Hoeffding’s inequality Lemma 4)

≤ exp (−2J0)

exp (−2J0) + 1
+

r

|CG|
(by Equation (A.23) and definition of Yj in Equation (A.24))

implying that with probability at least 1− 2e
− 2r2

|CG| ,

1

|CG|
∑
j∈CG

X
(t+1)
j = 2

1

|CG|
∑
j∈CG

Yj − 1 < 2

(
exp (−2J0)

exp (−2J0) + 1
+

r

|CG|

)
− 1

i.e. ∑
j∈CG

X
(t+1)
j <

exp (−2J0)− 1

exp (−2J0) + 1
|CG|+ 2r
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Setting RHS to -2 solves to

r = −1 +
1− exp (−2J0)

exp (−2J0) + 1

|CG|
2

Hence

with probability at least 1− 2e
−

2

(
−1+

1−exp (−2J0)
exp (−2J0)+1

|CG|
2

)2

|CG| ,
∑
j∈CG

X
(t+1)
j < −2 (A.25)

By union bound, ∀T ∈ N+,

with probability at least 1−2Te
−

2

(
−1+

1−exp (−2J0)
exp (−2J0)+1

|CG|
2

)2

|CG| , ∀t ∈ [T ],
∑
j∈CG

X
(t)
j < −2 (A.26)

Note that when
∑

j∈CG
X

(t)
j < −2, X(t) /∈ R1.

Finally, aligning the probabilities: setting

2Te
−

2

(
−1+

1−exp (−2J0)
exp (−2J0)+1

|CG|
2

)2

|CG| = δ

solves to

T =
δ

2
e

2

(
−1+

1−exp (−2J0)
exp (−2J0)+1

|CG|
2

)2

|CG|
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A.10 PROOF OF COROLLARY 3: SEPARATION BETWEEN N -GIBBS SAMPLER AND
INDEPENDENT PARALLEL SAMPLING

This section provides additional information for the discussion at the end of Section 3.2.

Assumption 5 (Strong interactions in Ising model). On Ising model G in Equation (3), for parameters
δ ∈ (0, 1) and M ∈ N+,

|CG| ≥ 8

(
1 + ln

4M

δ

)
hG ≥ 1

2
ln

2(2− δ)

δ

J0 ≥ 1

2
|CG| ln 2

Corollary 3 (Separation between N -Gibbs sampler and independent parallel sampling). On Ising
model G in Equation (3) under Assumption 4, ∀δ ∈ (0, 1), ∀M ∈ N+, If G additionally satisfies
Assumption 5 and the initial X(0) is such that

∑
i∈CG

X
(0)
i ≤ −2, then with probability at least

1− δ,

1. Running N -Gibbs sampler: X(1)
N.c.w. ∈ R1, and

2. Running independent parallel: {X(t)
indep|t ∈ [M ]} ∩ R1 = ∅

Proof. Under the given conditions, with N -Gibbs sampler, by Proposition 3,

with probability at least 1− δ

2
, {X(t)

N.c.w.|t ∈ [

⌈
logcR1

δ

2

⌉
]} ∩ R1 ̸= ∅ (A.27)

in which the constant

cR1
:= 1−

(
N−|CG|
N−|CG|

)(
N
N

) e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2
= 1− e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2
(A.28)

Applying Assumption 5 to bound parts of the RHS:

e2J0

e2(J0+hG)
= e−2hG ≤ e− ln

2(2−δ)
δ =

δ

2(2− δ)

2|CG| − 2

e2(J0+hG)
≤ 2|CG|

e2(J0+hG)
≤ 2|CG|

e|CG| ln 2+ln
2(2−δ)

δ

=
2|CG|

2|CG| 2(2−δ)
δ

=
1

2(2−δ)
δ

=
δ

2(2− δ)

Taking the sum:
e2J0 + 2|CG| − 2

e2(J0+hG)
≤ δ

2− δ

Adding 1 to both sides:
e2(J0+hG) + e2J0 + 2|CG| − 2

e2(J0+hG)
≤ 2

2− δ

Taking the inverse:
e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2
≥ 2− δ

2

Plugging to Equation (A.28):

cR1 ≤ 1− 2− δ

2
=

δ

2
Plugging into Equation (A.27):

with probability at least 1− δ

2
, {X(t)

N.c.w.|t ∈ [1]} ∩ R1 ̸= ∅ (A.29)
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On the other hand, with independent parallel, by Proposition 4,

with probability at least 1− δ

2
, {X(t)

indep|t ∈ [

⌊
δ

4
exp (cstuck)

⌋
]} ∩ R1 = ∅ (A.30)

in which the constant

cstuck :=
2
(
−1 + 1−exp (−2J0)

exp (−2J0)+1
|CG|
2

)2
|CG|

(A.31)

Applying Assumption 5 to bound parts of the RHS:

1− exp (−2J0)

exp (−2J0) + 1
≥ 1

2

Plugging into Equation (A.31):

cstuck ≥
2
(
−1 + 1

2
|CG|
2

)2
|CG|

=
2
(
1− |CG|

2 + |CG|2
4

)
|CG|

≥ −1 +
|CG|
8

≥ −1 +

(
1 + ln

4M

δ

)
(by Assumption 5)

= ln
4M

δ

Plugging into Equation (A.30):

with probability at least 1− δ

2
, {X(t)

indep|t ∈ [

⌊
δ

4
· 4M

δ

⌋
] = [M ]} ∩ R1 = ∅ (A.32)

By union bound, with probability at least 1− δ, both Equation (A.29) and Equation (A.32) hold.
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A.11 BACKGROUND AND PROOFS OF PROPOSITION 1 AND PROPOSITION 2: ON THE
EXPRESSIVE POWER OF TRANSFORMERS FOR IMPLEMENTING
SEQUENCE-TO-SEQUENCE MARKOV CHAINS IN PARALLEL

Background: Transformer network architecture. The transformer architecture (Vaswani et al.,
2017) is a critical building block of many leading approaches to language modeling (Devlin et al.,
2019; Brown et al., 2020). We refer the readers to these works for more details on the empirical
promise that Transformer-based models have demonstrated. For theoretical understanding of Trans-
formers, we refer the readers to prior works on their representational power (Yun et al., 2020; Yao
et al., 2021; Liu et al., 2023; Zhao et al., 2023), statistical sample complexity (Wei et al., 2021;
Edelman et al., 2022), optimization process (Lu et al., 2021; Jelassi et al., 2022; Li et al., 2023), and
interpretability (Wen et al., 2023), and references cited therein.

Mathematical setup. In the following we adapt and use the mathematical notations for the Trans-
former network architecture in Yun et al. (2020) and Li et al. (2023).

For each position of an input sequence (N tokens), use a d-dimensional positional embedding to
represent that position, and use a d-dimensional token embedding for the content at that position.
Hence, for the input sequence, both the token embeddings E and the positional embeddings P are
matrices in Rd×N . Following empirical convention, let the input to the Transformer be

X := E + P

A Transformer block th,m,r (with h heads, head size m, and feed-forward hidden layer size r) is
defined as

th,m,r(X) := Attn(X) +W2 · ReLU(W1 · Attn(X) + b11
T
n ) + b21

T
n (A.33)

where

Attn(X) := X +
∑h

i=1
W i

OW
i
V X · σ[(W i

KX)TW i
QX] (A.34)

where the weight parameters W i
O ∈ Rd×m, W i

V ,W
i
K ,W i

Q ∈ Rm×d, W2 ∈ Rd×r,W1 ∈
Rr×d, b2 ∈ Rd, b1 ∈ Rr, and

σ : RN1×N2 7→ (0, 1)N1×N2

is the column-wise softmax operation, such that

σ(A)ij =
exp (Aij)∑N
l=1 exp (Alj)

(A.35)

Finally, a Transformer is a composition of Transformer blocks:

T := {g : Rd×N → Rd×N | g is a composition of Transformer blocks th,m,r’s}. (A.36)

and its output T (X) ∈ Rd×N goes through a final affine transform and softmax (Equation (A.35)) to
predict a distribution over tokens, for all positions

Tpred(X) := σ
(
W predT (X) + bpred) ∈ (0, 1)|Ω|×N (A.37)

where W pred ∈ R|Ω|×d and bpred ∈ R|Ω| are the prediction head weights and biases. Ω is the
vocabulary of tokens.

For each position j, the predicted token τj is sampled from the predicted distribution Tpred(X):,j
independently with other positions

τj ∼ sample(Tpred(X):,j) j ∈ [N ] (A.38)

where sample can be the standard sampling algorithm for multinomial distributions, or truncating
the low-probability tail (Holtzman et al., 2020), or more conservatively, argmax sampling.

Yun et al. (2020) proved the following result on the expressivity of the Transformer network architec-
ture:
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Lemma 7 (Universal approximation by Transformers, informal (Yun et al., 2020)). Let 1 ≤ p < ∞
and ϵ > 0, then for any compact set D ⊂ Rd×n, for any given function f : D 7→ Rd×n, there exists
a Transformer network g ∈ T 2,1,4 of O(N

(
1
δ

)dN
) layers such that(∫

∥f(X)− g(X)∥pp dX
)1/p

≤ ϵ

in which δ is the smallest real number such that ∀X,Y ∈ Rd×n, if ∥X − Y ∥∞ < δ, then
∥f(X)− f(Y )∥p < ϵ. Moreover, the bound on the size of the constructed Transformer is asymptoti-
cally tight.
Lemma 8 (Transformers can simulate parallel solution to automata, informal (Liu et al., 2023)).
Transformers can simulate the length-T output of all semiautomata with states Q, input alphabet Σ,
and transition function δ : Q× Σ 7→ Q. Moreover, the size of the simulating Transformer has depth
O(log T ), embedding dimension O(|Q|), attention width O(|Q|), and MLP width O(|Q|2).
Remark 5. Lemma 8 gives a more compact construction than a direct implication of more general
universal approximation results Lemma 7 for Transformers.

A direct corollary is Proposition 1:
Proposition 1 (informal). Transformers (with sufficient depth and width) can implement any number
of transitions of any deterministic Markov Chain over sequences in ΩN .

Informal proof sketch. When each transition of a Markov chain is deterministic, i.e. if the next state
distribution from any state is always a delta function, then the Markov chain reduces to a deterministic
finite state automata, with states ΩN , length N .

Applying Lemma 8, we get Transformers can simulate length-T output of this automata with depth
O(log T ), embedding dimension O(|Ω|N ), attention width O(|Ω|N ), and MLP width O(|Ω|2N ).

Proposition 2 (informal). The class of Markov chains over sequences in ΩN implementable by
(sufficiently wide and deep) Transformers is those whose next-state transition probability distributions
are product distributions over the positions, conditioned on the current state.

Informal proof sketch. The statement involves both a positive result and a negative result.

Positive: if the transition probability distribution is a product distribution conditioned on the current
state, then the task of representing a Markov chain can be reduced to universally approximating a
continuous function which maps all sequences to the correct logits W predT (X) + bpred in Equa-
tion (A.37), such that after softmax (Equation (A.35)) these logits produce the correct marginal
distribution at each position. This is achievable by the construction in Lemma 7.

Negative: if the transition probability distribution is not a product distribution conditioned on the
current state, then note that the sampling operations (Equation (A.38)) at positions j1 and j2 are
independent, so Transformers cannot implement such Markov chains.

Remark 6. As stated in Section 3, the sampling process in Savinov et al. (2022) and our experiments
are different from N -Gibbs sampler. Moreover, despite Proposition 2, the sampling process is more
different from independent parallel (Gibbs sampler 2): note that independent parallel strictly freezes
all X(t)

−{i} when sampling

X
(t+1)
i ∼ p(· | X(t)

−{i})

whereas in Savinov et al. (2022) and our experiments, the model is trained to update all positions
in parallel, which implies a different groundtruth next-iteration token distribution compared with
p(· | X(t)

−{i}).

Mechanistically, Savinov et al. (2022) and our models in principle can take certain inter-position
dependency into consideration (which independent parallel cannot): for example, in layer L, position
i can attend to 19 other positions e.g. j in the layer-(L− 1) representations. This enables the layer-L
computation at position i to be conditioned upon the intermediate representations at position j, which
are not independent from the final prediction at position j.

19via Transformer attention Equation (A.34)
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B ADDITIONAL EXPERIMENTAL DETAILS

B.1 INFERENCE AND TRAINING SETTING

B.1.1 INFERENCE

An input sequence Xsource first goes through the encoder f enc
θe

(parameterized by θe) to produce the
hidden representation h:

h = f enc
θe (Xsource)

A length predictor f len
θl

(parameterized by θl) takes h and predicts Bl most likely target lengths, where
Bl ∈ N+ (beam size for length prediction) is an inference-time hyperparameter.

For each predicted length N , an initial hypothesis target sequence X(0) = X
(0)
1 · · ·X(0)

N in which
each X

(0)
i can be a [MASK] token, or chosen uniformly randomly from the vocabulary of tokens.

For each decoder step t ∈ 1 · · ·T , the decoder f dec
θd

(parameterized by θd) takes two inputs: h and

X
(t)
1···N , and refines the hypothesis target sequence to X

(t+1)
1···N , using one forward pass:

X
(t+1)
1···N = f dec

θd
(X

(t)
1···N , h) (B.39)

where T ∈ N+ (number of refinement steps) is an inference-time hyperparameter, and we can stop
early if X(t+1) = X(t).
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B.2 DISCUSSION ON MODELING AND METRICS

Remark 7. In principle, following a similar paradigm, a non-autoregressive decoder-only archi-
tecture is also possible. In this work we use encoder-decoder for two reasons: (1) Efficiency: in the
iterative refinement process of the hypothesis target sequence, each forward pass only involves the
decoder, but not the encoder. (2) Benchmarking: the encoder-decoder design is closer to a series of
prior works, allowing for more informative comparison on benchmarks.

We measure BLEU (Papineni et al., 2002) using the SacreBLEU implementation (Post, 2018) with
language appropriate tokenizers 20. For the same model, SacreBLEU on average reports a lower
score than BLEU (e.g. see Savinov et al. (2022)). Unfortunately, this does not allow a direct
comparison with most of the existing literature. This is a deliberate choice since it has been shown
that subtle differences in preprocessing can significantly impact metrics (Schmidt et al., 2022), making
comparisons error prone, and SacreBLEU is the recommended metric in Post (2018). Furthermore,
common preprocessing steps (lowercasing, separating punctuation, stripping diacritics, etc.) may
artificially inflate scores while not being fully reversible, as such preventing real-world uses for such
models.

While bridging the gap between autoregressive and non-autoregressive model has so far focused
on achieving parity in terms of BLEU scores, we believe this is insufficient. Since BLEU relies on
n-gram overlaps between groundtruths and model predictions, it does not capture readability very
well. Yet readability is paramount for most practical applications, and it is indisputably something that
current autoregressive LMs excel at. To provide additional perspectives, we introduce a word-level
stutter metric, computing how often consecutive words are repeated in the model output but not in
the reference. For all datasets, we found that word-level stutter is 2 or more times more frequent for
non-autoregressive models. Additionally, we also report benchmarking results measured by BLEURT
scores (Sellam et al., 2020; Pu et al., 2021) in Table 3, in Appendix B) but found they also do not
discriminate much between AR and NAR models.

For our experiments in Section 4.3, there are other error modes connected to the challenge of modeling
target-side dependency, but they are more ambiguous for measuring and exactly locating. We do not
aim to develop decoding algorithms tailored to just reducing stuttering rate. (After all, stuttering can
be easily removed by rule-based postprocessing.) Instead, the above are general-purpose hypotheses
which are potentially also predictive of other (more complex) failure modes related to target-side
dependency.

20For public reproducibility: SacreBLEU signatures: BLEU+c.mixed+#.1+s.exp+tok.zh+v.1.3.0 for Chinese and
BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.3.0 for other languages.
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B.3 QUANTITATIVE EXPERIMENTAL RESULTS

Table 1: Test SacreBLEU scores on three WMT datasets. We report scores without any preprocessing.
Our AR baselines are trained on the distilled dataset for a fair comparison. The ‘Steps’ column
indicates the number of decoding iterations. The ‘# Hyp.’ column denotes the number of hypotheses
decoded in parallel (beam size for AR models and top_k predicted lengths for NAR models).

WMT14 WMT16 WMT17
Model # Hyp. Steps DE→EN EN→DE RO→EN EN→RO ZH→EN EN→ZH
AR Baselines 5 N 33.50 29.54 34.89 29.75 - -

PaDIR 5 4 33.49 28.61 33.98 28.98 26.47 32.59
5 10 33.63 28.58 33.99 28.97 26.54 32.68

Table 2: Test BLEU scores on three WMT datasets for popular baselines. Note that these rely on a
different BLEU implementation and sometimes additional preprocessing than the results reported in
the body of our paper.

WMT14 WMT16 WMT17
Model # Hyp. Steps DE→EN EN→DE RO→EN EN→RO ZH→EN EN→ZH
DisCo AR Baselines 5 N 31.71 28.60 34.46 34.16 24.65 35.01

CMLM 5 4 30.75 26.73 33.02 33.67 22.57 33.58
5 10 31.24 27.39 33.67 33.33 23.76 34.24

DisCo Easy-First 5 3-6 31.31 27.34 33.25 33.22 23.83 34.63

SUNDAE Stochastic 16 4 32.10 27.94 - - - -
16 10 32.29 28.33 - - - -

Table 3: Test BLEURT scores on three WMT datasets for our models.

WMT14 WMT16 WMT17
Model # Hyp. Steps DE→EN EN→DE RO→EN EN→RO ZH→EN EN→ZH
AR Baselines 5 N 73.55 74.97 67.23 71.76 - -

PaDIR 5 4 71.26 72.08 65.90 70.23 65.16 63.95
5 10 71.82 73.28 66.09 70.49 66.19 64.30
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Table 4: Stuttering positions have similar average last-layer self-attentions compared with non-
stuttering adjacent positions. For each pair of adjacent positions in the generated sequence: (1) the
‘self-attention scores’ include both directions ; (2) The column ‘min’ denotes only including the
minimum among such score over all attention heads, and likewise for ‘avg’ and ‘max’; (3) the entries
are mean ± standard deviation; (4) P {top-k overlap} denotes the chances that the self-attention
distribution at one position includes the other position among its top-k “most attended to" positions.

self-attention scores P {top-k overlap}
stutter min avg max k = 1 k = 2
yes 0.0004 ± 0.0007 0.032 ± 0.023 0.16 ± 0.11 0.20 0.39
no 0.0005 ± 0.0007 0.033 ± 0.025 0.17 ± 0.12 0.17 0.37

Table 5: Stuttering positions on average have more similar last-layer cross-attentions than non-
stuttering adjacent positions. For each pair of adjacent positions in the generated sequence: (1) the
‘total variation distance’ and ‘cosine distance’ (both have range [0, 1]) are taken for the two corre-
sponding cross-attention distributions; (2) The column ‘min’ denotes only including the minimum
among such distance over all attention heads, and likewise for ‘avg’ and ‘max’; (3) the entries are
mean ± standard deviation; (4) P {top-k overlap} denotes the chances that the two cross-attention
distributions overlap in terms of their top-k “most attended to" source positions.

total variation distance cosine distance P {top-k overlap}
stutter min avg max min avg max k = 1 k = 2
yes 0.06 ± 0.05 0.13 ± 0.09 0.23 ± 0.15 0.01 ± 0.01 0.10 ± 0.06 0.25 ± 0.11 0.57 0.89
no 0.11 ± 0.10 0.23 ± 0.14 0.35 ± 0.18 0.04 ± 0.08 0.20 ± 0.11 0.38 ± 0.12 0.40 0.81
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C ADDITIONAL RELATED WORKS

Our theory and experiments draw inspirations from a wide variety of domains in natural language
processing, generative models, and sampling. While a comprehensive list of all works in these
domains is intractable, the following works significantly influenced our thinking:

Our theory is inspired by recent progress in sampling: the connections between pseudolikelihood and
approximate tensorization of entropy are discussed in Marton (2013; 2015); Caputo et al. (2015);
Caputo & Parisi (2021); Koehler et al. (2023). Benefits of k-Gibbs sampler are discussed in Lee
(2023). Our experiments follow the framework that trains generative masked language models and
generates samples using parallel decoding by iterative refinement: (Lee et al., 2018; Ghazvininejad
et al., 2019; 2020; Kasai et al., 2020; Savinov et al., 2022), which tend to be at least twice faster
than autoregressive approaches with a small drop in quality for tasks like machine translation. The
inference process, which converts complete noise to full samples, might resemble diffusion models
(Hoogeboom et al., 2021; Austin et al., 2021; Li et al., 2022; Gong et al., 2023; Zheng et al., 2023;
Lou et al., 2023), but a key conceptual difference is that diffusion models are trained to revert a small
amount of noise at each step, whereas the family of models that we study in this work are more
similar to masked autoencoders: the training objective encourages reconstructing the whole target
sequence in each step of decoding.

Non-autoregressive text generation Previous works applied various generative models to text,
such as VAEs (Bowman et al., 2016; Bosc & Vincent, 2020), GANs (Che et al., 2017; Yu et al.,
2017; Lin et al., 2017; Guo et al., 2018), and normalizing flows (Ziegler & Rush, 2019; Ma et al.,
2019; Hoogeboom et al., 2021), but without a strong autoregressive component, the quality of
generated text is often suboptimal. Later works achieve high-quality text generation through diffusion
models (Hoogeboom et al., 2021; Austin et al., 2021; Li et al., 2022; Gong et al., 2023; Zheng
et al., 2023) and energy-based models (Deng et al., 2020; Goyal et al., 2022; Qin et al., 2022), but
their generation speeds tend to be much slower than autoregressive language models. Inference
latency can be mitigated by approaches like Lee et al. (2020). Unlike the above paradigms that
adapt continuous-domain generative models to text, our approach is closer to the following line of
works that iteratively refine the generation process through parallel updates in the space of discrete
token sequences, which tend to be at least twice faster than autoregressive approaches with a small
drop in quality (Lee et al., 2018; Ghazvininejad et al., 2019; Stern et al., 2019; Ghazvininejad et al.,
2020; Kasai et al., 2020; Savinov et al., 2022). The generation quality of non-autoregressive models
can be further improved by incorporating some autoregressive components (Kong et al., 2020; Reid
et al., 2022) or input-output alignment (Chan et al., 2020; Saharia et al., 2020). Insights such as
the multimodality problem and components such as sequence-level knowledge distillation and input
token fertility prediction were also proposed in (Gu et al., 2018). The benefit of distillation was
verified in Kim & Rush (2016); Gu et al. (2018); Zhou et al. (2020); Gu & Kong (2021). Positional
attention was tested in Gu et al. (2018); Kreutzer et al. (2020). Related to generation from MLMs,
Wang & Cho (2019) use the learned conditionals inside a Gibbs sampler, but when the conditionals
are not consistent, i.e. there is not a joint distribution that satisfies these conditionals, Gibbs sampler
may amplify errors. In general, mathematical understanding about sampling from masked language
models is still lagging substantially behind. Additionally, related to MLMs, Meng et al. (2023)
analyzes some representational limitations, and Liu et al. (2022) analyzes subtleties from a parameter
identifiability view. Related to parallel decoding, recent work (Cai et al., 2024) parallelizes the
inference with multiple heads by finetuning autoregressive LLM backbones.

Theory about parallel sampling Koehler et al. (2023) proved a generalization bound for pseu-
dolikelihood estimator via the classic (k = 1) approximate tensorization of entropy, in the “proper
learning" setting. Our generalization bound (Theorem 3) uses the generalized notion of the approxi-
mate tensorization of entropy (Definition 8), also apply to “improper learning" settings, and the proof
involves quite different techniques. The classic approximate tensorization of entropy are discussed in
Marton (2013; 2015); Caputo et al. (2015), which was more recently generalized to the “α-weighted
block" version (Definition 8) in Caputo & Parisi (2021). Lee (2023) proves that k-Gibbs sampler
mixes at least k times faster than 1-Gibbs sampler. For future works, recent algorithmic advances
in parallel sampling could potentially be incorporated into our framework to achieve finer-grained
theoretical analysis or better empirical quality-efficiency trade-off (Anari et al., 2023).

45


	Introduction
	Theoretical framework
	Asymptotic sample efficiency via functional inequalities
	Sample complexity via mixing time bounds
	Masking more is (statistically) better
	Statistical efficiency bounds via mixing time bounds

	Finite sample bounds and distributional distance

	Sampling efficiency via Gibbs-like algorithms
	Can Transformers implement Markov chains via parallel decoding?
	Accurately approximating conditionals can be (much) better

	Experiments
	Parallel Decoding by Iterative Refinement (PaDIR)
	Training recipe and evaluation
	Connecting to theory: quantifying dependency via attention scores

	Proofs and theoretical backgrounds
	Optimization landscape for fitting the conditional distributions
	Proof of l:informationmx: Generalized information matrix equality
	lem:asymptotics: Regularity conditions for asymptotic behavior of parameter estimation
	Proof of thm:kmonotone: Masking more is (statistically) better
	Proof of thm:asymptoticvariance: Asymptotic variance under a Poincaré Inequality
	Proof of Theorem 3: Generalization bound for learning the joint distribution
	Proof of prop:stronglyferromagneticmode: Modes of the strongly ferromagnetic Ising model
	Proof of prop:modefast: k-Gibbs sampler can reach the mode fast
	Proof of prop:modeslow independent parallel sampling stuck in bad samples
	Proof of prop:modeseparation: Separation between N-Gibbs sampler and independent parallel sampling
	Background and proofs of prop:transformerdeterministicmc and prop:transformergeneralmc: on the expressive power of Transformers for implementing sequence-to-sequence Markov chains in parallel

	Additional experimental details
	Inference and training setting
	Inference

	Discussion on modeling and metrics
	Quantitative experimental results

	Additional related works

