
Under review as a conference paper at ICLR 2021

ATTENTION-DRIVEN ROBOTIC MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the success of reinforcement learning methods, they have yet to have
their breakthrough moment when applied to a broad range of robotic manipu-
lation tasks. This is partly due to the fact that reinforcement learning algorithms
are notoriously difficult and time consuming to train, which is exacerbated when
training from images rather than full-state inputs. As humans perform manip-
ulation tasks, our eyes closely monitor every step of the process with our gaze
focusing sequentially on the objects being manipulated. With this in mind, we
present our Attention-driven Robotic Manipulation (ARM) algorithm, which is a
general manipulation algorithm that can be applied to a range of real-world sparse-
rewarded tasks without any prior task knowledge. ARM splits the complex task
of manipulation into a 3 stage pipeline: (1) a Q-attention agent extracts interest-
ing pixel locations from RGB and point cloud inputs, (2) a next-best pose agent
that accepts crops from the Q-attention agent and outputs poses, and (3) a control
agent that takes the goal pose and outputs joint actions. We show that current
state-of-the-art reinforcement learning algorithms catastrophically fail on a range
of RLBench tasks, whilst ARM is successful within a few hours.

1 INTRODUCTION

Despite their potential, continuous-control reinforcement learning (RL) algorithms have many flaws:
they are notoriously data hungry, often fail with sparse rewards, and struggle with long-horizon tasks.
The algorithms for both discrete and continuous RL are almost always evaluated on benchmarks that
give shaped rewards (Brockman et al., 2016; Tassa et al., 2018), a privilege that is not feasible for
training real-world robotic application across a broad range of tasks. Motivated by the observation
that humans focus their gaze close to objects being manipulated (Land et al., 1999), we propose
an Attention-driven Robotic Manipulation (ARM) algorithm that consists of a series of algorithm-
agnostic components, that when combined, results in a method that is able to perform a range of
challenging, sparsely-rewarded manipulation tasks.

Our algorithm operates through a pipeline of modules: our novel Q-attention module first extracts
interesting pixel locations from RGB and point cloud inputs by treating images as an environment,
and pixel locations as actions. Using the pixel locations we crop the RGB and point cloud inputs,
significantly reducing input size, and feed this to a next-best-pose continuous-control agent that
outputs 6D poses, which is trained with our novel confidence-aware critic. These goal poses are
then used by a control algorithm that continuously outputs motor velocities.

As is common with sparsely-rewarded tasks, we improve initial exploration through the use of
demonstrations. However, rather than simply inserting these directly into the replay buffer, we use
a keyframe discovery strategy that chooses interesting keyframes along demonstration trajectories
that is fundamental to training our Q-attention module. Rather than storing the transition from an
initial state to a keyframe state, we use our demo augmentation method which also stores the tran-
sition from intermediate points along a trajectories to the keyframe states; thus greatly increasing
the proportion of initial demo transitions in the replay buffer.

All of these improvements result in an algorithm that starkly outperforms other state-of-the-art meth-
ods when evaluated on 10 RLBench (James et al., 2020) tasks (Figure 1) that range in difficulty. To
summarise, we propose the following contributions: (1) An off-policy hard attention mechanism
that is learned via Q-Learning, rather than the on-policy hard attention and soft attention that is
commonly seen in the NLP and vision community; (2) A confidence-aware Q function that predicts

1



Under review as a conference paper at ICLR 2021

Figure 1: The 10 RLBench tasks used for evaluation. Current state-of-the-art reinforcement learning
algorithms catastrophically fail on all tasks, whilst our method succeeds within a modest number of
steps. Note that the positions of objects are placed randomly at the beginning of each episode.

pixel-wise Q values and confidence values, resulting in improved convergence times; (3) A keyframe
discovery strategy and demo augmentation method that go hand-in-hand to improve the utilisation
of demonstrations in RL.

2 RELATED WORK

The use of reinforcement learning (RL) is prevalent in many areas of robotics, including legged
robots (Kohl & Stone, 2004; Hwangbo et al., 2019), aerial vehicles (Sadeghi & Levine, 2017),
and manipulation tasks, such as pushing (Finn & Levine, 2017), peg insertion (Levine et al., 2016;
Zeng et al., 2018; Lee et al., 2019), throwing (Ghadirzadeh et al., 2017; Zeng et al., 2020), ball-
in-cup (Kober & Peters, 2009), cloth manipulation (Matas et al., 2018), and grasping (Kalashnikov
et al., 2018; James et al., 2019b). Despite the abundance of work in this area, there has yet to
be a general manipulation method that can tackle a range of challenging, sparsely-rewarded tasks
without needing access to privileged simulation-only abilities (e.g. reset to demonstrations (Nair
et al., 2018), asymmetric actor-critic (Pinto et al., 2018), reward shaping (Rajeswaran et al., 2018),
and auxiliary tasks (James et al., 2017)).

Crucial to our method is the proposed Q-attention. Soft and hard attention are prominent methods in
both natural language processing (NLP) (Bahdanau et al., 2015; Vaswani et al., 2017; Devlin et al.,
2018) and computer vision (Xu et al., 2015; Zhang et al., 2019). Soft attention deterministically
multiplies an attention map over the image feature map, whilst hard attention uses the attention map
stochastically to sample one or a few features on the feature map (which is optimised by maximis-
ing an approximate variational lower bound or equivalently via (on-policy) REINFORCE (Williams,
1992)). Given that we perform non-differentiable cropping, our Q-attention is closest to hard atten-
tion, but with the distinction that we learn this in an off-policy way. This is key, as ‘traditional’ hard
attention is unable to be used in an off-policy setting. We therefore see Q-attention as an off-policy
hard attention. We elaborate further on these differences in Section 4.1.

Our proposed confidence-aware critic (used to train the next-best pose agent) takes its inspiration
from the pose estimation community (Wang et al., 2019; Wada et al., 2020). There exists a small
amount of work in estimating uncertainty with Q-learning in discrete domains (Clements et al.,
2019; Hoel et al., 2020); our work uses a continuous Q-function to predict both Q and confidence
values for each pixel, which lead to improved stability when training, and is not used during action
selection.

Our approach makes use of demonstrations, which has been applied in a number of works (Vecerik
et al., 2017; Matas et al., 2018; Kalashnikov et al., 2018; Nair et al., 2018), but while successful,
they make limited use of the demonstrations and still can take many samples to converge. Rather
than simply inserting these directly into the replay buffer, we instead make sure of our keyframe
discovery and demo augmentation to maximise demonstration utility.
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Figure 2: Summary and architecture of our method. RGB and organised point cloud crops are made
by extracting pixel locations from our Q-attention module. These crops are then fed to a continuous
control RL algorithm that suggests next-best poses that is trained with a confidence-aware critic.
The next best pose is given to a goal-condition control agent that outputs joint velocities. Conv
block represented as Conv(#channels, filter size, strides).

3 BACKGROUND

The reinforcement learning paradigm assumes an agent interacting with an environment consisting
of states s ∈ S , actions a ∈ A, and a reward function R(st,at), where st and at are the state
and action at time step t respectively. The goal of the agent is then to discover a policy π that
results in maximising the expectation of the sum of discounted rewards: Eπ[

∑
t γ

tR(st,at)], where
future rewards are weighted with respect to the discount factor γ ∈ [0, 1). Each policy π has
a corresponding value function Q(s, a), which represents the expected return when following the
policy after taking action a in state s.

Our Q-attention module builds from Deep Q-learning (Mnih et al., 2015), a method that approx-
imated the value function Qθ, with a deep convolutional network, whose parameters θ are op-
timised by sampling mini-batches from a replay buffer D and using stochastic gradient descent
to minimise the loss: E(st,at,st+1)∼D[(r + γmaxa′Qθ′(st+1,a

′) − Qθ(st,at))
2], where Qθ′ is a

target network; a periodic copy of the online network Qθ which is not directly optimised. Our
next-best pose agent builds upon SAC (Haarnoja et al., 2018), however, the agent is compati-
ble with any off-policy, continuous-control RL algorithm. SAC is a maximum entropy RL algo-
rithm that, in addition to maximising the sum of rewards, also maximises the entropy of a policy:
Eπ[
∑
t γ

t[R(st,at)+αH(π(·|st))]], where α is a temperature parameter that determines the relative
importance between the entropy and reward. The goal then becomes to maximise a soft Q-function
by minimising the following Bellman residual:

JQ(θ) = E
(st,at,st+1)∼D

[((r+ γQθ′(st+1, πφ(st+1))− α log πφ(at|st))−Qθ(st,at))2]. (1)

The policy is updated towards the Boltzmann policy with temperature α, with the Q-function taking
the role of (negative) energy. Specifically, the goal is to minimise the Kullback-Leibler divergence
between the policy and the Boltzman policy:

πnew = arg min
π′∈Π

DKL

(
π′ (·|st) ‖

1
α exp (Qπold (st, ·))

Zπold (st)

)
. (2)

Minimising the expected KL-divergence to learn the policy parameters was shown to be equivalent
to maximising the expected value of the soft Qfunction:

Jπ(φ) = E
st∼D

[ E
a∼πφ

[α log(πφ(at|st))−Qπρ (st,at)]]. (3)

4 METHOD

Our method can be split into a 3-phase pipeline. Phase 1 (Section 4.1) consists of a high-level pixel
agent that selects areas of interest using our novel Q-attention module. Phase 2 (Section 4.2) consists
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Figure 3: Visualising the Q values across 4 different points in time on 6 tasks. At each step, RGB
and organised point cloud crops are made by extracting pixel locations that have the highest Q-value.
We can see that as time progresses, the attention strength shifts depending on progress in the task;
e.g. ‘stack wine’ starts with high attention on the bottle, but after grasping, attention shifts to the
wine rack.

of a next-best pose prediction phase where the pixel location from the previous phase is used to crop
the incoming observations and then predict a 6D pose. Finally, phase 3 (Section 4.3) is a low-level
control agent that accepts the predicted next-best pose and executes a series of actions to reach
the given goal. Before training, we fill the replay buffer with demonstrations using our keyframe
discovery and demo augmentation strategy (Section 4.4) that significantly improves training speed.
The full pipeline is summarised in Figure 2 and Algorithm 1.

All experiments are run in RLBench (James et al., 2020), a large-scale benchmark and learning envi-
ronment for vision-guided manipulation built around CoppeliaSim (Rohmer et al., 2013) and PyRep
(James et al., 2019a). At each time step, we extract an observation from the front-facing camera that
consists of an RGB image b and a depth image d, along with proprioceptive information z from
the arm (consisting of end-effector pose and gripper open/close state). Using known camera intrin-
sics and extrinsics, we process each depth image to produce a point cloud p (in world coordinates)
projected from the view of the front-facing camera, producing a (H ×W × 3) ‘image’.

4.1 Q-ATTENTION

Motivated by the role of vision and eye movement in the control of human activities (Land et al.,
1999), we propose a Q-attention module that, given RGB and organised point cloud inputs, outputs
2D pixel locations of the next area of interest. With these pixel locations, we crop the RGB and or-
ganised point cloud inputs and thus drastically reduce the input size to the next stage of the pipeline.
Our Q-attention is explicitly learned via Q-learning, where images are treated as the ‘environment’,
and pixel locations are treated as the ‘actions’.

Given our Q-attention function QAθ, we extract the coordinates of pixels with the highest value:

(xt,yt) = argmax2D
a′

QAθ(st,a
′). (4)

The parameters of the Q-attention are optimised by using stochastic gradient descent to minimise
the loss:

JQA(θ) = E
(st,at,st+1)∼D

[(r+ γmax2D
a′

QAθ′(st+1,a
′)−QAθ(st,at))2 + ‖QA‖], (5)

where s = (b,p), QAθ′ is the target Q-function, and ‖QA‖ is an L2 loss on the per-pixel output of
the Q function (which we call Q regularisation); in practice, we found that this leads to increased
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robustness against the common problem of overestimation of Q values. The Q-attention network
follows a light-weight U-Net style architecture (Ronneberger et al., 2015), which is summarised in
Figure 2. Example per-pixel outputs of the Q-attention are shown in Figure 3. With the suggested
coordinates from Q-attention, we perform a (16 × 16) crop on both the (128 × 128) RGB and
organised point cloud data: b′,p′ = crop(b,p, (x,y)).

Notably, there is no explicit reward for choosing a pixel, but instead an implicit reward that comes
from the output of the method pipeline as a whole (i.e. the same reward signal is used to train both
the Q-attention and the next-best pose agent). This leads to a cyclic dependency between the two
agents: the lower-level next-best pose agent relies on receiving good crops from the Q-attention
agent, whilst the Q-attention agent needs the next-best pose agent to perform well in order to get
its implicit reward. This is where delicate handling of demonstrations is key, which we discuss in
Section 4.4.

The module shares similar human-inspired motivation to the attention seen in NLP (Bahdanau et al.,
2015; Vaswani et al., 2017; Devlin et al., 2018) and computer vision (Xu et al., 2015; Zhang et al.,
2019), but differs in its formulation. Soft attention multiplies an attention map over the image feature
map, whilst hard attention uses the attention map to sample one or a few features on the feature
maps or inputs. Given that we perform non-differentiable cropping, we categorise our Q-attention
as hard attention, but with 2 core differences: (1) most importantly, ‘traditional’ hard attention
is optimised (on-policy) by maximising an approximate variational lower bound or equivalently via
REINFORCE (Williams, 1992), whereas our Q-attention is trained off-policy; this is crucial because
our demonstration data, by definition, is off-policy, and therefore renders existing hard attention
approaches unusable for demonstration-driven RL. (2) The output of ‘traditional’ hard attention
carry different semantics: a score function in the case of REINFORCE hard attention, and Q-value
(expected cumulative reward of choosing that crop) in the case of Q-attention.

4.2 NEXT-BEST POSE AGENT

Our next-best pose agent accepts cropped RGB b′ and organised point cloud p′ inputs, and outputs a
6D pose. This next-best pose agent is run every time the robot reaches the previously selected pose.
We represent the 6D pose via a translation e ∈ R3 and a unit quaternion q ∈ R4, and restrict the w
output of q to a positive number, therefore restricting the network to output unique unit quaternions.
The gripper action h ∈ R1 lies between 0 and 1, which is then discretised to a binary open/close
value. The combined action therefore is a = {e,q,h}.
To train this next-best pose agent, we use a modified version of SAC (Haarnoja et al., 2018) where
we modify the soft Q-function (Equation 1) to be a confidence-aware soft Q-function. Recent work
in 6D pose estimation (Wang et al., 2019; Wada et al., 2020) has seen the inclusion of a confidence
score c with the pose prediction output for each dense-pixel. Inspired by this, we augment our
Q function with a per-pixel confidence cij , where we output a confidence score for each Q-value
prediction (resulting in a (16 × 16 × 2) output). To achieve this, we weight the per-pixel Bellman
loss with the per-pixel confidence, and add a confidence regularisation term:

JQπ (ρ) = E
(st,at,st+1)∼D

[((r+γQπρ′(st+1, πφ(st+1))−α log π(at|st))−Qπρ (st,at))2c−w log(c)],

(6)

where s = (b′,p′, z). With this, low confidence will result in a low Bellman error but would
incur a high penalty from the second term, and vice versa. We use the Q value that has the highest
confidence when training the actor. As an aside, we also tried applying this confidence-aware method
to the policy, though empirically we found no improvement. In practice we make use of the clipped
double-Q trick (Fujimoto et al., 2018), which takes the minimum Q-value between two Q networks,
but have omitted in the equations for brevity. Finally, the actor’s policy parameters can be optimised
by minimising the loss as defined in Equation 3.

4.3 CONTROL AGENT

Given the next-best pose suggestion from the previous stage, we give this to a goal-conditioned
control function f(st,gt), which given state st and goal gt, outputs motor velocities that drives the
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Algorithm 1 ARM

Initialise Q-attention networksQAθ1 ,QAθ2 , critic networksQπρ1 ,Qπρ2 , and actor network πφ with
random parameters θ1, θ2, ρ1, ρ2, φ
Initialise target networks θ′1 ← θ1, θ′2 ← θ2, ρ′1 ← ρ1, ρ′2 ← ρ2

Initialise replay buffer D with demos and apply keyframe selection and demo augmentation
for each iteration do

for each environment step do
(bt,pt, zt)← st
(xt, yt)← argmax2Da′ QAθ((bt,pt),a

′) . Use Q-attention to get pixel coords
b′t,p

′
t ← crop(bt,pt, (xt, yt))

at ∼ πφ(at|(b′t,p′t, zt)) . Sample pose from the policy
while target not reached do

v ← f(s,at) . Get joint velocities from control agent
st+1, r← env.step(v)

D ← D ∪ {(st,at, r, st+1, (xt, yt))} . Store the transition in the replay pool
for each gradient step do

θi ← θi − λQA∇̂θiJQA(θi) for i ∈ {1, 2} . Update Q-attention parameters
ρi ← ρi − λQπ∇̂ρiJQπ (ρi) for i ∈ {1, 2} . Update critic parameters
φ← φ− λπ∇̂φJπ(φ) . Update policy weights
θ′i ← τθi + (1− τ)θ′i for i ∈ {1, 2} . Update Q-attention target network weights
ρ′i ← τρi + (1− τ)ρ′i for i ∈ {1, 2} . Update critic target network weights

end-effector towards the goal. This function can take on many forms, but two noteworthy solutions
would be either motion planning in combination with a feedback-control or a learnable policy trained
with imitation/reinforcement learning. Given that the environmental dynamics are limited in the
benchmark, we opted for the motion planning solution.

Given the target pose, we perform path planning using the SBL (Sánchez & Latombe, 2003)
planner within OMPL (Şucan et al., 2012), and use Reflexxes Motion Library for on-line trajec-
tory generation. If the target pose is out of reach, we terminate the episode and supply a re-
ward of −1. This path planning and trajectory generation is conveniently encapsulated by the
‘ABS EE POSE PLAN WORLD FRAME’ action mode in RLBench (James et al., 2020).

4.4 KEYFRAME SELECTION & DEMO AUGMENTATION

Figure 4: Keyframe selection and demo aug-
mentation, where the black line represents
a trajectory, ’!’ represents keyframes, and
dashed blue lines represent the augmented
transitions to the keyframes.

In this section, we outline how we maximise the
utility of given demonstrations in order to com-
plete sparsely reward tasks. We assume to have
a teacher policy π∗ (e.g. motion planners or hu-
man teleoperatives) that can generate trajectories
consisting of a series of states and actions: τ =
[(s1,a1), . . . , (sT ,aT )]. In this case, we assume
that the demonstrations come from RLBench (James
et al., 2020).

The keyframe selection process iterates over each
of the demo trajectories τ and runs each of the state-
action pairs (s,a) through a function K : RD → B
which outputs a boolean deciding if the given tra-
jectory point should be treated as a keyframe. The
keyframe functionK could include a number of con-
straints. In practice we found that performing a dis-
junction over two simple conditions worked well;
these included (1) change in gripper state (a com-
mon occurrence when something is grasped or released), and (2) velocities approaching near zero
(a common occurrence when entering pre-grasp poses or entering a new phase of a task). It is likely
that as tasks get more complex, K will inevitably need to become more sophisticated via learning
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Figure 5: Visualising RGB observations of keyframes from the keyframe selection process on 4
tasks. Here k is the keyframe number.

or simply through more conditions, e.g. sudden changes in direction or joint velocity, large changes
in pixel values, etc. Figure 5 shows RGB observations from the keyframe selection process from 4
tasks.

At each keyframe, we use the known camera intrinsics and extrinsics to project the end-effector
pose at state st+1 into the image plane of state st, giving us pixel locations of the end-effector at the
next keyframe. This stage is crucial to breaking the cyclic dependency (mentioned in Section 4.1)
between the Q-attention and next-best pose agent, as these projected pixel coordinates act as optimal
actions for the Q-attention agent.

Using this keyframe selection method, each trajectory results in N = length(keyframes) transi-
tions being stored into the replay buffer. To further increase the utility of demonstrations, we apply
demo augmentation which stores the transition from an intermediate point along the trajectories
to the keyframe states. Formally, for each point (st,at) along the trajectory starting from keyframe
ki, we calculate the transformation of the end-effector pose (taken from st) at time step t to the
end-effector pose at the time step associated with keyframe ki+i. This transformation can then be
used as the action for the next-best pose agent. We repeat this process for every M th point along the
trajectory (which we set to M = 5). The keyframe selection and demo augmentation is visualised
in Figure 4.

5 RESULTS

In this section, we aim to answer the following questions: (1) Are we able to successfully learn
across a range of sparsely-rewarded manipulation tasks? (2) Which of our proposed components
contribute the most to our success? (3) How sensitive is our method to the number of demonstrations
and to the crop size? To answer these, we benchmark our approach using RLBench (James et al.,
2020). Of the 100 tasks, we select 10 (shown in Figure 1) that we believe to be achievable from
using only the front-facing camera. We leave tasks that require multiple cameras to future work.
RLBench was chosen due to its emphasis on vision-based manipulation benchmarking and because
it gives access to a wide variety of tasks with demonstrations. Each task has a completely sparse
reward of +1 which is given only on task completion, and 0 otherwise.

The first of our questions can be answered by attending to Figure 6. All baseline algorithms (SAC,
TD3 and QT-Opt) are in their ‘vanilla’ form, and do not contain any of our proposed contributions:
Q-attention, confidence-aware critic, keyframe selection, and demo augmentation. All methods
receive the exact same 200 demonstration sequences, which are loaded into the replay buffer prior
to training. The baseline agents are architecturally similar to the next-best pose agent, but with a
few differences to account for missing Q-attention (and so receives the full, uncropped RGB and
organised point cloud data) and missing confidence-aware critic (and so outputs single Q-values
rather than per-pixel values). Specifically, the architecture uses the same RGB and point cloud
fusion as shown in Figure 2. Feature maps from the shared representation are concatenated with
the reshaped proprioceptive input and fed to both the actor and critic. The baseline actor uses 3
convolution layers (64 channels, 3×3 filter size, 2 stride), who’s output feature maps are maxpooled
and sent through 2 dense layers (64 nodes) and results in an action distribution output. The critic
baseline uses 3 residual convolution blocks (128 channels, 3 × 3 filter size, 2 stride), who’s output
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Figure 6: Learning curves for 10 RLBench tasks. Methods include Ours (ARM), SAC (Haarnoja
et al., 2018), TD3 (Fujimoto et al., 2018), and QT-Opt (Kalashnikov et al., 2018). ARM uses the
3-stage pipeline (Q-attention, next-best pose, and control agent), while baselines use the 2-stage
pipeline (next-best pose and control agent). All methods receive 200 demos which are stored in the
replay buffer prior to training. Solid lines represent the average evaluation over 5 seeds, where the
shaded regions represent the min and max values across those trials.

feature maps are maxpooled and sent through 2 dense layers (64 nodes) and results in a single Q-
value output. All methods use the LeakyReLU activation, layer normalisation in the convolution
layers, learning rate of 3 × 10−3, soft target update of τ = 5−4, and a reward scaling of 100.
Training and exploration were done asynchronously with a single agent (to emulate a real-world
robot training scenario) that would continuously load checkpoints every 100 training steps.

The results in Figure 6 show that baseline state-of-the-art methods are unable to accomplish any
RLBench tasks, whilst our method is able to accomplish the tasks in small number of environ-
ment steps; 5, 000 environment steps equating to about an hour of robot interaction time (meaning
‘take lid off saucepan’ being solved in about two hours). We suggest that the reason why our results
starkly outperform other state-of-the-art methods is because of two key reasons that go hand-in-
hand: (1) Reducing the input dimensionality through Q-attention that immensely reduces the burden
on the (often difficult and unstable to train) continuous control algorithm; (2) Combining this with
our keyframe selection method that enables the Q-attention network to quickly converge and sug-
gest meaningful points of interest to the next-best pose agent. We wish to stress that perhaps given
enough training time some of these baseline methods may eventually start to succeed, however we
found no evidence of this.

In Figure 7a, we perform an ablation study to evaluate which of the proposed components con-
tribute the most to the success of our method. To perform this ablation, we chose 2 tasks of varying
difficulty: ‘take lid off saucepan’ and ‘put rubbish in bin’. The ablation clearly shows that the
Q-attention (combined with keyframe selection) is crucial to achieving the tasks, whilst the demo
augmentation, confidence-aware critic, and Q regularisation aid in overall stability and increase final
performance. When swapping the Q-attention module with a soft attention Xu et al. (2015) module,
we found that performance was similar to that of the ‘vanilla’ baselines. This result is unsurprising,
as soft attention is implicitly learned (i.e. without an explicit loss), where as our Q-attention is ex-
plicitly learned via (off-policy) Q-learning, and so it can make greater use of the highly-informative
keyframes given from the keyframe selection process. Note that we cannot compare to ‘traditional’
hard attention because it requires on-policy training, as explained in Section 4.1.

Figure 7b shows how robust our method is when varying the number of demonstrations given. The
results show that our method performs robustly, even when given 50% fewer demos, however as the
task difficulty increase (from ‘take lid off saucepan’ to ‘put rubbish in bin’), the harmful effect of
having less demonstrations is more severe. Our final set of experiments in Figure 7c shows how our
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(a) Effect of removing components
from our method.

(b) Effect of number of demos on
performance.

(c) Effect of crop size on perfor-
mance.

Figure 7: Ablation study across the easier ‘take lid off saucepan’ task and harder
‘put rubbish in bin’ task.

method performs across varying crop sizes. As the task difficulty increases, the harmful effect of a
larger crop size becomes more prominent; suggesting that one of the key benefits of the Q-attention
is to drastically reduce the input size to the next-best pose agent, making the RL optimisation much
easier. It’s clear that a trade-off must be made between choosing smaller crops to increase training
size, and choosing larger crops to incorporate more of the surrounding area. We found that setting
the crops at 16× 16 across all tasks performed well.

6 CONCLUSION

We have presented our Attention-driven Robotic Manipulation (ARM) algorithm, which is a general
manipulation algorithm that can be applied to a range of real-world sparsely-rewarded tasks. We
validate our method on 10 RLBench tasks of varying difficulty, and show that many commonly used
state-of-the-art methods catastrophically fail. We show that Q-attention (along with the keyframe
selection) is key to our success, whilst the confidence-aware critic and demo augmentation contribute
to achieving high final performance. Despite our strong experimental results, there are undoubtedly
areas of weakness. The control agent (final agent in the pipeline) uses path planning and on-line
trajectory generation, which for these tasks are adequate; however, this would need to be replaced
with an alternative agent for tasks that have dynamic environments (e.g. moving target objects,
moving obstacles, etc) or complex contact dynamics (e.g. peg-in-hole). We look to future work for
swapping this with a goal-conditioned reinforcement learning policy, or similar. Another weakness
is that we only evaluate on tasks that can be done with the front-facing camera; however we are keen
to explore many of the other tasks RLBench has to offer by adapting the method to accommodate
multiple camera inputs in future work.
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