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Abstract

This paper investigates the use of static anchors001
from transformer architectures for the task of002
Bilingual Lexicon Induction. We revisit an ex-003
isting approach built around the ELMo archi-004
tecture and explore the use of the methodology005
on the BERT family of language models. Ex-006
periments are performed and analysed for three007
language pairs, combining English with three008
target languages from very different language009
families, Hindi, Dutch, and Russian. Although010
the contextualised approach is not able to out-011
perform the SOTA VecMap method, we find012
that it is easily adaptable to newer transformer013
models and can compete with the MUSE ap-014
proach. An error analysis reveals interesting015
trends accross languages and shows how the016
method could be further improved by building017
on the basic hypothesis that transformer embed-018
dings can indeed be decomposed into a static019
anchor and a dynamic context component. We020
make the code, the extracted anchors before021
and after alignement and the modified train and022
test sets available for use.1023

1 Introduction024

Despite the great progress witnessed in recent years025

for various NLP tasks, low(er)-resourced languages026

are often lagging behind because of data scarcity.027

To overcome this lack of resources, researchers028

have started to investigate the use of cross-lingual029

information, where knowledge or data from a rich-030

resourced language, like English, is used to im-031

prove the modeling in a low(er)-resourced target032

language. With the new dawn of extremely data033

hungry pre-trained transformers, the field of cross-034

lingual knowledge transfer becomes even more ef-035

fective, since large pre-trained models are not al-036

ways available for a certain language or task. In this037

paper, we revisit and demonstrate the strenghts of038

the anchor extraction approach (initially designed039

1anonymized

for ELMo) for the task of Bilingual Lexicon Induc- 040

tion (BLI). 041

The idea of cross-lingual embeddings originally 042

stems from the idea of Mikolov et al. (2013) that 043

vector spaces in different languages share a certain 044

similarity, and a projection can be learned from 045

one language to another. The more recent lan- 046

guage models employing contextual embeddings 047

improve upon previous methods of cross-lingual 048

alignment like MUSE (Lample and Conneau, 2019) 049

and VecMap (Artetxe et al., 2018) due to their dy- 050

namic nature. Multilingual BERT (mBERT, De- 051

vlin et al. (2019)) and XLM (Conneau and Lam- 052

ple, 2019) provide excellent solutions by jointly 053

training for Masked Language Modelling on 104 054

languages and outperforming previous approaches 055

on zero-shot cross-lingual tasks. However, joint 056

training can be vastly time and computation con- 057

suming, and unadaptable for accomodating newer 058

languages after the initial pre-training. 059

Another interesting approach is proposed by 060

Schuster et al. (2019). They demonstrate that con- 061

textual embeddings can be treated as having a static 062

anchor component, and a dynamic context com- 063

ponent for every token. This once again enables 064

the static components to be aligned with methods 065

like MUSE. RAMEN (Tran, 2020) proposes a fur- 066

ther improvement on the joint training strand of 067

research, by forcing foreign language embeddings 068

to be initialized in the same space as the source lan- 069

guage, thus increasing the performance of mBERT 070

and XLM. Artexte et al. (2020) introduce another 071

clever alternative to joint training (mBERT, XLM), 072

by freezing the encoder layers of a transformer af- 073

ter the initial pre-training, and re-learning only the 074

embeddings on a target language. This results in a 075

very similar performance to mBERT while keeping 076

the training time significantly lower. 077

In this paper, we present a pilot study to inves- 078

tigate a viable approach to minimal supervision 079

cross-lingual transfer of transformer representa- 080
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tions from English to three very different target081

languages, viz. Hindi, Dutch, and Russian. Specif-082

ically, we revisit the anchor-based approach of083

Schuster et al. (2019), which decomposes contex-084

tual embeddings into anchors and contexts. To the085

best of our knowledge, we evaluate for the first time086

an approach deploying contextual embeddings for087

the purely lexical task of Bilingual Lexicon Induc-088

tion, and compare it with two SOTA approaches089

incorporating static FastText embeddings, being090

VecMap and MUSE.091

2 Investigated Approaches092

Alignment of FastText and Word2Vec embeddings093

using seed dictionaries and Procrustes refinement094

has been a staple method for cross-lingual adap-095

tation with minimal supervision. However, with096

transformer architectures being the state of the097

art for a large majority of downstream tasks af-098

ter fine-tuning, there was a need for combining099

two monolingual transformer representations into100

a joint space. While methods like RAMEN (Tran,101

2020) and MonoTrans (Artetxe et al., 2020) accom-102

plish this with additional training of certain parts of103

the transformers to accomodate multiple languages,104

in this paper we seek to explore an approach that is105

robust to multiple architectures, intuitively sound106

and future-proof for any new large pre-trained lan-107

guage model. The approach in question, referred108

to as Cross-lingual ELMo (Schuster et al., 2019),109

theorizes that the average for all contextual em-110

beddings of a word over a large corpus adequately111

represents a static anchor component of the contex-112

tual embeddings, which in theory is sufficient to113

learn an alignment matrix.114

Given a source language s and a target language115

t, the objective of the classical alignment methods116

is to learn a transformation,117

Es,t ≈ W s→tEs,s (1)118

where Es,s represents the embeddings of the119

source language in their original space, while Es,t120

represents the embeddings of the source language,121

in the target language’s multi-dimensional space.122

Inversely,123

Et,s ≈ W t→s (2)124

should also be a possibility. For classical word em-125

beddings like word2vec and FastText, this becomes126

a simple optimisation problem for an orthogonal127

matrix W . VecMap achieves this by maximizing 128

for similarity over a sparse seed dictionary (which 129

can be initialized with zero supervision or using 130

identical words if a seed dictionary is not avail- 131

able), and iteratively improving the dictionary and 132

re-learning the alignment after each optimisation 133

step. MUSE achieves the same objective by ini- 134

tializing W using an adversarial objective, where 135

W is optimized such that a discrimnator model 136

is unable to differentiate between the embeddings 137

originating from Et,t and WEs,s. 138

However, the dynamic nature of the embedding 139

spaces E in the case of transformers makes the 140

solutions slightly more complicated and requires 141

some assumptions to simplify the problem. To 142

obtain an approximation of the embedding spaces 143

Es,s and Et,t, for a token i in the context c, 144

ei,c = Ai + ˆei,c, (3) 145

where Ai is the fixed Anchor for the token i ob- 146

tained by averaging embeddings over all available 147

contexts c, while ˆei,c is the additional context com- 148

ponent of the embedding. This decomposition 149

means that the complete embedding space Es,s 150

once again can be simplified as a static space as 151

As,s, the space of all anchors for a source language 152

s. A transformation 153

As,t ≈ U s→tAs,s (4) 154

can therefore be learned with methods like MUSE 155

and VecMap, as for static embeddings. 156

While this method of alignment for dynamic con- 157

textual embeddings was demonstrated to perform 158

very well using ELMo anchors for the task of De- 159

pendency Parsing, we further probe the potential of 160

this methodology on the task of Bilingual Lexicon 161

Induction. Even though FastText and Word2Vec- 162

based approaches would perform better on BLI due 163

to the static and purely lexical nature of the task, 164

requiring no contextual complexity, it is interesting 165

to analyze how the computed anchors compare to 166

the simple and elegant FastText embeddings on a 167

purely lexical task. To our knowledge, this is also 168

the first attempt at using BERT-like architectures 169

for the task of BLI, especially in a low-supervision 170

setting. 171

The contributions of this research can be summa- 172

rized as follows. We revisit and update the anchor 173

alignment approach from cross-lingual ELMo and 174

test it for the task of BLI for English and three very 175

different target languages with different scripts. We 176
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EN-HI HI-EN EN-NL NL-EN EN-RU RU-EN
FASTTEXT EMBEDDINGS WITH VECMAP

Full Train Set 0.5679 0.7098 0.8604 0.8467 0.6465 0.8137
1k Supervision 0.4864 0.5268 0.8234 0.766 0.5525 0.7561

FASTTEXT EMBEDDINGS WITH MUSE
Full Train Set 0.4524 0.5268 0.7834 0.7836 0.6404 0.7765
1k Supervision 0.3348 0.4447 0.7321 0.6968 0.5969 0.7004

ALIGNED ANCHORS WITH VECMAP
Full Train Set 0.4955 0.5994 0.6382 0.735 0.6210 0.8043
1k Supervision 0.3620 0.2997 0.230 0.386 0.3276 0.5940

Table 1: BLI Results for the six language pairs, with English (EN), Hindi (HI), Dutch (NL) and Russian (RU) as
source and target language.

demonstrate the flexibility of the approach by using177

multiple architectures from the BERT family in our178

experiments, analyze the post-alignment anchors179

and discuss recurring issues across all languages.180

3 Experimental Setup181

We perform Bilingual Lexicon Induction experi-182

ments for three languages Hindi (HI), Dutch (NL),183

and Russian (RU). Using English (EN) as a source184

language and a target language for each language.185

All datasets have been derived from the MUSE186

bilingual dictionaries2. Because our intention is to187

evaluate contextual models, the respective MUSE188

train and test sets had to be reduced to accommo-189

date for the smaller sub-word based vocabularies190

compared to classical FastText or word2vec vari-191

ants. Using the full dictionaries would be mislead-192

ing, since, for example, for Russian, our model was193

only able to use around 3500 samples for training,194

as compared to the 5000 available in the full train195

set. To keep the comparisons consistent, we evalu-196

ated the two methods incorporating static FastText197

embeddings (VecMap and MUSE) on the reduced198

train/test sets as well, and make the reduced dictio-199

naries available3 for reproducibility.200

For our proposed approach, anchors have been201

derived from a variety of different transformer ar-202

chitectures to demonstrate the flexibility of the an-203

chor extraction methodology. While for English204

and Hindi, anchors extracted from more standard205

BERT-uncased models were used, we relied on206

RuBERT (Kuratov and Arkhipov, 2019) for Rus-207

sian, which is a cased BERT model, and on Rob-208

bert (Delobelle et al., 2020) for Dutch, which is a209

RoBERTa-based architecture.210

2https://paperswithcode.com/dataset/muse
3anonymised

For all three languages, we use English both as 211

a source and target language. Two sets of experi- 212

ments have been performed for each language pair: 213

one with the completely available training set, and a 214

second one where only 1000 samples are available 215

for supervision. We use FastText vectors aligned 216

with the same hyperparameters as the anchors, us- 217

ing VecMap and MUSE for comparisons. 218

To evaluate, we calculate accuracy, which mea- 219

sures whether the predicted translation in a certain 220

target language was also among the gold standard 221

translations in that language. As our primary ob- 222

jective is to evaluate whether an anchor-based ap- 223

proach is feasible for BLI relying on transformer- 224

based architectures, an error analysis is also per- 225

formed. 226

4 Results 227

The accuracy scores for all experiments are shown 228

in Table 1. The anchor alignment methods outper- 229

form the MUSE alignments for some setings for 230

Hindi and Russian, but fails to compete with the 231

SOTA VecMap alignments using FastText. A rea- 232

son why FastText embeddings align significantly 233

better can be attributed to the isomorphism assump- 234

tions. Vulić et al. (2020) pointed out that two sets 235

of embeddings are more likely to be isomorphic 236

given the same amount of training data, time and 237

parameters. This makes FastText very robust since 238

embeddings for all the languages are trained in an 239

identical fashion. Intuitively this isomorphism as- 240

sumption should also cause a major issue for Dutch 241

where we use a different architecture (RoBERTa) 242

for alignment, and for Russian where a cased model 243

was used to align with an uncased model. Never- 244

theless, the performances indicate that the anchor 245

extraction is robust to these issues. 246
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Figure 1: Illustration of Hindi, Dutch and Russian example words (blue), respectively, that are correctly (green) and
incorrectly (red) aligned according to the gold standard.

Figure 2: Distribution of error types per language (per-
centagewise)

We can make a few key observations based on247

the results. Firstly, we note that with the anchor-248

based approach, the transfer to English is signifi-249

cantly harder than relying on English as the source250

language. Another noteworthy outcome is that the251

drop-off of performance for the 1,000 training sam-252

ples experiments seems to be consistently higher253

for the anchor alignments compared to FastText.254

This again could be attributed to the larger vocabu-255

lary of FastText allowing the alignment refinement256

steps to have a better understanding of the embed-257

ding space.258

In order to get more insights into the ouput of our259

approach, we performed a qualitative error analy-260

sis on the output of the first 100 instances of the261

test sets in all three languages (with English as the262

source). Interestingly, we found that even though263

these three language are far apart, they exhibit sim-264

ilar errors. Figure 2 represents, percentagewise,265

which errors were made as judged by native experts266

of the respective languages. As can be observed,267

the largest error category in Hindi and Dutch con-268

stitutes nonsensical words, a typical problem of269

BERT-based architectures, whereas for Russian270

especially morphologically/syntax-related errors271

prevail (the latter has mostly to do with different272

cases or inflections of nouns, a typical difficulty 273

of the Russian language). Looking at the other er- 274

ror types, we observe that these have mostly to do 275

with semantics (antonyms, synonyms, polysemous 276

words), of which words that are somewhat semanti- 277

cally related (example EN-HI: ‘chicken’ was trans- 278

lated as elephant, example EN-RU: ‘promise’ was 279

translated to hope, example EN-DU: ‘inches’ was 280

translated by meters, which is actually the Dutch 281

standard distance metric) seem to pose a larger 282

problem, especially in Hindi and Russian and to a 283

lesser extent in Dutch. 284

In Figure 1 we, also attempt to visualize some 285

selected embeddings correctly aligned, and some 286

incorrectly aligned using PCA, for all three 287

language pairs. The embeddings in green represent 288

the correct translations in the target language, 289

while the ones in red are incorrectly aligned. The 290

visualizations demonstrate (again) that a lot of the 291

mistakes can be attributed to semantics, as well as 292

ambiguity in the test set (eg. ‘bladen’ in Dutch 293

can be interpreted as both ‘sheets’ (of paper) and 294

‘leaves’ (of tree), but only ‘sheets’ is accepted by 295

the gold standard test set). 296

297

In conclusion, we demonstrated that extracting 298

static anchors from transformers is a viable method 299

for low supervision Bilingual Lexicon Induction. 300

The aligned anchors were able to outperform one 301

of the SOTA approaches (MUSE) for some settings, 302

and show great promise in terms of flexibility and 303

adaptability for different languages and architec- 304

tures in the BERT family. An in-depth error analy- 305

sis and visualization of the aligned anchors shows 306

that a lot of the mistakes can be attributed to seman- 307

tic or syntatic (primarily Russian) misunderstand- 308

ings. In future research, we will investigate the 309

impact of using a larger corpus for extracting the 310

anchors, and evaluate the approach for other more 311

complex tasks like NLI and Question Answering. 312
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