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Abstract

This paper investigates the use of static anchors
from transformer architectures for the task of
Bilingual Lexicon Induction. We revisit an ex-
isting approach built around the ELMo archi-
tecture and explore the use of the methodology
on the BERT family of language models. Ex-
periments are performed and analysed for three
language pairs, combining English with three
target languages from very different language
families, Hindi, Dutch, and Russian. Although
the contextualised approach is not able to out-
perform the SOTA VecMap method, we find
that it is easily adaptable to newer transformer
models and can compete with the MUSE ap-
proach. An error analysis reveals interesting
trends accross languages and shows how the
method could be further improved by building
on the basic hypothesis that transformer embed-
dings can indeed be decomposed into a static
anchor and a dynamic context component. We
make the code, the extracted anchors before
and after alignement and the modified train and
test sets available for use.!

1 Introduction

Despite the great progress witnessed in recent years
for various NLP tasks, low(er)-resourced languages
are often lagging behind because of data scarcity.
To overcome this lack of resources, researchers
have started to investigate the use of cross-lingual
information, where knowledge or data from a rich-
resourced language, like English, is used to im-
prove the modeling in a low(er)-resourced target
language. With the new dawn of extremely data
hungry pre-trained transformers, the field of cross-
lingual knowledge transfer becomes even more ef-
fective, since large pre-trained models are not al-
ways available for a certain language or task. In this
paper, we revisit and demonstrate the strenghts of
the anchor extraction approach (initially designed

'anonymized

for ELMo) for the task of Bilingual Lexicon Induc-
tion (BLD).

The idea of cross-lingual embeddings originally
stems from the idea of Mikolov et al. (2013) that
vector spaces in different languages share a certain
similarity, and a projection can be learned from
one language to another. The more recent lan-
guage models employing contextual embeddings
improve upon previous methods of cross-lingual
alignment like MUSE (Lample and Conneau, 2019)
and VecMap (Artetxe et al., 2018) due to their dy-
namic nature. Multilingual BERT (mBERT, De-
vlin et al. (2019)) and XLLM (Conneau and Lam-
ple, 2019) provide excellent solutions by jointly
training for Masked Language Modelling on 104
languages and outperforming previous approaches
on zero-shot cross-lingual tasks. However, joint
training can be vastly time and computation con-
suming, and unadaptable for accomodating newer
languages after the initial pre-training.

Another interesting approach is proposed by
Schuster et al. (2019). They demonstrate that con-
textual embeddings can be treated as having a static
anchor component, and a dynamic context com-
ponent for every token. This once again enables
the static components to be aligned with methods
like MUSE. RAMEN (Tran, 2020) proposes a fur-
ther improvement on the joint training strand of
research, by forcing foreign language embeddings
to be initialized in the same space as the source lan-
guage, thus increasing the performance of mBERT
and XLM. Artexte et al. (2020) introduce another
clever alternative to joint training (mBERT, XLM),
by freezing the encoder layers of a transformer af-
ter the initial pre-training, and re-learning only the
embeddings on a target language. This results in a
very similar performance to mBERT while keeping
the training time significantly lower.

In this paper, we present a pilot study to inves-
tigate a viable approach to minimal supervision
cross-lingual transfer of transformer representa-



tions from English to three very different target
languages, viz. Hindi, Dutch, and Russian. Specif-
ically, we revisit the anchor-based approach of
Schuster et al. (2019), which decomposes contex-
tual embeddings into anchors and contexts. To the
best of our knowledge, we evaluate for the first time
an approach deploying contextual embeddings for
the purely lexical task of Bilingual Lexicon Induc-
tion, and compare it with two SOTA approaches
incorporating static FastText embeddings, being
VecMap and MUSE.

2 Investigated Approaches

Alignment of FastText and Word2Vec embeddings
using seed dictionaries and Procrustes refinement
has been a staple method for cross-lingual adap-
tation with minimal supervision. However, with
transformer architectures being the state of the
art for a large majority of downstream tasks af-
ter fine-tuning, there was a need for combining
two monolingual transformer representations into
a joint space. While methods like RAMEN (Tran,
2020) and MonoTrans (Artetxe et al., 2020) accom-
plish this with additional training of certain parts of
the transformers to accomodate multiple languages,
in this paper we seek to explore an approach that is
robust to multiple architectures, intuitively sound
and future-proof for any new large pre-trained lan-
guage model. The approach in question, referred
to as Cross-lingual ELMo (Schuster et al., 2019),
theorizes that the average for all contextual em-
beddings of a word over a large corpus adequately
represents a static anchor component of the contex-
tual embeddings, which in theory is sufficient to
learn an alignment matrix.

Given a source language s and a target language
t, the objective of the classical alignment methods
is to learn a transformation,

Es,t ~ WS_MES,S (1)

where F ; represents the embeddings of the
source language in their original space, while F ;
represents the embeddings of the source language,
in the target language’s multi-dimensional space.
Inversely,

By~ W'* 2

should also be a possibility. For classical word em-
beddings like word2vec and FastText, this becomes
a simple optimisation problem for an orthogonal

matrix W. VecMap achieves this by maximizing
for similarity over a sparse seed dictionary (which
can be initialized with zero supervision or using
identical words if a seed dictionary is not avail-
able), and iteratively improving the dictionary and
re-learning the alignment after each optimisation
step. MUSE achieves the same objective by ini-
tializing W using an adversarial objective, where
W is optimized such that a discrimnator model
is unable to differentiate between the embeddings
originating from E; ; and W E ;.

However, the dynamic nature of the embedding
spaces F in the case of transformers makes the
solutions slightly more complicated and requires
some assumptions to simplify the problem. To
obtain an approximation of the embedding spaces
E, s and Ey 4, for a token ¢ in the context c,

€i,c = A + eiA,ca 3)

where A; is the fixed Anchor for the token i ob-
tained by averaging embeddings over all available
contexts ¢, while e; . is the additional context com-
ponent of the embedding. This decomposition
means that the complete embedding space Ej g
once again can be simplified as a static space as
As s, the space of all anchors for a source language
s. A transformation

As,t ~ Us_ﬁAs,s (4)

can therefore be learned with methods like MUSE
and VecMap, as for static embeddings.

While this method of alignment for dynamic con-
textual embeddings was demonstrated to perform
very well using ELMo anchors for the task of De-
pendency Parsing, we further probe the potential of
this methodology on the task of Bilingual Lexicon
Induction. Even though FastText and Word2 Vec-
based approaches would perform better on BLI due
to the static and purely lexical nature of the task,
requiring no contextual complexity, it is interesting
to analyze how the computed anchors compare to
the simple and elegant FastText embeddings on a
purely lexical task. To our knowledge, this is also
the first attempt at using BERT-like architectures
for the task of BLI, especially in a low-supervision
setting.

The contributions of this research can be summa-
rized as follows. We revisit and update the anchor
alignment approach from cross-lingual ELMo and
test it for the task of BLI for English and three very
different target languages with different scripts. We



| EN-HI | HI-EN | EN-NL | NL-EN | EN-RU | RU-EN
FASTTEXT EMBEDDINGS WITH VECMAP
Full Train Set | 0.5679 | 0.7098 | 0.8604 | 0.8467 | 0.6465 [ 0.8137
1k Supervision | 0.4864 | 0.5268 | 0.8234 | 0.766 | 0.5525 | 0.7561
FASTTEXT EMBEDDINGS WITH MUSE
Full Train Set | 0.4524 [ 0.5268 [ 0.7834 | 0.7836 [ 0.6404 [ 0.7765
1k Supervision | 0.3348 | 0.4447 | 0.7321 | 0.6968 | 0.5969 | 0.7004
ALIGNED ANCHORS WITH VECMAP
Full Train Set | 0.4955 [ 0.5994 | 0.6382 | 0.735 | 0.6210 | 0.8043
1k Supervision | 0.3620 | 0.2997 | 0230 | 0.386 | 0.3276 | 0.5940

Table 1: BLI Results for the six language pairs, with English (EN), Hindi (HI), Dutch (NL) and Russian (RU) as

source and target language.

demonstrate the flexibility of the approach by using
multiple architectures from the BERT family in our
experiments, analyze the post-alignment anchors
and discuss recurring issues across all languages.

3 Experimental Setup

We perform Bilingual Lexicon Induction experi-
ments for three languages Hindi (HI), Dutch (NL),
and Russian (RU). Using English (EN) as a source
language and a target language for each language.
All datasets have been derived from the MUSE
bilingual dictionaries®. Because our intention is to
evaluate contextual models, the respective MUSE
train and test sets had to be reduced to accommo-
date for the smaller sub-word based vocabularies
compared to classical FastText or word2vec vari-
ants. Using the full dictionaries would be mislead-
ing, since, for example, for Russian, our model was
only able to use around 3500 samples for training,
as compared to the 5000 available in the full train
set. To keep the comparisons consistent, we evalu-
ated the two methods incorporating static FastText
embeddings (VecMap and MUSE) on the reduced
train/test sets as well, and make the reduced dictio-
naries available? for reproducibility.

For our proposed approach, anchors have been
derived from a variety of different transformer ar-
chitectures to demonstrate the flexibility of the an-
chor extraction methodology. While for English
and Hindi, anchors extracted from more standard
BERT-uncased models were used, we relied on
RuBERT (Kuratov and Arkhipov, 2019) for Rus-
sian, which is a cased BERT model, and on Rob-
bert (Delobelle et al., 2020) for Dutch, which is a
RoBERTa-based architecture.

“https://paperswithcode.com/dataset/muse
3anonymised

For all three languages, we use English both as
a source and target language. Two sets of experi-
ments have been performed for each language pair:
one with the completely available training set, and a
second one where only 1000 samples are available
for supervision. We use FastText vectors aligned
with the same hyperparameters as the anchors, us-
ing VecMap and MUSE for comparisons.

To evaluate, we calculate accuracy, which mea-
sures whether the predicted translation in a certain
target language was also among the gold standard
translations in that language. As our primary ob-
jective is to evaluate whether an anchor-based ap-
proach is feasible for BLI relying on transformer-
based architectures, an error analysis is also per-
formed.

4 Results

The accuracy scores for all experiments are shown
in Table 1. The anchor alignment methods outper-
form the MUSE alignments for some setings for
Hindi and Russian, but fails to compete with the
SOTA VecMap alignments using FastText. A rea-
son why FastText embeddings align significantly
better can be attributed to the isomorphism assump-
tions. Vuli€ et al. (2020) pointed out that two sets
of embeddings are more likely to be isomorphic
given the same amount of training data, time and
parameters. This makes FastText very robust since
embeddings for all the languages are trained in an
identical fashion. Intuitively this isomorphism as-
sumption should also cause a major issue for Dutch
where we use a different architecture (RoBERTa2)
for alignment, and for Russian where a cased model
was used to align with an uncased model. Never-
theless, the performances indicate that the anchor
extraction is robust to these issues.
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Figure 1: Illustration of Hindi, Dutch and Russian example words (blue), respectively, that are correctly (green) and

incorrectly (red) aligned according to the gold standard.
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Figure 2: Distribution of error types per language (per-
centagewise)

We can make a few key observations based on
the results. Firstly, we note that with the anchor-
based approach, the transfer to English is signifi-
cantly harder than relying on English as the source
language. Another noteworthy outcome is that the
drop-off of performance for the 1,000 training sam-
ples experiments seems to be consistently higher
for the anchor alignments compared to FastText.
This again could be attributed to the larger vocabu-
lary of FastText allowing the alignment refinement
steps to have a better understanding of the embed-
ding space.

In order to get more insights into the ouput of our
approach, we performed a qualitative error analy-
sis on the output of the first 100 instances of the
test sets in all three languages (with English as the
source). Interestingly, we found that even though
these three language are far apart, they exhibit sim-
ilar errors. Figure 2 represents, percentagewise,
which errors were made as judged by native experts
of the respective languages. As can be observed,
the largest error category in Hindi and Dutch con-
stitutes nonsensical words, a typical problem of
BERT-based architectures, whereas for Russian
especially morphologically/syntax-related errors
prevail (the latter has mostly to do with different

cases or inflections of nouns, a typical difficulty
of the Russian language). Looking at the other er-
ror types, we observe that these have mostly to do
with semantics (antonyms, synonyms, polysemous
words), of which words that are somewhat semanti-
cally related (example EN-HI: ‘chicken’ was trans-
lated as elephant, example EN-RU: ‘promise’ was
translated to hope, example EN-DU: ‘inches’ was
translated by meters, which is actually the Dutch
standard distance metric) seem to pose a larger
problem, especially in Hindi and Russian and to a
lesser extent in Dutch.

In Figure 1 we, also attempt to visualize some
selected embeddings correctly aligned, and some
incorrectly aligned using PCA, for all three
language pairs. The embeddings in green represent
the correct translations in the target language,
while the ones in red are incorrectly aligned. The
visualizations demonstrate (again) that a lot of the
mistakes can be attributed to semantics, as well as
ambiguity in the test set (eg. ‘bladen’ in Dutch
can be interpreted as both ‘sheets’ (of paper) and
‘leaves’ (of tree), but only ‘sheets’ is accepted by
the gold standard test set).

In conclusion, we demonstrated that extracting
static anchors from transformers is a viable method
for low supervision Bilingual Lexicon Induction.
The aligned anchors were able to outperform one
of the SOTA approaches (MUSE) for some settings,
and show great promise in terms of flexibility and
adaptability for different languages and architec-
tures in the BERT family. An in-depth error analy-
sis and visualization of the aligned anchors shows
that a lot of the mistakes can be attributed to seman-
tic or syntatic (primarily Russian) misunderstand-
ings. In future research, we will investigate the
impact of using a larger corpus for extracting the
anchors, and evaluate the approach for other more
complex tasks like NLI and Question Answering.
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