
Bicriteria Approximation Algorithms for the
Submodular Cover Problem

Wenjing Chen, Victoria G. Crawford
Department of Computer Science & Engineering

Texas A&M University
jj9754@tamu.edu, vcrawford@tamu.edu

Abstract

In this paper, we consider the optimization problem Submodular Cover (SCP),
which is to find a minimum cardinality subset of a finite universe U such that the
value of a submodular function f is above an input threshold τ . In particular, we
consider several variants of SCP including the general case, the case where f is
additionally assumed to be monotone, and finally the case where f is a regularized
monotone submodular function. Our most significant contributions are that: (i)
We propose a scalable algorithm for monotone SCP that achieves nearly the same
approximation guarantees as the standard greedy algorithm in significantly faster
time; (ii) We are the first to develop an algorithm for general SCP that achieves
a solution arbitrarily close to being feasible; and finally (iii) we are the first to
develop algorithms for regularized SCP. Our algorithms are then demonstrated to
be effective in an experimental section on data summarization and graph cut, two
applications of SCP.

1 Introduction

Submodularity captures a diminishing returns property of set functions: Let f : 2U → R be
defined over subsets of a universe U of size n. Then f is submodular if for all A ⊆ B ⊆ U and
x /∈ B, f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B). Examples of submodular set functions include
cut functions in graphs [Balkanski et al., 2018], information-theoretic quantities like entropy and
mutual information [Iyer et al., 2021], determinantal point processes [Gillenwater et al., 2012], and
coverage functions [Bateni et al., 2017]. Submodular set functions arise in many important real-world
applications including active learning [Kothawade et al., 2021, 2022], partial label learning [Bao
et al., 2022], structured pruning of neural networks [El Halabi et al., 2022], data summarization
[Tschiatschek et al., 2014], and client selection in federated learning [Balakrishnan et al., 2022].

While the majority of existing work has focused on developing approximation algorithms to maximize
a submodular function subject to some constraint [Nemhauser et al., 1978a, Mirzasoleiman et al.,
2015a, Harshaw et al., 2019, Buchbinder et al., 2014], in this paper we focus on developing algorithms
for the related optimization problem of Submodular Cover (SCP), defined as follows.

Problem 1 (Submodular Cover (SCP)). Let f : 2U → R≥0 be a nonnegative submodular set function
defined over subsets of the ground set U of size n. Given threshold τ ≤ max{f(X) : X ⊆ U}, SCP
is to find argmin{|X| : f(X) ≥ τ}.

SCP captures applications where we seek to achieve a certain value of f in as few elements as
possible. For example, consider data summarization, where a submodular function f is formulated to
measure how effectively a subset X summarizes the entire dataset U [Tschiatschek et al., 2014]. Then
if we set τ = max{f(X) : X ⊆ U}, SCP asks to find the set of minimum size in U that achieves
the maximum effectiveness as a summary. Another example is when expected advertising revenue

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

functions are formulated over subsets of a social network [Hartline et al., 2008], then SCP asks how
we can reach a certain amount of revenue while picking as small a subset of users as possible.

In this paper, we propose and analyze algorithms for several variants of SCP including the general
case, the case where f is assumed to be monotone1, and finally when f is a regularized monotone
submodular function (and potentially takes on negative values). We now list an overview of the
contributions of our paper. In addition, a table summarizing all of our algorithmic contributions can
be found in Table 1 in the appendix.

(i) We first address the need for scalable algorithms for SCP where f is assumed to be monotone
(MSCP). While the greedy algorithm finds the best possible approximation guarantee for
MSCP [Feige, 1998], it makes O(n2) queries of f which may be impractical in many
applications. We propose and introduce two algorithms for MSCP which achieve nearly the
same theoretical guarantee as the greedy algorithm but only make O(n ln(n)) queries of
f . In addition, we extend the work of Iyer and Bilmes [2013a] to a method of converting
fast randomized approximation algorithms for the dual cardinality constrained monotone
submodular maximization problem [Nemhauser et al., 1978b] into approximation algorithms
for MSCP.

(ii) Next, we address the need for algorithms that can produce nearly feasible solutions to the
general SCP problem, where f can be nonmonotone. In particular, we provide the first
algorithm for SCP that returns a solution S that is guaranteed to satisfy: (i) f(S) ≥ (1− ϵ)τ ;
and (ii) |S| ≤ 2(1 + α)|OPT |/ϵ where OPT is an optimal solution to the instance and
ϵ,α > 0 are input parameters. A caveat for our algorithm is that it is not necessarily
polynomial time and requires an exact solution to the cardinality constrained submodular
maximization problem [Buchbinder et al., 2014] on an instance of size O(|OPT |/ϵ2).

(iii) Third, we are the first to consider regularized monotone SCP (RMSCP). RMSCP is where
the objective f = g − c where g is a nonnegative, monotone, and submodular function and
c is a modular cost penalty function. f is not necessarily monotone but potentially takes on
negative values, and therefore this new problem doesn’t fall under the general SCP problem.
We develop a method of converting algorithms for the regularized monotone submodular
maximization problem [Harshaw et al., 2019] into ones for RMSCP. We then propose the
first algorithm for RMSCP, which is a greedy algorithm using queries to a distorted version
of f = g − c.

(iv) Finally, we conduct an experimental analysis for our algorithms for MSCP and general SCP
on instances of data summarization and graph cut. We find that our algorithms for MSCP
make a large speedup compared to the standard greedy approach, and we explore the pros
and cons of each relative to the other. We also find that our algorithm for general SCP is
practical for our instances despite not being guaranteed to run in polynomially many queries
of f .

1.1 Preliminary Definitions and Notation

We first provide a number of preliminary definitions that will be used throughout the paper: (i) The
Submodular Maximization Problem (SMP) is the dual optimization problem to SCP defined by,
given budget κ and nonnegative submodular function f , find argmax{f(X) : X ⊆ U, |X| ≤ κ};
(ii) Monotone SCP (MSCP) is the special case of SCP where f is additionally assumed to be
monotone; (iii) Regularized MSCP (RMSCP) is where f = g − c and g is monotone, submodular,
and nonnegative, while c is a modular2 nonnegative cost function; (iv) OPT is used to refer to the
optimal solution to the instance of SCP that should be clear from the context; (v) OPTSM is used to
refer to the optimal solution to the instance of SMP that should be clear from the context; (vi) An
(α,β)-bicriteria approximation algorithm for SCP returns a solution X such that |X| ≤ α|OPT |
and f(X) ≥ βτ . An (α,β)-bicriteria approximation algorithm for SMP returns a solution X such
that f(X) ≥ αf(OPT) and |X| ≤ βκ. Notice that in the (α,β) notation, the approximation on the
objective is first, and the approximation on the constraint is second; (vii) The marginal gain of adding
an element u ∈ U to a set S ⊆ U is denoted as ∆f(S, u) = f(S ∪ u)− f(S); (viii) The function
fτ = min{f, τ}.

1A set function f is monotone if for all A ⊆ B ⊆ U , f(A) ≤ f(B).
2Every x ∈ U is assigned a cost cx such that c(X) =

P
x∈X cx.

2

1.2 Related Work

MSCP is the most studied variant of SCP [Wolsey, 1982, Wan et al., 2010, Mirzasoleiman et al., 2015b,
2016, Crawford et al., 2019]. The standard greedy algorithm produces a logarithmic approximation
guarantee for MSCP in O(n2) queries of f [Wolsey, 1982], and this is the best approximation
guarantee that we can expect unless NP has nO(log(log(n)))-time deterministic algorithms [Feige,
1998]. One version of the greedy algorithm for MSCP works as follows: A set S is initialized to be
∅. Iteratively, the element argmax{∆f(S, x) : x ∈ U} is added to S until f(S) reaches (1− ϵ)τ . It
has previously been shown that this is a (ln(1/ϵ), 1− ϵ)-bicriteria approximation algorithm [Krause
et al., 2008]. Beyond greedy algorithms, algorithms for the distributed setting [Mirzasoleiman et al.,
2015c, 2016], the streaming setting [Norouzi-Fard et al., 2016], as well as the low-adaptivity setting
Fahrbach et al. [2019] for MSCP have been proposed.

On the other hand, developing algorithms for SCP in full generality is more difficult since the
monotonicity of f is not assumed. It is not even obvious how to find a feasible solution. The standard
greedy algorithm does not have any non-trivial approximation guarantee for SCP. In fact, to the best
of our knowledge, no greedy-like algorithms have been found to be very useful for SCP. Recently,
Crawford [2023] considered SCP and proved that it is not possible to develop an algorithm that
guarantees f(X) ≥ τ/2 for SCP in polynomially many queries of f assuming the value oracle model.
On the other hand, algorithmic techniques that are used for SMP in the streaming setting [Alaluf
et al., 2022] proved to be useful for SCP. In particular, Crawford [2023] proposed an algorithm using
related techniques to that of Alaluf et al. that achieves a (O(1/ϵ2), 1/2− ϵ)-bicriteria approximation
guarantee for SCP in polynomially many queries of f . We also take an approach inspired by the
streaming algorithm of Alaluf et al., but sacrifice efficiency in order to find a solution for SCP that is
arbitrarily close to being feasible.

SMP has received relatively more attention than SCP [Nemhauser et al., 1978b, Badanidiyuru and
Vondrák, 2014, Mirzasoleiman et al., 2015a, Feige et al., 2011, Buchbinder et al., 2014, Alaluf et al.,
2022]. Iyer and Bilmes [2013b] proposed a method of converting algorithms for SMP to ones for
SCP. In particular, given a deterministic (γ,β)-bicriteria approximation algorithm for SMP, the
algorithm convert (see pseudocode in Section 4.1 in the supplementary material) proposed by Iyer
and Bilmes produces a deterministic ((1 + α)β, γ)-bicriteria approximation algorithm for SCP. The
algorithm works by making log1+α(n) guesses for |OPT | (which is unknown in SCP), running the
SMP algorithm with the budget set to each guess, and returning the smallest solution with f value
above γτ . However, this approach is limited by the approximation guarantees of existing algorithms
for SMP. The best γ for monotone SMP is 1 − 1/e, and the best for general SMP where f is not
assumed to be monotone is significantly lower [Gharan and Vondrák, 2011]. Several of the algorithms
that we propose in this paper do generally follow the model of convert in that they rely on guesses
of |OPT |, but are different because they: (i) Implicitly use bicriteria approximation algorithms for
SMP which have better guarantees on the objective (γ) because they do not necessarily return a
feasible solution; (ii) Are more efficient with respect to the number of queries of f , since convert
potentially wastes many queries of f by doing essentially the same behavior for different guesses of
|OPT |.

2 Algorithms and theoretical guarantees

In this section, we present and theoretically analyze our algorithms, with each subsection correspond-
ing to the variant of SCP we consider. In particular, in Section 2.1 we first consider algorithms for
MSCP, followed by the general problem of SCP in Section 2.2, and finally in Section 2.3, we consider
algorithms for RMSCP.

2.1 Monotone submodular cover

In this section, we develop and analyze approximation algorithms for MSCP. The greedy algorithm is
a tight (ln(1/ϵ), 1− ϵ)-bicriteria approximation algorithm for MSCP [Krause et al., 2008]. However,
the greedy algorithm makes O(n2) queries of f , which is impractical in many application settings
with large U and/or when queries of f are costly [Mirzasoleiman et al., 2015a]. Motivated by this,
we propose and analyze the algorithms thresh-greedy-c and stoch-greedy-c for MSCP
which give about the same bicriteria approximation guarantees but in many fewer queries of f .

3

We first describe thresh-greedy-c. thresh-greedy-c is closely related to the existing
threshold greedy algorithm for monotone SMP (MSMP) [Badanidiyuru and Vondrák, 2014], and
therefore we relegate the pseudocode of thresh-greedy-c to Section 4.1 in the supplemen-
tary material and only include a brief discussion here. At each iteration of thresh-greedy-c,
instead of picking the element with the highest marginal gain into S, it sequentially adds any el-
ements in U with marginal gain above a threshold, w, at the time of addition. w is initialized to
maxu∈U f({u}), and is decreased by a factor of (1− ϵ/2) when the algorithm proceeds to the next
iteration. thresh-greedy-c adds elements to a solution S until f(S) reaches (1− ϵ)τ , which is
shown to happen in at most ln(2/ϵ)|OPT |+ 1 elements in the proof of Theorem 1. We now state
the theoretical guarantees of thresh-greedy-c in Theorem 1.
Theorem 1. thresh-greedy-c produces a solution with (ln(2/ϵ) + 1, 1− ϵ)-bicriteria approxi-
mation guarantee to MSCP, in O(nϵ log(

n
ϵ)) number of queries of f .

Another method of speeding up the standard greedy algorithm is by introducing randomization,
as has been done for MSMP in the stochastic greedy algorithm [Mirzasoleiman et al., 2015a]. A
natural question is whether a randomized algorithm for MSMP can be converted into an algorithm for
MSCP using the algorithm convert of Iyer and Bilmes [2013b]. However, convert relies on a
deterministic approximation guarantee. We now introduce a new algorithm called convert-rand
that is analogous to convert but runs the MSMP algorithm repeatedly in order to have the approxi-
mation guarantee hold with high probability. Pseudocode for convert-rand, as well as a proof of
Theorem 2 can be found in Section 4.1 in the supplementary material.
Theorem 2. Any randomized (γ,β)-bicriteria approximation algorithm for MSMP that runs in time
T (n) where γ holds only in expectation can be converted into an approximation algorithm for MSCP
that with probability at least 1− δ is a ((1 + α)β, γ − ϵ)-bicriteria approximation algorithm that
runs in time O(log1+α(|OPT |) ln(1/δ)T (n)/ ln(1−γ+ϵ

1−γ)).

Therefore by applying Theorem 2 to the stochastic greedy algorithm of Mirzasoleiman et al., we
have a (1 + α, 1− 1/e− ϵ)-bicriteria approximation algorithm for MSCP with high probability in
O(n log1+α(|OPT |) ln(1/δ) ln(1/ϵ)/ ln(1−γ+ϵ

1−γ)) queries of f . However, a factor of 1− 1/e− ϵ of
τ is not very close to feasible, and further the convert-rand method wastes many queries of f
essentially doing the same computations for different guesses of |OPT |. Therefore we focus the
rest of this section on developing an algorithm, stoch-greedy-c, that uses the techniques of the
stochastic greedy algorithm more directly for MSCP.

The idea behind the stochastic greedy algorithm for MSMP is that instead of computing the marginal
gains of all elements at each iteration, we take a uniformly random sampled subset from U and
pick the element with the highest marginal gain among the sampled subset. If the sampled subset is
sufficiently large, in particular of size at least (n/κ) ln(1/ϵ) where κ is the budget for the instance of
MSMP and ϵ > 0 is an input, then with high probability a uniformly random element of OPTSM

will appear in the sampled subset and the marginal gain of adding the element is nearly the same as
the standard greedy algorithm in expectation. However, in MSMP we know that |OPTSM | = κ, but
in MSCP |OPT | is unknown. Therefore it is not obvious how to apply this technique in a more direct
way than convert-rand.

We now introduce our algorithm stoch-greedy-c for MSCP, pseudocode for which is provided
in Algorithm 1. stoch-greedy-c takes as input ϵ > 0, δ > 0, α > 0, and an instance of MSCP.
stoch-greedy-c keeps track of O(ln(1/δ)) possibly overlapping solutions S1, S2, ... throughout
a sequence of iterations. stoch-greedy-c also keeps track of an estimate of |OPT |, g. During
each iteration, for each solution Si, stoch-greedy-c uniformly randomly and independently
samples a set R of size min{n, (n/g) ln(3/ϵ)} and adds u = argmax{∆fτ (Si, x) : x ∈ R} to Si.
Every time α

1+α ln(3/ϵ)g elements have been added to each Si, g is increased by a factor of 1 + α.
stoch-greedy-c stops once there exists an Si such that f(Si) ≥ (1 − ϵ)τ , and returns this
solution.

We now state the theoretical results for stoch-greedy-c in Theorem 3.
Theorem 3. Suppose that stoch-greedy-c is run for an instance of MSCP. Then with probability
at least 1− δ, stoch-greedy-c outputs a solution S that satisfies a ((1 + α)⌈ln(3/ϵ)⌉, 1− ϵ)-

bicriteria approximation guarantee in at most O
�

α
1+αn ln(1/δ) ln2(3/ϵ) log1+α(|OPT |)

�
queries

of f .

4

Algorithm 1 stoch-greedy-c
Input: ϵ,α, δ
Output: S ⊆ U

1: Si ← ∅ ∀i ∈ {1, ..., ln(1/δ)/ ln(2)}
2: r ← 1, g ← 1 + α
3: while f(Si) < (1− ϵ)τ ∀i do
4: for i ∈ {1, ..., ln(1/δ)/ ln(2)} do
5: R ← sample min{n, n ln(3/ϵ)/g} elements from U
6: u ← argmaxx∈R∆fτ (Si, x)
7: Si ← Si ∪ {u}
8: r ← r + 1
9: if r > ln(3/ϵ)g then g ← (1 + α)g

10: return argmin{|Si| : f(Si) ≥ (1− ϵ)τ}

Compared to thresh-greedy-c, stoch-greedy-c has a better dependence on ϵ in terms of
the number of queries made to f . In addition, it is possible to extend the stochastic greedy algorithm of
Mirzasoleiman et al. to a (1− ϵ, ln(1/ϵ))-bicriteria approximation algorithm for MSMP and then use
convert-rand (see Section 4.1 in the supplementary material). However, stoch-greedy-c
still would have strictly fewer queries of f by a factor of α

1+α compared to this approach because
convert-rand does essentially the same computations for different guesses of |OPT |.
In order to prove Theorem 3, we first need Lemma 1 below, which states that as long as g ≤
(1 + α)|OPT |, the marginal gain of adding u in Line 6 is about the same as the standard greedy
algorithm in expectation. Next, Lemma 2 below uses Lemma 1 to show that by the time g reaches
(1 + α)|OPT |, E[fτ (Si)] ≥ (1 − ϵ

2)τ for all i. Finally, because there are O(ln(1/δ)) solutions,
by the time g reaches (1 + α)|OPT |, there exists i such that f(Si) ≥ (1− ϵ)τ with probability at
least 1 − δ by using concentration bounds, which is stated in Lemma 3. Because of Lemma 3 we
keep increasing g by a factor of (1 + α) periodically, because intuitively the longer we keep adding
elements, the bigger we know that |OPT | must be since the algorithm is still running and none of the
solution sets has reached (1− ϵ)τ yet. The proof of Lemmas 1 and 2, and of Theorem 3 can be found
in Section 4.1 in the supplementary material.

Lemma 1. Consider any of the sets Si at the beginning of an iteration on Line 4 where g ≤
(1 + α)|OPT |. Then if ui is the random element that will be added on Line 6, we have that
E[∆fτ (Si, ui)] ≥ 1−ϵ/3

(1+α)|OPT | (τ − fτ (Si)).

Lemma 2. Once r reaches (1 + α)⌈ln(3/ϵ)|OPT |⌉, we have that E[fτ (Si)] ≥

1− ϵ

2

�
τ for all i.

Lemma 3. With probability at least 1 − δ, once r reaches (1 + α)⌈ln(3/ϵ)|OPT |⌉, we have that
maxi f(Si) ≥ (1− ϵ)τ .

2.2 Non-monotone submodular cover

In this section, we introduce and theoretically analyze the algorithm stream-c for SCP in the
general setting, where f is not assumed to be monotone. In the general setting, the standard greedy
algorithm doesn’t have non-trivial approximation guarantee for SCP. In addition, it has previously
been shown that it is not possible for an algorithm to guarantee that f(X) ≥ τ/2 for SCP, where
X is its returned solution, in polynomially many queries of f assuming the value oracle model
[Crawford, 2023]. Our algorithm stream-c does produce a solution X that is guaranteed to satisfy
f(X) ≥ (1− ϵ)τ , but relies on solving an instance of SMP exactly on a set of size O(|OPT |/ϵ2).
Despite not being polynomial time, stream-c is still useful for some instances of SCP because:
(i) |OPT | may be relatively small; and (ii) the instance of SMP may be relatively easy to solve, e.g.
f may be very close to monotone on the instance of SMP even if it was very non-monotone on the
original instance of SCP. These aspects of stream-c are further explored in Section 3.

We now describe stream-c, pseudocode for which can be found in Algorithm 2. stream-c takes
as input ϵ > 0, α > 0, and an instance of SCP. stream-c takes sequential passes through the
universe U (Line 4) with each pass corresponding to a new guess of |OPT |, g. g is initialized as
1+α, and at the end of each pass is increased by a factor of 1+α. Throughout stream-c, a subset

5

Algorithm 2 stream-c
Input: ϵ, α
Output: S ⊆ U

1: S ← ∅, S1 ← ∅, ..., S2/ϵ ← ∅
2: g ← 1 + α
3: while f(S) < (1− ϵ)τ do
4: for u ∈ U do
5: if ∃j s.t. ∆f(Sj , u) ≥ ϵτ/(2g) and |Sj | < 2g/ϵ then
6: Sj ← Sj ∪ {u}
7: S ← argmax{f(X) : X ⊆ ∪2/ϵ

i=1Si, |X| ≤ 2g/ϵ}
8: g = (1 + α)g

9: return S

of elements of U are stored into 2/ϵ disjoint sets, S1, ..., S2/ϵ. An element u is stored in at most
one set Sj if both of the following are true: (i) |Sj | < 2g/ϵ; (ii) adding u is sufficiently beneficial
to increasing the f value of Sj i.e. ∆f(Sj , u) ≥ ϵτ/(2g). If no such Sj exists, u is discarded. At
the end of each pass, stream-c finds S = argmax{f(X) : X ⊆ ∪Si, |X| ≤ 2g/ϵ} on Line 7. If
f(S) ≥ (1 − ϵ)τ , then S is returned and stream-c terminates. We now present the theoretical
guarantees of stream-c in Theorem 4.
Theorem 4. Suppose that stream-c is run for an instance of SCP. Then stream-c returns S
such that f(S) ≥ (1− ϵ)τ and |S| ≤ (1 + α)(2/ϵ)|OPT | in at most

log1+α(|OPT |)
�
2n

ϵ
+ T

�
(1 + α)

�
4

ϵ2
|OPT |

���

queries of f , where T (m) is the number of queries to f of the algorithm for SMP used on Line 7 of
Algorithm 2 on an input set of size m.

The key idea for proving Theorem 4 is that by the time g is in the region [|OPT |, (1+α)|OPT |], there
exists a subset X ⊆ ∪Si such that |X| ≤ 2g/ϵ and f(X) ≥ (1−ϵ)τ . In fact, it is shown in the proof of
Lemma 4 in Section 4.2 of the supplementary material that the set X is St∪(∪iSi∩OPT) for a certain
one of the sets St. Then when we solve the instance of SMP on Line 7, we find a set that has these
same properties as X , and stream-c returns this set and terminates. Because g ≤ (1 + α)|OPT |,
the properties described in Theorem 4 hold. Further notice that | ∪i Si| ≤ 2(1 + α)|OPT |/ϵ2
at all times before stream-c exits, which implies the bounded query complexity in Theorem 4.
The key idea for proving Theorem 4 is stated below in Lemma 4 and proven in Section 4.2 in the
supplementary material.
Lemma 4. By the time that g reaches the region [|OPT |, (1 + α)|OPT |] and the loop on Line 4 of
stream-c has completed, there exists a set X ⊆ ∪Si of size at most 2(1 + α)|OPT |/ϵ such that
f(X) ≥ (1− ϵ)τ .

2.3 Regularized monotone submodular cover

The final class of submodular functions we consider take the form f = g − c where g is monotone,
submodular, and nonnegative, while c is a modular, nonnegative penalty cost function, called the
Regularized Monotone Submodular Cover Problem (RMSCP). In this case, f may take on negative
values and therefore this class of submodular functions does not fit into general SCP. f may also
be nonmonotone. Existing theoretical guarantees for the dual problem of Regularized Monotone
Submodular Maximization (RMSMP) are in a different form than typical approximation algorithms
[Harshaw et al., 2019, Kazemi et al., 2021]. In particular, they are of the following form: Given
budget κ, the RMSMP algorithm is guaranteed to return a set S such that |S| ≤ κ and g(S)− c(S) ≥
γg(OPTSM)− c(OPTSM) where γ is some value less than 1, e.g. 1− 1/e for the distorted greedy
algorithm of Harshaw et al.. A guarantee of this form means convert cannot be used (the check on
Line 2 of the pseudocode for convert in the appendix is the problem). Motivated by this, we first
develop an algorithm, convert-reg, that takes algorithms for RMSMP and converts them into
an algorithm for RMSCP. Next, we propose a generalization of the distorted greedy algorithm of
Harshaw et al. for RMSMP, called distorted-bi, that can be used along with convert-reg
to produce an algorithm for RMSCP.

6

Algorithm 3 convert-reg
Input: α > 0
Output: S ⊆ U

1: κ ← 1 + α, S ← ∅
2: while g(S)− γ

β c(S) < γτ do
3: S ←reg run with objective g − γ

β c and budget κ
4: κ ← (1 + α)κ

5: return S

We now describe convert-reg, pseudocode for which can be found in Algorithm 3.
convert-reg takes as input an algorithm reg for RMSMP with the guarantees described previ-
ously, and α > 0. convert-reg repeatedly makes guesses for |OPT |, κ. For each guess κ, the
algorithm reg is run on an instance of RMSMP with objective g − (γ/β)c and budget κ. Once
g − (γ/β)c reaches γτ , convert-reg exits.

The theoretical guarantees of convert-reg are stated below in Theorem 5 and proven in Section
4.3 in the supplementary material. Theorem 5 makes a slightly stronger assumption on reg than its
approximation guarantees relative to OPTSM . In particular, it is assumed that it returns a solution
satisfying |S| ≤ ρκ and g(S)− c(S) ≥ γg(X)− βc(X) for all X ⊆ U such that |X| ≤ κ, not just
for OPTSM . However, this is true of many algorithms for RMSMP including the distorted greedy
algorithm of Harshaw et al..

Theorem 5. Suppose that we have an algorithm reg for RMSMP, and given budget κ reg is
guaranteed to return a set S of cardinality at most ρκ such that g(S) − c(S) ≥ γg(X) − βc(X)
for all X such that |X| ≤ κ, in time T (n). Then the algorithm convert-reg using reg as
a subroutine returns a set S in time O(log1+α(n)T (n)) such that |S| ≤ (1 + α)ρ|OPT | and
g(S)− γ

β c(S) ≥ γτ.

If we use convert-reg on the distorted greedy algorithm of Harshaw et al., we end up with
an algorithm for RMSCP that is guaranteed to return a set S such that |S| ≤ (1 + α)|OPT | and
g(S)− (1− 1/e)c(S) ≥ (1− 1/e)τ . If we set c = 0, then the problem setting reduces to MSCP and
the distorted greedy algorithm of Harshaw et al. [2019] is equivalent to the standard greedy algorithm.
However, our approximation guarantee does not reduce to the (ln(1/ϵ), 1−ϵ)-bicriteria approximation
guarantee that would be preferable. A more intuitive result would be one that converges to that
of the standard greedy algorithm as c goes to 0. Motivated by this, we now propose an extension
of the distorted greedy algorithm of Harshaw et al. [2019] for RMSMP, distorted-bi, that
accomplishes this.

We now describe distorted-bi, pseudocode for which can be found in Section 4.3 in the
supplementary material. distorted-bi takes as input an instance of RMSMP and ϵ > 0.
distorted-bi is related to the standard greedy algorithm, but instead of making queries to
g− c, distorted-bi queries a distorted version of g− c that de-emphasizes g compared to c, and
evolves over time. In particular, when element i is being added to the solution set, we choose the
element of maximum marginal gain, provided it is positive, to the objective

Φi(X) =

�
1− 1

κ

�ln(1/ϵ)κ−i

g(X)− c(X).

The theoretical guarantees of distorted-bi are now presented in Theorem 6, and the proof of
Theorem 6 can be found in Section 4.3 in the supplementary material.

Theorem 6. Suppose that distorted-bi is run for an instance of RMSMP. Then
distorted-bi produces a solution S in O(nκ ln(1/ϵ)) queries of f such that |S| ≤ ln(1/ϵ)κ
and for all X ⊆ U such that |X| ≤ κ, g(S)− c(S) ≥ (1− ϵ)g(X)− ln(1/ϵ)c(X).

Therefore by running convert-reg with distorted-bi as a subroutine for RMSMP,
we end up with an algorithm for RMSCP that is guaranteed to return a set S such that
|S| ≤ (1 + α) ln(1/ϵ)|OPT | and g(S) − (1 − ϵ)c(S)/ ln(1/ϵ) ≥ (1 − ϵ)τ in O((1 +
α)n|OPT | log1+α(|OPT |) log(1/ϵ)) queries of f .

7

0.2 0.4 0.6 0.8 1.0
threshold

1.5

3.0

4.5

6.0

f

×103

SG2

SG

G

TG

(a) cover f

0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.4

0.8

1.2

s
iz
e

×103

SG2

SG

G

TG

(b) cover size

0.2 0.4 0.6 0.8 1.0
threshold

0.0

1.5

3.0

4.5

q
u
e
ri
e
s

×106

SG2

SG

G

TG

(c) cover queries

0.05 0.10 0.15
ε

0.0

0.8

1.6

2.4

q
u
e
ri
e
s

×106

SG2

SG

G

TG

(d) cover queries

0.2 0.4 0.6 0.8 1.0
threshold

0.6

1.2

1.8

2.4

f

×105

DG

RG

EX

F-EX

(e) euall f

0.2 0.4 0.6 0.8 1.0
threshold

0

150

300

450

s
iz
e

DG

RG

EX

F-EX

(f) euall size

0.2 0.4 0.6 0.8 1.0
threshold

1.5

3.0

4.5

6.0

q
u
e
ri
e
s

×106

DG

RG

EX

F-EX

(g) euall queries

0.1 0.2 0.3 0.4 0.5
ε

2

4

6

8

q
u
e
ri
e
s

×106

DG

RG

F-EX

EX

(h) euall queries

Figure 1: The experimental results of running the monotone algorithms on instances of data summa-
rization on the delicious URL dataset ("cover") and running stream-c on the instances of graph
cut on the email-EuAll graph ("euall").

3 Experiments

In this section, we experimentally evaluate the algorithms proposed in Sections 2.1 and 2.2. In
particular, the emphasis of Section 3.1 is on evaluation of our algorithm stoch-greedy-c on
instances of data summarization, an application of MSCP. Next, we evaluate stream-c on instances
of graph cut, an application of SCP that is not monotone, in Section 3.2. Additional details about the
applications, setup, and results can be found in Section 5 in the supplementary material.

3.1 Monotone submodular objective

We first compare the solutions returned by stoch-greedy-c ("SG"), greedy-c ("G"),
thresh-greedy-c ("TG"), and convert-rand using the bicriteria extension of the stochastic
greedy algorithm of Mirzasoleiman et al. (see Section 4.1 in the supplementary material) ("SG2") on
instances of data summarization. The data summarization instance featured here in the main paper
is the delicious dataset of URLs tagged with topics, and f takes a subset of URLs to the number of
distinct topics represented by those URLs (n = 5000 with 8356 tags) [Soleimani and Miller, 2016].
Additional datasets are explored in Section 5.2 in the supplementary material. We run the algorithms
with input ϵ in the range (0, 0.15) and threshold values between 0 and f(U) (f(U) is the total number
of tags). When ϵ is varied, τ is fixed at 0.6f(U). When τ is varied, ϵ is fixed at 0.2. The parameter α
is set to be 0.1 and the initial guess of |OPT | for stoch-greedy-c and convert-rand is set
to be τ/maxs f(s).

The results in terms of the f values and size of the solutions are presented in Figure 1(a) and 1(b).
From the plots, one can see that the f values and size of solutions returned by stoch-greedy-c,
greedy-c, thresh-greedy-c are nearly the same, and are smaller than the ones returned by
convert-rand. This is unsurprising, because the theoretical guarantees on f and size are about
the same for the different algorithms, but convert-rand tends to perform closer to its worst case
guarantee on size. The number of queries to f for different ϵ and τ are depicted in Figures 1(d)
and 1(c). Recall that the theoretical worst case number of queries to f for stoch-greedy-c,
greedy-c, thresh-greedy-c and convert are O((α/(1 + α))n ln2(1/ϵ) log1+α(|OPT |)),
O(n ln(1/ϵ)|OPT |), O(n log(|OPT |/ϵ)/ϵ), and O(n ln2(1/ϵ) log1+α(|OPT |) respectively. As ex-
pected based on these theoretical guarantees, greedy-c does the worst and increases rapidly
as τ (and therefore |OPT |) increases. thresh-greedy-c tends to do worse compared to
stoch-greedy-c and convert as ϵ gets smaller. stoch-greedy-c consistently performs
the fastest out of all of the algorithms.

8

3.2 Non-Monotone Submodular Objective

We now analyze the performance of stream-c on several instances of graph cut over real social
network data. The universe U is all nodes in the network, and f is the number of edges between a set
and its complement. The network featured in the main paper is the email-EuAll dataset (n = 265214,
420045 edges) from the SNAP large network collection [Leskovec and Sosič, 2016] and additional
datasets can be found in Section 5.1 in the supplementary material. We run stream-c with input
ϵ in the range (0, 0.5) and threshold values between 0 and f(X) where X is a solution returned by
the unconstrained submodular maximization algorithm of Buchbinder et al. [2015] on the instance.
When ϵ is varied, τ is fixed at 0.9f(X). When τ is varied, ϵ is fixed at 0.15.

We compare the performance of stream-c using several possible algorithms for the subroutine of
SMP over ∪Si (see line 7 in Algorithm 2), including a polynomial time approximation algorithm
and an unconstrained submodular maximization algorithm. In particular, we use the random greedy
approximation algorithm for SMP that is proposed in Buchbinder et al. [2014] ("RG"), and the double
greedy approximation algorithm for unconstrained submodular maximization proposed in Buchbinder
et al. [2015] ("DG"). Random greedy and double greedy are both approximation algorithms (1/e
in expectation and 1/2 in expectation respectively), and therefore the stopping conditions are set to
be (1−ϵ)τ

e and (1−ϵ)τ
2 respectively. We also consider an exact algorithm ("EX"), which essentially is

a greedy heuristic followed by an exact search of all (exponentially many) possible solutions if the
greedy fails. On instances where the exact algorithm was unable to complete in a time period of 5
minutes, we did not include a data point. We further discuss the use of these algorithms in Section
5.1 in the supplementary material.

Before introducing the fourth subroutine, we discuss an interesting pattern that we saw in our instances
of graph cut. We noticed that it was often the case that: (i) ∪Si tended to be small compared to its
upper bound and in fact typically | ∪ Si| was smaller than the SMP constraint, making the subroutine
an instance of unconstrained submodular maximization; (ii) The majority of elements (if not all)
were "monotone" in the sense that for many x ∈ ∪Si, ∆f(∪Si/x, x) ≥ 0. Let M ⊆ ∪Si be the set
of monotone elements. It follows that if (i) holds, then the instance of submodular maximization
is equivalent to argmaxX∈∪Si/M f(X ∪M). If M is large in ∪Si, this new problem instance is
relatively easy to solve exactly. This motivates our fourth algorithm, fast-exact ("F-EX"), used on
instances where (i) holds, and is to separate ∪Si into monotone and non-monotone and search for the
best subset amongst the non-monotone elements in a similar manner as the plain exact algorithm. We
explore to what extent properties (i) and (ii) hold on different instances, as well as give additional
details about the fast exact algorithm, in Section 5.2 in the supplementary material.

The results in terms of the f values and size of the output solutions returned by the four algorithms
are plotted in Figure 1(e) and Figure 1(f). From the plots, one can see that the f values satisfy
that f(Sexact) ≈ f(Sf-exact) > f(SDG) > f(SRG). This is due to the stopping conditions for each
algorithm, which follow from each algorithms approximation guarantee on f of 1 − ϵ, 1 − ϵ, 1/2,
and 1/e respectively. On the other hand, the size mirrors the f value, since it tends to be the case
that reaching a higher f value requires more elements from U . The number of queries made by the
algorithms can be seen in Figure 1(h) and 1(g). As expected, the exact algorithms make more queries
compared to the approximation algorithms, and in some cases "EX" doesn’t even finish. However, by
taking advantage of the properties (i) and (ii) discussed above, "F-EX" is able to run even for smaller
ϵ. Therefore, depending on the application, an exact algorithm on the relatively small set ∪Si may be
a practical choice in order to achieve a solution that is very close to feasible.

9

References
Eric Balkanski, Adam Breuer, and Yaron Singer. Non-monotone submodular maximization in

exponentially fewer iterations. Advances in Neural Information Processing Systems, 31, 2018.

Rishabh Iyer, Ninad Khargonkar, Jeff Bilmes, and Himanshu Asnani. Generalized submodular
information measures: Theoretical properties, examples, optimization algorithms, and applications.
IEEE Transactions on Information Theory, 68(2):752–781, 2021.

Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. Near-optimal map inference for determinantal
point processes. Advances in Neural Information Processing Systems, 25, 2012.

MohammadHossein Bateni, Hossein Esfandiari, and Vahab Mirrokni. Almost optimal streaming
algorithms for coverage problems. In Proceedings of the 29th ACM Symposium on Parallelism in
Algorithms and Architectures, pages 13–23, 2017.

Suraj Kothawade, Nathan Beck, Krishnateja Killamsetty, and Rishabh Iyer. Similar: Submodular
information measures based active learning in realistic scenarios. Advances in Neural Information
Processing Systems, 34:18685–18697, 2021.

Suraj Kothawade, Saikat Ghosh, Sumit Shekhar, Yu Xiang, and Rishabh Iyer. Talisman: targeted
active learning for object detection with rare classes and slices using submodular mutual infor-
mation. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XXXVIII, pages 1–16. Springer, 2022.

Wei-Xuan Bao, Jun-Yi Hang, and Min-Ling Zhang. Submodular feature selection for partial label
learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 26–34, 2022.

Marwa El Halabi, Suraj Srinivas, and Simon Lacoste-Julien. Data-efficient structured pruning via
submodular optimization. Advances in Neural Information Processing Systems, 35:36613–36626,
2022.

Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. Learning mixtures
of submodular functions for image collection summarization. Advances in neural information
processing systems, 27, 2014.

Ravikumar Balakrishnan, Tian Li, Tianyi Zhou, Nageen Himayat, Virginia Smith, and Jeff Bilmes.
Diverse client selection for federated learning via submodular maximization. In International
Conference on Learning Representations, 2022.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978a.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015a.

Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. Submodular maximization beyond
non-negativity: Guarantees, fast algorithms, and applications. In International Conference on
Machine Learning, pages 2634–2643. PMLR, 2019.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 1433–1452. SIAM, 2014.

Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. Optimal marketing strategies over social
networks. In Proceedings of the 17th international conference on World Wide Web, pages 189–198,
2008.

Uriel Feige. A threshold of ln(n) for approximating set cover. Journal of the ACM (JACM), 45(4):
634–652, 1998.

Rishabh K Iyer and Jeff A Bilmes. Submodular optimization with submodular cover and submodular
knapsack constraints. Advances in neural information processing systems, 26, 2013a.

10

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978b.

Laurence A Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica, 2(4):385–393, 1982.

Peng-Jun Wan, Ding-Zhu Du, Panos Pardalos, and Weili Wu. Greedy approximations for minimum
submodular cover with submodular cost. Computational Optimization and Applications, 45(2):
463–474, 2010.

Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, and Andreas Krause. Dis-
tributed submodular cover: Succinctly summarizing massive data. In Advances in Neural Informa-
tion Processing Systems, pages 2881–2889, 2015b.

Baharan Mirzasoleiman, Morteza Zadimoghaddam, and Amin Karbasi. Fast distributed submodular
cover: Public-private data summarization. In Advances in Neural Information Processing Systems,
pages 3594–3602, 2016.

Victoria Crawford, Alan Kuhnle, and My Thai. Submodular cost submodular cover with an ap-
proximate oracle. In International Conference on Machine Learning, pages 1426–1435. PMLR,
2019.

Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust submodular
observation selection. Journal of Machine Learning Research, 9(12), 2008.

Baharan Mirzasoleiman, Amin Karbasi, Ashwinkumar Badanidiyuru, and Andreas Krause. Dis-
tributed submodular cover: Succinctly summarizing massive data. Advances in Neural Information
Processing Systems, 28, 2015c.

Ashkan Norouzi-Fard, Abbas Bazzi, Ilija Bogunovic, Marwa El Halabi, Ya-Ping Hsieh, and Volkan
Cevher. An efficient streaming algorithm for the submodular cover problem. In Advances in
Neural Information Processing Systems, pages 4493–4501, 2016.

Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadimoghaddam. Submodular maximization with
nearly optimal approximation, adaptivity and query complexity. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 255–273. SIAM, 2019.

Victoria Crawford. Scalable bicriteria algorithms for non-monotone submodular cover. In Interna-
tional Conference on Artificial Intelligence and Statistics, pages 9517–9537. PMLR, 2023.

Naor Alaluf, Alina Ene, Moran Feldman, Huy L Nguyen, and Andrew Suh. An optimal streaming
algorithm for submodular maximization with a cardinality constraint. Mathematics of Operations
Research, 47(4):2667–2690, 2022.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular functions.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1497–1514. SIAM, 2014.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular functions.
SIAM Journal on Computing, 40(4):1133–1153, 2011.

Rishabh K Iyer and Jeff A Bilmes. Submodular optimization with submodular cover and submodular
knapsack constraints. In Advances in Neural Information Processing Systems, pages 2436–2444,
2013b.

Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In
Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages
1098–1116. SIAM, 2011.

Ehsan Kazemi, Shervin Minaee, Moran Feldman, and Amin Karbasi. Regularized submodular
maximization at scale. In International Conference on Machine Learning, pages 5356–5366.
PMLR, 2021.

11

Hossein Soleimani and David J Miller. Semi-supervised multi-label topic models for document
classification and sentence labeling. In Proceedings of the 25th ACM international on conference
on information and knowledge management, pages 105–114, 2016.

Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining library.
ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1–20, 2016.

Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM Journal on Computing, 44(5):
1384–1402, 2015.

Pinar Duygulu, Kobus Barnard, Joao FG de Freitas, and David A Forsyth. Object recognition as
machine translation: Learning a lexicon for a fixed image vocabulary. In Computer Vision—ECCV
2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002
Proceedings, Part IV 7, pages 97–112. Springer, 2002.

12

