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Abstract

Light Detection and Ranging (LiDAR) technology has
become crucial in robotics and autonomous systems
for generating precise 3D environmental representations.
However, challenges persist in achieving high accuracy and
precision, especially in indoor environments. This paper
rigorously analyzes the performance of various indoor Li-
DAR systems under different conditions. We present a novel
experimental methodology, which quantifies LiDAR accu-
racy and precision, examining factors such as sensor type,
environmental conditions, and target characteristics. Us-
ing an extensive dataset collected from nine distinct loca-
tions with more than 36000 LiDAR scans, combined with
high-precision reference data from a FARO laser scanner,
our analysis reveals significant insights into the accuracy
and precision across different LIDAR models. The result-
ing public dataset, which include detailed point clouds and
groundtruth labels, are expected to serve as a valuable re-
source for developing and validating advanced LiDAR pro-
cessing techniques and benchmarks for various applica-
tions. The dataset will be publicly available at http :
//lidaraccuracy.github. io.

1. Introduction

Rapid advancements in Light Detection and Ranging (Li-
DAR) technology have significantly impacted robotics and
autonomous driving, establishing it as an essential tool for
precise environmental mapping and navigation. The abil-
ity of LiDAR to generate high-resolution 3D representa-
tions is indispensable for applications like autonomous ve-
hicles, drones, and mobile robots that require accurate per-
ception and real-time mapping [24]. The integration of Li-
DAR into Simultaneous Localization and Mapping (SLAM)
algorithms has substantially improved navigation systems,
especially in indoor environments where GPS is unavail-
able. In robotics, LiDAR’s capabilities facilitate efficient

environmental perception, obstacle avoidance, and object
interaction, while in autonomous vehicles, it plays a criti-
cal role in obstacle detection and safe navigation. Beyond
robotics, LiDAR’s utility extends to geospatial analysis, ur-
ban planning, and environmental monitoring, underscoring
its extensive relevance across various domains.

Despite the significant improvements in LiDAR technol-
ogy over recent years, challenges related to the precision
and accuracy of LiDAR data persist. Precision refers to the
consistency of measurement results, while accuracy denotes
the closeness of these results to the true value. Although
modern LiDAR systems have seen enhancements in both
aspects, there remains a gap when compared to high-end
Terrestrial Laser Scanners (TLS), which offer mm-level ac-
curacy but are often less practical for dynamic and mobile
applications due to their size, cost, and operational com-
plexity [26].

The accuracy and precision of LIDAR measurements di-
rectly impact the reliability and effectiveness of systems re-
lying on them. In robotics, precise spatial information is
essential for tasks such as autonomous navigation, obsta-
cle avoidance, and interaction with objects. High accuracy
in LiDAR data ensures that robots can operate safely and
efficiently in complex environments, reducing the risk of
collisions and improving task performance. Similarly, in
autonomous vehicles, accurate LiDAR data is vital for en-
suring safe and reliable navigation, enabling vehicles to de-
tect and identify objects, pedestrians, and road conditions
with high fidelity.

LiDAR measurements are influenced by a complex inter-
play of factors, particularly in indoor environments. These
factors include both intrinsic characteristics of the LIDAR
systems and extrinsic environmental conditions [16]. The
inherent properties of LiDAR devices, such as their hard-
ware design, number of channels, and field of view, funda-
mentally affect their performance in terms of range, reso-
lution, and accuracy. Concurrently, measurement accuracy
is heavily impacted by environmental variables, including
incident angle, distance to target, surface reflectivity, and


http://lidaraccuracy.github.io
http://lidaraccuracy.github.io

material properties. The intricacies of indoor spaces, char-
acterized by reflective surfaces, variable lighting conditions,
and complex geometries, introduce additional complexity.

Assessing and quantifying the precision and accuracy of
LiDAR systems is essential for enhancing a wide range of
applications. In traditional measurement and reconstruction
tasks, improvements in LiDAR accuracy can yield more de-
tailed and reliable 3D models of environments, which are
crucial for both practical and research purposes. It also
holds the potential to advance cutting-edge computer vision
and robotics algorithms. For example, in Truncated Signed
Distance Function (TSDF) based mapping approaches[19],
the precision of LiDAR points contributes to more accu-
rate surface thickness estimations, thereby enhancing the
fidelity of 3D reconstructions. Similarly, in the emerging
field of 3D Gaussian Splatting[15], which seeks to repre-
sent 3D scenes as collections of 3D Gaussians, knowing the
precision and accuracy of LiDAR points may improve the
estimation of Gaussian distributions, offering a more reli-
able alternative to traditional Structure from Motion (SfM)
techniques.

This study aims to push the limits of LiDAR perfor-
mance in indoor settings. Our main contributions are as
follows:

* A highly accurate experimental methodology for LIDAR
performance analysis using precision reference data.

* Quantitative analysis of LiDAR accuracy and precision
dependencies on key factors such as incident angle, dis-
tance, and material properties.

e Comprehensive performance comparison of multiple
modern LiDAR models under diverse indoor conditions.

* A large-scale public dataset of over 36,000 LiDAR scans
with high-precision ground truth and extensive metadata
to support further research and development.

The paper is structured as follows: Section 2 provides
an overview of related work in LiDAR accuracy assessment
and calibration. Section 3 details our experimental setup
and data collection hardware. Section 4 presents the collec-
tion of our dataset and evaluation metrics. Section 5 offers
a comprehensive analysis of the dataset results, including
detailed error assessments across various parameters. Sec-
tion 6 verifies our findings. Finally, Section 7 concludes the
paper and suggests directions for future research.

2. Related Work

A line of research focuses on the calibration of LiDAR sen-
sors. Early studies mainly focused on older rotating Li-
DAR models such as the Velodyne. For instance, Muham-
mad et al.[20] devised a calibration method for the Velo-
dyne HDL64E, using a controlled environment and multi-
ple scans. Nouira et al.[21] introduced a target-free cali-
bration technique for the HDL32E requiring high-resolution

point clouds. Bergelt et al.[3] and Sun et al.[25] proposed
intrinsic calibration techniques that assume minimal initial
errors or fixed sensor positions—assumptions that may not
be universally applicable. Atanacio-Jiménez et al.[2] used
specific pattern planes for the calibration of the HDL-64E.
While these studies have significantly advanced the LIDAR
calibration, they primarily focus on older models character-
ized by more complex structures and higher error margins.
Modern LiDAR sensors, with their different designs and re-
duced error margins, may therefore require further research
to develop more general calibration approaches.

In parallel, self-calibration of 3D LiDAR systems has be-
come a critical research topic. Lee et al.[18] explored the
validation of LiDAR calibration using simulators, though
such approaches may not fully capture the complexities of
real-world error sources. Agishev et al.[1] proposed a self-
supervised depth correction method utilizing a total station
and Leica scanner, which demonstrated the influence of in-
cidence angles on measurements. However, this method has
limitations, as it applies to only one specific type of LiDAR,
and the platform can only move horizontally, without ac-
counting for varied rotational scenarios.

Another area of research is the accuracy assessment and
performance analysis of different LiDAR scanners. Kelly et
al.[14] evaluated the distance measurement accuracy of the
Velodyne HDL32E and Livox Mid40, identifying temporal
biases in both devices. Similarly, Glennie and Hartzell[7]
conducted a detailed geometric accuracy analysis of the
Ouster OS1-64 and Livox Mid40. These studies used Rigel
3D scanners for precise point cloud acquisition, but did not
have precise sensor poses, instead estimating them through
target or plane matching. Cattini et al.[4] presented a proce-
dure for characterizing and comparing 3D LiDAR systems,
but their analysis did not fully explore the limitations and
applicability of different LIDAR models across diverse sce-
narios. Laconte et al.[16] investigated the relationship be-
tween measurement noise and incidence angles, revealing
significant biases at high incidence angles for several Li-
DAR models. However, these approaches, which measure
sensor translation via tracks and use specific materials, do
not incorporate varied rotations or offer a ground truth point
cloud analysis in typical environments.

In other applications like automotive, Haider et al.[8] and
Lambert et al.[17] evaluated the performance of MEMS-
based and other common 3D LiDARs. However, these stud-
ies often focused on specific targets, like balls or chess-
boards, within controlled environments, may limit their rel-
evance to diverse real-world conditions, particularly in in-
door settings. Pathak et al.[23] presented a new technique
for the update of a probabilistic spatial occupancy grid map
using a 3D forward sensor model. Elaksher et al. [5] also
offered a quantitative assessment of LiDAR data accuracy,
focusing on outdoor UAV applications.



LiDAR Channels Resolution FOV Range Accuracy(cm) Precision(cm)

Hesai PandarQT64[9] 64 600 104.2° 20 +3 2

Hesai PandarXT32[10] 32 2000 50 +2,up to %1 2,upto 0.5
+2(0.3-1m)

+3 lambertian +1(1-10m)

Ouster OSO-128 Rev6[11] 128 1024 15 110 retroreflectors  +1.5(10-15m)
+5(>15m)

Ouster 0S0-128 Rev7[12] 128 1024 35 22 lambertian - 0.8-dcm

+5 retroreflectors Increase w/ dist.

Table 1. LiDAR Device Specifications (From Manufacturer Datasheets) Range means the max detectable distance at 10% Reflectivity.

3. Data Collection and Calibration
3.1. LiDAR Hardware

The study evaluates the accuracy of four commonly used
LiDAR sensors in indoor applications. Table 1 summa-
rizes their key specifications. The selection of these sensors
was motivated by their popularity and representativeness of
common indoor LiDAR solutions.

* Hesai PandarQT64 (HesaiQT): Emphasizing low cost,
compact size, lightweight design, and a wide field of
view, it is suitable for applications requiring extensive
coverage and efficient mapping in larger spaces [9].

e Hesai PandarXT32 (HesaiXT): Despite having fewer
channels, it focuses on high precision and longer detec-
tion range [10].

* QOuster OS0-128 Rev6 (Ouster6): Offering high angular
resolution and point cloud density in a compact form fac-
tor, it can capture millions of points per second for de-
tailed environmental mapping [11].

e Quster OS0-128 Rev7 (Ouster7): Powered by the next-
generation L3 chip, this upgraded sensor delivers double
the range, enhanced object detection, increased precision
and accuracy, and greater reliability [12].

3.2. Data Collection Hardware
3.2.1 FARO Laser Scanner

A FARO Focus X330 terrestrial laser scanner was employed
to establish highly accurate ground truth reference data.
Renowned for its precision, with a ranging error of £2 mm
and ranging noise of less than 0.5 mm, it ensures min-
imal systematic bias and high precision in the reference
point clouds [6]. The scanner’s extensive field of view of
300°x360° offers comprehensive coverage of the test envi-
ronment, and its high resolution ensures detailed represen-
tation of object shapes and surface textures. The superior
accuracy of the FARO allows any observed errors in the Li-
DAR data to be attributed to the LIDAR sensors themselves
rather than the limitations of the ground truth. The FARO
Focus X330 was calibrated by the manufacturer and its ac-
curacy is verified.

3.2.2 OptiTrack Tracking System

The OptiTrack motion capture system, comprising 12
“Prime 13” high-precision cameras, was employed to track
the marker with a translation accuracy of sub-millimeter
[22]. By creating a rigid body with multiple markers, the
rotation can be tracked precisely. It ensures precise Li-
DAR localization by providing accurate data on the Li-
DAR’s pose, which is essential for transforming the cap-
tured point clouds into the ground truth coordinate system.
The sub-millimeter accuracy of the OptiTrack system min-
imizes uncertainties in the LiDAR-to-arm calibration pro-
cess, enabling the isolation of errors from the LiDAR sen-
sors instead of pose.

3.2.3 Robot Platform with Arm and LiDAR mount

As shown in Figure 1a, the Clearpath Husky mobile robot
served as a stable base for the LiDAR sensors. Its robust
construction effectively minimized vibrations and unwanted
motion during data collection, providing the necessary sta-
bility for accurate data acquisition.

A Schunk LWA 4P robotic arm was mounted on the
Husky using a CNC aluminum frame to precisely position
the LiDAR sensors for systematic testing. The arm’s 6DOF
motion allowed for flexible placement of the LiDAR, en-
abling the investigation of their accuracy under various sce-
narios with different distances and angles of incidence.

The LiDAR sensor was installed using a high-precision,
temperature-resistant mount fabricated from photopolymer
resin via 3D printing. The mount was firmly attached to the
arm’s end effector, with eight OptiTrack markers creating a
rigid body for it. The screw holes were designed according
to each LiDAR’s manual, and the axis was aligned. The 3D
printer had a nominal error of 0.2mm, verified by measure-
ment.

3.3. Test Environment and Data Collection

The test environment, as shown in Figure 1c, was designed
to include a wide range of materials such as wood, paper,
multi-colored plastic sheets, foam, wallpaper, electrostatic
stickers, whiteboards, curtains, cabinets, floors, and ceil-
ings, among others. This inclusive setup comprised 28 dis-
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tinct categories, with careful consideration to minimize po-
tential interference from glass [27].

For comprehensive and robust data collection, a FARO
scanner was used to gather high-precision ground truth data
at 10 distinct locations. Additionally, the LIDAR data were
acquired at 9 locations using a robotic platform. At each
robotic location, the arm was programmed to adopt 10 ran-
dom poses, holding each pose for 10 seconds to capture Li-
DAR data. These random poses were chosen to sample a va-
riety of viewing angles and distances for each sensor at each
location. This generated an extensive dataset, with 100 Li-
DAR scans per pose and a total of 90 poses for each LIDAR
sensor. This rich dataset enables a thorough analysis of the
sensors’ performance under various conditions, enhancing
our understanding of their capabilities and limitations.

3.4. Calibration

From To Pose

Robot Base Opti Opti marker (CAD)
Robot Base Arm Base CAD

Arm Base Arm End URDF

LiDAR Mount  Arm End CAD

LiDAR mount  Opti Opti marker (CAD)
LiDAR origin  LiDAR mount CAD & Datasheet
FARO FARO Sphere  FARO Scene
FARO Sphere  Opti Opti marker ICP

Table 2. Calibration Chain for LiDAR Position Determination

To accurately evaluate the accuracy and precision of the
LiDAR system, it is critical to determine its precise pose
within the FARO ground-truth point cloud. This calibration
process is essential for ensuring that the measurements are
reliable and can be effectively compared against the ground-
truth data. Table 2 summarizes the calibration chain used in
our experimental setup. The following subsections describe
the methods and processes used to achieve this calibration.

3.4.1 Pose from Robotic Arm and OptiTrack

The first method we used to determine the LiDAR’s position
involves a robotic arm and OptiTrack markers fixed on the
robot’s chassis. The end-effector pose of the robotic arm
is combined with the OptiTrack measurements to calculate
the LiIDAR’s position. This approach can reduce the impact
of potential occlusions that interfere with the OptiTrack’s
visibility when the LiDAR rotates at various angles.

To get the arm pose, we use the ROS driver and the
URDF of the arm. However, there’s an error in the exist-
ing URDF of the robotic arm, so we re-calibrated the arm’s
length. This involved rotating each axis to form a circle
and fitting the radius of the circle using the pose of the Op-
tiTrack marker to calculate the arm length accurately. By
this calibration, exact dimensions of the robotic arm were
established, and we use the new length for the URDF.

The transformation from the robotic arm’s end-effector
to the LiDAR mount and the robot base OptiTrack rigid
body to arm base was determined using CAD data and ver-
ified by measurement.

3.4.2 Pose directly from OptiTrack

In the second method, we directly used the OptiTrack sys-
tem to determine the position of the LIDAR mount. This
provides an independent way to verify the LiDAR’s loca-
tion, which is crucial for cross-validation. By obtaining
the position of the LiDAR mount directly from the Opti-
Track system, we can compare it with the position obtained
through the robotic arm-based method.

3.4.3 LiDAR Mount to LiDAR Origin

The transformation from the LiDAR mount to the LiDAR
origin was calculated using CAD data and the LiDAR’s
datasheet. This transformation is essential for accurately
relating the LiDAR’s pose to its sensor origin, which is the
reference point for all LIDAR measurements.



3.4.4 FARO and OptiTrack Calibration

Establishing an accurate transformation between the FARO
laser scanner and the OptiTrack tracking system was crucial
for aligning LiDAR measurements with the ground truth
reference. Shown in Figure 1b, a custom calibration target
was designed and 3D printed, incorporating two OptiTrack
markers and one FARO registration sphere. This target was
suspended vertically using a ring to ensure consistent orien-
tation relative to gravity, simplifying vertical alignment.

The calibration procedure involved placing five targets
at distinct locations in the environment. To reduce errors,
we collected two FARO scans and averaged the OptiTrack
markers positions. The 3D offset of the FARO sphere cen-
ter relative to the bottom OptiTrack markers was determined
through precise CAD design of the calibration target. The
FARO registration spheres’ center was fitted by the FARO
SCENE software. Since we have two OptiTrack markers
vertically, we can get the gravity direction and get the FARO
spheres’ center accordingly from the lower OptiTrack mark-
ers. The Iterative Closest Point (ICP) algorithm was em-
ployed to align corresponding point sets in the FARO and
OptiTrack data, yielding precise transformations (rotation
and translation) between the two coordinate systems. Af-
ter the ICP, final average point-to-point distance between
FARO and OptiTrack markers was 2.024 mm, verifying the
accuracy of calibration.

4. Dataset and Experiment

Our study has produced a comprehensive dataset that en-
compasses a wide range of LIDAR measurements under di-
verse conditions. This dataset includes over 36000 scans
from four LiDAR models with more than 2.8 billion points,
along with high-precision ground truth data from aligned
FARO scans. It is enriched with detailed calibration infor-
mation, precise pose data, and extensive metadata for each
point in the LiDAR scans, providing a solid foundation for
various research applications in the field of 3D sensing and
robotics. While the dataset currently features data from one
primary indoor scene to ensure consistent evaluation, data
from nine distinct locations is available.

4.1. Evaluation Metrics

To quantify the accuracy and performance of LiDAR sys-
tems, we defined specific evaluation metrics to assess how
well the sensors capture accurate distance measurements
and maintain consistency.

We define D; as individual measured distances in one
direction, Dy as the true distance to the target, D as the
mean of measured distances, and IV as the total number of
measurements.

Range Accuracy is the average difference between mea-
surements and the true distance, as measured by a single

direction:
Range Accuracy = SN IDi = Diwel
Range Precision is the standard deviation of multiple
measurements taken by a single direction:

Range Precision = \/ﬁ Zf\; (D; — D)2
Lower values in both metrics indicate better perfor-

mance, with accuracy reflecting closeness to true distance
and precision indicating measurement consistency.

4.2. Generation of Ground Truth Data

The generation of ground truth data is a crucial step in
evaluating the accuracy and performance of LiDAR sys-
tems. In this study, we employed the FARO scanner to cap-
ture ten scene scans and two calibration scans, which were
subsequently aligned using FARO Scene software with a
maximum point error of 1.5mm. The aligned scans were
then manually cleaned using CloudCompare, and Poisson
reconstruction[13] was applied to generate a high-quality
mesh. Then Agisoft software was utilized to create color
and FARO intensity textures for the mesh, and 28 object
categories were manually annotated on the texture, result-
ing in a labeled ground truth mesh.

The ground truth mesh was transformed into the Op-
tiTrack coordinate system using calibrated transformation
matrices. Poses from OptiTrack and the arm were also
transformed to LiDAR coordinate system. To further mit-
igate potential errors, we computed average poses for sta-
tionary LiDAR positions, thereby enhancing the overall ac-
curacy of our ground truth pose.

4.3. Data Processing

We extracted point clouds from raw LiDAR data using ROS
drivers, obtaining X, y, z, intensity values, ring numbers, and
indices within each ring for each point. We transformed
these point clouds to the OptiTrack coordinate system for
alignment with our ground truth mesh.

Using point clouds from each static LiDAR position,
we performed ray casting on the ground truth mesh using
Open3D[28]. This allowed us to compute accuracy and
precision metrics for each point. We also extracted meta-
data including incident angle, FARO intensity, label infor-
mation, and distance from the ray casting. This compre-
hensive dataset, combining raw measurements and derived
metrics, formed the basis for our analysis of LiDAR perfor-
mance across various conditions and configurations.

4.4. Pose Evaluation

4.4.1 OptiTrack and Arm Pose Cross-Validation

In Table 3, we assessed the pose estimation accuracy de-
rived from both the robotic arm and the OptiTrack sys-
tem by calculating their Euclidean distance. This analysis
unveiled that all LIDAR poses exhibited low static errors,



ranging from 4.9mm to 5.8mm. However, when includ-
ing dynamic movements, the errors increased slightly. This
might be due to there are minor errors in the arm position
and time synchronization. Through cross-validation, it was
found that the difference in pose estimation was only a few
millimeters at the overall scale of several meters, which fur-
ther demonstrates the correctness of the calibrated pose.

FARO scanner. The results in Table 5 demonstrate that, with
the exception of Ouster6, which exhibited a slight bias in ac-
curacy, the mean cloud to mesh distances for the other Li-
DAR sensors are quite low, indicating a good Opti to FARO
calibration and highly accurate poses. FARO pointcloud it-
self also aligns well with the mesh.

Dist FARO HesaiQT HesaiXT Ouster6 Ouster7

Error HesaiQT HesaiXT Ouster6 Ouster?
All 7.06 7.3 9.1 10.5
Static 5.5 4.9 5.0 5.8

Table 3. OptiTrack and Arm Pose Distance (mm)

4.4.2 Thickness of the Plane Evaluation

To further validate our calibration, we analyzed the plane
thickness. Two distinct planes, one made of wood and the
other from a metal cabinet, were selected. We extracted the
points corresponding to each plane from the point clouds
and utilized the RANSAC algorithm to fit the plane. The
standard deviation of the point-to-plane distances was then
calculated to assess the thickness of the planes. This evalua-
tion was carried out across four different point cloud config-
urations, as detailed in Table 4. The ”Static” refers to single
static pose, while the ”Opti” and ”Arm” represent one robot
position with 10 different arm poses. The ”All Opti” en-
compasses pointclouds from nine different robot positions
with all LiDAR poses.

Our results suggest that poses from the arm lead to a
greater plane thickness, indicating that Opti poses are more
accurate. The slight increase in the plane thickness of the
”Opti” compared to the static point cloud can be attributed
to variations in the incident angle and distance due to dif-
ferent viewpoints.

Point- . . All
Plane Sensors  Static Opti  Arm opti

HesaiQT 10.3 10.7 122 117

Planel HesaiXT 4.4 5.0 6.7 7.6
Wood  Ouster6 6.7 109 128 11.0
Ouster7 4.9 6.3 7.7 10.4
HesaiQT 7.4 10.1 129 12.7
Plane2 HesaiXT 3.1 6.4 8.2 9.3
Metal  Ouster6 6.8 9.9 9.8 12.6

Ouster7 5.1 7.3 11.8 9.7

Table 4. Std. of the Point-Plane Distance (mm)

4.4.3 Pointcloud to Mesh Distance Evaluation

To assess the overall accuracy, we measured the distance
between the fused point cloud and ground truth mesh from

Mean 0.2 3.0 0.5 25.0 6.6
Std 0.8 24.2 18.6 28.4 21.1

Table 5. Cloud to Mesh distance (mm)

5. Dataset Analysis

A detailed analysis of the dataset is conducted, concentrat-
ing on the factors that significantly influence the precision
and accuracy of the LiDAR sensors. Due to space con-
straints, we have selected key figures to highlight these im-
pacts, additional figures and calibration board analysis are
provided in the Appendix.

5.1. Histogram

A histogram analysis was performed to visualize the distri-
bution of the LiDAR data.

HesaiQT
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Figure 2. Precision Histogram

Figure 2 illustrates the distribution of precision measure-
ments for four LiDAR models. HesaiXT shows the high-
est peak, indicating a strong concentration of highly pre-
cise measurements. Ouster7 also demonstrates a substantial
level of precision, though its distribution is broader com-
pared to HesaiXT. Ouster6 and HesaiQT exhibit a wider
spread in precision values, with peaks further to the right,
suggesting lower overall precision compared to other Li-
DARs.

Figure 3 illustrates the distribution of accuracy measure-
ments for four LIDAR models. Among these, HesaiXT ex-
hibits the highest accuracy, with a peak precisely centered
at zero, indicating minimal error. In contrast, the accuracy
distribution for Ouster6 shows a noticeable deviation from
zero, suggesting a systematic bias or lower accuracy. Sim-
ilarly, Ouster7 also indicates a minor deviation from zero
accuracy, performing better than Ouster6.
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5.2. Error Analysis Regarding Incident Angle

Boxplot of Accuracy for Incident Angle Intervals
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Figure 4. Incident Angle vs Accuracy

Boxplot of Precision for Incident Angle Intervals
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Figure 5. Incident Angle vs Precision

Incident angle has a significant impact on the accuracy
and precision of LiDAR measurements. Figure 4 shows the
decline in measurement accuracy with increasing incident
angle. Similarly, Figure 5 highlights the reduction in pre-
cision under the same conditions. Figure 6 demonstrates
the corresponding decrease in intensity as the incident an-
gle increases. These findings underscore the importance of
considering incident angle in LiDAR calibration and data
interpretation. The data reveal a clear trend: as the incident

Boxplot of Intensity for Incident Angle Intervals
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Figure 6. Incident Angle vs Intensity

angle exceeds approximately 70 degrees, both accuracy and
precision degrade significantly.

5.3. Error Analysis Regarding the Distance

Boxplot of Precision for Distance Intervals
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Figure 7. Distance vs Precision

We examine how the distance affects the precision of
the LiDAR sensors. As shown in Figure 7, the precision
of both Ouster LiDARs decreases as the distance increases.
This trend aligns with the description in their datasheet. In
contrast, two Hesai LiDARs show no significant change in
precision with increasing distance, indicating a more stable
performance over varying distances.

5.4. Error Analysis Regarding Different Materials

The impact of various materials on LiDAR measurements
was also analyzed. Figure 8 shows that different labels rep-
resenting distinct material surfaces have varying precision
and intensity. Notably, materials with lower FARO inten-
sity also tend to have lower LiDAR intensity. These ma-
terials with lower intensity show a decrease in precision,
highlighting the sensitivity of LiDAR to material proper-
ties. This analysis emphasizes the importance of consid-
ering material-specific responses when interpreting LIDAR



data in diverse environments.

Boxplot of Precision for Labels
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5.5. Error Analysis Regarding the Ring Number

Mean Accuracy for Ring Numbers

60
—s— HesaiQT

40 4 —— HesaiXT
Quster6

207 Ouster7

—20 4

Accuracy (mm)
o
.

—40 4

B e L i U L

Ring Number

Figure 9. Ring Number vs Accuracy

We conducted an analysis of LiDAR accuracy with re-
spect to the ring number. To minimize the influence of other
factors, we selected high-reflectivity labels, limited the inci-
dent angle to within 70 degrees, and chose distances rang-
ing from 1.5 to 6 meters. Figure 9 reveals that both the
HesaiQT and Ouster sensors exhibit centimeter-level errors
with different rings. Notably, the Ouster LiDARs show sig-
nificant variations in accuracy across different rings, follow-
ing a discernible pattern that may be linked to the sensor’s
inherent characteristics. Similarly, the HesaiQT LiDAR is
also notably affected by the ring number, indicating that this
factor is crucial for the overall performance of these sensors.

6. Result Verification

To validate our findings, we focused on Ouster6, the sensor
with the largest observed error. We tested two approaches.
Both involved filtering the points with a large incident angle
and low intensity. The first one was to then apply a uniform
mean accuracy offset across all rings. The second one was
to calculate and apply individual offsets to each ring. As

shown in Table 6, calculating the distance from the point
cloud to the mesh after applying either method resulted in a
reduction in both the average and standard deviation of er-
rors. However, the approach utilizing individual ring offsets
achieved marginally superior results.

Dist Origin Offset Ring
Mean 25.0 3.19 0.80
Std 28.4 26.9 26.1

Table 6. Cloud to Mesh distance with Offset for Ouster6 (mm)

7. Conclusions

The paper provides an in-depth analysis of the accuracy and
precision of indoor LiDAR systems, offering valuable in-
sights into the factors influencing their performance. Utiliz-
ing a comprehensive dataset of unique LiDAR scans aligned
with high-precision ground truth data, we demonstrated the
variability in accuracy and precision across different Li-
DAR models. Key parameters such as sensor type, target
material, and incident angle were identified as critical fac-
tors affecting measurement accuracy. Our results highlight
the need for careful consideration of these factors when se-
lecting and deploying LiDAR systems in robotics and au-
tonomous applications.

The release of our dataset can serve as a benchmark for
evaluating LiDAR performance and provides significant re-
sources for developing future deep learning methods to bet-
ter estimate and enhance LiDAR precision. The compre-
hensive metadata enables detailed analysis of LiDAR be-
havior across different materials, distances, and incident an-
gles, facilitating more accurate sensor modeling and cali-
bration techniques. It also contributes to the development
of accurate SLAM and 3D reconstruction algorithms and
may offer a benchmark for validating the accuracy of ICP
algorithms in point cloud registration. Future work could
involve the collection of more diverse datasets encompass-
ing a broader range of indoor and outdoor environments. In-
vestigating the performance of hybrid solid-state and solid-
state LiDARs with different scanning patterns is another
promising direction. Looking ahead, our efforts aim to push
the limits of LiDAR accuracy, paving the way for broader
applications in increasingly challenging environments. De-
veloping automated methods to debias LiDAR scans based
on identified error profiles is a potential avenue for future
research.
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