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Abstract

Previous Aspect-Based Sentiment Analysis001
(ABSA) studies have often incorporated syn-002
tactic information to connect contextual details003
with the designated aspect. These methods004
rely on complex model design to obtain syn-005
tactic structure information, further acquiring006
crucial semantic insights. Considering the po-007
tent contextualization abilities of the Large Lan-008
guage Model (LLM), we present the Low-Rank009
Adaptation plus In-domain Dynamic Examplar010
(LoRA-IDE) framework. This framework ef-011
fectively aligns the task and sentence context012
information with the target aspect, leveraging013
the power of LLM. Specifically, we employ014
the LoRA training strategy to enable LLM to015
learn the context information of ABSA and016
enhance its understanding of the connection017
between sentence context and aspects through018
IDE. Experimental results demonstrate that our019
proposed approach not only improves the per-020
formance of LLM on ABSA but also outper-021
forms the current state-of-the-art model on two022
benchmarks at a large scale. The codes will be023
released upon the acceptance of this paper.024

1 Introduction025

Aspect-based sentiment analysis (ABSA) is a fine-026

grained sentiment analysis that aims to extract de-027

tailed sentiment information regarding specific as-028

pects (Pontiki et al., 2014). For example, for the029

sentence “The food is fresh and piping hot.” and030

the aspect of interest, “food”, the task is to detect031

the positive sentiment expressed towards “food.”032

In this task, the most challenging part is accu-033

rately recognizing the contextual information to the034

relevant aspects (Ma et al., 2023). Several studies035

investigated refining the dependency trees of the036

context (Chen et al., 2020; Zhou et al., 2021; Chen037

et al., 2022). Others tried to utilize Graph Neural038

Networks (GNNs) in conjunction with dependency039

trees to better exploit syntax information (Zhang040

and Qian, 2020; Wang et al., 2020; Tang et al.,041

2020; Xiao et al., 2021; Zhang et al., 2022). These 042

models convert the syntactic dependency relation 043

with the context into a graph representation, then 044

encoded using a combination of attention or con- 045

volution mechanisms. This approach enables the 046

models to effectively leverage syntactic informa- 047

tion to obtain the relevant contextual details to spe- 048

cific aspect terms, leading to better performance. 049

Although the model can benefit from the syn- 050

tactic information, it often requires complicated 051

design (Ma et al., 2023). Additionally, incorporat- 052

ing syntactic information that relies on dependency 053

parsers introduces inherent inaccuracies (Wang 054

et al., 2020) and further leads to errors occurring in 055

ABSA. This paper proposes employing the LLM 056

in the ABSA to align aspect terms and contextual 057

information directly. Meanwhile, LLM naturally 058

excels at understanding context thanks to the mas- 059

sive amount of parameters and text training data 060

(Touvron et al., 2023; Brown et al., 2020). How- 061

ever, using LLM directly in ABSA does not yield 062

the optimal results (Liu et al., 2022). To overcome 063

this limitation, we introduce a novel Low-Rank 064

Adaptation with an In-domain Dynamic Examplar 065

(LoRA-IDE) framework tailored to the LLM to 066

extract context information for the ABSA task. 067

More specifically, we adopt the LoRA method (Hu 068

et al., 2021) to implement a parameter-efficient 069

fine-tuning strategy on LLM, facilitating the model 070

to learn the context information. During the tun- 071

ing phase, we introduce the dynamic inclusion of 072

in-domain examples. 073

This strategy optimizes the model’s ability to 074

align specific aspects with corresponding senti- 075

ments. The experimental results on commonly 076

used ABSA datasets indicate that our method sig- 077

nificantly surpassed previous methods and consid- 078

erably boosted the performance of LLM in ABSA. 079

We have made the following contributions: 080

• We propose a novel method that leverages the 081

power of LLMs to align contextual informa- 082
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tion with targeted aspects without relying on083

syntactic information. This method avoids the084

possible errors caused by improper parsing or085

incorrect use of syntactic information.086

• We introduce a model-agnostic approach that087

can be easily applied to any open-sourced088

LLM. This approach offers flexibility and can089

be seamlessly integrated into various LLM090

architectures.091

• The extensive experiments demonstrate supe-092

rior results compared to previous state-of-the-093

art methods. Specifically, we achieved an im-094

pressive improvement of 5.3% and 5.9% in the095

F1 score for the laptop and restaurant datasets096

(Pontiki et al., 2014), respectively.097

2 Related Works098

ABSA is the commonly used term in literature to099

describe sentiment analysis at the aspect level. The100

term “aspect” refers to the entities, persons, events,101

features, objects, or targets mentioned in a sentence102

that is relevant to the sentiment being expressed103

(Pang and Lee, 2008). To explore the sentiment104

information expressed in the context, earlier stud-105

ies utilized features such as bag-of-words, part of106

speech, and word position (Saias, 2015; Wang et al.,107

2013), which is ineffective in capturing contextual108

information associated with specific aspects. There-109

fore, some studies have combined attention and110

memory networks into deep neural network (DNN)111

models, enabling the model to comprehend the in-112

terdependencies among words throughout a given113

sentence (Wang et al., 2016, 2017; Ma et al., 2017).114

Simultaneously, other researchers in this field115

have predominantly focused on combining syntac-116

tic information to extract contextual cues. For in-117

stance, Zhou et al. (2021) proposes enhancing de-118

pendency trees through aspect-centric tree structure119

learning, while Chen et al. (2022) modifies syntac-120

tic distances based on aspect-to-context attention121

scores. Furthermore, several studies have chosen122

to incorporate dependency graphs into neural net-123

works. These methods, such as Graph Attention124

Networks (GAT) (Wang et al., 2020) and Graph125

Convolutional Networks (GCN) (Zhang and Qian,126

2020; Xiao et al., 2021; Zhang et al., 2022), effec-127

tively reduce the distance between aspects and their128

associated context, thereby alleviating the long-129

term dependency problem.130

[{'aspect': 'Food', 'polarity': 'positive'}]

Dataset  

Sentence:  But the staff was so horrible to us.   Aspect List: 
[‘staff ’] 
[{'aspect': 'staff ', 'polarity': ‘negative’}] 

Sentence: The design and atmosphere is just as good .   Aspect 
List: [‘design’, ‘atmosphere’] 
[{'aspect': 'design', 'polarity': 'positive'}, {'aspect': 'atmosphere', 
'polarity': ‘positive’}] 

Sentence: Food is always fresh and hot - ready to eat !   Aspect 
List: [‘Food’]

Pre-trained 
Weights 

W
A = 𝒩(0,σ2)

B = 0

IDE  
Module

LoRA  
Module

LLM Adaptor

Output

Instruction  
Design

Input

You are a smart assistant designed to perform aspect-based 
sentiment analysis on a given sentence. Given a list of aspects 
"['aspect1', 'aspect2', ...]", your task is to determine their 
corresponding polarities. The polarities should be classified as 
'negative', 'neutral', or 'positive'. The resulting output should be 
presented in the following format: 

Random   
examples

N

Figure 1: The construction workflow of LoRA-IDE
framework.

3 Proposed Methodology 131

To align contextual information with targeted as- 132

pects using LLM, we propose an efficient frame- 133

work for context extraction. This framework com- 134

prises two key components: the LoRA and IDE 135

modules. The LoRA module facilitates the LLM 136

learning context by leveraging adaptors, while the 137

IDE module aids the LLM learning context from 138

its in-context learning ability. 139

3.1 Problem Definition 140

The ABSA task seeks to identify the sentiment 141

polarity SPi = sp1i , sp
2
i ..., sp

m
i , with spmi ∈ [pos- 142

itive, neutral, negative] towards sentence Si and 143

the given aspects Ai = a1i , a
2
i ..., a

m
i , where m rep- 144

resents the number of aspect terms present in the 145

sentence. In the context of LLM, the information 146

from Si and Ai is incorporated into the prompt Pi 147

along with the task instruction I . Thus, the com- 148

prehensive formulation of the ABSA task using 149

LLM can be represented as [SPi] = LLM(Pi(I , Si, 150

Ai)). The primary objectives for LLM are twofold: 151

Firstly, to establish a connection between SPi and 152

the contextual information regarding the task’s pur- 153

pose Pi. Secondly, to establish a link between LLM 154

and the contextual information of Si towards Ai. 155
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3.2 LoRA module156

To bolster LLM’s grasp of contextual information157

within the prompt, this study employs a parameter-158

efficient fine-tuning strategy called Low-Rank159

Adaptation of Large Language Models (LoRA) (Hu160

et al., 2021). Instead of retraining the entire model161

for ABSA, the LoRA methodology involves freez-162

ing the weights of LLM and the introduction of163

smaller trainable matrices into each layer of the164

Transformer architecture. Figure 1 illustrates the165

structure of the trainable rank decomposition matri-166

ces employed in LoRA. During the training process,167

the pre-trained weights denoted as W are held con-168

stant and do not undergo gradient updates. On the169

other hand, matrices A and B, characterized by170

trainable parameters, are subject to updates. As a171

result, the context information of the task could be172

learned and stored in these adaptors. Specifically,173

matrix B ∈ Rd∗r, and matrix A ∈ Rr∗k, where174

the dimensions of input and output are maintained.175

This process can be mathematically represented as176

the following equation:177

h = W0x+△Wx = W0x+BAx (1)178

3.3 IDE Module179

To tackle the challenge of acquiring context infor-180

mation about a specific aspect of a sentence, we181

propose a strategy incorporating an in-domain dy-182

namic examplar technique, capitalizing on LLM’s183

ability to learn from examples (Dong et al., 2023).184

Our strategy is motivated by two factors. Firstly,185

in-domain sentences tend to exhibit shared char-186

acteristics. Secondly, we aim to prevent the dete-187

rioration of LLM’s understanding capability and188

avoid overfitting the data format. To achieve this,189

we introduce ABSA task instructions before each190

input. Additionally, we randomly select a dynamic191

number N of examples from both the in-domain192

training and development datasets for each input.193

These examples consist of pairs of input sentences194

and their corresponding targeted aspects, accom-195

panied by the true polarity labels, as depicted in196

Figure 1.197

4 Experiments198

4.1 Datasets199

We evaluate our work on three public standard200

ABSA datasets: Laptop and Restaurant datasets201

from Pontiki et al. (2014), and Twitter (Dong et al.,202

2014) dataset. To address the absence of official203

validation datasets, we randomly allocated 10% of 204

the training set as the validation dataset. Please re- 205

fer to Appendix A.1 for a detailed statistical break- 206

down of these datasets. 207

4.2 Setup 208

We selected Alpaca-7b (Taori et al., 2023) as the 209

backbone LLM for our framework due to its open- 210

source nature and its moderate performance in 211

LLM. While Alpaca-7b can understand instruc- 212

tions, it does not possess the same level of advanced 213

capabilities as ChatGPT (Ouyang et al., 2022). The 214

Alpaca-7b employed in this study was sourced from 215

the work of Yahma (2023). 1 We use the consis- 216

tent instruction applied during training to prompt 217

the Language Model (LLM) throughout the testing 218

phase. Additionally, we evaluate the performance 219

of the LLM in two distinct scenarios: zero-shot and 220

few-shots. We conduct tests with shot values of 3, 221

5, and 8 for the few-shots evaluation, calculating 222

their average performance. We also test the perfor- 223

mance of ChatGPT (GPT-3.5-turbo) by employing 224

the API, 2 with the identical prompt. We adopt F1 225

score as our evaluation metric. Our experiments 226

are conducted through one NVIDIA A-100 GPU. 227

Additional information regarding hyperparameters 228

can be found in Appendix A.2. 229

4.3 Results 230

We thoroughly compare our model with the state- 231

of-the-art models and evaluate our model against 232

a range of GNN-based models: (1) T-GCN (Tian 233

et al., 2021), (2) DualGCN (Li et al., 2021), (3) dot- 234

GCN (Chen et al., 2022), and (4) SSEGCN (Zhang 235

et al., 2022). Additionally, we compare our model 236

with dependency tree-based models, including (5) 237

DGEDT (Tang et al., 2020) and (6)R-GAT (Wang 238

et al., 2020). We also include two recently devel- 239

oped models: (7) TF-BERT (Zhang et al., 2023), 240

which represents context information using senti- 241

ment intensities, and (8) APARN (Ma et al., 2023), 242

which focuses on learning the semantic dependen- 243

cies of the context. Finally, we conduct the same 244

test with an advanced LLM (9) GPT-3.5-turbo for 245

border comparison (Ouyang et al., 2022). 246

Table 1 showcases the experimental results of 247

our model and the baseline models on the same 248

benchmark. The results clearly demonstrate the 249

superiority of our LoRA-IDE framework over pre- 250

1https://huggingface.co/yahma/alpaca-7b-lora
2https://api.openai.com/v1/models

3

https://huggingface.co/yahma/alpaca-7b-lora
https://api.openai.com/v1/models


Model Laptop Restaurant Twitter
T-GCN (Tian et al., 2021) 77.03 79.95 75.25
DualGCN (Li et al., 2021) 78.10 81.16 76.02
dotGCN (Chen et al., 2022) 78.10 80.49 77.00
SSEGCN (Zhang et al., 2022) 77.96 81.09 76.02
DGEDT (Tang et al., 2020) 75.60 80.00 75.40
R-GAT (Wang et al., 2020) 74.07 81.35 74.88
TF-BERT (Zhang et al., 2023) 78.46 81.15 77.25
APARN (Ma et al., 2023) 79.10 82.44 78.79
GPT-3.5-turbozero−shot (Ouyang et al., 2022) 74.70 83.13 51.47
GPT-3.5-turbofew−shots 77.68 84.66 60.17
LoRA-IDEzero−shot 83.27 87.34 74.45
LoRA-IDEfew−shots 82.94 87.88 74.54

Table 1: The F1 score of the proposed model and previ-
ous baselines. The highest score is highlighted in bold
font and the second highest score is underlined for clar-
ity.

vious models that heavily rely on syntactic informa-251

tion. Remarkably, our framework even outperforms252

the previous state-of-the-art model (APARN) on253

two out of three datasets, exhibiting an increase in254

the F1 score by 5.3% and 5.9% under the zero-shot255

and 4.9% and 6.6% under the few-shots. Moreover,256

our model surpasses one of the most powerful ex-257

isting LLMs, GPT-3.5-turbo, in all three domains,258

whether in zero-shot or few-shots circumstances.259

Notably, it achieves an impressive 44.65% increase260

in F1 score under the zero-shot and a 23.88% in-261

crease in F1 score under the few-shots, specifi-262

cally in the Twitter domain. These findings pro-263

vide strong evidence for the effectiveness of our264

framework in leveraging LLM to extract contextual265

information for the ABSA task.266

4.4 Ablation Study267

We performed an ablation study on all three268

datasets to assess the effectiveness of our frame-269

work on LLM. The results are presented in Ta-270

ble 2. The numbers accompanied by ISE indicate271

the usage of N in-domain static examples during272

training. As anticipated, the LLM incorporating273

both the LoRA and IDE modules exhibited superior274

performance across three domains and two testing275

environments (zero-shot and few-shot).276

Based on the findings presented in Table 2, it277

becomes evident that each module plays a cru-278

cial role in enabling the LLM to extract contex-279

tual information for ABSA. The inclusion of the280

LoRA module results in a significant improvement281

in the model performance, demonstrating the va-282

lidity of the adaptation process of LLM on ABSA283

to align it with the context. In particular, the F1284

score improvement in the Twitter domain stands out285

prominently, with an impressive increase of 116.4%286

(zero-shot). This highlights the inherent limitations287

Model Laptop Restaurant Twitter
• zero-shot
Base LLM 57.66 61.20 32.49
+LoRA 79.81 85.83 70.31
+LoRA+3ISE 81.97 86.84 70.90
+LoRA+5ISE 83.56 87.00 70.12
+LoRA+8ISE 82.59 86.33 73.41
+LoRA+IDE 83.27 87.34 74.45
• few-shots
Base LLM 67.37 74.03 51.03
+LoRA 76.44 83.02 71.00
+LoRA+3ISE 82.34 87.58 73.61
+LoRA+5ISE 82.58 87.33 73.41
+LoRA+8ISE 80.28 86.18 75.43
+LoRA+IDE 82.94 87.88 74.54

Table 2: F1 score of ablation results on our framework.

of context information stored in LLM and effec- 288

tively showcases the remarkable capabilities of the 289

LoRA module. Furthermore, the addition of the 290

IDE module further enhances the performance of 291

LLM. The F1 score increase ranges from 1.8% to 292

5.9% (zero-shot) and 3.5% to 6.5% (few-shots) 293

across the three datasets, demonstrating the effec- 294

tiveness of the IDE module in aligning LLM with 295

the context of in-domain examples. Notably, the 296

improvement is more pronounced under the few- 297

shots setting, highlighting the IDE module’s ability 298

to strengthen the in-context learning capability of 299

LLM. Finally, the gap in F1 scores between the 300

static and dynamic examplar serves as compelling 301

evidence for the effectiveness of our dynamic strat- 302

egy in mitigating the degradation of the LLM’s 303

understanding capability caused by overfitting. 304

5 Conclusion 305

In this research, we introduce the LoRA-IDE frame- 306

work on LLM as a means to leverage its power in 307

extracting contextual information for the ABSA. 308

Unlike previous studies that rely on syntactic in- 309

formation to connect the context with the target 310

aspect, our approach utilizes the LoRA module 311

to enable LLM to learn the ABSA task’s context 312

through adaptors and the IDE module to facilitate 313

learning from the context of in-domain examples. 314

The experimental results demonstrate significant 315

improvements, surpassing the previous state-of-the- 316

art baseline by 5.3% and 5.9% on two of three 317

benchmark datasets. Each module of our proposed 318

framework has been shown to be effective. 319
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Limitations320

The model’s performance in the Twitter domain321

does not surpass previous state-of-the-art baselines.322

This can be attributed to two primary factors. First,323

a significant number of sentences on Twitter are324

incomplete and grammatically incorrect compared325

to the sentences in the other two datasets. Second,326

Twitter’s context frequently includes buzzwords327

and the latest popular abbreviations. These factors328

hinder the LLM from effectively leveraging the329

semantic information stored within the text.330
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A Appendix 512

A.1 Datasets 513

Dataset Laptop Restaurant Twitter
#+ #0 #- #+ #0 #- #+ #0 #-

Train 976 455 851 2164 637 807 1507 3016 1528
Test 337 167 128 728 196 196 172 336 169

Table 3: Statistics of three ABSA datasets. The sym-
bols #+, #0, and #- represent the quantities of positive,
neutral, and negative sentiments, respectively.

A.2 Hyperparameters 514

In this study, a standardized set of hyperparame- 515

ters was utilized across all experiments. To ensure 516

consistency, the dynamic number N was randomly 517

chosen from a range of [0, 8]. Additionally, the 518

learning rate was set to a fixed value of 3e-4, while 519

a warm-up period of 50 steps was incorporated. 520

The training epoch is set at 20. The experimental 521

setup utilizes a batch size of 16 and implements 4 522

gradient accumulation steps. Evaluation and save 523

steps are uniformly set at 100. The rank r and α 524

value of LoRA are both set as 16. Notably, the 525

optimization strategy involves the application of 526

the Adam optimizer coupled with weight decay. 527
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