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Abstract

We investigate the training dynamics of two-layer
neural networks when learning multi-index target
functions. We focus on multi-pass gradient de-
scent (GD) that reuses the batches multiple times
and show that it significantly changes the con-
clusion about which functions are learnable com-
pared to single-pass gradient descent. In partic-
ular, multi-pass GD with finite stepsize is found
to overcome the limitations of gradient flow and
single-pass GD given by the information exponent
(Ben Arous et al., 2021) and leap exponent (Abbe
et al., 2023) of the target function. We show that
upon re-using batches, the network achieves in
just two time steps an overlap with the target sub-
space even for functions not satisfying the stair-
case property (Abbe et al., 2021). We characterize
the (broad) class of functions efficiently learned
in finite time. The proof of our results is based on
the analysis of the Dynamical Mean-Field The-
ory (DMFT). We further provide a closed-form
description of the dynamical process of the low-
dimensional projections of the weights, and nu-
merical experiments illustrating the theory.

1. Introduction
Recent years have witnessed significant theoretical advance-
ments in understanding the dynamics of training neural
networks using gradient descent, to unravel the learning
mechanisms of these networks, particularly how they adapt
to data and identify pivotal features for predicting the target
function. Significant progress has been made over the last
few years in the case of two-layer networks, in large part
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thanks to the so-called mean-field analysis (Mei et al., 2018;
Chizat & Bach, 2018; Rotskoff & Vanden-Eijnden, 2022;
Sirignano & Spiliopoulos, 2020)). Most of the theoretical ef-
forts, in particular, focused either on one-pass optimization
algorithms, where each iteration involves a new fresh batch
of data, or to the limit of gradient flow in the population loss.
For high-dimensional synthetic Gaussian data, and a low
dimensional target function (a multi-index model), the class
of functions efficiently learned by these one-pass methods
has been thoroughly analyzed in a series of recent works,
and have been shown to be limited by the so-called informa-
tion exponent (Ben Arous et al., 2021) and leap exponent
(Abbe et al., 2022; 2023) of the target. These analyses have
sparked many follow-up theoretical works over the last few
months, see, e.g. (Damian et al., 2022; 2023; Dandi et al.,
2023; Bietti et al., 2023; Ba et al., 2023; Moniri et al., 2023;
Mousavi-Hosseini et al., 2023; Zweig & Bruna, 2023).

However, a common practice in machine learning involves
repeatedly traversing the same mini-batch of data. This
paper, therefore, aims to go beyond the constraints of single-
pass algorithms and to evaluate whether multiple-pass train-
ing overcomes these inherent flaws of single-pass methods.
We focus on gradient descent, certainly the most straightfor-
ward procedure in this family. The theoretical framework
we use to prove our main results is based on Dynamical
Mean Field Theory (DMFT), which was developed in the
statistical physics community (Sompolinsky et al., 1988) to
analyze correlated systems, and recently made rigorous in
the context of high dimensional machine-learning problems
in (Celentano et al., 2021; Gerbelot et al., 2022).

Our findings significantly alter the prevailing narrative in
the literature. We demonstrate that gradient descent sur-
passes the limitations imposed by the information and leap
exponents, achieving a positive correlation with the target
function for a much broader class than the staircase func-
tions (Abbe et al., 2021), even with minimal (that is, two)
repetition of data batches. We characterize the (broad) class
of functions efficiently learned in finite time. Among the
exceptions are symmetric functions that remain a challenge
due to their extended symmetry-breaking times (a natural
feature of physical dynamics (Bouchaud et al., 1998)).

With independent Gaussian datapoints as inputs, both one-
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pass SGD and gradient flow on population loss result in
pre-activations remaining distributed as Gaussian random
variables. This Gaussianity underlies the analysis of such
settings, starting from the seminal work of (Saad & Solla,
1995). In contrast, upon re-using batches, the pre-activations
develop non-Gaussian components correlated with the tar-
gets. This non-Gaussianity is a crucial aspect of the stark
contrast in the learning of directions compared to the one-
pass setting. While we establish our results for discrete steps
with extensive batches of size O(d) where d denotes the
input dimension, we expect our conclusions about the learn-
ing of new directions to also hold while performing gradient
flow on the empirical loss, since such a setup would lead
to the development of similar non-Gaussian components
in the pre-activations, in contrast to gradient flow on the
population loss where the pre-activations remain Gaussian.

Our results demonstrate that contrary to the common
wisdom “the more data the better”, gradient descent on
the same batch can surpass one-pass SGD on different
batches, even when one-pass SGD utilizes a larger number
of datapoints. More generally, we believe that our analysis
provides insights into incremental learning of features in
the presence of correlations between datapoints across
batches, which is typical in most high dimensional datasets
having a small number of “latent” factors. Our conclusions
follow from a rigorous mathematical proof rooted in DMFT,
which we also use to provide an analytic description of the
dynamic processes of low-dimensional weight projections.
This analysis has interest on its own.

2. Setting and main contributions
Let D be the set of data {zν ∈ Rd, yν}ν∈[n]. The input data
zν are taken as a standard i.i.d. Gaussian, while the labels
are generated by a teacher, or target, function yν = f⋆(zν).
We consider multi-index target function, dependent on a
low-dimensional subspace of the input space:

yν = f⋆(zν) = g⋆
(
W ⋆zν√

d

)
, zν ∼ N (0,1d) , (1)

We assume for convenience that W ⋆ = {w⋆
r}r∈[k] ∈ Rk×d

is normalized row-wise on the sphere Sd−1(
√
d), with

orthogonal weights i.e ⟨w⋆
l ,w

⋆
m⟩ = 0 for l ̸= m ∈ [r].

The data are handled to a two-layer network (the student) f
with first layer weights W = {wi}i∈[p] ∈ Rp×d (p is the
number of neurons in the hidden layer) and second layer
weights a ∈ Rp with an activation function σ, that is:

f

(
Wz√
d

)
=

p∑
j=1

ajσ

( ⟨wj , z⟩√
d

)
(2)

Our main goal is to analyze the dynamics of gradient descent
that minimizes the empirical Mean Squared Error (MSE)

loss L at time t ∈ [T ]:

Remprical =

n∑
ν=1

L
(
W (t)zν√

d
, f⋆(zν)

)
(3)

=
1

2

n∑
ν=1

[
g⋆
(
W ⋆zν√

d

)
− f

(
W (t)zν√

d

)]2
,

in the high-dimensional limit where n, d→∞ with n/d=
α=Θ(1). We use a common assumption that is amenable
to rigorous theoretical guarantees: we keep the second layer
weights a fixed at initialization. For convenience, we further
impose the constraint of symmetric initialization common
in such analyses (Dandi et al., 2023; Damian et al., 2022).
Concretely, we assume that the number of neurons p is even
and the weights satisfy at initialization:

ai = −ap−i+1, w0
i = w0

p−i+1 for all i ∈ [p/2], (4)

which ensures that the output f
(

W (t)zν√
d

)
equals 0 at

initialization. For i,∈ [p/2], the weights are initialized
as ai ∼ 1

pN (0, 1),w
(0)
i ∼N (0,1d) Subsequently, with a

fixed, the first layer weights W = {wi}i∈[p] are learned
using gradient descent, producing the following sequence
of iterates up to a final time T :

w
(t+1)
i =(1−ηλ)w(t)

i −η
n∑

ν=1

∇
w

(t)
i
L
(
W (t)zν√

d
, f⋆(zν)

)
(5)

where η ∈ R is the learning rate and λ ∈ R is the
explicit regularisation. We may refer to these steps as
the representation learning steps, in which the first layer
weights learn how to adapt to the low dimensional structure
identified by the teacher subspace W ⋆.

Our main contributions in this paper are the following:

• We characterize the class of multi-index targets that can
be learned efficiently by two-layer networks trained with a
finite number of iterations of gradient descent in the high
dimensional limit (d → ∞) with large batch sizes (n =
αd, α = O(1)). We establish a strong separation between
what can be learned with one-pass algorithms (that use
new fresh batches at every step) and multi-pass gradient
approaches that can use the same batch many times (see
Figs. 1 and 2 for examples).
• We show that while both gradient flow (Bietti et al., 2023)
and single-pass algorithms suffer from the curse of the infor-
mation exponent (Ben Arous et al., 2021), and are limited
to staircase learning (Abbe et al., 2023), requiring a diverg-
ing number of iterations for non-staircase functions, some
of these problems become trivial when allowing reusing
samples multiple times, and features can be learned in just
T = 2 iterations. This disproves, in particular, a recent
conjecture by (Abbe et al., 2023).
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• The simplest examples of directions that cannot be learned
in a finite number of steps relate to symmetries in the target
function. This includes phase retrieval (Maillard et al., 2020)
or the specialization transition in committees, as discussed
in the Bayes optimal approaches of single-index (Barbier
et al., 2019) and multi-index (Aubin et al., 2019) models.
• The proof of our results is based on the concept of ”hidden
progress”, and crucially uses the rigorous Dynamical Mean
Field Theory (DMFT) (Celentano et al., 2021; Gerbelot
et al., 2022). This has an interest on its own as it provides a
sharp example of how DMFT can help to understand batch
reusing to go beyond the current state-of-the-art results.
• Finally, we use DMFT to provide a closed-form descrip-
tion of the dynamics of gradient descent for two-layer nets.
Keeping track of the correlations induced by re-using the
same batch leads to a set of integro-differential equations.
We provide rigorous theoretical guarantees in the correlated
samples regime without assuming the resampling of a fresh
new batch for each iteration of the algorithm. We corrobo-
rate the theoretical claims with numerical simulations (See
https://github.com/IdePHICS/benefit-reusing-batch. ).

Other Related works – A major issue in machine learn-
ing theory is figuring out how well two-layer neural net-
works adapt to low-dimensional structures in the data. Dif-
ferent results have tightly characterized the limitations of
networks in which the first layer of weights W is kept fixed,
i.e. equivalent to kernel approaches (Dietrich et al., 1999;
Ghorbani et al., 2019; 2020; Bordelon et al., 2020; Loureiro
et al., 2021; Cui et al., 2021). This class of learning algo-
rithms, although amenable to theoretical analysis, is unable
to learn features in the data. Therefore, one central avenue
of research in this context is to understand the efficiency
of the representation learning (or feature learning) when
training with gradient-based algorithms to overcome the
limitations of the kernel regime. Sharp separation results
between the performance of neural networks at initialization
(random features) and trained with only one step of gradient
descent (with a large learning rate) have been offered (Ba
et al., 2022; Damian et al., 2022; Dandi et al., 2023).

The class of features efficiently learned with multiple steps
of one-pass SGD with one sample per batch is character-
ized by the information exponent (IE) (Ben Arous et al.,
2021) of the target function. In the context of single-index
learning, denoting ℓ the IE of the target, the algorithm needs
T =O(dℓ−1) steps to perform weak recovery of the teacher
direction, i.e., obtaining an overlap between learned weights
and w⋆ better than random guessing (Ben Arous et al.,
2021). Recently, these results have been improved up to
the Correlational Statistical Query (CSQ) lower bound of
dmax( ℓ

2 ,1), by considering an appropriate smoothing of the
loss (Damian et al., 2023). A generalization to large batch
one-pass SGD is in (Dandi et al., 2023).

Similarly, multi-index feature learning presents an unavoid-

able computational barrier for one-pass algorithms. (Abbe
et al., 2021) first characterizes a hierarchical picture of learn-
ing in the Boolean data case: informally, the features effi-
ciently learned at each step of the one-pass algorithm need
to be linearly connected with the previously learned features.
This concept is formalized by the definition of the staircase
property (Abbe et al., 2021). This hierarchical picture of
learning is extended to large batches in the SGD and non-
Boolean data in (Abbe et al., 2022; 2023; Dandi et al., 2023).
Moreover, (Abbe et al., 2023) conjecture that re-using the
batch can reduce the sample complexity of the target with
leap ℓ only up to O(dmax( ℓ

2 ,1)), corresponding to the lower
bound for Correlational Statistical Query (CSQ) algorithms.

We disprove this conjecture and show that the sample
complexity for a large class of functions can be reduced to
O(d) independently of the leap exponent ℓ. More generally,
our results show that CSQ lower bounds and the notions of
staircase property and information exponent are limited to
online-SGD on Gaussian/Boolean data, and do not describe
the class of functions inherently easy or hard to learn
by gradient-based methods. We also show that learning
non-even single-index functions does not require techniques
such as spectral warm-start (Chen & Meka, 2020).

Dynamical Mean Field Theory has a long history in statisti-
cal physics. Early theories of dynamics in complex systems
were pioneered in soft spin glass models (Sompolinsky &
Zippelius, 1981) and toy models of random feature deep
networks (Sompolinsky et al., 1988). The DMFT approach
used in this paper was first proposed as a way to study “hard
spins” in spin glass models (Eissfeller & Opper, 1992; 1994),
and was later generalized to “soft spins” (Cugliandolo, 2003)
and more realistic models in condensed matter (Georges
et al., 1996). In the context of learning, DMFT was used
for optimization problems (Mannelli et al., 2019a;b; 2020;
Mannelli & Urbani, 2021) and for analyzing the behavior
and the noise of gradient-based algorithms (Mignacco et al.,
2020; 2021; Mignacco & Urbani, 2022). From the math-
ematics point of view, these DMFT equations were first
proven rigorously in the seminal work of (Ben Arous et al.,
1997) in the context of spin glasses. Important progress
was achieved recently with rigorous proofs of the DMFT
equations for multi-index models (Celentano et al., 2021;
Gerbelot et al., 2022) that we use to prove our main results.

3. Statement of the results
Here, we introduce the main results covering the theoretical
learning guarantees with gradient descent and contrast them
with the known one-pass results. We exploit the rigorous
DMFT construction to prove the first key result: two-layer
networks efficiently learn a large class of multi-index targets
in only T = 2 iterations, breaking the curse of one-pass
algorithms dictated by the information and leap exponents.
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Figure 1. One-pass and multi-pass GD for single-index models – The overlap
∣∣∣ ⟨w⋆,ŵ⟩

d

∣∣∣ between the learned weight and the target/teacher
direction, is plotted as a function of the iteration time of both single-pass (red) and multi-pass (blue) GD. Continuous lines are given theory,
dots are simulations. Left: Easy finite-T learnable single-index target g⋆=tanh: both one-pass and multi-pass GD obtain positive
correlation after a finite number of iterations as the information exponent of the target is ℓ=1. Center: Multi-pass finite-T learnable
single-index target: g⋆=He3. Multi-pass GD achieves a non-zero correlation in just two steps, but the one-pass algorithm learns nothing.
Right: Finite-time nonlearnable single-index targets g⋆=He4; the target function is even and thus, as stated in Thm. 3.2, breaking this
symmetry is hard in finite number of steps, resulting in a vanishing correlation with the teacher direction w⋆ for both algorithms in any
finite time. (Simulation are averaged over 32 runs, d = 5000, with σ = relu, n = 3d, p = 1, η = 0.1).

3.1. Finite-T Learnable and Non-learnable directions

We first identify which target directions are hard to learn for
multi-pass gradient descent. Define U⋆ to be the subspace
spanned by the rows of the target weights W ⋆. The “hard”
directions are the ones where any transformation of the
output f⋆(z) does not lead to a linear correlation along the
direction. We now define the subspace of such directions:

Definition 3.1. We define P ⋆ as the subspace of directions
v⋆ ∈ U⋆ such that for any polynomial F : R → R with
coefficients in R, the following condition is satisfied:

Ez [F (f
⋆(z))⟨v⋆, z⟩] = 0, (6)

Similarly, we denote by A⋆, the subspace of directions
where the above condition is satisfied for all real-valued
analytic functions F .

One part of our main result shows that directions in A⋆

cannot be learned even by re-using batches of size O(d)
in a finite number of gradient steps. Furthermore, under
suitable conditions on σ and a (discussed in Theorem 3.2
and Appendix A.5), we show that after two gradient steps,
the first layer learns all directions in the complement P ⋆

⊥.
We are now ready to state our main result:

Theorem 3.2. Suppose that n/d = α > 0. Let v⋆ ∈ P ⋆
⊥

denote an arbitrary direction in the orthogonal complement
of the subspace P ⋆ defined in definition 3.1 with norm

√
d

and a fixed representation in the basis W ⋆. Suppose further
that the activation function σ is analytic, with polynomially
bounded derivatives satisfying Ez∼N (0,1) [σ

′(z)] ̸= 0 and
σk(0) ̸= 0 ∀k ∈ N. Then for any g⋆ with derivatives
bounded by polynomials, there exist η > 0, λ > 0 such that

almost surely over the choice of a, we have:∥∥∥∥W(2)v⋆

d

∥∥∥∥ = Θd(1) , (7)

with high probability as n, d→ ∞. Furthermore, for large
enough p, W(2) asymptotically spans P ⋆

⊥:

inf
v⋆∈P⋆

⊥

∥∥∥∥W(2)v⋆

d

∥∥∥∥ = Θd(1) , (8)

with high probability as n, d → ∞. In other words, direc-
tions v⋆ ∈ P ⋆

⊥ are learned in T = 2 gradient steps.

Suppose, however that the teacher subspace U⋆=A⋆, then:

sup
v⋆∈U⋆

∥∥∥∥W(t)v⋆

d

∥∥∥∥ = od(1) , (9)

with high probability as n, d → ∞, for any finite time
t. Thus, none of the directions are learned in any finite
number of GD steps.

The proof is based on the analysis of the DMFT equations
discussed in Sec. 4.2, is given in App. A, and we provide an
informal heuristic derivation in sec. 4.1. While the above
negative result requires all directions in U⋆ to be in A⋆ and
thus in P ⋆, in App A.6, we discuss the more general setup
where learning of certain directions in P ⋆

⊥ can affect the
learning of directions in U⋆ in subsequent timesteps.

When the expectation in Equation 6 is non-zero for F being
the identity mapping, i.e. F = id, v⋆ is in-fact learned in
the first gradient step (Ba et al., 2022; Dandi et al., 2023)
or through online SGD (Ben Arous et al., 2022; Abbe et al.,
2023). We discuss this further in Section 3.3.
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Figure 2. One-pass and multi-pass GD for multi-index models – The overlaps between the student weights along the first direction
learned, namely C[f⋆], and its orthogonal, is plotted versus the number of iterations for three different classes of functions. Left: Easy
finite-T learnable multi-index target both the algorithms learn all the relevant directions when an ”easy” function is used as a target
(here (p = 8)). Center: Multi-pass finite-T learnable multi-index target both the algorithms learn the first Hermite direction C[f⋆]
but only multi-pass SGD achieve a non-null correlation in the orthogonal. This illustrates how reusing samples allows us to surpass the
staircase limitation of single-pass approaches (p = 2). Right: Finite-time non-learnable multi-index target neither of the two algorithm
can learn C[f⋆]⊥ with this target (p = 2). (Simulation are averaged over 32 runs, d=5000, with σ=relu, n = 3d, η=0.1).

Our analysis reveals that the effect of re-using batches is to
implicitly transform the output in the subsequent steps, al-
lowing a larger set of directions to be learned. However, for
directions in A⋆, such transformations are still insufficient.

3.2. Characterization of hard directions through
symmetries

While Definition 3.1 characterizes the subspace of hard
directions A⋆, it requires checking that the equality in Equa-
tion 6 holds for any real analytic transformation F . We
now show that a sufficient condition for v⋆ ∈ A⋆ is for
f⋆ to possess certain symmetries along v⋆. This leads us
to identify subspaces of hard directions, contained in A⋆,
linked to symmetries w.r.t certain transformations. We char-
acterize such subspaces below. The simplest such symmetry
is defined through reflection along v⋆:

Definition 3.3. For any direction v⋆ ̸= 0 ∈ Rd, let
Rv⋆ denote the reflection operator along v⋆, i.e. Rv⋆ =
I − 2 1

∥v⋆∥2v⋆v⋆T . We say that a direction v⋆ ∈ U⋆ is

even-symmetric w.r.t f⋆ if for any z ∈ Rd:

f⋆(Rv⋆z) = f⋆(z) (10)

We denote by E⋆ the subspace spanned by all
even-symmetric directions in U⋆.

It is straightforward to see that any v⋆ ∈ E⋆ leads to
Equation 6 being satisfied for any transformation F , since
v⋆ remains even w.r.t the function F (f⋆(·)). Therefore,
E⋆ ⊆ A⋆ However, the set of non-learnable directions can
be larger due to the presence of additional symmetries. We

now define such a larger subspace of hard directions arising
due to a symmetry w.r.t reflections along v⋆ coupled with
orthogonal transformations along the orthogonal subspace:

Definition 3.4. For any direction v⋆ ̸= 0 in U⋆, let
Rv⋆ be as defined in Definition 3.3. Let O⊥ be a ma-
trix in the orthogonal group on the d − 1 dimensional
subspace {v⋆}⊥ i.e the orthogonal complement of the lin-
ear subspace spanned by v⋆. We say that a direction v⋆

is orthogonally-even-symmetric w.r.t f⋆, if there exists an
O⊥ ∈ O({v⋆}⊥), such that for any z ∈ Rd:

f⋆(O⊥Rv⋆z) = f⋆(z) (11)

We denote by OE⋆ the subspace spanned by all
orthogonally-even-symmetric directions in U⋆.

By setting O⊥ as the identity mapping in the above defi-
nition, we recover the condition for v⋆ ∈ E⋆. Therefore,
we have that E⋆ ⊆ OE⋆. While OE⋆ is the largest set
of directions we’ve identified as being hard, the true set of
hard directions may be larger still and is given by A⋆ in
Definition 3.1. We show in Appendix A.8 that the directions
in OE⋆ are indeed hard as per Definition 3.1:

Proposition 3.5. Let the subspaces A⋆ and OE⋆ be as
defined in Defs. 3.1 and 3.4 respectively. Then, OE⋆ ⊆ A⋆

i.e. all directions in E⋆, OE⋆ are hard as per Thm. 3.2.

App.A.7 gives several examples where P ⋆
⊥ = E⋆

⊥ = U⋆,
such as single-index targets with odd Hermite activations,
staircase functions, etc. Interestingly, we show that there ex-
ist functions f⋆ where the set OE⋆ is strictly larger than E⋆.
Consequently, for such functions, E⋆ is strictly contained in
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A⋆, P ⋆. We discuss such target functions in Appendix A.9.
For example, we show in Appendix A.9, that for the target
function f⋆(z) = z1z2z3, the direction v⋆ = e1 + e2 + e3
does not lie in E⋆ but lies in OE⋆ and thus in A⋆, P ⋆.

3.3. Comparison between one-pass and multi-pass GD

Our results are particularly interesting in the context of
a recent line of work on the limitations of one-pass algo-
rithms. (Ben Arous et al., 2021; Abbe et al., 2021; 2022;
2023; Dandi et al., 2023; Bietti et al., 2023; Zweig & Bruna,
2023). We can demonstrate, in particular, a sharp separation
performance between one-pass and multiple-pass protocols.

Learning single-index targets – First, we consider single
index targets. Targets that are hard to learn for one-pass
algorithms starting from uninformed initialization in high
dimension are characterized by the Information Exponent
(IE). Informally, the IE is equivalent to the first non-zero
coefficient in the Hermite expansion of the target activation.

Definition 3.6 (Information Exponent). (Ben Arous et al.,
2021) Let Hej be the j−th Hermite polynomial. Using the
definition for the target of eq. (1), reading in the single-index
case as f⋆ = g⋆(⟨w⋆, z⟩), the IE is defined as:

IE = min{j ∈ N : Eξ∼N (0,1) [g
⋆(ξ)Hej(ξ)] ̸= 0} (12)

Higher IEs are associated to harder problems for one-pass
training protocols. Indeed, (Ben Arous et al., 2021) provably
show that one-pass SGD, with one sample per batch, weakly
recovers the teacher direction w⋆ only upon iterating the
training schedule for T (IE) time iterations:

T (IE) =


O(dIE−1) if IE > 2

O(d log d) if IE = 2

O(d) if IE = 1

(13)

Recently, the time complexity has been improved up to
the Correlational Statistical Query (CSQ) lower bound
of dmax( IE

2 ,1), by considering an appropriate smoothing
of the loss (Damian et al., 2023). Definition 3.6 has been
extended to larger batch sizes in (Abbe et al., 2022; Dandi
et al., 2023), without changing the overall picture; more
precisely, even with n = o(dIE) fresh samples per batch,
one-pass training procedures are still not able to weakly
recover the signal in finite iteration time. The case IE = 1
corresponds to the expectation in Equation 6 being non-zero
for F = id. However, since Definition 3.1 allows for
general transformations F to the output f⋆, w⋆ may not
be in P ⋆, A⋆ even when IE > 1. The presence of general
transformations F in definition 3.1 allows our algorithm to
bypass CSQ bounds, which are restricted to F = id. Such
general transformations are however permitted under the
framework of Statistical Query (SQ) algorithms (Kearns,
1998). We thus expect gradient descent with O(d) sample

complexity to inherit the hardness results established for
the class of SQ algorithms (Diakonikolas et al., 2020;
Goel et al., 2020; Chen et al., 2021; 2022). We emphasize
however that unlike explicit SQ algorithms, our analysis
shows that gradient descent performs such transformations
implicitly, allowing it to reach the optimal complexity of
SQ algorithms for certain class of target functions.

We illustrate the sharp contrast between one-pass and
multiple-pass protocols with the examples depicted in
Figure 1, which shows the scalar product (called overlap) be-
tween the learned weights and the teacher direction as a func-
tion of the time steps and compares simulation (dots) with
theoretical predictions (continuous lines). There are 3 cases:

• Easy finite-T learnable single-index targets (IE=1):
The left panel of Fig. 1 show the learning curve for a prob-
lem with IE=1. Both single-pass and multiple-pass GD cor-
relates with the target in finite time. The non-symmetric sub-
space coincides with the teacher one E⋆

⊥ = U⋆ (Def. 3.3).
• Multi-pass finite-T learnable single-index targets
(IE>1,non− even f⋆): Fig. 1 (center) depicts the learn-
ing curve for a non-even target function, with IE = 3. Here,
one-pass GD is not able to achieve any significant correla-
tion with the teacher w⋆ (and it would require a number of it-
erations T = O(d) to achieve weak recovery - see eq. (13)).
However, multiple-pass GD performs weak recovery in
only T = 2 steps. As before, the non-symmetric subspace
corresponds to the teacher one E⋆

⊥ = U⋆ (Def. 3.3).
• Finite-T non-learnable single-index targets
(IE>1, even f⋆): Fig. 1 (right) considers an even
problem, with IE = 4. Neither of the training procedures
achieve weak recovery in finite time. The computational
hardness of this problem is associated with the presence of
symmetry in the teacher function that requires time to break.
Indeed, following Definition 3.3, the even-symmetric sub-
space E⋆ is equivalent to the teacher subspace U⋆. These
results agree with the emergence of computational barriers
in symmetric single-index problems like the phase retrieval
one (Maillard et al., 2020). In fact, for such problems,
regardless of the number of iterations, learnability requires
α to be larger than critical values even for the most efficient
known algorithms (see (Barbier et al., 2019), Sec. 3.1).

Learning multi-index targets – The hardness of multi-
index targets learning has been the subject of numerous
recent studies for single-pass algorithms (Abbe et al., 2021;
2022; 2023; Bietti et al., 2023; Zweig & Bruna, 2023; Dandi
et al., 2023). The class of multi-index targets efficiently
learned by one-pass algorithms has been provably associated
with the Leap Complexity (LC) of the target to be learned,
which generalizes the information exponent:
Remark 3.7. To enhance the clarity of the presentation,
we limit the definition of the LC to an informal one. We
refer to Section B.2 (isoLeap) in (Abbe et al., 2023) and
Definition 3 in (Dandi et al., 2023) (leap index) for details.
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Informally, the learning dynamics of one-pass routines fol-
low this behavior: initially, the network learns in the first
step the first Hermite coefficient of the target f⋆. For ev-
ery time t ∈ [T ] of the one-pass schedule, the network is
bound to learn in finite time only features that are linearly
connected to the previously learned directions; functions
possessing only such linearly connected features are leap 1
functions (LC = 1), e.g. f⋆(z)=z1+z1z2. Similarly, func-
tions that are quadratically connected to the learned features
are leap 2 (LC=2), e.g. f⋆(z)=z1 + z1z2z3. Higher LC
target functions correspond to harder learning problems for
one-pass algorithms: one-pass SGD, with one sample per
batch, weakly recovers the teacher subspace U⋆ by iterating
the training protocol for T (LC) time steps, where the LC
substitutes the IE in eq. (13) (Abbe et al., 2023).

We illustrate the behavior of one-pass and multiple-pass
algorithms when learning multi-index functions in Fig. 2.
Using different two-index teachers (k = 2), it shows the
scalar product between the learned weights and two refer-
ence vectors: a) the first Hermite coefficient of the target f⋆,
called in the following C1[f

⋆]; b) the vector in the teacher
subspace U⋆ orthogonal to C1[f

⋆], referred as C1[f
⋆]⊥.

The figure exemplifies the correlations metrics as a function
of time, labeled as overlap (resp. orthogonal overlap) in the
upper (resp. lower) section. There are, again, 3 cases:
• Finite-T learnable multi-index targets: Fig. 2 (left)
depicts a target with LC = 1. The teacher subspace U⋆

spanned by the standard basis vectors {e1, e2} is learned by
both one-pass and multi-pass GD in finite time. At T =1,
e1 = C1[f

⋆] is learned; this enables the recovery of the
direction e2 at T = 2 as the target is linear in z2 once e1
has been learned. This hierarchical picture of learning is
called staircase mechanism. Using Def. 3.3 notations, the
non-symmetric teacher subspace E⋆

⊥ is equivalent to the
full teacher subspace U⋆.
• Multi-pass finite-T learnable multi-index targets: The
central panel in Fig. 2 illustrates a teacher with LC = 3.
Both algorithms are successful in weakly recovering the
direction C1[f

⋆] in the first step. However, as the training
continues, one-pass GD never recovers the full teacher
subspace in finite time (exemplified by the zero orthogonal
overlap in the lower panel). Conversely, multi-pass GD is
able to perform weak recovery of the full teacher subspace
U⋆ by achieving a non-vanishing correlation with C1[f

⋆]⊥

(non-zero orthogonal overlap in the lower section) in just
T = 2 steps. Again, the non-symmetric subspace E⋆

⊥ = U⋆

is equivalent to the full teacher subspace U⋆ (Def. 3.3).
• Finite-T non-learnable multi-index targets: The right
panel of Fig. 2 considers a committee machine teacher with
symmetric activation, i.e. f⋆(z) =

∑2
r=1 σ

⋆ (⟨z, er⟩), here
LC = 2. Both protocols, in this case, are only able to learn
a single-index approximation of the target function in finite
time, achieving non-zero correlation only with C1[f

⋆] ∝
e1 + e2 throughout the dynamics. The computational hard-

ness of this problem is associated with the presence of a
neuron exchange symmetry. Indeed, using Def. 3.3 nota-
tions, we observe that the even-symmetric subspace E⋆ =
{ 1√

2
(e2 − e1)} is a non-empty subspace of the teacher

one U⋆. Therefore, as for one-pass routines, multiple-pass
ones are bound to learn only v⋆ = (e1 + e2) /

√
2 in finite

time steps. Such difficulties have been described in the
analysis of the specialization transition in the information-
theoretic/Bayes optimal case of symmetric committees
(Aubin et al., 2019). As for single index models, break-
ing the symmetry requires α to be large enough and, even
in this case, the best-known algorithms require a diverging
number of iterations (see (Aubin et al., 2019), Sec. 3).

3.4. From weak recovery to generalization

While Th. 3.2 provides conditions for the weak recovery (a
finite overlap with directions in U⋆), once this is done, it be-
comes straightforward to learn the function up to any desired
accuracy with only O(d) additional samples. Indeed, strong
generalization guarantees can be proven by utilizing existing
results either for subsequent training with online SGD (Ben
Arous et al., 2021) (to use their terminology, once you es-
cape mediocrity, the ballistic phase is easy) or training of the
second layer using an independent batch of O(d) samples
as in (Damian et al., 2022; Abbe et al., 2023). See App.A.10
for such generalization sample-complexity results.

4. Main proof ideas
4.1. Learning by hidden progress: heuristic argument

While we give a rigorous proof of Thm. 3.2 in App. A, we
provide now an informal description of the hidden progress
in the first step of gradient descent that allows subsequent
development of overlaps in the second step, that is at the root
of the difference between single and multi-pass algorithms.
For simplicity, we focus on the case of a single hidden
neuron (p= 1). We denote h(t)µ = ⟨w(t), zµ⟩/

√
d the pre-

activation for the νth training point along the neuron with
µ ∈ [n], and v⋆ a vector in the span of W⋆ with ∥v⋆∥=

√
d.

From the gradient update in Eq. (5), the update lies
in the span of the training inputs {zν}nν=1, with the
gradient of the νth training example given by gν =

aL′
(
h
(t)
ν , f⋆(zν)

)
σ′(h

(t)
ν )zν/

√
d. For squared loss, as-

suming that f
(

W (t)zν√
d

)
≈ 0, the gradient reads:

g(t)
ν ≈ −af⋆(zν)σ′(h(t)ν )zν/

√
d . (14)

At initialization h
(0)
ν = ⟨w(0), zν⟩/

√
d and the projec-

tions along the teacher subspace (which we denote h⋆
ν =

1√
d
W ⋆zν ∈ Rk) are approximately independent since w(0)

is approximately orthogonal to the teacher subspace as well
as to the inputs {zν}nν=1. The projection of the gradient

7
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along the teacher subspace is given by:

W ⋆

(
n∑

ν=1

g
(t)
ν√
d

)
≈−

n∑
ν=1

af⋆(zν)σ
′(h(t)ν )

h⋆
ν

d
. (15)

We do expect that, due to concentration, the component of
the full-batch gradient update along the teacher subspace
lies along the direction given by:

E
[
f⋆(zν)σ

′(h(0)ν )h⋆
ν

]
≈E

[
σ′(h(0)ν )

]
E [f⋆(zν)h

⋆
ν ] ,

(16)
where we used the approximate independence of h(0)ν and
h⋆
ν to factorize the expectation. Thus, the neuron parameters

w(1) at the first step are correlated with the teacher subspace
only along the direction E [f⋆(zν)h

⋆
ν ].

If E [f⋆(zν)h
⋆
ν ] = 0, the parameters remain orthogonal to

the teacher subspace. This is true whenever the LC of the
target function is larger than 1. To make progress, it is thus
necessary for the pre-activations h(t)ν = ⟨w(t), zν⟩/

√
d to

become correlated with the teacher pre-activation h⋆
ν . This

can happen in two different ways:

(i) By w(t) directly gaining components along the teacher
subspaceW ∗. Under online SGD, the data is used only once
for the gradient updates, so only this mechanism is possible.
It allows the directions learned by w(t) at any step to depend
on the directions already learned by w(t). This underlies the
“staircase” phenomenon in online SGD (Abbe et al., 2021;
2022; 2023) as well as the notion of information exponent
when applied to a single direction (Ben Arous et al., 2021).

(ii) By w(t) gaining components along zν . Recall that the
target is defined as yν = f⋆(zν) , and thus w(t) can cor-
relate with h⋆

ν . This is what happens when using gradient
descent with multi-pass in our setting. This implies that even
when w(1) does not learn a direction v∗, the pre-activation
h
(t)
ν can develop a dependence on h⋆

ν through the compo-
nent of the gradient update along zν .

Let us see how this phenomenon, which we call hidden
progress, happens in practice. From (5), the update in the
pre-activation h(1)ν due to the first gradient step reads:

h(1)ν =(1− ηλ)h(0)ν (17)

− η
a

d

n∑
ν′=1

L′(h
(0)
ν′ , f

⋆(zν′))σ′(h
(0)
ν′ )⟨zν′ , zν⟩ .

In this sum there is one term of magnitude O
(
∥zν∥2/d

)
=

O(1) corresponding to ν′=ν, and d− 1 random terms of
order O (⟨zν , zν⟩/d) = O

(
1/
√
d
)

. This second group of
terms contributes to an effective “noise” of order O(1). The
first term however, since ∥zν∥22 ≈ d, depends on f⋆(zν)
(and thus on all components of h⋆

ν):

L′(h(0)ν , f⋆(zν))σ
′(h(0)ν ) . (18)

Due to this dependence between h(1)ν and f⋆(zν), in the
subsequent steps i.e. T =2, the term σ′(h

(1)
ν ) in the update

(14) can now influence the direction of the gradient along
the teacher subspace, leading to w(2) gaining correlations
with new directions in W ⋆. It can be seen as follow: let
m

(t)
v⋆ = ⟨w(t),v⋆⟩/

√
d, it follows from the GD updates that

m
(2)
v⋆ =(1− ηλ)m

(1)
v⋆

− η
aj
d

n∑
ν=1

L′(h(1)ν , f⋆(zν))σ
′(h(1)ν )hv

⋆

ν

Now, suppose that v⋆ is not learned in the first step.
However, due to the hidden progress, h(1)ν is now dependent
on hv

⋆

ν = ⟨v⋆, zν⟩/
√
d, thus allowing the new expecta-

tion of the projection of the update along v⋆ given by
E
[
f⋆(zν)σ

′(h
(1)
ν )hv

⋆

ν

]
to be non-zero. This explains how

the dependence of the pre-activations h(t)ν on f⋆(zν) can
allow learning of new directions even when the weights
have not gained components along the teacher subspace.

This learning mechanism, however, fails when the target
function is symmetric along v⋆. Indeed, for such a direction,
h
(1)
ν retains an even dependence on hv

⋆

ν , which implies
that the expectation of the term E

[
f⋆(zν)σ

′(h
(t)
ν )hv

⋆

ν

]
remains 0 for all time steps t ∈ [T ], with T = O(1). Such
directions are therefore not learned with a finite number
of time-steps and batch-size n = O(d) even upon re-using
the batches.The rigorous control of all these quantities is
a difficult task a priori. One cannot, in particular, express
the above sum as an expectation w.r.t independent samples
zν since the weights W (1) now depend on all the samples.
Fortunately, this is precisely the difficulty solved by the
DMFT equations through an effective stochastic process
on the pre-activations that are decoupled across training
examples. The rigorous analysis is detailed in App. A. The
main lines of the DMFT equations are in Sec. 4.2.

Finally, note that while our proof uses the Gaussian data
assumption, the heuristic argument hints that this is not
crucial. Additionally, in any real dataset samples are very
correlated, and thus a given sample (or a very similar one)
may appear many times. In this case, even single-pass
algorithms will behave as predicted by our approach. We
thus believe it describes a more realistic scenario than the
pure single pass theories with fresh i.i.d. data.

4.2. Characterization of the dynamics

Re-using batches at each gradient step requires keeping track
of the pre-activations of the parameters. Since the number of
pre-activations and the dimensions of the parameters grows
with d, we need a low-dimensional effective dynamics char-
acterizing the quantities of interests such as the overlaps
between the student and target parameters. DMFT provides
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such an effective dynamics through a set of coupled stochas-
tic processes θ(t) ∈ Rp and h(t) ∈ Rp representing the joint-
distributions of the student, teacher parameters W (t),W ⋆.
and the student, teacher pre-activations respectively.

We derive the equations and prove their applicability to
our setting using existing results in (Celentano et al., 2021;
Gerbelot et al., 2022). Asymptotically, for d → ∞ with
n=αd, the joint distribution of the student and teacher pre-
activations (for each sample), h(t)

ν =W (t)zν/
√
d∈Rp and

h⋆
ν =W ⋆zν/

√
d∈Rk converge in distribution to samples

from the stochastic process h(t) and the standard normal
variable h⋆. Similarly, the joint distribution of each compo-
nent of the student and teacher weights W (t)

i ∈ Rp,W ⋆
i ∈

Rk with i ∈ [d] converge in distribution to samples from the
stochastic process θ(t) and the standard normal variable θ⋆.

θ(t+1) =
(
1− ηλ− ηΛ(t)

)
θ(t) + η

t−1∑
τ=0

R
(t,τ)
L θ(τ)

− ηg(t)θ⋆ + η

t−1∑
τ=0

R̃
(t,τ)
L θ⋆ + ηu(t) (19)

h(t) = −η
t−1∑
τ=0

R
(t,τ)
θ ∇hL(h(τ),h⋆) + ω(t) (20)

Notice that the formula above is the high dimensional
equivalent of the gradient descent update (5). Here u(t) and
(ω(t),θ⋆) are zero mean Gaussian Process with covariances
C

(t,τ)
L and Ω(t,τ) respectively, with

C
(t,τ)
L = αEh(t),h⋆

[
∇hL(h(t),h⋆)∇hL(h(τ),h⋆)⊤

]
Ω(t,τ)=

[
C

(t,τ)
θ M (t)

M (τ) 1

]
=Eθ(t),θ⋆

[(
θ(t)

θ⋆

)(
θ(τ)

θ⋆

)⊤
]

the matrix Λ(t) can be viewed as an “effective regulariza-
tion” on the parameters. Λ(t) and the projected gradient g(t)

converge in probability to:

Λ(t)=αEh(t),h⋆

[
∇2

hL
(
h(t),h⋆

)]
, (21)

g(t)=αEh(t),h⋆

[
∇hL

(
h(t),h⋆

)
h⋆⊤

]
(22)

The memory kernels R(t,τ)
L , R̃(t,τ)

L , R(t,τ)
θ are defined as:

R
(t,τ)
θ = Eθ(t),θ⋆

[
∂ θ(t)

∂ u(τ)

]
,

R
(t,τ)
L = αEh(t),h⋆

[
∂ ∇hL(h(t),h⋆)

∂ ω(τ)

]
, (23)

R̃
(t,τ)
L = αEh(t),h⋆

[
∂ ∇hL(h(t),h⋆)

∂ (θ⋆)(τ)

]
, (24)

and R
(t,t)
L = R̃

(t,t)
L = 0, R(t,t)

θ = 1. Finally, the low
dimensional projections of the weights M (t) will obey

M (t+1) = (1− ηλ)M (t) − ηg(t) . (25)

Notice that these definitions are well-posed because of
the causal structure of the gradient descent upgrades, and
by extension of (19): the distribution of (θ(t+1),h(t+1))
is completely determined by {(θ(τ),h(τ))}τ∈[t] and the
auxiliary quantities in eqs. (21, 23). Iterating backwards we
reach the initial condition θ(0), which is a simple function
of the data distribution and the initial conditions of the
weights. For additional details we refer to App. A. Notice
that it is also possible to write this set of equations as a
function of a single stochastic process on h, as in App. C.

Sketch of proof of the hidden progress — Finally, we
explain how the DMFT equations relate to the phenomenon
in Sec. 4.1 and allow us to prove Th. 3.2. The term
∇h(1)L

(
h(1)

)
in (20) precisely corresponds to the contribu-

tion to pre-activation of a point zν (App. A.4) from the gra-
dient at the same point zν . As we discussed in Section 4.1,
this term induces a dependence between h

(1)
ν and h⋆

ν even
when the overlaps M (t) are 0. At time T = 1, the response
term simplifies toR(1,0)

θ = Id and the pre-activations can be
expressed as the random variable ∇h(t)L

(
h(t)

)
with added

Gaussian noise. Analogous to section 4.1, we denote by
M

(t)
v∗ the limiting value of the overlaps 1

dW
(t)v∗ for some

v∗ = (u∗)⊤W ∗ with u∗ ∈ Rp. Propagating the equations
over the first two steps, and using Equation (25), we show
that M (2)

v∗ can be expressed as an expectation w.r.t the pre-
activations h⋆ of a function dependent on the target g⋆, the
second layer a, and the activation function σ:

M
(2)
v∗ =(1−ηλ)M (1)

v∗ + ηαEh⋆

[
Fσ,a(g

⋆(h⋆))h⋆⊤
]
u⋆ .

(26)
The function Fσ,a is described in App.A.5, Eq.(89).
Finally, we show an equivalence between the condi-
tion Eh⋆

[
Fσ,a(g

⋆(h⋆))h⋆⊤
]
u⋆ = 0 to the condition

Ez [F (f
⋆(z))⟨v⋆, z⟩] = 0 for general F in definition 3.1.

General multi-pass schemes — While Theorem 3.2 con-
siders finite number of updates with the same batch of data
for each step, it can be naturally generalized to other se-
tups involving multiple-passes over a finite-number of mini-
batches of size O(d). For instance, one can cycle over
distinct minibatches with each cycle constituting one epoch
or pass through the dataset. Theorem 3.2 remains valid un-
der such a setup with the onset of weak-recovery shifting to
the start of the second epoch instead of the second gradient
step. We provide a sketch of this extension in Appendix
B. On the other hand, if the minibatches are sampled with
replacement from the dataset, the weak recovery still starts
at the second gradient step. We illustrate this in Fig.4 (in
appendix). Furthermore, we empirically observe that the
phenomenon holds even when considering the limit of mini-
batch size 1 (Figure 5 in appendix). Proving this, however,
remains out of the reach of the present technique.

9



The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks

Acknowledgements
We thank Cedric Gerbelot, Bruno Loureiro, and Ludovic
Stephan for insightful discussions. We also acknowledge
funding from the Swiss National Science Foundation grant
SNFS OperaGOST (grant number 200390), and SMArtNet
(grant number 212049).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning Theory. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.

References
Abbe, E., Boix-Adsera, E., Brennan, M. S., Bresler, G., and

Nagaraj, D. The staircase property: How hierarchical
structure can guide deep learning. Advances in Neural
Information Processing Systems, 34:26989–27002, 2021.

Abbe, E., Boix-Adsera, E., and Misiakiewicz, T. The
merged-staircase property: a necessary and nearly suffi-
cient condition for sgd learning of sparse functions on
two-layer neural networks. In Conference on Learning
Theory, pp. 4782–4887. PMLR, 2022.

Abbe, E., Boix-Adsera, E., and Misiakiewicz, T. Sgd learn-
ing on neural networks: leap complexity and saddle-to-
saddle dynamics, 2023.

Agoritsas, E., Biroli, G., Urbani, P., and Zamponi, F. Out-
of-equilibrium dynamical mean-field equations for the
perceptron model. Journal of Physics A: Mathematical
and Theoretical, 51(8):085002, 2018.

Andrews, G. E. Special functions. Cambridge University
Press, 2004.

Aubin, B., Maillard, A., Barbier, J., Krzakala, F., Macris,
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Mézard, M. Out of equilibrium dynamics in spin-glasses
and other glassy systems. Spin glasses and random fields,
12:161, 1998.

Celentano, M., Cheng, C., and Montanari, A. The high-
dimensional asymptotics of first order methods with ran-
dom data. arXiv:2112.07572, 2021.

Chen, S. and Meka, R. Learning polynomials in few relevant
dimensions. In Conference on Learning Theory, pp. 1161–
1227. PMLR, 2020.

10

http://dx.doi.org/10.1088/1742-5468/ab43d2
http://dx.doi.org/10.1088/1742-5468/ab43d2


The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks

Chen, S., Klivans, A., and Meka, R. Efficiently learning
one hidden layer relu networks from queries. Advances
in Neural Information Processing Systems, 34:24087–
24098, 2021.

Chen, S., Gollakota, A., Klivans, A., and Meka, R. Hard-
ness of noise-free learning for two-hidden-layer neural
networks. Advances in Neural Information Processing
Systems, 35:10709–10724, 2022.

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal
transport. Advances in neural information processing
systems, 31, 2018.

Cugliandolo, L. F. Dynamics of glassy systems. In Slow
Relaxations and nonequilibrium dynamics in condensed
matter. Springer, 2003.

Cui, H., Loureiro, B., Krzakala, F., and Zdeborová, L. Gen-
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A. Mathematical Proofs
A.1. Notations

We use the asymptotic notation f1(d) = Θd(f1(d)) to denote c |f1(d)| ≤ |f2(d)| ≤ C |f1(d)| for some constants c, C > 0
and large enough d. Similarly, f1(d) = od(f1(d)) denotes f1(d) ≤ c(f1(d)) for any constant c > 0 and large enough d. We

use
d,n→∞−−−−−→

P
,
d,n→∞−−−−−→

D
to denote convergence in probability and convergence in distribution respectively as d, n→ ∞ with

n/d = α > 0. We denote subspaces and linear operators, matrices on Rd through uppercase letters A,B,C, · · · . For any
subspace A ∈ Rd, we denote by A⊥, its orthogonal complement, i.e the subspace of vectors orthogonal to all v ∈ A.

A.2. DMFT and iterative conditioning

Unlike online SGD, the preactivations after multiple steps no longer remain Gaussian since the weights become dependent
on the data. This prevents marginalizing over the orthogonal components over the preactivations and relating the learning
of new directions to the Hermite decomposition of the target function. Our proof circumvents these issues by utilizing a
simpler effective process that decouples the pre-activations for different samples. The effective process is obtained using a
rigorous version of the Dynamical Mean Field Theory derived in (Montanari & Saeed, 2022) and (Gerbelot et al., 2022).

The derivation of Dynamical Mean Field Theory in the above works has the following essential elements:

1. Iterative conditioning: The proof in (Gerbelot et al., 2022; Montanari & Saeed, 2022) for obtaining the DMFT equations
relies on the observation that the gradient descent algorithm in Equation (27) for a finite-number of iterations can be
described completely through projections of the inputs design matrix Z ∈ Rn×d along a finite number of vectors in Rn,Rd.
The iterative conditioning technique (Bolthausen, 2014; Bayati & Montanari, 2011) then involves replacing the components
of Z ∈ Rn×d along directions orthogonal to these projections by independent Gaussian random variables. This leads to a
non-Markovian structure in the effective processes for the activations, parameters.
2. The concentration of finite-dimensional order parameters such as overlaps of the neuron parameters with the teacher
neurons/subspace as well as expectations w.r.t the empirical measure of the pre-activations and parameters.

Using the above elements, DMFT provides a low-dimensional effective dynamics characterizing the limiting joint empirical
measure of the student parameters, as well as the pre-activations. We illustrate the proof for the activations after the first
gradient step, illustrating the relationship with the “hidden progress” described in section 4.1

Let H(t) = 1√
d
Z(W(t))⊤ denote the n× p matrix of pre-activations at time t. Similarly, let H∗ ∈ Rn×k denote the matrix

of input activations in the target function. We denote by ∇HL(H∗,H(t)) ∈ Rn×p, the matrix derivative of L w.r.t the
corresponding entries of the pre-activations matrix H(t). After each gradient update, W(t) and the preactivations H(t) gain a
dependence on Z. The Iterative conditioning technique works around this dependence by conditioning on the sigma algebra
generated by H(t),H∗ and W(t) instead of on Z. Since Z interacts with W(t) and H(t) only through projections (along
right with W(t) and left with ∇HL(H∗,H(t)) respectively), the conditioning allows the components of Z orthogonal to
∇HL(H(∗),H(t)) and W(t) to be replaced by independent Gaussian entries.

For the first-gradient step, we only require conditioning on H(0),H∗,W0.

From ((5)), we obtain the following update for H(1):

H(1) = H(0) +
η

d
Z(Z)⊤∇HL(H∗,H(0))a⊤, (27)

Let W̄(0) =

(
W(0)

W⋆

)
∈ Rp+k×d By the equivalence of projection and conditioning for Gaussian random variables, we

have that the following inequality holds in distribution:

Z|H0,H∗,W̄(0)
d
= ZP⊤

w + Z̃(P⊥
w )⊤, (28)

where Z̃ is independent of Z and Pw denote the projection operator along W̄(0),W̄⋆, defined as:

Pw = W̄(0)(W̄(0)(W̄(0))⊤)−1(W̄(0))⊤.
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Substituting in Equation ((27)), we obtain:

H(1) d
= H(0) + η

1

d
Z̃(P⊥

w )⊤P⊥
w (Z̃)⊤∇HL(H∗,H(0))a⊤ + η

1

d
H0(W̄

(0)(W̄(0))⊤)−1(H0)
⊤∇HL(H∗,H(0))a⊤ (29)

Since the projection, Pw is along a low-dimensional subspace of dimension at most p, we have P⊥
w ≈ Id. One can therefore

show that 1√
d
Z̃(P⊥

w )⊤P⊥
w (Z̃)⊤u converges in probability to Z̃Z̃⊤u. for any deterministic u ∈ Rd with ∥u∥ = O(

√
d).

Applying it to the vector u = L(H∗,H(0)), conditioned on H∗,H(0), we obtain that:

1√
d

∥∥∥∥1d Z̃(P⊥
w )⊤P⊥

w (Z̃)⊤∇HL(H∗,H(0))− 1

d
Z̃(Z̃)⊤∇HL(H∗,H(0))

∥∥∥∥
F

n,d→∞−−−−−→
P

0. (30)

Now, the diagonal entries of 1
d Z̃(Z̃)

⊤ convergence in probability to 1 due to the concentration of norms of Gaussian
random vectors. This results in the term L(H∗,H(0)). This term is precisely the one responsible for the “hidden progress”
explained in section 4.1, corresponding to the term in Equation 18. Since Z̃ is independent of W(0) and H(0),H∗, by
central limit-theorem for sub-Gaussian random variables, the remaining off-diagonal terms can be shown to converge to
Gaussian noise independent of H(0),H∗ with variance

∥∥∇hL(h∗,h(0))
∥∥2.

Lastly, the third term in Equation (29) can be shown to converge to Gaussian noise correlated with corresponding entries of
H0,H

∗. Specifically, by removing the conditioning on H0, we have through law of large numbers and Stein’s Lemma, we
have that the term 1

d (H0)
⊤∇HL(H∗,H(0)) converges in probability to (W(0)(W(0))⊤)E

[
∇2

hL(h∗,h(0))
]
. Therefore,

we obtain:

1√
d

∥∥∥∥1dH0(W
(0)(W(0))⊤)−1(H0)

⊤∇HL(H∗,h(0))a⊤ −H0E
[
∇2

hL(h∗,h(0))
]
)a⊤

∥∥∥∥ n,d→∞−−−−−→
P

0 (31)

Proceeding similarly, one obtains low-dimensional effective processes for W(t),H(t) for any time t ∈ N. In the following
section, we derive the resulting DMFT dynamics for the setup considered in Section 1 through a reduction to the result in
(Gerbelot et al., 2022). We refer to (Gerbelot et al., 2022; Celentano et al., 2021) for detailed proofs based on the above
technique.

A.3. Derivation of the exact asymptotics

We start by stating a general consequence of the main result in (Gerbelot et al., 2022).

Theorem A.1 (Corollary of Theorem 3.2 in (Gerbelot et al., 2022)). Let W 0 ∈ Rq×d be a sequence of matrices such that
the overlap matrix

1

d
W 0(W 0)⊤, (32)

converges almost surely. Consider a dynamics of the form:

W (t+1) =W (t) − ηλW (t) − η
1√
d

n∑
ν=1

F

(
W (t)zν√

d

)
z⊤ν (33)

where F : Rq → Rq is pseudo-Lipshitz of finite-order. Then the empirical measure of the weights w
(t)
i converges in

distribution to the weight process θ(t)i and the empirical measure of the preactivations h(t)
ν converges in distribution to that

of the preactivation process h(t), defined as

θ(t+1) − θ(t) = − η
(
λ+ Λ(t)

)
θ(t) + η

t−1∑
τ=0

R
(t,τ)
ℓ θ(τ) + ηu(t) (34)

h(t) = −η
t−1∑
τ=0

R
(t,τ)
θ F (h(τ)) + ω(t) (35)

were we have
Λ(t) = αE

[
∇hF (h

(t))
]

(36)
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R
(t,τ)
θ = E

[
∂ θ(t)

∂ τ (τ)

]
(37)

R
(t,τ)
ℓ = αE

[
∂ F (h(t))

∂ ω(τ)

]
. (38)

Finally, u(t) and ω(t) are zero-mean Gaussian processes respectively with covariances given by C(t,τ)
ℓ and C(t,τ)

θ :

C
(t,τ)
ℓ = αE

[
u(t)

(
u(τ)

)⊤]
= αE

[
F (r(t))F (r(τ))⊤

]
(39)

C
(t,τ)
θ = E

[
ω(t)

(
ω(τ)

)⊤]
= E

[
θ(t)

(
θ(τ)

)⊤]
(40)

The convergence in distribution of the empirical measures holds in the following sense: For any t ∈ N, and any pseudo-
Lipschitz functions ψ : Rp(t+1) → R and ϕ : Rpt → R:

1

d

d∑
i=1

ψ((W
(0)
i , ...,W

(t)
i ))

w.h.p.−−−−−→
n,d→∞

E
[
ψ(θ(0), ...,θ(t))

]
, (41)

1

n

n∑
ν=1

ϕ((h(0)
ν , ...,h(t−1)

ν ))
w.h.p.−−−−−→
n,d→∞

E
[
ϕ(h(0), ...,h(t−1))

]
, (42)

where W (t)
i denotes the ith column of W (t)

Notice that it’s possible to also define Rθ and Rℓ in the following way. Let R(t,τ)
θ is the solution of the difference equation

R
(t+1,τ)
θ −R

(t,τ)
θ = − η

(
λ+ Λ(t)

)
R

(t,τ)
θ + η

t−1∑
s=τ

R
(t,s)
ℓ R

(τ,s)
θ (43)

with boundary conditions

R
(t,t)
θ = 1 , (44)

R
(t+1,t)
θ = 1− ηΛ(t) , (45)

while
R

(t,τ)
ℓ = αE

[
∇hF (h

(t))T
(t,τ)
ℓ

]
(46)

and T (t,τ)
ℓ is a collection of stochastic processes with distribution

T
(t,τ)
ℓ = R

(t,τ)
θ ∇hF (h

(τ)) +

t−1∑
s=τ+1

R
(t,s)
θ T

(s,τ)
ℓ (47)

and boundary conditions

T
(t,t)
ℓ = 0 , (48)

T
(t+1,t)
ℓ = 1− ηΛ(t) , (49)

The above result follows directly by substituting 1√
d
Z as X in Theorem 3.2 of (Gerbelot et al., 2022).

To obtain the limiting equations under the setting of gradient descent with teacher weights W ∗ in section 1, we utilize the
generality of the update F in theorem A.1, which allows for a portion of the parameters (W ∗) to remain unaffected. We
obtain the following result, which generalize the former theorem to the setting of our paper:

15



The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks

Theorem A.2. Consider the distribution over data defined in section 2 and an update rule on the weights of the form (5), i.e:

w
(t+1)
i = w

(t)
i − ηλw

(t)
i − η

n∑
ν=1

∇
w

(t)
i

L
(
W (t)zν√

d
,
W ⋆zν√

d

)
, (50)

Then under the assumptions of Theorem 3.2, as d→ ∞ with n/d = α > 0, the joint empirical measure of the coordinates
of the student weights w(t)

i and the teacher weights W ⋆ converges in distribution to the stochastic process θ(t) and the
standard normal variable θ⋆, in the sense of Theorem A.1. Similarly, the joint empirical measure of the student and teacher

preactivations w
(t)
i zν√
d

, w⋆
i zν√
d

converge in distribution to the stochastic process h(t) and the standard normal variable h⋆.

θ(t) and h(t) are defined recursively through the following equations:

θ(t+1) − θ(t) = − η
(
λ+ Λ(t)

)
θ(t) + η

t−1∑
τ=0

R
(t,τ)
ℓ θ(τ) − ηg(t)θ⋆ + η

t∑
τ=0

R̃
(t,τ)
ℓ θ⋆ + ηu(t) (51)

h(t) = −η
t−1∑
τ=0

R
(t,τ)
θ ∇hℓ(h

(τ),h⋆) + ω(t) (52)

Here u(t),θ⋆ and (ω(t),h⋆) are zero mean Gaussian Process with covariances C(t,τ)
ℓ and Ω(t,τ) respectively, given bY:

C
(t,τ)
ℓ = αE

[
u(t)

(
u(τ)

)⊤]
= αEh(t),h⋆

[
∇hL(h(t),h⋆)∇hL(h(τ),h⋆)⊤

]
(53)

Ω(t,τ)=E

[(
ω(t)

h⋆

)(
ω(t)

h⋆

)⊤
]
=

[
C

(t,τ)
θ M (t)

M (t) 1

]
, (54)

where C(t,τ)
θ ,M (t) are defined as: [

C
(t,τ)
θ M (t)

M (t) 1

]
=Eθ(t),θ⋆

[(
θ(t)

θ⋆

)(
θ(τ)

θ⋆

)⊤
]

(55)

The effective regularisation Λ(t) and the projected gradient g(t) concentrate to

Λ(t)=αEh(t),h⋆

[
∇2

hL
(
h(t),h⋆

)]
, (56)

g(t)=αEh(t),h⋆

[
∇hL

(
h(t),h⋆

)
h⋆⊤

]
(57)

The memory kernels R(t,τ)
ℓ , R̃(t,τ)

ℓ , R(t,τ)
θ are defined by the partial derivatives with respect to the noise intended as

functions, with the following identities valid for t > τ

R
(t,τ)
θ = Eθ(t),θ⋆

[
∂ θ(t)

∂ τ(τ)

]
,

R
(t,τ)
ℓ = αEh(t),h⋆

[
∂ ∇hL(h(t),h⋆)

∂ ω(τ)

]
, (58)

R̃
(t,τ)
ℓ = αEh(t),h⋆

[
∂ ∇hL(h(t),h⋆)

∂ (ω⋆)(τ)

]
, (59)

and R(t,t)
ℓ = R̃

(t,t)
ℓ = 0, R(t,t)

θ = 1. Finally, M (t) obeys the update equation

M (t+1) = (1− ηλ)M (t) − ηg(t) , (60)

where g(t) is defined as:

αE
[
∇hℓ(h

(t)) (h∗)
⊤
]

(61)
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Proof. Analogous to the embedding of planted vectors in (Celentano et al., 2021), we start by considering an a lifted
dynamics defined by concating W (t) and W ∗. First define W̃ (t) ∈ R(p+k)×d with update rule:

[
W (t+1)

W ∗

]
=

[
W (t)

W ∗

]
− η

[
λW (t)

0

]
− η

n∑
ν=1

[
∇W (t) L

(
W (t)zν

√
d

)
0

]
, (62)

The above form of updates can be seen to be a special case of Theorem A.1 with q = p+ k and F : Rp+k → Rp+k given
by:

F :

(
h
h⋆

)
→
(
∇hL(h,h⋆)

0

)
(63)

The assumptions on g∗, σ and on the distribution of W (0),W ∗ imply that F is pseudo-Lipschitz of finite-order and that the
overlap matrix at initialization converges to a limit. Therefore, theorem A.1, the effective process for the weights and the
pre-activations is described by:[

θ(t+1)

θ∗

]
−
[
θ(t)

θ∗

]
= − η

[
λ+ Λ(t) Λ̃(t)

0 0

] [
θ(t)

θ∗

]
+ η

t∑
τ=0

[
R

(t,τ)
ℓ R̃

(t,τ)
ℓ

0 0

] [
θ(τ)

θ∗

]
+ η

[
u(t)

0

]
(64)

[
h(t)

h∗

]
= −η

t−1∑
τ=0

[
R

(t,τ)
θ R̃

(t,τ)
θ

0 1

] [
∇hL(h(τ),h⋆)

0

]
+

[
ω(t)

ω∗

]
(65)

Notice how these equations are simpler due to W ∗ not being updated in (62). We can simplify (65) and (64), obtaining:

θ(t+1) − θ(t) = − η
(
λ+ Λ(t)

)
θ(t) + η

t−1∑
τ=0

R
(t,τ)
ℓ θ(τ) − η Λ̃(t)θ∗ + η

t∑
τ=0

R̃
(t,τ)
ℓ θ∗ + ηu(t) (66)

h(t) = −η
t−1∑
τ=0

R
(t,τ)
θ ∇hL(h(τ),h⋆) + ω(t) (67)

where we noticed that h∗ ∼ ω∗. These equations are the same as in A.1, with just two extra terms in (66), Λ̃(t) and R̃(t,τ)
ℓ .

An application of the Stein’s Lemma further simplifies the term Λ̃(t) to g(t) in the Theorem as follows:

Λ̃(t) = αE
[
∇h∗∇hℓ(h

(t),h⋆)
]
= αE

[
∇hℓ(h

(t),h⋆) (h∗)
⊤
]
= g(t), (68)

The above effective process characterizes the limits of several quantities determined by the weights and pre-activations. In
particular, it provides the limits of the overlaps of the student teacher overlaps:

Corollary A.3. Under the assumptions of Theorem 3.2,

W (t)(W ⋆)⊤/d
n,d→∞−−−−−→

P
M (t), (69)

where M (t) is defined as in Theorem A.2.

Proof. Observe that ⟨w(t)
i ,w⋆⟩/d can be expressed as an expectation of a pseudo-lipschitz function w.r.t the joint empirical

measure over the coordinates of w(t)
i ,w⋆ with the value at the jth coordinate given by {w(t)

i }j{w⋆}j . Therefore 3.2 implies
that W (t)(W ⋆)⊤/d converges in probability to the expected overlaps of the effective process θ(t), θ⋆ which equal M (t) by
definition.

We also include a useful corollary, describing the evolution of the overlaps of the weights.
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Lemma A.4. Under the assumptions of A.2 the covariance C(t,τ)
θ

C
(t+1,τ)
θ − C

(t,τ)
θ = −η

(
λ+ Λ(t)

)
C

(t,τ)
θ + η

t−1∑
s=0

R
(t,s)
ℓ C

(s,τ)
θ + η

τ−1∑
s=0

R
(t,s)
θ C

(s,τ)
ℓ − (70)

−η
(
gt −

t∑
s=0

R̃
(t,s)
ℓ

)(
M (τ)

)⊤
(71)

This is a consequence of linearity of expectation on (51). Concretely, viewing θ(t) as a function of the Gaussian random
variables {u(τ)}tτ=1, we apply the multi-variate Stein’s Lemma to obtain:

E
[
θ(t)u(τ)

]
=

t−1∑
s=τ

R
(t,s)
θ C

(s,τ)
ℓ . (72)

In particular, we obtain the following expression for the covariances upto the first time-steps:

Lemma A.5. The covariances C(0,1)
θ , C

(0,0)
θ satisfy:

C
(0,1)
θ − C

(0,0)
θ = −η

(
λ+ Λ(0)

)
C

(0,0)
θ − η

(
g(0) − Λ(0)M (0)

)(
M (0)

)⊤
(73)

C
(1,1)
θ − C

(0,1)
θ = −η

(
λ+ Λ(0)

)
C

(0,1)
θ + ηC

(0,1)
ℓ − η

(
g(0) − Λ(0)M (0)

)(
M (1)

)⊤
(74)

A.4. Pre-activations at the end of the first gradient update

For T = 1, Equation (52) simplifies to:

h(1) = −η∇hℓ(h
(0),h⋆) + ω(1) (75)

We now show that the first term exactly correspond to the contributions considered in section 4.1.

Lemma A.6. Under the notation in section 4.1 and assumptions of Theorem 3.2:

a

d
ℓ′
(
h(0)
ν ,h⋆

ν

)
σ′(h(0)

ν )⟨zν , zν⟩ n,d→∞−−−−−→
D

∇hℓ(h
0,h⋆) (76)

where h0 ∈ Rp,h∗ ∈ Rk are independent Gaussian random variables distributed as in Theorem A.2.

Proof. We simply apply the conditioning by projection technique described in Section A.2 to zν by expressing it as:
zν = h

(0)
ν + d−1

d z′ν , where z′ν is independent of h(0)
ν . The result then follows from convergence in probability of 1

d ⟨z′ν , z′ν⟩
to 1.

Next, we characterize ω(1). We consider two cases:

• M (1) = 0: In this case, Corollary A.3 implies that the first-layer does not develop any overlap with directions in U∗.
Equation (54) then implies that ω(1) is uncorrelated with ω∗.

• M (1) ̸= 0: In this case the first-layer develops an overlap along U∗. By initialization, we have that M (0) = 0. Equation
(61) implies that M (1) is given by:

M (1) = −ηαE
[
∇hℓ(h

(0)) (h∗)
⊤
]

(77)

Due to the choice of symmetric initialization (Equation 4), we have f(h(0)) = 0. Therefore, ∇hL(h(0)) =
−ag∗(h∗)σ′(h(0)). We thus obtain

M (1) = ηαaE
[
g∗(h∗)h(0)(h∗)⊤

]
= ηαa⊙ E

[
h(0)

]
E
[
g∗(h∗)(h∗)⊤

]
, (78)
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where ⊙ denotes element-wise multiplication and we used the independence of h∗,h(0). Therefore, the rows of M (1)

gains a rank-one spike along E [g∗(h∗)(h∗)]. This matches the corresponding results for single O(d) batch gradient
steps under the online-setting (Ba et al., 2022; Dandi et al., 2023).

By Equation (54), ω(1) can be expressed as:

ω(1) = ω
(1)
⊥ +M (1)h∗ , (79)

where ω⊥ is independent of h∗.

A.5. Proof of Theorem 3.2

To illustrate the learning of directions solely due to the hidden progress explained in section 4.1, we first focus on the case
where M (1) = 0 i.e when the parameters develop no overlap along the target subspace in the first step.

From Corollary A.3, and Slutsky’s theorem, we have that:

1

d
W 2(W ⋆)⊤ − 1

d
W 1(W ⋆)⊤

n,d→∞−−−−−→
P

−ηαE
[
∇hL(h(1),h⋆) (h⋆)

⊤
]
, (80)

where from Equation (75), h(1) can be expressed as a combination of ∇hL(h(1),h⋆) and a Gaussian random variable ω(1)

independent of h⋆. Furthermore, Lemma A.4 implies that the regularization strength λ and step-size η can be set such that
the entries of ω(1) have unit-variance. Now, suppose v⋆ = (W ⋆)⊤u⋆ for some fixed vector u⋆ ∈ Rp. First, consider the
case when v⋆ lies in the subspace P ∗

⊥ as defined in definition 3.1.

By projecting Equation (80) along u⋆, we obtain that:

1

d
W 2v⋆ − 1

d
W 1v⋆ n,d→∞−−−−−→

P
−ηαE

[
∇hL(h(1),h∗) (h⋆)

⊤
u⋆
]
, (81)

For squared loss, we have −∇hj
L(h(t),h⋆) = aj(g

⋆(h⋆)− f(h(t)))σ′(h
(t)
j ).

Therefore, the overlap for the jth neuron can be expressed as :

1

d
⟨w(2)

i ,v⋆⟩ − 1

d
⟨w(1)

i ,v⋆⟩ n,d→∞−−−−−→
P

ηαE
[
ajg

⋆(h⋆)σ′(h
(1)
j ) (h⋆)

⊤
u⋆
]
− ηαE

[
ajf(h

(1))σ′(h
(1)
j ) (h⋆)

⊤
u⋆
]
. (82)

We focus on the first term in the RHS. By assumption, 1
d ⟨w

(0)
i ,v⋆⟩, 1d ⟨w

(1)
i ,v⋆⟩ converge in probability to 0. Therefore,

using Equation (75), we obtain:

1

d
⟨w(2)

i ,v∗⟩ n,d→∞−−−−−→
P

ηαE
[
ajg

⋆(h⋆)σ′(h
(1)
j ) (h⋆)

⊤
u⋆
]

(83)

= ηαE
[
ajg

⋆(h⋆)σ′(−∇hL(h(0)) + ω(1)) (h⋆)
⊤
u⋆
]
. (84)

Recall that by initialization C(0,0)
θ are diagonal with entries 1 except for the off-diagonal entries corresponding to pairing of

neurons through the symmetric initialization. Furthermore, by initialization, M (0) = 0 and by assumption M (1) = 0.

From Lemma A.4, and the definitions of we have that by setting ηγ = 1, the covariance C(0,1)
θ , C

(1,1)
θ simplify to:

C
(0,1)
θ = −ηΛ(0)C

(0,0)
θ (85)

C
(1,1)
θ = Λ(0)C

(0,1)
θ + ηC

(0,1)
ℓ (86)

By definition, Λ(0), C
(0,1)
ℓ have diagonal entries proportional to aj , a2j respectively. Therefore, we can further set η > 0

such that the jth diagonal entry of C1,1
θ equals 1 + a2j . By case 1 in section A.4, we further have that ω(1) is independent of

h∗.
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Substituting ∇hL(h(0)) = −ag∗(h∗)σ′(h(0)), we obtain the precise condition on σ for the jth neuron to learn direction v⋆

the second timestep. The condition is given by:

ϕ(aj) = E
[
g⋆(h⋆)σ′(ηajg

⋆(h⋆)σ′(h0j ) + ξ1 + ajξ2)⟨h⋆,u⋆⟩
]
̸= 0, (87)

where h⋆ and ξ1, ξ2 are independent Gaussian random variables. Since h⋆ matches in distribution 1√
d
W⋆z, the above

condition can equivalently be expressed as the following condition on f⋆:

ϕ(aj) = Ez [Fσ,a(f
⋆(z))⟨v⋆, z⟩] ̸= 0, (88)

where:
Fσ,a(x) = Eξ1,ξ2 [xσ

′(ηajσ
′(u)x+ ajξ)] , (89)

where u is a standard normal variable, corresponding to h(0)j . The above expectation ϕ is an analytic function of aj . To show
that it is identically non-zero, we consider the derivative w.r.t aj at aj = 0. We have, using the dominated-convergence
theorem:

ϕ′(0) = ηE
[
σ′(u)g⋆(h⋆)2σ′′(ξ1)⟨h⋆,u⋆⟩

]
= ηE

[
g⋆(h⋆)2⟨h⋆,u⋆⟩

]
E [σ′(u)]σ′′(0)

= ηE
[
g⋆(h⋆)2⟨h⋆,u⋆⟩

]
ν1(σ)σ

′′(0),

where ν1(σ) denotes respectively the 1st Hermite-coefficients of σ and are non-zero by assumption on σ. Similarly, iterating
k-times, we have:

Dk
aj
ϕ(a) = ηk+1E

[
(g⋆(h∗))k+1⟨h⋆,u⋆⟩

]
νk1 (σ)σ

k+1(σ), (90)

where νk(σ) denotes the kth Hermite-coefficient of σ. Note that for ϕ(a) to not be identically zero, it is sufficient that
Dk−1

aj
is non-zero for some k ∈ N. Since by assumption, v∗ ∈ P ∗

⊥, and since the monomials 1, x, x2, · · · span the space of
polynomials, we have that there exists a k ∈ N such that: E

[
(g⋆(h∗))k⟨h⋆,u⋆⟩

]
̸= 0.

Therefore ϕ(aj) is a not identically 0. Since ϕ(aj) is an analytic function non-identically zero, and the law of a(0) ∼
N (0, 1p1p) is absolutely continuous w.r.t the Lebesgue measure, we have that ϕ(aj) is non-zero almost surely over the
initialization. Now, the second term in Equation 81 is again an analytic function in a, distinct from ϕ(aj), and can therefore
be almost surely absorbed into the non-zero overlap. This proves the first part of Theorem 3.2 for developing an overlap
along a fixed direction in P ∗

⊥ when M (1) = 0. We now proceed to show that the weights W 2 span P ∗
⊥.

Let r denote the dimension of the subspace P ∗
⊥. Suppose that v∗1 = (W ⋆)⊤u⋆

1, v
∗
2 , · · · = (W ⋆)⊤u⋆

2, · · · , v∗r = (W ⋆)⊤u⋆
r

form an orthonormal basis of P ∗
⊥. Let V ∗ ∈ Rd×r matrix M∗

u ∈ Rk×r denote matrices with columnsv⋆
1, · · · ,v⋆

r and
u⋆
1, · · · ,u⋆

r respectively.

Analogous to Equation (82), we obtain:

1

d
W 2V ⋆ − 1

d
W 1V ⋆ n,d→∞−−−−−→

P
−ηαE

[
∇hL(h(1),h∗) (h⋆)

⊤
M∗

u

]
, (91)

Following the derivation of Equation (88), we obtain that the rows of the matrix E
[
∇hL(h(1),h∗) (h⋆)

⊤
U∗
]

are indepen-
dent for neurons i, j for j ̸= p− i+ 1 (due to the symmetric initialization in Equation (4). Furthermore each row of the
matrix is absolutely continuous w.r.t the Lebesgue measure on Rr. This implies that 1

dW
2V ⋆ − 1

dW
1V ⋆ has full row-rank

almost surely for large enough p.

Now, suppose that v⋆ instead lies in the even-symmetric subspace A⋆. By induction and closure properties of analytic
functions, we have that h(t) can be expressed as:

h(t) = Ft(h
(∗), ω1,ω

(1), · · · ,ω(t)), (92)

for an analytic mapping Ft. Now, similar to Equation (82), we have that:

1

d
W tv⋆ − 1

d
W t−1v⋆ n,d→∞−−−−−→

P
−ηαE

[
∇hL(h(t),h∗) (h⋆)

⊤
u⋆
]
, (93)
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Using Fubini’s theorem, we may take expectation w.r.t to express each entry of E
[
∇hL(h(t),h∗) (h⋆)

⊤
u⋆
]

as:

Ez [Ft,a(f
⋆(z))⟨v⋆, z⟩] , (94)

for some analytic Ft,a This ensures that the expectation in (81) remains 0 for all time t. This proves the second part of
Theorem 3.2.

A.6. Effect of previously learned directions

We now consider the case when M (1) ̸= 0, i.e when the first-layer develops an overlap along U∗. As shown in 4.1, the rows
of M (1) lie along the same direction given by E [g∗(h∗)(h∗)]. Without loss of generality, we assume that the direction
E [g∗(h∗)(h∗)] corresponds to e1 in the input space Rd and that W ∗ has rows along the standard basis e1, · · · , ek. Note
that e1 itself lies in P ∗

⊥ by setting F (x) = x in definition 3.1.

From Equation (79), we obtain:
ω

(1)
j = ω⊥

(1)
j + ηCajh

∗
1 (95)

where C denotes a constant dependent on g∗. Since ω(1) is now correlated with h∗1, the condition in Equation (87) is
modified to:

ϕ(aj) = E [g⋆(h⋆)σ′(ηajσ
′(u)g⋆(h⋆) + ξ1 + ajξ2 + ηCajh

∗
1)⟨h⋆,u⋆⟩] ̸= 0, (96)

Again, differentiating w.r.t aj , we obtain:

ϕ′(0) = ηE
[
g⋆(h⋆)2⟨h⋆,u⋆⟩

]
ν1(σ)ν2(σ) + ηE [g⋆(h⋆)h∗1⟨h⋆,u⋆⟩] (97)

Similar to section A.5, we have that v∗ ∈ P ∗
⊥ is sufficient for the first term to be non-zero almost surely over aj . If the

second-term is non-zero, we have that u⋆ is learned through the staircase mechanism, since it implies that g⋆(h⋆) contains
terms dependent on h∗1 and linearly coupled with ⟨h⋆,u⋆⟩. In either case, we obtain that W (2) almost surely obtains an
overlap along v∗. This concludes the proof of the first part of Theorem 3.2.

More, generally, suppose that e1, · · · em denote a basis of the directions in U∗ learned up to time t. Then, the modified
condition for learned a new direction v∗ at time t+ 1 is:

Ez [F (f
⋆(z), z1, · · · zm)⟨v⋆, z⟩] ̸= 0, (98)

for a polynomial F : Rm+1 → R. Therefore, new directions can be learned through a combination of the staircase and
hidden-progress mechanism.

A.7. Typical examples where E∗
⊥ = P ∗

⊥ = U∗

For several target functions of interest, the class P ∗
⊥ can be shown to cover the entire target space U∗. We list some of them

below:

• Single-index odd polynomials with all non-negative/non-positive coefficients. This follows since Ez

[
(f⋆(z))k⟨v⋆, z⟩

]
decomposes into sums of non-negative/non-positive terms.

• Single-index odd Hermite polynomials. We prove this below in Lemma A.7

• Staircase function f∗(z) = z1 + z1z2 + z1z2z3. This follows directly by evaluating Ez

[
(f⋆(z))2zi

]
for i = 2, 3.

In general, for polynomial f⋆, the condition:

Ez

[
(f⋆(z))k⟨v⋆, z⟩

]
= 0,∀k ∈ N, (99)

specifies an overdetermined system of infinite homogenous polynomial equations on the coefficients of f⋆. Therefore we
expect the condition to fail almost surely for typical choices of f⋆. We leave an investigation of this using algebraic tools to
future investigation.

21



The Benefits of Reusing Batches for Gradient Descent in Two-Layer Networks

Lemma A.7. For any odd Hermite-polynomial H2k′+1 for k′ ∈ N,:

Ez

[
(H2k′+1(z))

3z
]
, ̸= 0 (100)

where z ∼ N (0, 1)

Proof. Using Stein’s Lemma, we have:

Ez

[
(H2k′+1(z))

3z
]
= 3Ez

[
(H2k′+1(z))

2 d

dz
H2k′+1(z)

]
(101)

Next, we recall the following relation between Hermite polynomials and their derivatives:

d

dz
Hn(z) = nHn−1(z),∀n ∈ N. (102)

Substituting in Equation (101), we obtain:

Ez

[
(H2k′+1(z))

3z
]
= 3(2k′ + 1)Ez

[
(H2k′+1(z))

2H2k′(z)(z)
]
. (103)

The above expectation can be obtained analytically using the linearization formulas for Hermite polynomials (Andrews,
2004) to show that Ez

[
(H2k′+1(z))

2H2k′(z)(z)
]
̸= 0 for all k′ ∈ N.

A.8. Proof of Proposition 3.5

Suppose that v⋆ ∈ OE⋆ i.e v⋆ is orthogonally even-symmetric w.r.t f⋆ for some transformation O⊥ ∈ O({v⋆}⊥). Let
z′ = O⊥Rv⋆z. Then, by the invariance of the Gaussian measure under orthogonal transformations, we have:

Ez [f
⋆(z)⟨v⋆, z⟩] = Ez′ [f⋆(z′)⟨v⋆, z′⟩] . (104)

However, the expectation on the right can equivalently be expressed as:

Ez′ [f⋆(z′)⟨v⋆, z′⟩] = −Ez [f
⋆(O⊥Rv⋆z))⟨v⋆, z⟩]

= −Ez [f
⋆(z)⟨v⋆, z⟩]

where in the second equality we used ⟨v⋆, z′⟩ = −⟨v⋆, z⟩ and in the third the definition 3.4. Therefore, for any v⋆ ∈ OE⋆,
we have:

Ez [f
⋆(z)⟨v⋆, z⟩] = 0 (105)

Furthermore, it is straightforward to see that v⋆ remains orthogonally even-symmetric w.r.t the composition F (f⋆(·)).
Therefore, we have that E⋆ ⊆ OE⋆ ⊆ A⋆ ⊆ P ⋆.

A.9. Illustration of non-even symmetric hard directions

We now show the existence of target functions where E∗ ̸= OE∗. Without loss of generality, we assume that the rows of
W ∗ lie along the standard Euclidean basis e1, e2, · · · , ek
Lemma A.8. Suppose that f∗(z) = z1z2z3. Let v∗ = e1 + e2 + e3. Then v∗ /∈ E∗ but OE∗ = U∗.

Proof. v∗ /∈ E∗ follows directly by noting that f∗(z) is even-symmetric along e1 − e2 and e1 − e3. We further have that a
target f∗ satisfying E∗ = U∗ must satisfy f∗(−z) = f∗(z) ∀z ∈ Rd. Therefore, since f∗(−z) = −f∗(z), f∗ cannot be
even-symmetric along e1 + e2 + e3. Next, we show that OE∗ = U∗. Since e1, e2, e3 span U∗, and f∗ is symmetric w.r.t
permutations of z1z2z3, it suffices to show that condition in definition 3.4 holds for v∗ = e1. The orthogonal complement
{v∗}⊥ is given by span(e2, e3). Therefore the transformation O2 defined by z2 → −z2 is a valid orthogonal transformation
O⊥ as per definition 3.4. We have:

f∗(O2Rv∗z) = (−z1)(−z2)z3
= z1z2z3 = f∗(z).

This shows that e1 lies in OE∗. Similarly, we have by symmetry e1 ∈ OE∗

We present a numerical illustration of another such example in figure 3.
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Figure 3. An illustration of a hard, non-even target f⋆(z)=z1z2z3+He3(z4) being learned by a student with p = 4 hidden units. We can
see that, even when reusing the batch, the teacher can only learn the direction associated with z4, while keeping a zero overlap otherwise.
The continuous lines are from the DMFT numerical integration, the dots are simulations with d=10000. In the legend the overlap with
the n-th direction is the projection of the student weights in the subspace associated with zn. For this figure we have σ=relu, n = 5d,
η=0.2.

One can in-fact construct a family of functions with a direction v∗, for instance v∗ = e1 lying in OE∗ but in general not in
E∗. To see this, let f1 be a function Rd → R, depending only on projections of z along {e1}⊥ and let O⊥ by an involutory
orthogonal transformation on {e1}⊥ i.e an orthogonal transformation satisfying O2

⊥ = I or equivalently O⊥ = (O⊥)
⊤.

Now, let f2 : R → R be an odd function. Then, consider the function:

f∗(z) = (f1(O⊥z)− f(z))f2(z1). (106)

We observe that:

f∗(ORe1
z) = (f1(O

2
⊥z)− f(O⊥z))f2(−z1)

= (f1(O⊥z)− f(z))f2(z1)

= f∗(z),

where we used that O2
⊥ = I and f2(−z1) = −f2(z1). Therefore, for any such function f∗(z), e1 ∈ OE∗.

A.10. Implications for generalization

Since the specific guarantees of such results depend on the choice of activation and target functions, we illustrate this for the
case of single-index target functions with matching activations:

Corollary A.9. Consider the setting of a single-index target and student network with matching activations i.e. σ = g⋆,
such that σ is a polynomial with finite degree, satisfying the following assumption, ∃k ∈ N such that:

E
[
σk(z)z

]
E
[
Dkσ(z)

]
̸= 0, (107)

, where Dk denotes the kth derivative. Let ŵ be the parameters obtained after two steps of gradient descent with batch size
O(d) using η as in Theorem 3.2. Then, almost surely over the initialization a ∼ N (0, 1), for any ϵ > 0, there exists a step
size η′ such that online SGD on squared loss reaches generalization error < epsilon in time O(d).

We verify numerically that the above assumption holds in particular for all odd Hermite polynomials upto order 50. The
corollary implies that such target functions can be learned with O(d) sample complexity using gradient descent alone,
without resorting to specialized algorithms and techniques such as spectral initialization.

Proof. Let w∗ denote the single-direction in the teacher subspace with ∥w∗∥ =
√
d. We note that Equation (107) is

proportional to the k − 1th derivative of ϕ(aj) defined in Equation (88). Therefore, the condition is sufficient to ensure that
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Figure 4. Comparison of theory and experiments for Gradient Descent on the target z1z2z3 + He3(z4). Each gradient step uses a
mini-batche of n/5 samples. On the left we use the data sequentially, on the right we sample the batch from the dataset with replacement.
The continuous lines are from the DMFT numerical integration, the dots are simulations with d=10000 averaged over 32 realisations. In
the legend the overlap with the n-th direction is the projection of the student weights in the subspace associated with zn. For this figure
we have σ=relu, n = 5d, η=0.2.

ϕ(aj) is not identically zero and the student neuron almost surely develops an overlap along w∗. The result then follows
from Proposition 2.1 in (Ben Arous et al., 2021), which proves that upon weak recovery i.e a non-zero overlap the target
direction v∗, online SGD on a differentiable activation with polynomially bounded derivatives converges to strong recovery
Concretely, for any starting non-zero overlap θ > 0, for any ϵ′ > 0, there exists Cϵ′,θ and small-enough step-size such
that online SGD with time Cϵ′,θd achieves overlap 1− ϵ′ along w∗ Due to the matching activations, this suffices to obtain
arbitrary generalization error.

B. General Multi-Pass Schemes
B.1. Sketch of Proof for Extending Theorem 3.2 to Cycling over Epochs

Let Z1, · · · ,Zn
e denote ne independent minibatches of size nb such that nb

d = O(1) with ne being finite. The effective
dynamics for a finite number of epochs can be obtained by noting that Theorem 3.2 in (Gerbelot et al., 2022) allows
generalizing Theorem A.1 to dynamics of the form:

W (t+1) =W (t) − ηλW (t) −
ne∑
i=1

η
1√
d

nb∑
ν=1

F t
i

(
W (t)ziν√

d

)
(ziν)

⊤. (108)

The above form of the dynamics allows a different update to be utilized for data corresponding to different blocks Z1, · · · ,Zn
e .

In particular, setting F t
i to 0 whenever t mod i ̸= 0 and ∇hL otherwise, results in a cycling schedule over the mini-batches

Z1, · · · ,Zn
e . Subsequently, one can show that the update from Zi in the first-epoch leads to the hidden-progress effect on

M t when the model re-uses Zi in the second epoch.

We believe a similar result would hold for nb = O(1) samples in the minibatch, as displayed in Figure 5

C. Details on the numerics
C.1. DMFT equations with a single stochastic process

In this section, we present a set of exact equations equivalent to the ones in the main text, but that depend on a single
stochastic process. It is possible to show that asymptotically in the proportional limit, i.e. for d → ∞ and n = αd, the
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Figure 5. Experiments for Gradient Descent on the target z1z2z3 +He3(z4). We use minibatches with 1 sample each. On the left we use
the data sequentially, on the right we sample the data point from the dataset with replacement. The dots are simulations with d=10000
averaged over 32 realisations. In the legend the overlap with the n-th direction denotes the projection of the student weights in the
subspace associated with zn. For this figure we have σ=relu, n = 5d, η=0.2.

pre-activations of the student are distributed as h(t) = r(t) +M (t)h∗, with the constraint:

r(t+1) = r(t) − η

[(
λ+ Λ(t)

)
r(t) +∇h(t)ℓ

(
h(t)

)
−

t−1∑
τ=0

R
(t,τ)
ℓ r(t) + ζ(t)

]

Here ζ(t) is a zero mean Gaussian Process with covariance

Eζ

[
ζ(t)ζ(τ)⊤

]
= αEr,h∗

[
∇h(t)ℓ

(
h(t)

)
∇h(τ)ℓ

(
h(τ)

)⊤]
and the effective regularisation Λ(t) concentrates to

Λ(t) = αEh

[
∇2

h(t)ℓ
(
h(t)

)]
. (109)

The memory kernel R(t,τ)
ℓ is identically zero for t ≤ τ while for t > τ it concentrates to

R
(t,τ)
ℓ = αEh

[
∂∇h(t)ℓ

(
h(t)

)
∂ ζ(τ)

]
(110)

Finally, the low dimensionaly projections of the weights M (t) will obey the relation

M (t+1) =M (t) − ηαEh,h∗

[
∇h(t)ℓ

(
h(t)

)
h∗⊤

]
(111)

The procedure is explained in detail in appendix D of (Gerbelot et al., 2022), and can be equivalently derived using
non-rigorous field theory techniques (Agoritsas et al., 2018).

C.2. Remark on the numerical integration of the DMFT equations

DMFT is an invaluable tool in itself to probe the behaviour of gradient based algorithms. It trades the update equation
over heavily coupled weights in (5) with the ones over completely decoupled preactivations (109) which implies that a
Monte Carlo estimation based on (109) is going to be vastly more efficient and it’s a trivially parallelisable computation.
Furthermore, equation (109) is exact in limit of large d, which removes completely all finite size effects. In practice, an
implementation of the DMFT equations is extracting n times using from the initial condition distribution of the practivations
and iterating forward. The Gaussian process is sampled by rotating white Gaussian noise by the LU factor of the covariance.
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Sampling the gaussian process is by far the costlier operation, as each time step T has a complexity O(T 3), for a total
O(T 4) complexity considering all the steps up to T . Notice that this is a much more direct implementation than what is
done in the literature (Roy et al., 2019; Mignacco et al., 2020), which usually starts with a guess for all the quantities and
proceedes with a damped fixed point iteration until convergence, with an overall complexity O(mT 3), where m is the
number of fixed point iterations. While it could appear that simply iterating forward is suboptimal, it is a much more stable
and reliable procedure: if you are using n processes and you iterate forward, you are sure that at at each time step you have
the best possible Monte Carlo estimate of your samples.

C.3. Details on the numerical simulations

In all the figures the continuous lines are from the numerical integration of the DMFT equations while the dots are from a
direct simulation of the gradient descent dynamics. The specific hyperparameters for each setting are near each figure.

For both we fixed the second layer weights to ±1/
√
p, as for the cases under consideration this is an equivalent choice to of

Gaussian second layer weights N (0, 1p1p). For the DMFT integration we used a minimum of 106 Monte Carlo samples in
order to have accurate lined. The error bars are too small to be visualised. The direct simulation of the gradient descent
dynamics was performed either using PyTorch or a direct implementation in Numpy. In all plots we used a minimum size
d = 5000 for the input dimension, and averaged over at least 32 independent instances of the dynamics.

In Figure 2 we plot the overlap matrix M (t) projected on two different directions: the parallel to the subspace that is learned
in the first step and one direction in the orthogonal of this space. The projection operator is computed by performing
explicitly the integrals in (77)

The code is made available through the following Github repository: https://github.com/IdePHICS/benefit-reusing-batch.
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