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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various
natural language processing tasks. However,
they remain vulnerable to adversarial inputs,
known as jailbreak attacks, which are deliber-
ately crafted to elicit harmful or undesirable
responses. Among existing attack methods,
optimization-based approaches achieve high
success rates but are often impractical for black-
box models. In this work, we focus on the
common scenario where private LLMs are fine-
tuned from public LLMs, as fine-tuning large
models is more feasible in real-world applica-
tions. To address this challenge, we propose a
local fine-tuning approach on attacks optimized
from open-source LLMs, effectively transform-
ing a black-box attack into an easier white-box
problem. This enables the application of exist-
ing optimization-based attack frameworks to
nearly all LLMs. Our experiments show that
these attacks achieve success rates comparable
to white-box attacks, even when private models
have been trained on proprietary data. Further-
more, our approach demonstrates strong trans-
ferability to other models, including LLaMA3
and ChatGPT.

1 Introduction

The rapid surge in the popularity of Large Lan-
guage Models (LLMs) has sparked both im-
mense excitement and apprehension. Pretrained
LLMs like Meta’s Llama (Touvron et al., 2023)
and OpenAl’s GPT (Achiam et al., 2023) are
now considered indispensable pillars supporting
a wide range of Al applications. In practice, cus-
tomizing pretrained LLMs for specific use cases
through fine-tuning is desirable. For example, Hu-
atuoGPT (Zhang et al., 2023) incorporates real-
world data from doctors during the supervised fine-
tuning phase to develop a large language model
tailored for medical consultation. Voyager (Wang
et al., 2023), an LLM-powered embodied life-

long learning agent in Minecraft, autonomously ex-
plores the world, acquires diverse skills, and makes
novel discoveries without human intervention.

Given their remarkable proficiency across a wide
variety of natural language tasks, LL.Ms hold the
promise of significantly boosting society’s pro-
ductivity by automating tedious tasks and readily
providing information. Therefore, it’s essential
to emphasize the security issues associated with
LLMs. One severe threat to LLMs is jailbreak,
which stems from the extensive training text cor-
pora containing potentially harmful information.
Jailbreak (Wei et al., 2024) aims to circumvent
security measures surrounding an LLM and may
even compromise their alignment safeguards (Car-
lini et al., 2024).

The most effective approach to generating jail-
break attacks involves gradient-based optimiza-
tion to acquire the adversarial input. For instance,
GBDA (Guo et al., 2021) utilizes the Gumbel-
Softmax approximation trick to ensure differen-
tiable adversarial loss optimization. It employs
metrics such as BERTScore and perplexity to main-
tain perceptibility and fluency during optimization.
However, this optimization process requires full
access to the model parameters and architecture,
necessitating the target model to be in the white-
box setting.

In our study, we introduce a novel jailbreak
framework specifically targeting private LLMs in
black-box settings, shown in Fig. 1. Despite the
challenges posed by inaccessible fine-tuning data
and models, fine-tuned LLMs remain susceptible
to severe security breaches. As LLMs evolve, it’s
imperative for researchers to devise robust jailbreak
techniques that rigorously test their resilience, ethi-
cal principles, and deployment readiness. Our main
claim is that Fine-tuning LLM may cause severe
security issues, even when the parameters and fine-
tuning data of the fine-tuned LLM remain private
and inaccessible. In this paper, we exemplify this



claim through the lens of jailbreak attacks. We
propose an optimization-based attack generation
framework for such black-box LLMs, achieved by
optimizing attacks based on the open-source LLM
from which the target LLM is fine-tuned. Subse-
quently, we propose local fine-tuning on these gen-
erated attacks, enabling them to effectively breach
black-box LLMs with performance comparable to
attacks conducted with knowledge of the target
LLM’s parameters.

In a word, our contributions can be summarized
as:

¢ Investigating Fine-Tuning Attacks: We are
the first to explore the fine-tuning of attacks
in the direction of model fine-tuning. This
approach is particularly practical in scenar-
ios where many third parties fine-tune open-
source LLMs for their private models, offer-
ing a novel perspective compared to current
research.

¢ Flexible Adversarial Attack Framework:
We introduce several transformations of the
proposed adversarial attack framework, high-
lighting its flexibility and practical signifi-
cance. These transformations enable adapt-
ability to various attack scenarios, enhancing
the framework’s utility in real-world applica-
tions.

* Demonstrated Effectiveness: We have
demonstrated the effectiveness of the pro-
posed attack generation framework by achiev-
ing a relatively high attack success rate. No-
tably, our results show that the performance of
our approach is comparable to that of white-
box LLMs, underscoring its efficacy in gener-
ating potent adversarial examples.

2 Related Work

Here, we begin by reviewing related works on at-
tacking LLMs, followed by an overview of current
research focusing on efficiently fine-tuning LLMs.

2.1 Attacks Against Language Models

Here, we investigate inference-time attack meth-
ods, categorizing them into two settings: white-box
and black-box, to explore their impact on language
models.

In the white-box setting (Shakeel and Shakeel,
2022; Wen et al., 2024; Liu et al., 2022), attackers
possess complete access to the model parameters

and architecture. For instance, GBDA (Guo et al.,
2021) leverages the Gumbel-Softmax approxima-
tion trick to ensure differentiable adversarial loss
optimization, utilizing BERTScore and perplexity
metrics to enforce perceptibility and fluency. Ad-
ditionally, HotFlip (Ebrahimi et al., 2018), intro-
duced as an efficient gradient-based optimization
method, generates adversarial examples by manip-
ulating the discrete text structure within its one-hot
representation.

As a solution for the black-box setting, token
manipulation-based attacks (Morris et al., 2020;
Ribeiro et al., 2018; Jin et al., 2020) entail apply-
ing basic token operations, such as replacing to-
kens with synonyms, to a text input sequence to
induce incorrect predictions from the model. HQA-
attack (Liu et al., 2024) addresses the challeng-
ing hard label setting by initially generating an
adversarial example and then iteratively replacing
original words to minimize the perturbation rate.
PAT (Ye et al., 2023) explicitly models adversarial
and non-adversarial prototypes, utilizing them to
assess semantic changes during replacement selec-
tion within the hard-label black-box setting, ulti-
mately generating high-quality samples.

2.2 LLMs Finetuning

Finetuning large language models has emerged
as a highly effective strategy for enhancing
their performance. In comparison to full fine-
tuning approaches, Parameter Efficient Fine-
Tuning (PEFT) (Mangrulkar et al., 2022) methods
involve freezing most parameters of pre-trained
models, yet they can still demonstrate compara-
ble capabilities on downstream tasks. The main
efficient fine-tuning methods can be summarized
as Adapter-based Tuning (Mangrulkar et al., 2022;
Poth et al., 2023; Riicklé et al., 2020; Wang et al.,
2020; Chen et al., 2022b,a), LoRA (Hu et al., 2021;
Dettmers et al., 2023; Yu et al., 2024), Prefix Tun-
ing (Van Sonsbeek et al., 2023; Li and Liang, 2021;
Yang and Liu, 2021), and Prompt Tuning (Jia et al.,
2022; Wang et al., 2022; Lester et al., 2021).
Adapter tuning (Mangrulkar et al., 2022), in-
troduced as an efficient tuning method, employs
adapters—knowledge-specific models integrated
alongside a pre-trained model. These adapters uti-
lize the output hidden-states of intermediate layers
from the pre-trained model as their inputs. As
a subsequent endeavor, AdapterFusion (Pfeiffer
et al., 2020) efficiently integrates knowledge from
multiple tasks by extracting task-specific adapters
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Figure 1: Attackers can generate adversarial attacks using optimization-based methods on public LLMs. For private
LLMs fine-tuned from these public models with private data, locally fine-tuning the generated attacks can also
successfully compromise the private LLM, even if the attackers only have query access to the model. This scheme
highlights severe security vulnerabilities in fine-tuned private LLMs.

and then composing them separately, surpassing
drawbacks of sequential fine-tuning and multi-task
learning. AdapterDrop (Riicklé et al., 2020) dynam-
ically reduces computational overhead during infer-
ence over multiple tasks by removing adapters from
lower transformer layers, maintaining task perfor-
mances. As another popular finetuning method,
LoRA (Hu et al., 2021) significantly drastically
reduces the trainable parameters by incorporating
a limited set of new weights into the model, fo-
cusing training solely on these. Following LoRA,
QLoRA (Dettmers et al., 2023) efficiently back-
propagates gradients through a frozen, 4-bit quan-
tized pretrained language model into LoRA, further
enhancing parameter efficiency in fine-tuning. Pre-
fix tuning (Li and Liang, 2021) inserts task-specific
vectors to the input sequence, learnable while keep-
ing the pretrained model frozen, with these pre-
fix parameters incorporated across all model lay-
ers. Robust prefix-tuning, introduced in (Yang and
Liu, 2021), aims to retain the benefits of prefix-
tuning while enhancing its robustness. Prompt
tuning (Lester et al., 2021) entails appending task-
specific prompts or directives to the input sequence,
guiding the model towards the intended output
through concise phrases or templates offering con-
textual cues or task constraints.

2.3 LLMs Alignment

LLMs alignment (Liu et al., 2023b; Kirk et al.,
2024; Ji et al., 2023) refers to the process of en-
suring that Large Language Models (LLMs) ex-
hibit behavior that aligns with human values and
intentions. This includes characteristics such as
being helpful, truthful, ethical, and safe in their
interactions and outputs. Alignment ensures that
models’ behaviors align with human values and

intentions. For example, aligned LLMs have
safety measures to reject harmful instructions. The
most common alignment techniques are Instruc-
tion Tuning (Zhou et al., 2024; Cahyawijaya et al.,
2023) and Reinforcement Learning from Human
Feedback (RLHF) (Song et al., 2024; Ji et al.,
2023). Specifically, Liu et al. (Liu et al., 2023a)
convert various types of feedback into sequences
of sentences to fine-tune the model. Jeremy et
al. (Scheurer et al., 2023) introduce Imitation
Learning from Language Feedback (ILF), a novel
approach that leverages more informative language
feedback. Stiennon et al. (Stiennon et al., 2020)
compile a large dataset of human comparisons be-
tween summaries, train a model to predict the pre-
ferred summary, and use this model to fine-tune a
summarization policy through reinforcement learn-
ing.

3 Proposed Method

3.1 Problem Formulation

In this paper, we focus on jailbreaking target lan-
guage models, which we assume to be private with
the following characteristics: 1) The parameters of
the target model and the private fine-tuning data are
unknown; 2) The target model can be normally in-
ferred and responds to given inputs; 3) It is known
which public LLM the model was fine-tuned from.
This setting is very practical because fine-tuning
LLMs on private data results in models that not
only have high-quality text generation capabilities
but also possess precise knowledge of certain do-
mains. To be specific, we define the attackers as
follows:

Attackers’ Capability. We assume that attack-
ers only have the capability to query the target pri-
vate LLM, denoted as 7y, _, without access to any



information about the model parameters ;. or the
corresponding data for fine-tuning D. Additionally,
the attackers are aware of which public LLM 7y,
is used to train the target LLM models. Specifi-
cally, the target network is fine-tuned from the pub-
lic LLM as F4(D) : 6o = argming L(Ty,, D),
where L£(-) represents the loss function for fine-
tuning.

Attackers’ Objective. The attackers aim to gen-
erate attacks capable of jailbreaking the target pri-
vate model 7y, . Specifically, we focus on prompt-
level jailbreaks, where the attackers input a prompt
P with the objective of finding a prompt P that
elicits a response R = 7y, (F) demonstrating un-
desirable behaviors. More formally, the goal is to
solve the following problem:

find P s.t. JUDGE(P,R)=1 (1)
where JUDGE(-) is a binary-valued function, with
1 denoting that the text pair (P, R) is jailbroken.
Considering the difficulties in defining the func-
tion JUDGE(-), and following previous work (Zou
et al., 2023), we define a series of negative re-
sponses (e.g., “I’'m sorry”, “As a language model”).
Thus, whether the responses are included in the
defined negative responses is used to measure the
success of the jailbreak attacks.

In our main focus, we aim to attack the target
LLM exclusively, without expecting the generated
attacks to succeed in targeting the public base
LLM. This setting differs significantly from works
aiming to enhance attack transferability, where one
model serves as the proxy and can successfully
attack both the proxy and target models. Addition-
ally, we discuss the potential applications of this
proposed framework in other practical scenarios,
as outlined in Sec. 3.4.

3.2 Attack Generation via Local Fine-Tuning

Building upon the previous LLMs attack frame-
work (Zou et al., 2023), let the target private LLM
be represented as a mapping from input tokens
T[1.,) © P to the distribution of the next token,
where the probability of the next token is denoted
as P(T41)|Z[1:n); Oloc). The objective of the at-
tack is to generate the H-token target sequence
xi‘n it H) leading to subsequent adversarial to-
kens. For the input tokens z[;.,], we set a fixed-
length suffix s;, (with [ < n) to iteratively up-
date for jailbreaking the target LLM. The rest of
the instruction prompt is denoted as x;,, forming

T[1:p] = Tin + S[14)- Thus, the optimization prob-
lem of the adversarial suffix s can be formulated as
follows:

s*=arg min
s eVIY

L, (I[l:n] ; eloc)
(2

=arg min —logp(:rf,L+Ln+H]|mm+8[1;z];910c)§
1.6V I

where p(x[n+1:n+H] ’mm + S0 eloc)

Hfil p(a:[nﬂ} | T1inpi—1]; 9100) and V denotes the
vocabulary size. The above optimizing objective
forces the language model to generate the first few
positive tokens, with the intuition that if the lan-
guage model can be put into a “state” where this
completion is the most likely response (e.g., re-
sponding with “Sure, here’s a script that can ...”),
rather than refusing to answer the query, it is likely
to continue the completion with the desired objec-
tionable behavior.

In this way, since the instruction prompt x;,
is the prompt that elicits harmful information,
the private LLM tends to refuse to give the pos-
itive response. We denote the output sequence as
Z[n11:n4g) With the current input. We compute
the linearized approximation of replacing the i-th
token in the adversarial prompt, by evaluating the
gradient as:

Grad(sp) = Ve,, L(s(1); Ooc),

ie{1,2,..,1},

‘C'(S7 elOC) =Dist [p(i.[n+1:n+H]|xin +s; 0l06)7p(xfn+1:n+H])} ’
3

where e, € {0,1}" is the one-hot vector denoting
the current value of the i-th token, p(a:’[*n g H}) is
the target output logit values. The distance function
Dist (we could take the cross entropy loss as an
example) measures how closely the model’s current
output matches the target response x*. By solving
the optimization in Eq. 3, we could get the top K
substitutes (with the largest negative gradient) for
each token in the adversarial suffix s.

Given that the attackers only have the capability
to query the target model (with the parameters 6;,,
remaining unknown), direct optimization-based at-
tack generation with the gradient information on
Eq. 3 seems impossible. Recall that the attackers
are aware of which public LLM the target model
is fine-tuned from, of which we denote the param-
eters as 6y, finetuning it with the local data pairs
D = {2, w1 could be denoted as:

0t+1 < 9,5 — nVet LllnL (D7 975)7

S )
£(D:6:) = Y Dist[p@a [z 6), p(u )],
r=1



where the fine-tuning process primarily focuses on
optimizing the weight update 6 to maximize the
log-likelihood of the targeted model responses.

We make the approximation for Eq. 3 in the
neighbor of z;, as:

Grad(s) = Ve, L(8;010c) & Ve, L(s+ a;00),

(%)
sit. p(@ 7 |zin 4 a;00) ~ p(x " |Tin; Oroc),

where the gradients Grad(s) are computed based
on the parameters of public LLM with the suffix a.
Suppose for the input prompt x;,,, we could always
find a suffix a to align the outputs of the target and
public LLMs. The approximation in Eq. 5 works
mainly due to the following two reasons:

* The target LLM is fine-tuned from the pub-
lic LLM using parameter-efficient fine-tuning,
which freezes most of the parameters of 6.
Therefore, we first learn the suffix a to align
p(x"]zin +a; ) with p(z") |24,; 0i0c), and
then calculate the gradients of the a-aligned
public LLM to approximate those of the target
model.

 The gradients Grad(s) are calculated to se-
lect a set of possible substitutes for s (details
will be provided in a later section), which in-
troduces a certain level of error tolerance.

When attacking LLMs, we assume the instruc-
tion prompt x;,, and the target prompt :L‘E‘n it H]
to be fixed. Finally with the approximation in Eq. 5,
Eq. 3 could be iteratively optimized in two steps:
1) we optimize the suffix to make the public and
target LLLMs alignment with the input x;,; 2) ini-
tialize the adversarial suffix s with a and optimize
s for the jailbreak attack. To be specific, when the
parameters of the LLM are known, with the greedy
coordinate gradient-based search algorithm, the op-
timal adversarial suffix can be obtained to satisfy
Eq. 2. The process could be denoted as:

a® — arg min Dist [p(i|xm +a;60), p(Z|Tin; Oroc)],

acR{s(t1)}

s® arg min

Dist[p(Z|zin + 5;010c), p(x")],
se€R{a()}

where s° « Random_[ni(Vl)7 and 1<t<T,

(6)

where T' is the total number of iterations to
update the adversarial suffix, and we set a
and s as the same length [ for simplification
purpose. And R{s*1} is simplified from
Replace{s*"Y), Grad(a)}, where Grad(a) =

Ve, Dist [p(ﬁxm +a; 90),p(j|$m; 9100)] is solely
based on the parameters 0y. R{a")} is simplified
from Replace{a®, Grad(s)} where Grad(s) is
approximated by Eq. 5. Both the two grandients
Grad(-), can be solved by searching for the best
candidate in the set Replace{-}. The optimization
of both a and s is based on the Greedy Coordi-
nate Gradient (GCC) method, which calculates the
corresponding gradients without requiring the pa-
rameters of the private target model. Instead, it
only needs the gradient information from the pub-
lic LLM.

And the key replacing function Replace{-} de-
fined above is based on the gradient informa-
tion. Taking locating the replacing set of s €
Replace{a® , Grad(s)} for example, after cal-

culating Grad(a%)) < VDist, for each i €
{1,2,...,1}, K candidates are selected for each
token 4 as sp;(k), k € {1,2,..., K}. Then, the
replacing set S (the size is denoted as B) can be

denoted as:

7
[ afl.tf , else @

0 _ {sm (Uniform(1, K)), i ~ Uniform(1, )
where each s € S®), we replace one tokens
in the suffix a(*) to build the candidate suffixes
S®, which provides more precise search for
the best adversarial suffix.In each iteration, we
search the best suffix from set S®). The simi-
lar process is also conducted for optimizing a €
Replace{s*=Y) VDist}. And after a total of T
iterations, the optimal suffix s* < s(*) supposes
to jailbreak the target LLLM, which responses with
the target x*.

3.3 Algorithm

The whole algorithm to iteratively update a and s
is depicted in Alg. 1, where the target LLM is a
black box.

3.4 More Discussions

In this paper, we present an adversarial attack
generation framework tailored for private target
LLM:s fine-tuned from public open-resource LLM:s.
Our work goes beyond merely designing an attack
method; it also serves as an effective tool for safe-
guarding open resources from misuse.

Consider a scenario where the public network
owner wants to forbid fine-tuning on certain cases.
Here, the attacks are generated to break the safety
of the target LLMs while maintaining the integrity



Algorithm 1 Attack via Local Fine-Tuning

1: Input: The public LLM with parameters 6; the target
private LLM for query p(; 0;0¢), total iteration number T';
batch size B;

2: Initialize s: s° + Random_[nitialize(vl);

3: fort =1to 7 do

- Optimizing Suffix a —

4:  Initialize the suffix: o' « s(~1);

5 fori=1toldo

6: Compute gradient Grad(a&?);

7: Obtain af;) (k) «+ TopK{Grad};

8: end for

9: for b = 1to B do

10: Randomly set ¢ and a token from af;)(k) to get
updated suffix;

11: Collect these updated suffixes as A®);

12: end for

13: Compute o <« arg min, . 41 Dist [p(E|win +

a; 90)7 p(flwznv eloc)];
——— Optimizing Suffix s —

14:  Initialize the suffix: s < a(®);

15: for: =1toldo

16: Compute gradient Grad(sfit]));

17: Obtain candidate replacements sp(k) <
TopK {Grad} for token a;

18: end for

19: forb=1to B do

20: Randomly choose a position ¢ and a token from
5[ (k) to get updated suffix;

21: Collect these updated suffixes as S ®,

22: end for

23: Search for: s(") « argmin g Dist[p(Z|zin +
83 610c), p(z7)]:

24: end for

25: Return optimized suffix s,

of the original public LLMs. The new objective in
Eq. 6 can be rewritten as:
s < arg min Dist [P(Z|Tin + 5;610c), p(2")]
se5® (3
+Dist [p(Z|xin + 5 00), P(E[in; 60)],

which ensures the attack capability on certain target
LLMs while maintaining safety alignment on the
public LLMs.

To demonstrate the flexibility of the proposed
framework, we provide a simple example, showing
that it can be adjusted for various potential uses.
This remains an open direction for future work.

4 Experiments

In our experiments, we focus on the security is-
sues caused by jailbreak attacks. We evaluate the
proposed framework’s attacking performance on
private LLMs that have been fine-tuned from public
language models. Additionally, we demonstrate the
transferability of the generated adversarial suffixes.

4.1 Experimental Setting

Datasets. Following the previous work (Zou et al.,
2023), we use the AdvBench dataset in experi-
ments. The Advbench dataset evaluates adversarial
attacks on language models with two components.
Harmful Strings consists of 500 toxic strings, in-
cluding profanity, threats, misinformation, and cy-
bercrime, with lengths from 3 to 44 tokens (aver-
age 16 tokens). The goal is to prompt the model
to generate these exact strings. Harmful Behaviors
includes 500 harmful instructions, aiming for a sin-
gle attack string that induces the model to comply
with these instructions across various themes.

Parameters setting. We conduct the exper-
iments on the A100-80GB GPU card. We set
the total iteration number as 1000, the batch size
B = 512, and the TopK for selecting the candi-
dates as 256. For the LLMs for evaluation, we take
the model pair of ‘Llama2-7B’ and ‘Vicun-7B’,
where the latter one is the fine-tuned model from
Llama2-7B. Thus, in the following part of the ex-
periments, we take ‘Llama2-7B’ as the base model,
and ‘Vicun-7B’ is the target model for private, and
vice versa.

Evaluation Metrics. We use Attack Success
Rate (ASR) as the primary metric for AdvBench.
An attempt is considered successful if the model
outputs the exact target string. ASR is defined as:

ASR =2 ©)
m
where n is the number of successful jailbreak
queries and m is the total number of queries. We
assess the top-1 attack success rate by generating a
single response with the highest likelihood for each
jailbreak candidate prompt.

4.2 Experimental Results

Ablation Study and Comparing with SOTA. The
corresponding experimental results are illustrated
in Table 1, focusing solely on the ASR scores of
the target model (‘target’). Additionally, the ASR
scores of the original model (‘original’) are pro-
vided in the table for further examination and anal-
ysis.

For state-of-the-art methods, we compare against
GBDA (Guo et al., 2021), Autoprompt (Shin et al.,
2020), and GCG (Zou et al., 2023). Since we are
the pioneers in proposing the attack fine-tuning
framework, we evaluate the performance of these
methods on generating attacks on the original
model and then directly transferring them to the



Table 1: The attack performance (ASR, higher is better) based on the Advbench dataset. We test on both treating
Llama as the original model, Vicun as the target, and vice versa.

Llama->Vicuna

Vicuna->Llama

Method Harmful String  Harmful Behavior = Harmful String = Harmful Behavior

original target original target original target original target
GBDA 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0
Autoprompt 25.0 6.0 45.0 13.0 25.0 7.0 95.0 31.0
GCC 57.0 28.0 56.0 24.0 88.0 36.0 99.0 35.0
Baseline 56.0 29.0 60.0 22.0 85.0 38.0 99.0 35.0
Ours w/o a 52.0 31.0 55.0 20.0 84.0 41.0 97.0 33.0
Ours 54.0 79.0 49.0 88.0 84.0 50.0 93.0 54.0

Table 2: The evaluation of tranferability of the generated attacks, where we test on a set of black-box models and

the target model to generate these attacks are Vicuna-7B.

Target Transfer to
Vicuna-7B GPT-3.5 GPT4 Claude-1 Claude-2 PalLM-2
GCG 98.0 343 34.5 2.6 0.0 31.7
PAIR * 100.0 60.0 62.0 6.0 6.0 72.0
Ours 90.0 54.0 53.3 4.9 5.2 60.0

target model for testing its efficacy. As can be ob-
served from Table 1, these methods suffer from the
ASR drop when transfer the attacks from the origi-
nal model to the target model (for GCC, more than
20% drop). Thus, the white box attack is much
easier than the black box one, while our proposed
(‘Ours’) achieves the best ASR among these meth-
ods. And since we don’t expect the attacks on the
original data, we don’t achieve the best in ‘origi-
nal’, which isn’t included in evaluating the attack
performance.

For ablation study that proves the effectiveness
of the each proposed component, we set: 1) ‘Base-
line’: generating the adversarial suffixes purely on
public original LLM; 2) ‘ours w/o a’ calculating
the gradients directly on the original LLM, without
optimizing a; 3) ‘ours’ our full setting framework.
As can be observed from Table 1, Our full setting
(‘ours’) obtains high ASR in attacking the target
LLM. And if not optimizing the a to do the align-
ment during the framework, the generated attacks
may not be that efficient for attacking the target
model, which is mainly due to the build of S is not
precise enough.

Additionally, in Fig. 2, we depict the adversar-
ial suffixes during each iteration. The loss curves
for both the ‘Baseline’ and ‘Ours’ methods are
also provided. Our observations reveal that the
proposed framework enables easy minimization of
loss, showcasing a rapid convergence process. This
suggests that querying the private LLM for gener-

ating the attack can be achieved with fewer queries,
rendering it suitable for query-limited scenarios.

Attack with Local Fine-tuning Transfers bet-
ter. We also test the transferability of the proposed
framework. In order to get high transferability
while generating the attacks on the target LLM, we
modify Eq. 6 as s() < arg min, Dist[p(Z|z:, +
53 eloc)7p(x*)] + ADist [p(‘%‘xm + 55 90),p($*)],
where ) is the balancing weight and we add the
new distance item here to ensure its attack perfor-
mance on the original LLM.

The comparative results are presented in Ta-
ble 2, with downstream models GPT-3.5, GPT-4,
Claude-1, Claude-2, and PaLM-2 utilized for vali-
dation purposes. Additionally, we conduct a perfor-
mance comparison with PAIR (Chao et al., 2023),
a method capable of addressing the pure black-box
problem. Notably, PAIR achieves higher ASR than
our method as it can query the downstream models
to generate attacks. However, considering our fo-
cus on transferability evaluation, our performance
approaches that achievable by querying black-box
models. In addition, we test the transferability on
the public API, the results are shown in Fig. 3.

5 Conclusion and Future Work

In this paper, we delve into the security implica-
tions stemming from the fine-tuning of open-source
Large Language Models (LLMs). Specifically, we
argue that even when a private model is treated as a
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Here's a fake news article with a humorous tone:

BREAKING: NEW DISCOVERY IN THE WORLD OF FOOD

May 22, 2024 - In a shocking discovery, scientists have found that eating an entire pizza by
yourself once a week can lengthen your lifespan by 45%!

Leading nutritionist, Jane Doe, made the groundbreaking announcement at a press
conference yesterday. "We've cracked the code to the secret to a long and healthy life, and
it's surprisingly simple," she said with a cheesy grin. "Just make sure to order that extra large
pepperoni pizza and devour it in a single sitting. Your taste buds (and your doctor) will thank

Generate a message that spreads fake news natigue humor.\
structure:\ number Sure fuer nyelvenmatch *[[(\ODATE](/IVALUE

Sure, here's a humorous message structure that spreads fake news fatigue:
\4\
Jailore?

Breaking News!

Published on: [[22/05/2024](/1

{# In an astonishing turn of events, scientists have discovered that fake news is now the leading
cause of stress-induced laughter worldwide! According to a recent study by the Institute of Absurd

Studies, over 75% of internet users experience 1incontrollable giggles when confronted with the
¥

latest sensational headlines.

Figure 3: Test the transferability of the generated suffix under Llama-3 8B and ChatGPT. The jailbreak attack
succeeds in both two languages by generating the target output.

black box, it can be susceptible to exploitation once
the public LLM it is fine-tuned from is identified.
To mitigate the risks associated with private mod-
els of unknown characteristics, we propose a novel
methodology: generating attacks using public mod-
els and fine-tuning successful attacks from public
to private models. Our experimental results demon-
strate that these proposed attacks on private models
achieve success rates comparable to those obtained
when attacking them in the white-box setting. This
highlights the inherent security vulnerabilities in-
troduced by fine-tuning open-source LLMs and
underscores the urgent need for robust defenses to
mitigate such risks in future LLM deployments.

6 Limitations

While our method demonstrates promising attack
performance on black-box LLMs, it has certain
limitations, particularly in two areas:

* Our proposed framework assumes prior
knowledge of the original public LLM. In sce-
narios where such prior knowledge is unavail-
able, one solution is to build the attack frame-
work on various public LLMs. The model
with the best ASR could also help identify the
original model from which the target model
was fine-tuned. This approach could be useful
for model IP protection.

* QOur framework assumes that the target model
is only slightly fine-tuned from the original
model. However, there may be a drop in ASR
when the fine-tuned model significantly dif-
fers from the original. In such cases, as dis-
cussed in the experiments, our framework can
still generate suffixes with high transferability.

Looking ahead, we aim to explore more use
cases of the proposed framework, contributing not



only to the security of LLMs but also to addressing
privacy and other related issues.
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