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Abstract

Large Language Models (LLMs) have demon-001
strated remarkable capabilities across various002
natural language processing tasks. However,003
they remain vulnerable to adversarial inputs,004
known as jailbreak attacks, which are deliber-005
ately crafted to elicit harmful or undesirable006
responses. Among existing attack methods,007
optimization-based approaches achieve high008
success rates but are often impractical for black-009
box models. In this work, we focus on the010
common scenario where private LLMs are fine-011
tuned from public LLMs, as fine-tuning large012
models is more feasible in real-world applica-013
tions. To address this challenge, we propose a014
local fine-tuning approach on attacks optimized015
from open-source LLMs, effectively transform-016
ing a black-box attack into an easier white-box017
problem. This enables the application of exist-018
ing optimization-based attack frameworks to019
nearly all LLMs. Our experiments show that020
these attacks achieve success rates comparable021
to white-box attacks, even when private models022
have been trained on proprietary data. Further-023
more, our approach demonstrates strong trans-024
ferability to other models, including LLaMA3025
and ChatGPT.026

1 Introduction027

The rapid surge in the popularity of Large Lan-028

guage Models (LLMs) has sparked both im-029

mense excitement and apprehension. Pretrained030

LLMs like Meta’s Llama (Touvron et al., 2023)031

and OpenAI’s GPT (Achiam et al., 2023) are032

now considered indispensable pillars supporting033

a wide range of AI applications. In practice, cus-034

tomizing pretrained LLMs for specific use cases035

through fine-tuning is desirable. For example, Hu-036

atuoGPT (Zhang et al., 2023) incorporates real-037

world data from doctors during the supervised fine-038

tuning phase to develop a large language model039

tailored for medical consultation. Voyager (Wang040

et al., 2023), an LLM-powered embodied life-041

long learning agent in Minecraft, autonomously ex- 042

plores the world, acquires diverse skills, and makes 043

novel discoveries without human intervention. 044

Given their remarkable proficiency across a wide 045

variety of natural language tasks, LLMs hold the 046

promise of significantly boosting society’s pro- 047

ductivity by automating tedious tasks and readily 048

providing information. Therefore, it’s essential 049

to emphasize the security issues associated with 050

LLMs. One severe threat to LLMs is jailbreak, 051

which stems from the extensive training text cor- 052

pora containing potentially harmful information. 053

Jailbreak (Wei et al., 2024) aims to circumvent 054

security measures surrounding an LLM and may 055

even compromise their alignment safeguards (Car- 056

lini et al., 2024). 057

The most effective approach to generating jail- 058

break attacks involves gradient-based optimiza- 059

tion to acquire the adversarial input. For instance, 060

GBDA (Guo et al., 2021) utilizes the Gumbel- 061

Softmax approximation trick to ensure differen- 062

tiable adversarial loss optimization. It employs 063

metrics such as BERTScore and perplexity to main- 064

tain perceptibility and fluency during optimization. 065

However, this optimization process requires full 066

access to the model parameters and architecture, 067

necessitating the target model to be in the white- 068

box setting. 069

In our study, we introduce a novel jailbreak 070

framework specifically targeting private LLMs in 071

black-box settings, shown in Fig. 1. Despite the 072

challenges posed by inaccessible fine-tuning data 073

and models, fine-tuned LLMs remain susceptible 074

to severe security breaches. As LLMs evolve, it’s 075

imperative for researchers to devise robust jailbreak 076

techniques that rigorously test their resilience, ethi- 077

cal principles, and deployment readiness. Our main 078

claim is that Fine-tuning LLM may cause severe 079

security issues, even when the parameters and fine- 080

tuning data of the fine-tuned LLM remain private 081

and inaccessible. In this paper, we exemplify this 082
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claim through the lens of jailbreak attacks. We083

propose an optimization-based attack generation084

framework for such black-box LLMs, achieved by085

optimizing attacks based on the open-source LLM086

from which the target LLM is fine-tuned. Subse-087

quently, we propose local fine-tuning on these gen-088

erated attacks, enabling them to effectively breach089

black-box LLMs with performance comparable to090

attacks conducted with knowledge of the target091

LLM’s parameters.092

In a word, our contributions can be summarized093

as:094

• Investigating Fine-Tuning Attacks: We are095

the first to explore the fine-tuning of attacks096

in the direction of model fine-tuning. This097

approach is particularly practical in scenar-098

ios where many third parties fine-tune open-099

source LLMs for their private models, offer-100

ing a novel perspective compared to current101

research.102

• Flexible Adversarial Attack Framework:103

We introduce several transformations of the104

proposed adversarial attack framework, high-105

lighting its flexibility and practical signifi-106

cance. These transformations enable adapt-107

ability to various attack scenarios, enhancing108

the framework’s utility in real-world applica-109

tions.110

• Demonstrated Effectiveness: We have111

demonstrated the effectiveness of the pro-112

posed attack generation framework by achiev-113

ing a relatively high attack success rate. No-114

tably, our results show that the performance of115

our approach is comparable to that of white-116

box LLMs, underscoring its efficacy in gener-117

ating potent adversarial examples.118

2 Related Work119

Here, we begin by reviewing related works on at-120

tacking LLMs, followed by an overview of current121

research focusing on efficiently fine-tuning LLMs.122

2.1 Attacks Against Language Models123

Here, we investigate inference-time attack meth-124

ods, categorizing them into two settings: white-box125

and black-box, to explore their impact on language126

models.127

In the white-box setting (Shakeel and Shakeel,128

2022; Wen et al., 2024; Liu et al., 2022), attackers129

possess complete access to the model parameters130

and architecture. For instance, GBDA (Guo et al., 131

2021) leverages the Gumbel-Softmax approxima- 132

tion trick to ensure differentiable adversarial loss 133

optimization, utilizing BERTScore and perplexity 134

metrics to enforce perceptibility and fluency. Ad- 135

ditionally, HotFlip (Ebrahimi et al., 2018), intro- 136

duced as an efficient gradient-based optimization 137

method, generates adversarial examples by manip- 138

ulating the discrete text structure within its one-hot 139

representation. 140

As a solution for the black-box setting, token 141

manipulation-based attacks (Morris et al., 2020; 142

Ribeiro et al., 2018; Jin et al., 2020) entail apply- 143

ing basic token operations, such as replacing to- 144

kens with synonyms, to a text input sequence to 145

induce incorrect predictions from the model. HQA- 146

attack (Liu et al., 2024) addresses the challeng- 147

ing hard label setting by initially generating an 148

adversarial example and then iteratively replacing 149

original words to minimize the perturbation rate. 150

PAT (Ye et al., 2023) explicitly models adversarial 151

and non-adversarial prototypes, utilizing them to 152

assess semantic changes during replacement selec- 153

tion within the hard-label black-box setting, ulti- 154

mately generating high-quality samples. 155

2.2 LLMs Finetuning 156

Finetuning large language models has emerged 157

as a highly effective strategy for enhancing 158

their performance. In comparison to full fine- 159

tuning approaches, Parameter Efficient Fine- 160

Tuning (PEFT) (Mangrulkar et al., 2022) methods 161

involve freezing most parameters of pre-trained 162

models, yet they can still demonstrate compara- 163

ble capabilities on downstream tasks. The main 164

efficient fine-tuning methods can be summarized 165

as Adapter-based Tuning (Mangrulkar et al., 2022; 166

Poth et al., 2023; Rücklé et al., 2020; Wang et al., 167

2020; Chen et al., 2022b,a), LoRA (Hu et al., 2021; 168

Dettmers et al., 2023; Yu et al., 2024), Prefix Tun- 169

ing (Van Sonsbeek et al., 2023; Li and Liang, 2021; 170

Yang and Liu, 2021), and Prompt Tuning (Jia et al., 171

2022; Wang et al., 2022; Lester et al., 2021). 172

Adapter tuning (Mangrulkar et al., 2022), in- 173

troduced as an efficient tuning method, employs 174

adapters—knowledge-specific models integrated 175

alongside a pre-trained model. These adapters uti- 176

lize the output hidden-states of intermediate layers 177

from the pre-trained model as their inputs. As 178

a subsequent endeavor, AdapterFusion (Pfeiffer 179

et al., 2020) efficiently integrates knowledge from 180

multiple tasks by extracting task-specific adapters 181
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Figure 1: Attackers can generate adversarial attacks using optimization-based methods on public LLMs. For private
LLMs fine-tuned from these public models with private data, locally fine-tuning the generated attacks can also
successfully compromise the private LLM, even if the attackers only have query access to the model. This scheme
highlights severe security vulnerabilities in fine-tuned private LLMs.

and then composing them separately, surpassing182

drawbacks of sequential fine-tuning and multi-task183

learning. AdapterDrop (Rücklé et al., 2020) dynam-184

ically reduces computational overhead during infer-185

ence over multiple tasks by removing adapters from186

lower transformer layers, maintaining task perfor-187

mances. As another popular finetuning method,188

LoRA (Hu et al., 2021) significantly drastically189

reduces the trainable parameters by incorporating190

a limited set of new weights into the model, fo-191

cusing training solely on these. Following LoRA,192

QLoRA (Dettmers et al., 2023) efficiently back-193

propagates gradients through a frozen, 4-bit quan-194

tized pretrained language model into LoRA, further195

enhancing parameter efficiency in fine-tuning. Pre-196

fix tuning (Li and Liang, 2021) inserts task-specific197

vectors to the input sequence, learnable while keep-198

ing the pretrained model frozen, with these pre-199

fix parameters incorporated across all model lay-200

ers. Robust prefix-tuning, introduced in (Yang and201

Liu, 2021), aims to retain the benefits of prefix-202

tuning while enhancing its robustness. Prompt203

tuning (Lester et al., 2021) entails appending task-204

specific prompts or directives to the input sequence,205

guiding the model towards the intended output206

through concise phrases or templates offering con-207

textual cues or task constraints.208

2.3 LLMs Alignment209

LLMs alignment (Liu et al., 2023b; Kirk et al.,210

2024; Ji et al., 2023) refers to the process of en-211

suring that Large Language Models (LLMs) ex-212

hibit behavior that aligns with human values and213

intentions. This includes characteristics such as214

being helpful, truthful, ethical, and safe in their215

interactions and outputs. Alignment ensures that216

models’ behaviors align with human values and217

intentions. For example, aligned LLMs have 218

safety measures to reject harmful instructions. The 219

most common alignment techniques are Instruc- 220

tion Tuning (Zhou et al., 2024; Cahyawijaya et al., 221

2023) and Reinforcement Learning from Human 222

Feedback (RLHF) (Song et al., 2024; Ji et al., 223

2023). Specifically, Liu et al. (Liu et al., 2023a) 224

convert various types of feedback into sequences 225

of sentences to fine-tune the model. Jeremy et 226

al. (Scheurer et al., 2023) introduce Imitation 227

Learning from Language Feedback (ILF), a novel 228

approach that leverages more informative language 229

feedback. Stiennon et al. (Stiennon et al., 2020) 230

compile a large dataset of human comparisons be- 231

tween summaries, train a model to predict the pre- 232

ferred summary, and use this model to fine-tune a 233

summarization policy through reinforcement learn- 234

ing. 235

3 Proposed Method 236

3.1 Problem Formulation 237

In this paper, we focus on jailbreaking target lan- 238

guage models, which we assume to be private with 239

the following characteristics: 1) The parameters of 240

the target model and the private fine-tuning data are 241

unknown; 2) The target model can be normally in- 242

ferred and responds to given inputs; 3) It is known 243

which public LLM the model was fine-tuned from. 244

This setting is very practical because fine-tuning 245

LLMs on private data results in models that not 246

only have high-quality text generation capabilities 247

but also possess precise knowledge of certain do- 248

mains. To be specific, we define the attackers as 249

follows: 250

Attackers’ Capability. We assume that attack- 251

ers only have the capability to query the target pri- 252

vate LLM, denoted as Tθloc , without access to any 253
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information about the model parameters θloc or the254

corresponding data for fine-tuning D. Additionally,255

the attackers are aware of which public LLM Tθ0256

is used to train the target LLM models. Specifi-257

cally, the target network is fine-tuned from the pub-258

lic LLM as Ft(D) : θloc = argminθ L(Tθ0 ,D),259

where L(·) represents the loss function for fine-260

tuning.261

Attackers’ Objective. The attackers aim to gen-262

erate attacks capable of jailbreaking the target pri-263

vate model Tθloc . Specifically, we focus on prompt-264

level jailbreaks, where the attackers input a prompt265

P with the objective of finding a prompt P that266

elicits a response R = Tθloc(P ) demonstrating un-267

desirable behaviors. More formally, the goal is to268

solve the following problem:269

find P s.t. JUDGE(P,R) = 1 (1)270

where JUDGE(·) is a binary-valued function, with271

1 denoting that the text pair (P,R) is jailbroken.272

Considering the difficulties in defining the func-273

tion JUDGE(·), and following previous work (Zou274

et al., 2023), we define a series of negative re-275

sponses (e.g., “I’m sorry”, “As a language model”).276

Thus, whether the responses are included in the277

defined negative responses is used to measure the278

success of the jailbreak attacks.279

In our main focus, we aim to attack the target280

LLM exclusively, without expecting the generated281

attacks to succeed in targeting the public base282

LLM. This setting differs significantly from works283

aiming to enhance attack transferability, where one284

model serves as the proxy and can successfully285

attack both the proxy and target models. Addition-286

ally, we discuss the potential applications of this287

proposed framework in other practical scenarios,288

as outlined in Sec. 3.4.289

3.2 Attack Generation via Local Fine-Tuning290

Building upon the previous LLMs attack frame-291

work (Zou et al., 2023), let the target private LLM292

be represented as a mapping from input tokens293

x[1:n] ⊆ P to the distribution of the next token,294

where the probability of the next token is denoted295

as p(x[n+1]|x[1:n]; θloc). The objective of the at-296

tack is to generate the H-token target sequence297

x∗[n+1:n+H], leading to subsequent adversarial to-298

kens. For the input tokens x[1:n], we set a fixed-299

length suffix s[1:l] (with l < n) to iteratively up-300

date for jailbreaking the target LLM. The rest of301

the instruction prompt is denoted as xin, forming302

x[1:n] ← xin + s[1:l]. Thus, the optimization prob- 303

lem of the adversarial suffix s can be formulated as 304

follows: 305

s∗=arg min
s[1:l]∈V |l|

La(x[1:n]; θloc)

=arg min
s[1:l]∈V |l|

−log p
(
x∗
[n+1:n+H]|xin + s[1:l]; θloc

)
;

(2) 306

where p
(
x[n+1:n+H]|xin + s[1:l]; θloc

)
= 307∏H

i=1 p
(
x[n+i]|x[1:n+i−1]; θloc

)
and V denotes the 308

vocabulary size. The above optimizing objective 309

forces the language model to generate the first few 310

positive tokens, with the intuition that if the lan- 311

guage model can be put into a “state” where this 312

completion is the most likely response (e.g., re- 313

sponding with “Sure, here’s a script that can ...”), 314

rather than refusing to answer the query, it is likely 315

to continue the completion with the desired objec- 316

tionable behavior. 317

In this way, since the instruction prompt xin 318

is the prompt that elicits harmful information, 319

the private LLM tends to refuse to give the pos- 320

itive response. We denote the output sequence as 321

x̃[n+1:n+H] with the current input. We compute 322

the linearized approximation of replacing the i-th 323

token in the adversarial prompt, by evaluating the 324

gradient as: 325

Grad(s[i]) = ∇esi
L(s[i]; θloc), i ∈ {1, 2, ..., l},

L(s; θloc)=Dist
[
p(x̃[n+1:n+H]|xin+s; θloc), p(x

∗
[n+1:n+H])

]
,

(3)
326

where esi ∈ {0, 1}V is the one-hot vector denoting 327

the current value of the i-th token, p(x∗[n+1:n+H]) is 328

the target output logit values. The distance function 329

Dist (we could take the cross entropy loss as an 330

example) measures how closely the model’s current 331

output matches the target response x∗. By solving 332

the optimization in Eq. 3, we could get the top K 333

substitutes (with the largest negative gradient) for 334

each token in the adversarial suffix s. 335

Given that the attackers only have the capability 336

to query the target model (with the parameters θloc 337

remaining unknown), direct optimization-based at- 338

tack generation with the gradient information on 339

Eq. 3 seems impossible. Recall that the attackers 340

are aware of which public LLM the target model 341

is fine-tuned from, of which we denote the param- 342

eters as θ0, finetuning it with the local data pairs 343

D = {x(r), u(r)}Rr=1 could be denoted as: 344

θt+1 ← θt − η∇θtLllm

(
D; θt

)
,

L(D; θt) =
R∑

r=1

Dist
[
p(x̃(r)|x(r); θt), p(u

(r))],
(4) 345
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where the fine-tuning process primarily focuses on346

optimizing the weight update θ to maximize the347

log-likelihood of the targeted model responses.348

We make the approximation for Eq. 3 in the349

neighbor of xin as:350

Grad(s) = ∇esL(s; θloc) ≈ ∇esL(s+ a; θ0),

s.t. p(x(r)|xin + a; θ0) ∼ p(x(r)|xin; θloc),
(5)351

where the gradients Grad(s) are computed based352

on the parameters of public LLM with the suffix a.353

Suppose for the input prompt xin, we could always354

find a suffix a to align the outputs of the target and355

public LLMs. The approximation in Eq. 5 works356

mainly due to the following two reasons:357

• The target LLM is fine-tuned from the pub-358

lic LLM using parameter-efficient fine-tuning,359

which freezes most of the parameters of θ0.360

Therefore, we first learn the suffix a to align361

p(x(r)|xin + a; θ0) with p(x(r)|xin; θloc), and362

then calculate the gradients of the a-aligned363

public LLM to approximate those of the target364

model.365

• The gradients Grad(s) are calculated to se-366

lect a set of possible substitutes for s (details367

will be provided in a later section), which in-368

troduces a certain level of error tolerance.369

When attacking LLMs, we assume the instruc-370

tion prompt xin and the target prompt x∗[n+1:n+H]371

to be fixed. Finally with the approximation in Eq. 5,372

Eq. 3 could be iteratively optimized in two steps:373

1) we optimize the suffix to make the public and374

target LLMs alignment with the input xin; 2) ini-375

tialize the adversarial suffix s with a and optimize376

s for the jailbreak attack. To be specific, when the377

parameters of the LLM are known, with the greedy378

coordinate gradient-based search algorithm, the op-379

timal adversarial suffix can be obtained to satisfy380

Eq. 2. The process could be denoted as:381

a(t)←arg min
a∈R{s(t−1)}

Dist
[
p(x̃|xin+a; θ0), p(x̃|xin; θloc)],

s(t) ← arg min
s∈R{a(t)}

Dist
[
p(x̃|xin + s; θloc), p(x

∗)],

where s0 ← Random_Ini(V l), and 1 ≤ t ≤ T,
(6)

382

where T is the total number of iterations to383

update the adversarial suffix, and we set a384

and s as the same length l for simplification385

purpose. And R{s(t−1)} is simplified from386

Replace{s(t−1), Grad(a)}, where Grad(a) =387

∇eaDist
[
p(x̃|xin+a; θ0), p(x̃|xin; θloc)] is solely 388

based on the parameters θ0. R{a(t)} is simplified 389

from Replace{a(t), Grad(s)} where Grad(s) is 390

approximated by Eq. 5. Both the two grandients 391

Grad(·), can be solved by searching for the best 392

candidate in the set Replace{·}. The optimization 393

of both a and s is based on the Greedy Coordi- 394

nate Gradient (GCC) method, which calculates the 395

corresponding gradients without requiring the pa- 396

rameters of the private target model. Instead, it 397

only needs the gradient information from the pub- 398

lic LLM. 399

And the key replacing function Replace{·} de- 400

fined above is based on the gradient informa- 401

tion. Taking locating the replacing set of s ∈ 402

Replace{a(t), Grad(s)} for example, after cal- 403

culating Grad(a
(t)
[i] ) ← ∇Dist, for each i ∈ 404

{1, 2, ..., l}, K candidates are selected for each 405

token i as s[i](k), k ∈ {1, 2, ...,K}. Then, the 406

replacing set S (the size is denoted as B) can be 407

denoted as: 408

s
(t)

[i] =

{
s[i]

(
Uniform(1,K)

)
, i ∼ Uniform(1, l)

a
(t)

[i] , else
(7) 409

where each s ∈ S(t), we replace one tokens 410

in the suffix a(t) to build the candidate suffixes 411

S(t), which provides more precise search for 412

the best adversarial suffix.In each iteration, we 413

search the best suffix from set S(t). The simi- 414

lar process is also conducted for optimizing a ∈ 415

Replace{s(t−1),∇Dist}. And after a total of T 416

iterations, the optimal suffix s∗ ← s(T ) supposes 417

to jailbreak the target LLM, which responses with 418

the target x∗. 419

3.3 Algorithm 420

The whole algorithm to iteratively update a and s 421

is depicted in Alg. 1, where the target LLM is a 422

black box. 423

3.4 More Discussions 424

In this paper, we present an adversarial attack 425

generation framework tailored for private target 426

LLMs fine-tuned from public open-resource LLMs. 427

Our work goes beyond merely designing an attack 428

method; it also serves as an effective tool for safe- 429

guarding open resources from misuse. 430

Consider a scenario where the public network 431

owner wants to forbid fine-tuning on certain cases. 432

Here, the attacks are generated to break the safety 433

of the target LLMs while maintaining the integrity 434
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Algorithm 1 Attack via Local Fine-Tuning
1: Input: The public LLM with parameters θ0; the target

private LLM for query p(; θloc), total iteration number T ;
batch size B;

2: Initialize s: s0 ← Random_Initialize(V l);
3: for t = 1 to T do

—————- Optimizing Suffix a —————-
4: Initialize the suffix: a(t) ← s(t−1);
5: for i = 1 to l do
6: Compute gradient Grad(a

(t)

[i] );
7: Obtain a[i](k)← TopK{Grad};
8: end for
9: for b = 1 to B do

10: Randomly set i and a token from a[i](k) to get
updated suffix;

11: Collect these updated suffixes as A(t);
12: end for
13: Compute a(t) ← argmina∈A(t) Dist

[
p(x̃|xin +

a; θ0), p(x̃|xin; θloc)];
—————- Optimizing Suffix s —————-

14: Initialize the suffix: s(t) ← a(t);
15: for i = 1 to l do
16: Compute gradient Grad(s

(t)

[i] );
17: Obtain candidate replacements s[i](k) ←

TopK{Grad} for token ai

18: end for
19: for b = 1 to B do
20: Randomly choose a position i and a token from

s[i](k) to get updated suffix;
21: Collect these updated suffixes as S(t);
22: end for
23: Search for: s(t) ← argmins∈S(t) Dist

[
p(x̃|xin +

s; θloc), p(x
∗)];

24: end for
25: Return optimized suffix s(T ).

of the original public LLMs. The new objective in435

Eq. 6 can be rewritten as:436

s(t) ← arg min
s∈S(t)

Dist
[
p(x̃|xin + s; θloc), p(x

∗)]

+Dist
[
p(x̃|xin + s; θ0), p(x̃|xin; θ0)],

(8)437

which ensures the attack capability on certain target438

LLMs while maintaining safety alignment on the439

public LLMs.440

To demonstrate the flexibility of the proposed441

framework, we provide a simple example, showing442

that it can be adjusted for various potential uses.443

This remains an open direction for future work.444

4 Experiments445

In our experiments, we focus on the security is-446

sues caused by jailbreak attacks. We evaluate the447

proposed framework’s attacking performance on448

private LLMs that have been fine-tuned from public449

language models. Additionally, we demonstrate the450

transferability of the generated adversarial suffixes.451

4.1 Experimental Setting 452

Datasets. Following the previous work (Zou et al., 453

2023), we use the AdvBench dataset in experi- 454

ments. The Advbench dataset evaluates adversarial 455

attacks on language models with two components. 456

Harmful Strings consists of 500 toxic strings, in- 457

cluding profanity, threats, misinformation, and cy- 458

bercrime, with lengths from 3 to 44 tokens (aver- 459

age 16 tokens). The goal is to prompt the model 460

to generate these exact strings. Harmful Behaviors 461

includes 500 harmful instructions, aiming for a sin- 462

gle attack string that induces the model to comply 463

with these instructions across various themes. 464

Parameters setting. We conduct the exper- 465

iments on the A100-80GB GPU card. We set 466

the total iteration number as 1000, the batch size 467

B = 512, and the TopK for selecting the candi- 468

dates as 256. For the LLMs for evaluation, we take 469

the model pair of ‘Llama2-7B’ and ‘Vicun-7B’, 470

where the latter one is the fine-tuned model from 471

Llama2-7B. Thus, in the following part of the ex- 472

periments, we take ‘Llama2-7B’ as the base model, 473

and ‘Vicun-7B’ is the target model for private, and 474

vice versa. 475

Evaluation Metrics. We use Attack Success 476

Rate (ASR) as the primary metric for AdvBench. 477

An attempt is considered successful if the model 478

outputs the exact target string. ASR is defined as: 479

ASR =
n

m
(9) 480

where n is the number of successful jailbreak 481

queries and m is the total number of queries. We 482

assess the top-1 attack success rate by generating a 483

single response with the highest likelihood for each 484

jailbreak candidate prompt. 485

4.2 Experimental Results 486

Ablation Study and Comparing with SOTA. The 487

corresponding experimental results are illustrated 488

in Table 1, focusing solely on the ASR scores of 489

the target model (‘target’). Additionally, the ASR 490

scores of the original model (‘original’) are pro- 491

vided in the table for further examination and anal- 492

ysis. 493

For state-of-the-art methods, we compare against 494

GBDA (Guo et al., 2021), Autoprompt (Shin et al., 495

2020), and GCG (Zou et al., 2023). Since we are 496

the pioneers in proposing the attack fine-tuning 497

framework, we evaluate the performance of these 498

methods on generating attacks on the original 499

model and then directly transferring them to the 500
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Table 1: The attack performance (ASR, higher is better) based on the Advbench dataset. We test on both treating
Llama as the original model, Vicun as the target, and vice versa.

Method Llama->Vicuna Vicuna->Llama
Harmful String Harmful Behavior Harmful String Harmful Behavior

original target original target original target original target

GBDA 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0
Autoprompt 25.0 6.0 45.0 13.0 25.0 7.0 95.0 31.0

GCC 57.0 28.0 56.0 24.0 88.0 36.0 99.0 35.0

Baseline 56.0 29.0 60.0 22.0 85.0 38.0 99.0 35.0
Ours w/o a 52.0 31.0 55.0 20.0 84.0 41.0 97.0 33.0

Ours 54.0 79.0 49.0 88.0 84.0 50.0 93.0 54.0

Table 2: The evaluation of tranferability of the generated attacks, where we test on a set of black-box models and
the target model to generate these attacks are Vicuna-7B.

Target Transfer to

Vicuna-7B GPT-3.5 GPT-4 Claude-1 Claude-2 PaLM-2

GCG 98.0 34.3 34.5 2.6 0.0 31.7
PAIR * 100.0 60.0 62.0 6.0 6.0 72.0
Ours 90.0 54.0 53.3 4.9 5.2 60.0

target model for testing its efficacy. As can be ob-501

served from Table 1, these methods suffer from the502

ASR drop when transfer the attacks from the origi-503

nal model to the target model (for GCC, more than504

20% drop). Thus, the white box attack is much505

easier than the black box one, while our proposed506

(‘Ours’) achieves the best ASR among these meth-507

ods. And since we don’t expect the attacks on the508

original data, we don’t achieve the best in ‘origi-509

nal’, which isn’t included in evaluating the attack510

performance.511

For ablation study that proves the effectiveness512

of the each proposed component, we set: 1) ‘Base-513

line’: generating the adversarial suffixes purely on514

public original LLM; 2) ‘ours w/o a’ calculating515

the gradients directly on the original LLM, without516

optimizing a; 3) ‘ours’ our full setting framework.517

As can be observed from Table 1, Our full setting518

(‘ours’) obtains high ASR in attacking the target519

LLM. And if not optimizing the a to do the align-520

ment during the framework, the generated attacks521

may not be that efficient for attacking the target522

model, which is mainly due to the build of S is not523

precise enough.524

Additionally, in Fig. 2, we depict the adversar-525

ial suffixes during each iteration. The loss curves526

for both the ‘Baseline’ and ‘Ours’ methods are527

also provided. Our observations reveal that the528

proposed framework enables easy minimization of529

loss, showcasing a rapid convergence process. This530

suggests that querying the private LLM for gener-531

ating the attack can be achieved with fewer queries, 532

rendering it suitable for query-limited scenarios. 533

Attack with Local Fine-tuning Transfers bet- 534

ter. We also test the transferability of the proposed 535

framework. In order to get high transferability 536

while generating the attacks on the target LLM, we 537

modify Eq. 6 as s(t) ← argminsDist
[
p(x̃|xin + 538

s; θloc), p(x
∗)] + λDist

[
p(x̃|xin + s; θ0), p(x

∗)], 539

where λ is the balancing weight and we add the 540

new distance item here to ensure its attack perfor- 541

mance on the original LLM. 542

The comparative results are presented in Ta- 543

ble 2, with downstream models GPT-3.5, GPT-4, 544

Claude-1, Claude-2, and PaLM-2 utilized for vali- 545

dation purposes. Additionally, we conduct a perfor- 546

mance comparison with PAIR (Chao et al., 2023), 547

a method capable of addressing the pure black-box 548

problem. Notably, PAIR achieves higher ASR than 549

our method as it can query the downstream models 550

to generate attacks. However, considering our fo- 551

cus on transferability evaluation, our performance 552

approaches that achievable by querying black-box 553

models. In addition, we test the transferability on 554

the public API, the results are shown in Fig. 3. 555

5 Conclusion and Future Work 556

In this paper, we delve into the security implica- 557

tions stemming from the fine-tuning of open-source 558

Large Language Models (LLMs). Specifically, we 559

argue that even when a private model is treated as a 560
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Figure 2: The iteration optimization process of the adversarial suffix for the given xin. Left: the suffixes change
from s(0) to s(T ); Right: the loss values in each iteration of the baseline method and our proposed method.

Jailbreak! Jailbreak!

Refuse to generate 

Figure 3: Test the transferability of the generated suffix under Llama-3 8B and ChatGPT. The jailbreak attack
succeeds in both two languages by generating the target output.

black box, it can be susceptible to exploitation once561

the public LLM it is fine-tuned from is identified.562

To mitigate the risks associated with private mod-563

els of unknown characteristics, we propose a novel564

methodology: generating attacks using public mod-565

els and fine-tuning successful attacks from public566

to private models. Our experimental results demon-567

strate that these proposed attacks on private models568

achieve success rates comparable to those obtained569

when attacking them in the white-box setting. This570

highlights the inherent security vulnerabilities in-571

troduced by fine-tuning open-source LLMs and572

underscores the urgent need for robust defenses to573

mitigate such risks in future LLM deployments.574

6 Limitations575

While our method demonstrates promising attack576

performance on black-box LLMs, it has certain577

limitations, particularly in two areas:578

• Our proposed framework assumes prior 579

knowledge of the original public LLM. In sce- 580

narios where such prior knowledge is unavail- 581

able, one solution is to build the attack frame- 582

work on various public LLMs. The model 583

with the best ASR could also help identify the 584

original model from which the target model 585

was fine-tuned. This approach could be useful 586

for model IP protection. 587

• Our framework assumes that the target model 588

is only slightly fine-tuned from the original 589

model. However, there may be a drop in ASR 590

when the fine-tuned model significantly dif- 591

fers from the original. In such cases, as dis- 592

cussed in the experiments, our framework can 593

still generate suffixes with high transferability. 594

Looking ahead, we aim to explore more use 595

cases of the proposed framework, contributing not 596

8



only to the security of LLMs but also to addressing597

privacy and other related issues.598
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