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ABSTRACT

Protein research is crucial in various fundamental disciplines, but understanding
their intricate structure-function relationships remains challenging. Recent Large
Language Models (LLMs) have made significant strides in comprehending task-
specific knowledge, suggesting the potential for ChatGPT-like systems specialized
in protein to facilitate basic research. In this work, we introduce ProtChatGPT,
which aims at learning and understanding protein structures via natural languages.
ProtChatGPT enables users to upload proteins, ask questions, and engage in inter-
active conversations to produce comprehensive answers. The system comprises
protein encoders, a Protein-Language Pertaining Transformer (PLP-former), a
projection adapter, and an LLM. The protein first undergoes protein encoders
and PLP-former to produce protein embeddings, which are then projected by the
adapter to conform with the LLM. The LLM finally combines user questions with
projected embeddings to generate informative answers. Experiments show that
ProtChatGPT can produce promising responses to proteins and their corresponding
questions. We hope that ProtChatGPT could form the basis for further exploration
and application in protein research. Code will be publicly available.

1 INTRODUCTION

Proteins, as essential molecular entities for life, hold paramount significance in biological processes.
The comprehensive understanding of protein structure and function is of utmost importance for
advancing research in the realms of biology and biomedicine. However, traditional protein research
normally involves labor-intensive laboratory experiments and extensive literature reviews, which
could be time-consuming and require specialized expertise in protein.

Recently, Large Language Models (LLMs), e.g., ChatGPT (Brown et al., 2020), have prevailed in
Natural Language Processing (NLP) (Devlin et al., 2018; Raffel et al., 2020; Touvron et al., 2023;
Chowdhery et al., 2022). With superior language understanding and logical reasoning capabilities,
these models can perform various intricate linguistic tasks such as question and answering (Q&A).
Since evolution through natural selection has spoken protein sequences as their “natural language”,
this intuitively motivates us to ride on LLMs’ coattails and customize them into protein research
based on large-scale biological corpora (e.g., RCSB-PDB).

Empirically, with the capabilities of LLMs specialized in protein, researchers can potentially achieve
(1) Protein Understanding and Analysis by simplifying the retrieval of crucial information (e.g.,
structures, functions, interactions, mutations, and disease associations) about specific proteins for
research; (2) Customized Protein Design by characterizing the patient’s unique protein structures to
discover targeted drugs and further verify expected functions for healthcare.

In this paper, we propose an AI-based protein chat system, named ProtChatGPT, to implement
ChatGPT-like functionalities for the protein research field. ProtChatGPT works in a similar principle
with natural language conversation systems. Users are allowed to upload protein 1D sequences
or 3D structures (e.g., fasta or pdb files) and pose diverse related questions. Then, ProtChatGPT
produces comprehensive responses in an interactive manner based on the questions. In this way,
researchers can intuitively acquire valuable insights and interactively delve into the complexities
of diverse proteins. Specifically, ProtChatGPT consists of four components: protein encoders, a
Protein-Language Pre-training Transformer (PLP-former), a projection adapter and an LLM, as
shown in Figure 1. First, we employ two pre-trained protein encoders to embed the 1D (i.e., by
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Figure 1: An overview of the ProtChatGPT framework. The training process consists of two stages:
(1) protein-description representation learning stage, and (2) protein-to-text generative learning stage.

ESM-1b (Rives et al., 2021) ) and 3D structures (i.e., by ESM-IF1 (Hsu et al., 2022)), respectively.
Then, to align the protein and language modalities, we propose the PLP-former. PLP-former extracts
features from the output of the protein encoder, and learns the protein representations that are most
relevant to the text description. Third, we use an adapter as an information transmitter to convert
protein embeddings into protein prompts that can be interpreted by the LLM. Finally, the LLM
combines user questions (i.e., question prompts) with the transmitted protein prompts to produce
corresponding answers. We conduct experiments on protein understanding and design. Experimental
results show the effectiveness of the proposed method. In summary, our contributions are as follows:

• We propose ProtChatGPT, an interactive ChatGPT-like system that engages Q&A for protein-
related research, which significantly facilitates protein understanding and design.

• We introduce PLP-former, a transformer-based module that aligns the protein with its
corresponding description.

• We propose a two-stage strategy that bootstraps protein-language pre-training from off-the-
shelf pre-trained protein encoders and frozen large language models.

• We demonstrate ProtChatGPT’s versatility and range of applications by deploying it to tasks
of a rather distinct nature, including protein understanding and design.

2 RELATED WORK

Protein Representation Learning. Proteins are workhorses of the cell, which contain four distinct
levels of structures carrying out their fundamental functions. Previous protein representation works
seek to learn protein representations based on different levels of proteins. Considering protein
sequences as language in life, several works (Madani et al., 2023; Notin et al., 2022) encode amino
acid tokens using the Transformer model (Vaswani et al., 2017) to extract pairwise relationships
among amino acids, and autoregressively recover protein sequences on extensive protein sequence
databases. Alternatively, other sequence modeling methods(Lin et al., 2023; Meier et al., 2021; Rives
et al., 2021; Rao et al., 2020; Vig et al., 2020) resort to use Masked Language Modeling (MLM) to
develop attention patterns that correspond to the residue-residue contact map of the protein. Compared
with sequence-based methods, structure-based methods (Gligorijević et al., 2021; OpenAI, 2023;
Zhang et al., 2023) directly dictate protein functions and encode geometric information of proteins
for topology-sensitive tasks such as molecule binding (Jin et al., 2021; Kong et al., 2022; Myung
et al., 2022), protein interface analysis (Mahbub & Bayzid, 2022; Réau et al., 2023), and protein
properties prediction (Zhang et al., 2022). In this paper, we aim to leverage these pre-trained Large
Protein Models (LPMs) for high-quality embeddings without fine-tuning their network parameters.

Large Language Models (LLMs). Recently, Natural Language Processing (NLP) has witnessed
significant advances due to the development of Large Language Models (LLMs) (Brown et al.,
2020; Devlin et al., 2018) trained on an extensive, diverse corpus. Consequently, many multi-modal
variants (Taylor et al., 2022; Alayrac et al., 2022; Jing et al., 2020; Wang et al., 2023; van Sonsbeek
et al., 2023) based on LLMs have gained significant attention for the understanding of information
in other modalities beyond text. For example, BLIP-2(Li et al., 2023) designs a Q-Former to align
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the visual features from the frozen visual encoder with large language models. FROMAGe (Koh
et al., 2023) freezes the LLM and visual encoders, and fine-tunes linear mapping layers to achieve
cross-modality interactions. Similarly, MedVQA (van Sonsbeek et al., 2023) employs a multi-layer
perceptron (MLP) network that maps the extracted visual features from a frozen vision encoder to a
set of learnable tokens, which develops an open-ended VQA for diagnoses and treatment decisions.
Galactica (Taylor et al., 2022) explicitly models the protein sequences and SMILES with scientific
literature, and enables the model to explain the properties of the sequences. In this paper, we aim to
adapt pre-trained general LLMs (e.g., Vicuna (Chiang et al., 2023)) for protein-specific ChatGPT-like
tasks, which aligns the protein features from LPMs with LLMs.

Vision-Language Pretraining (VLP). Data collected from different modalities generally offer
distinct perspectives, frequently synergizing to yield a comprehensive understanding, enhancing the
overall comprehension of the data. Vision-language pre-training (VLP) aims to learn multimodal
foundation models, showing improved performance on various vision-and-language tasks (Radford
et al., 2021a), Existing VLP methods can be roughly divided into representation learning-based
and generative learning-based. Representation learning-based methods (Radford et al., 2021b;
Jia et al., 2021; Yao et al., 2021; Li et al., 2022b; 2021) usually consider the image-text pairs as
multi-modal views of the same semantics, and perform contrastive or multi-view learning for the
alignment between multiple modalities. Generative learning-based methods (Li et al., 2019; Lu
et al., 2019; Chen et al., 2020; Li et al., 2020; Zhang et al., 2021; Wang et al., 2022; Zeng et al., 2021;
Bao et al., 2022) aim to reconstruct the corrupted text (image) with the assistance of visual (text)
modality through MLM-like objectives. For example, SimVLM (Wang et al., 2021) introduces a
single prefix language modeling (PrefixLM) objective for exploiting large-scale weak supervision
in VLP. CoCa (Yu et al., 2022) further verifies the representation ability of autoregressive language
modeling (AR) in the vision-language domain. In this paper, we consider protein as a specialized
biological language that encodes and communicates biological information through its amino acid
sequences and interactions. Thus inspired by existing VLP methods (Li et al., 2023; Zhu et al., 2023),
we propose a Protein-Language Pre-training (PLP) framework to understand protein via natural
language instructions.

3 METHODS

While demonstrating excellent performance in natural language tasks, LLM still lacks the capability to
directly facilitate protein question-answering tasks due to the modality gap between protein structures
and biomedical texts. As shown in Figure 1, in order to bridge this gap, we introduce a protein-
language pre-training strategy with two stages: (1) protein-description representation learning stage
and (2) protein-to-text generative learning stage. In the first pre-training stage, we enforce the PLP
Transformer, a lightweight transformer with learnable query tokens, to extract features from a frozen
protein 1D encoder, and learn the protein representation most relevant to the text description. In the
second stage, we perform protein-to-text generative learning by connecting the output of the PLP
Transformer as well as a supplementary frozen 3D encoder to a frozen LLM, and trains a multi-level
adapter as an information bottleneck between two stages, such that its output protein representation
can be interpreted by the LLMs.

3.1 ARCHITECTURE

As shown in Figure 1, ProtChatGPT consists of two pre-trained protein encoders, a trainable PLP-
former, a trainable multi-level projection adapter and a pre-trained LLM decoder, working synergisti-
cally to provide protein-related insights.

Multi-Level Protein Encoders First, we use a pre-trained sequence encoder to extract protein
sequence features. Specifically, given a protein sequence with N amino acids, the encoder produces
the corresponding sequence embedding Eseq ∈ RN×Cseq , where Cseq is the number of embedding
channels. In our implementation, we use ESM-1b (Rives et al., 2021) as the 1D sequence encoder,
where Cseq = 768. Although ESM-1b is able to implicitly capture structural contact information,
incorporating detailed 3D structures explicitly can be an effective way to model spatial interactions
between residues. Therefore, we further propose to enhance the ESM-1b with a supplementary
protein structure encoder ESM-IF1 (Hsu et al., 2022). Specifically, we select the feature from an
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Figure 2: Illustrations of the PLP-Former and protein-language representation learning. PLP-Former
consists of two transformer submodules with shared self-attention: (1) a text transformer that performs
encoding and decoding of protein descriptions, and (2) a protein transformer that interacts with the
frozen ESM-1b for sequence feature extraction. PLP-former is trained by jointly optimizing three
pre-training objectives (dashed boxes) on sequence-description pairs.

intermediate layer as a complementary structure embedding Estr ∈ RN×Cstr where the number
of embedding channels Cstr = 512, indicating the geometric protein knowledge. By acquiring
such multi-level property information, the quality of protein embeddings can be further improved,
considering that the protein properties studied in ESM-1b and ESM-IF1 can correlate with each other.
Note that, both the sequence and structure encoder are frozen for efficient training.

Protein-Language Pretraining Transformer (PLP-former). As mentioned before, the key chal-
lenge of transferring LLMs to protein research lies in the modality gap between protein structures
and biomedical texts. Despite the strong language generation and zero-shot transfer abilities of
LLMs, directly retraining them end-to-end for protein specialization appears to be impractical due
to the massive number of parameters and data requirements. Another alternative is fine-tuning the
pre-trained parameters, but this often leads to catastrophic forgetting. Considering this trade-off,
we propose a Protein-Language Pre-training Transformer (PLP-former) for efficient cross-modal
alignment between protein and text, while remaining LLMs frozen during the training. Following
existing vision-language works (Li et al., 2023; Zhu et al., 2023; Dai et al., 2023), we use the
PLP-former to extract protein-related features from a frozen protein sequence encoder.

As shown in Figure 2, the input of PLP-former consists of three parts: sequence embedding from
ESM-1b, the corresponding description, and a set of learnable tokens. The learnable tokens T first
perform mutual interactions via self-attention layers in the protein transformer. Specifically, the
tokens T first acquire queries Q, keys K and values V through three linear transformation matrices
Wq , Wk and Wv . It can be formulated as:

Q = El−1
str Wq,K = El−1

seq Wk,V = El−1
seq Wv. (1)

Next, the attention map w is computed by taking the dot product of Q and K as:

w = softmax(
QKT

√
dk

), (2)

where dk represents the dimensionality of the keys, softmax is the softmax activation function. The
refined tokens T ′ of the self-attention block can be written as:

T ′ = Wo × (w ·V), (3)

where · represents the dot product, × means the matrix multiplication, and Wo is the projection
matrix for output. Given the sequence features from ESM-1b as Eseq , tokens then interact with Eseq

through cross-attention layers, which can be formulated as:

T ′′ = W′
o × Softmax

(
T ′W′

q(EseqW
′
k)

T

√
dk

)
EseqW

′
v, (4)
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where T ′′ represents the refined tokens after cross-attention, W′
q, W′

k, W′
v and W′

o are a new
set of learning transformation matrices. Additionally, benefiting from the text transformer, tokens
can further interact with the textual descriptions through the same self-attention layers. Finally,
the PLP-former produces the output Eseq after a linear feed-forward layer (Vaswani et al., 2017).
Depending on the pre-training task, we implement distinct attention masking strategies (Li et al.,
2023) within the self-attention block to regulate the token-text interaction. The training details of
PLP-former are given in Appendix A. In this way, PLP-Former can effectively select the most useful
information for the LLM while removing irrelevant protein information. This reduces the burden of
the LLM to learn protein-language alignment, thus mitigating the catastrophic forgetting problem.

Note that we apply PLP only to the sequence embeddings since the reported protein structures are
much less than sequences. For example, there are 182K experimentally-determined structures in
Protein Data Bank (PDB) (Berman et al., 2000) while 47M protein sequences in Pfam (Mistry et al.,
2021). Thus we only use selected sequence-structure pairs during the second-stage training.

Multi-Level Projection Adapter. For the second protein-to-text generative learning stage, we
further design a multi-level projection adapter to harvest the LLM’s generative language capability.
The adapter takes the pre-aligned sequence embedding Eseq from PLP-former and structure em-
bedding Estr from ESM-IF1 as inputs, and acts as an information bottleneck to the LLM decoder,
such that its output protein representation can be interpreted by the LLM. In practice, we use two
individual Fully-Connected (FC) layers to linearly project the output protein embeddings into the
same dimension as the question embedding of the LLM. They function as soft protein prompts that
condition the LLM on protein representation from 1D and 3D levels.

Large Language Models (LLMs). Finally, the projected protein prompts are prepended to the
question prompts (text embeddings of user questions) through concatenation. In implementation, we
deploy the Vicuna-13b (Chiang et al., 2023) as our LLM decoder, which employs the Transformer
decoder (Vaswani et al., 2017) to model the conditional generation probability pθ(ni|n<i) in the
language model. Specifically, given the context vector of tokens Ni−1 (i.e., protein embeddings along
with user questions), the generated tokens ni (i.e., answers) are computed as follows:

h0 = Ni−1We +Wp, Ni−1 = (n1, n2, ..., ni−1)

hl = transformer(hl−1)(1 ≤ l ≤ m)

p(ni|Ni−1) = softmax(hmWT
e )

(5)

where m refers to the number of layers, We denotes the token embedding matrix, Wp represents
the positional embedding matrix, and transformer is a decoder layer consisting of a multi-head
self-attention block and a position-wise feedforward network. During the second training stage, the
generated tokens ni are replaced with publicly available descriptions for protein-to-text generative
learning, while remaining empty in the testing stage, expecting ProtChatGPT to generate descriptive
answers for the given protein and corresponding questions.

3.2 PROTEIN-LANGUAGE PRE-TRAINING DATASETS

In order to train ProtChatGPT, dedicated protein-specific training datasets are indispensable for our
proposed two-stage training strategy. During the first stage, we adopt ProtDescribe dataset (Xu et al.,
2023) to train the PLP-Transformer for protein-description representation learning. ProtDescribe
dataset contains 553,052 aligned pairs of protein sequences and textual property descriptions such as
protein names, functions, families, subcellular locations, etc. After the first stage, PLP-Transformer
is able to acquire the protein 1D representation that is most pertinent to the textual description.

Nevertheless, despite covering the protein sequence positions, ProtDescribe de facto simply relies on
textual descriptions to provide a rough indication of protein structural and functional similarity. It
might be more straightforward to directly utilize structural information, especially considering that
ESM-IF is specifically designed for protein geometric structures. Considering this problem, we resort
to the RCSB-PDB Protein Description Dataset (Guo et al., 2023) which comprises 143,508 aligned
pairs of protein 3D structures and the corresponding descriptions. We further expand this dataset with
1D sequences, enabling the joint training with our PLP-former. For every protein taken into account,
we compile its 1D residue sequences, 3D atomic coordinates, along with corresponding scientific
literature to train our multi-level adapter.
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Introduce this protein
to me in detail.

What is the function
of this protein?

This protein seems a kinase enzyme specific to the
mammalian nervous system. It regulates
neurotransmitter receptors through phosphorylation,
affecting synaptic transmission and playing a crucial
 role in learning and memory. Disturbances in its
activity can lead to neurological issues. 
Additionally, its interactions with other cellular
proteins suggest a broader role in cell signaling
and neuroprotection, making it a potential target
for therapeutic interventions.

Can you describe this protein in short ?

Certainly!
This protein is an integral membrane protein primarily
located in liver cells. It plays a pivotal role in
facilitating the transport of fatty acids across the cell
membrane, contributing to lipid metabolism. Proper
functionality ensures balanced lipid levels, while
dysfunction may be linked to metabolic disorders.

What is the dynamic of this protein ?

The dynamics of this protein involve its
conformational changes and interactions with other
molecules. Upon binding with specific fatty acids or
lipid molecules, the protein undergoes structural
shifts that allow it to transport these molecules across
the liver cell membrane. Additionally, its activity is
modulated by various cellular signals, ensuring that
fatty acid uptake and release are tightly regulated.
Perturbations in its dynamic behavior can disrupt
lipid homeostasis, emphasizing its importance in
maintaining metabolic balance in the body.
Furthermore, the protein might participate in
dynamic interactions with other proteins, assisting
SA in signal transduction or lipid processing pathways.

What are the relevant proteins
related to this protein?

For this newly provided protein, several proteins
might be relevantly associated with its function or
pathway. These related proteins can be:
1. Binding Partners: Proteins that directly interact
with the given protein, forming complexes that
carry out specific cellular tasks.
2. Regulatory Proteins: Molecules that modulate
the activity of the given protein, either enhancing
or inhibiting its function.
3. Pathway Members: Other proteins that are part
of the same biochemical or signaling pathway,
contributing to a shared cellular outcome.
4. Structural Homologs: Proteins that have a
similar structure and might share evolutionary
ancestry or function.
5. Enzymatic Substrates or Products: If the given
protein is an enzyme, other proteins that are acted
upon or produced by this enzyme's activity could
be relevant.
6. Post-translational Modifiers: Proteins that add or
remove specific chemical groups, like phosphates
or ubiquitin, altering the activity, location, or
lifespan of the given protein.
To provide specific names or further details about
these related proteins, one would typically need to
consult databases, literature, or perform
experimental analyses to establish these
connections definitively.

This protein is an enzyme found in various organisms,
particularly in certain bacteria and yeasts. It plays a
pivotal role in the metabolic pathway of pentoses,
especially in the metabolism of xylose. The primary
function of this protein is to catalyze the conversion
of xylose into xylose-1-phosphate, a key step in the
pentose metabolic pathway. Like most enzymes, this
protein has an active site that binds specifically to
its substrate, xylose, facilitating a more efficient
reaction. Understanding the function of this protein
is especially important in industrial biotechnology,
particularly when producing biofuels or other
lignin-based products, where efficient metabolism
of xylose presents a significant challenge..

Figure 3: Dialogue examples of ProtChatGPT for protein understanding and analysis.

3.3 ALIGNED PROTEIN-TEXT GENERATION

To enhance the model training with protein-text pairs, we utilize a specialized token prompt, following
the conversational format used in Vicuna-13b:
Q: < Protein >< ProteinPrompts >< /Protein >< QuestionPrompts >
A: < Descriptions >
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What diseases does this protein related to?

This protein is associated with a range of conditions
due to its role in the life cycle of its parent
microorganism. Related health issues include:
mild infections, immune responses, digestive upsets,
and allergic reactions.
In most cases, conditions linked to this protein are
manageable and not life-threatening. Monitoring and
basic medical care often lead to swift recovery.

Given the protein's involvement in various conditions,
potential therapeutic strategies include vaccine
development, especially since it triggers immune
responses. For digestive disturbances caused by this
protein, probiotics might be beneficial to restore gut
balance. Individuals showing allergic reactions to
the protein could benefit from antihistamines to
manage symptoms. Research can also focus on
identifying compounds that inhibit the protein's
function, reducing its pathogenic effects.
Furthermore, developing diagnostic tests to detect
this protein might aid in early treatment and better
patient outcomes.

How can I design a protein targeted on it?

What physiological processes does the
protein participate in?

This protein plays a significant role in cell signaling,
transmitting signals from the cell's surface to its
interior, and mediating cellular responses to
environmental stimuli. Additionally, it is involved in
metabolism, assisting cells in converting nutrients into
energy and other vital molecules. It may also
contribute to the regulation of the cell cycle, ensuring
timely cell division and maintaining tissue balance.
The protein has a role in the immune response, either
recognizing foreign pathogens or modulating the
activity of immune cells. Lastly, it is potentially vital
for protein synthesis, facilitating the translation of
genetic information into functional proteins and
overseeing their proper production and folding.

For the protein you provided, it could potentially
serve as a drug target. This protein seems like
Diphtheria-related toxin. It is a well-known
virulence factor produced by certain strains of the
bacterium Corynebacterium diphtheriae.
If the mutation affects the toxin's binding to host
cells or its enzymatic activity, it could be a critical
point of intervention. Drugs that target the mutant
protein could inhibit its activity, rendering the
toxin harmless, or prevent the toxin from binding
to and entering host cells.
Moreover, understanding the structural and
functional implications of the mutation could
provide insights into designing more effective
treatments or preventive strategies against
diphtheria, especially if the mutant protein
increases the virulence or alters the disease's
presentation.

Can the protein serve as a
drug target?

Are there any drugs currently available
that target this protein?

Given the context of the diphtheria toxin mutant
protein you mentioned, as of my last training data
cut-off in 2021, there are no specific drugs
designed to target the diphtheria toxin mutant
proteins directly. 
For individuals who contract diphtheria, the
primary treatment is diphtheria antitoxin, which
neutralizes the toxin in the bloodstream.
Antibiotics, like penicillin and erythromycin, are
also used to treat the bacterial infection and
prevent its spread to others.

What amino acid sequences should
this antitoxin contain?

When discussing the functional regions of antibodies
like diphtheria antitoxin, it's important to note that
the exact amino acid sequences would depend on the
specific antibody clone and the species from which
the antitoxin is derived. However, I can provide
hypothetical examples of peptide sequences that
could be found in these regions:
Hinge Region: A possible sequence for flexibility
might look like: PRO-THR-PRO-SER-PRO.
Remember, these are just illustrative examples and
would vary based on the specific antitoxin and the
species it's derived from. Actual sequence
determination would require experimental
techniques such as sequencing or mass spectrometry.

Figure 4: Dialogue examples of ProtChatGPT for customized protein design.

where < ProteinPrompts > represents the soft prompts that symbolize the multi-level embeddings
aligned after the projection adapter. < Protein > and < /Protein > respectively represent the start
and end symbols for protein embeddings. < QuestionPrompts > represents the user questions
that prompt the LLM to generate corresponding answers for the uploaded protein, such as “Describe
the function of this protein”. < Descriptions > represents the generated answers, which have been
substituted with publicly available protein descriptions during the second training stage. In the testing
phase, they are left empty, anticipating ProtChatGPT to generate informative answers for the provided
protein and associated questions.
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4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For our training setup, we freeze both the sequence and structure protein encoders, as well as the LLM
decoder, solely focusing on training the PLP-former (first stage) and the projection adapter (second
stage). This two-stage strategy ensures that the pre-trained models retain their learned knowledge
while fine-tuning the projection layer to align the protein embeddings with the LLM’s requirements.
For the first stage, we initialize PLP-former with the pre-trained weights of PubMedBERT (Gu et al.,
2021), and randomly initialize the cross-attention layers. We use 32 learnable tokens with a dimension
of 768, which is the same as the hidden dimension of the PLP-Former. We pre-train the PLP-former
on the ProtDescribe dataset for 20K epochs with a batch size of 64. We use the AdamW (Loshchilov
& Hutter, 2017) optimizer with β1 = 0.9, β2 = 0.98, and a weight decay of 0.05. We use a cosine
learning rate decay with a peak learning rate of 1e-4, a minimum learning rate of 8e-5, and a linear
warm-up of 5K iterations. For the second stage, we freeze the PLP-former and LLM, and train the
projection adapter for 1K epochs with a batch size of 128. The minimum learning rate for the second
stage is set as 5e-5. All experiments are performed on 4 NVIDIA A100 (80GB) GPUs, our model
with ESM-1b and Vicuna-13b requires 5.5 days for the first stage and 2 days for the second stage.

4.2 RESULTS

4.2.1 QUALITATIVE CASE STUDY

We first show some example conversations between the user and ProtChatGPT to indicate the
promising results on both protein understanding and design tasks. For a fair comparison, we use the
protein that does not appear in the training set of ProtChatGPT.

Figure 3 and Figure 4 respectively show some conversation examples of our ProtChatGPT related to
protein understanding and design tasks. It can be observed that our system initially comprehends the
meaning of the question well, providing accurate and logically consistent responses. Additionally,
when presented with a protein, ProtChatGPT can provide explanations regarding questions associated
with protein understanding. This implies that researchers can swiftly survey the structures, functions,
and other relevant properties through ProtChatGPT. Coupled with this comprehension capability,
further judgments on mutations and disease association can be made about specific proteins, leading
to the potential of targeted protein design in healthcare.

4.2.2 QUANTITATIVE COMPARISONS

To validate the effectiveness of our method, we further conducted several quantitative experiments.
To fully showcase the capability of ProtChatGPT, we randomly selected 1,000 protein sequence-
structure-description pairs from the RCSB-PDB Protein Description Dataset dataset to serve as the
test set. Note that these testing protein pairs are not used during training for a fair comparison.
We employed seven commonly used metrics in the image captioning and NLP domains to test the
performance of ProtChatGPT. Detailed descriptions of these metrics can be found in Appendix B.

Table 1: Quantitative Comparisons on the proposed multi-level encoders and PLP-former. ↑ indicates
that a higher value corresponds to better performance. The best performances are marked in bold.

Variant
Metric BLEU-1 ↑ BLEU-4 ↑ ROUGE-L ↑ METEOR ↑ CIDEr ↑ SPICE ↑ PubMed

BERTScore ↑
w/o structure 0.457 0.311 0.405 0.237 0.504 0.231 0.335
w/o PLP-former 0.581 0.352 0.463 0.270 0.572 0.276 0.421
ProtChatGPT 0.610 0.394 0.489 0.291 0.638 0.316 0.457

We first devised two variants to validate our contribution. (1) w/o structure: We removed the
supplementary branch of the 3D structure encoder, relying solely on sequence information for
learning. (2) w/o PLP-former: We omitted the PLP-former and directly aligned the 1D and 3D
embeddings using the adapter. As a fair comparison, we give the LLM with the same user question as:
“Describe this protein in short”. It can be observed from Table 1 that both the structural encoder and
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LLM fine-tuning

PLP-former fine-tuning

ProtChatGPT

0.28 0.32 0.36 0.40 0.44 0.48 0.52

0.316 0.457

0.358 0.490

0.377 0.496

SPICE PubMed BERTScore

Figure 5: Comparison of fine-tuning of PLP-former and LLM decoder during the second-stage
training. We compute the SPICE and PubMed BERTScore for semantic evaluation.

the PLP-former play indispensable roles in supplementation and alignment, respectively. Notably, in
contrast to common metrics like BLEU and METEOR, SPICE and BERTScore pay more attention to
deeper semantic information, rather than just lexical and syntactic alignment. Particularly, we replace
the original Bert encoder with PubMedBERT (Gu et al., 2021), a biomedical description-specific
encoder pre-trained on large-scale datasets. To some extent, this indicator can reflect the scientific
validity of the generated responses in the biomedicine domain.

Furthermore, we modified the two-stage training strategy of PLP in an attempt to achieve better
protein-specific dialogue capabilities. As shown in Figure 5, we independently fine-tune the LLM
decoder and PLP-former in the second stage. The performance on two high-level semantic metrics
SPICE and PubMed BERTScore indicate that further fine-tuning of both LLMs and PLP-former
enhances the performance. Considering the computational cost, we adopt the fastest two-stage
separate training strategy.

4.3 DISCUSSION AND FUTURE WORK

ProtChatGPT leverages the capabilities of LLMs for protein-specialized conversations. However, it
inherits LLM’s potential language hallucination. It is an indispensable concern especially when it
relates to protein research and healthcare. Given an unknown protein, ProtChatGPT might produce
certain descriptions that sound correct but lack proper scientific verification, possibly leading re-
searchers astray. This issue might be alleviated by training the model with more high-quality, aligned
protein-text pairs, or aligning with more advanced LLMs in the future. In this manner, rigorous data
processing and selection strategies should be implemented to ensure the validity and reliability of the
training data. One possible alternative is to further expand the dataset through structure-predicting
models such as AlphaFold (Jumper et al., 2021). Feedback from domain experts is also important to
refine the model. Combined with reinforcement or continual learning techniques, ProtChatGPT could
keep improving the quality of its responses. Furthermore, training only one projection adapter might
not provide enough capacity to learn extensive protein-text alignment. This issue could be alleviated
by designing a more powerful adapter that further facilitates the interactions between sequence and
structure embeddings. In future work, addressing these issues and refining ProtChatGPT is essential.
With ongoing improvements and regular expert feedback, ProtChatGPT has the potential to become a
trusted assistant in protein research, offering more valuable insights for further investigations.

5 CONCLUSION

In this paper, we introduce ProtChatGPT, an AI-based protein chat system to implement ChatGPT-like
functionalities for the protein research field. ProtChatGPT marks the initial effort at bootstrapping
Protein-Language Pre-training (PLP) from pre-trained LLMs for various protein-language tasks.
PLP sits at the intersection between protein and language, which effectively and efficiently enables
ProtChatGPT to harvest the off-the-shelf large models from both protein and natural language
communities. Experiments suggest that ProtChatGPT holds potential for application in protein
understanding and design. We hope this work can facilitate protein research and further inspire other
scientific disciplines.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022. 2

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Spice: Semantic propositional
image caption evaluation. In ECCV, 2016. 15

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic
evaluation measures for machine translation and/or summarization, pp. 65–72, 2005. 15

Hangbo Bao, Wenhui Wang, Li Dong, and Furu Wei. Vl-beit: Generative vision-language pretraining.
arXiv preprint arXiv:2206.01127, 2022. 3

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):
235–242, 2000. 5

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 1, 2

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. UNITER: Universal image-text representation learning. In European Conference on
Computer Vision (ECCV), 2020. URL https://arxiv.org/pdf/1909.11740. 3

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/. 3, 5

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022. 1

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023. 4

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 1,
2, 16
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A DETAILS ON PROTEIN-LANGUAGE REPRESENTATION LEARNING

Obtaining queries that can extract informative protein representation regarding text is significant for
protein-language alignment. To achieve this, we connect our PLP-former with the ESM-1b (Rives
et al., 2021) model during the representation learning phase and train with the protein-language pairs.
Following (Li et al., 2022a; 2023), we jointly train our model with three distinct pre-training tasks:
Protein-Text Contrastive learning (PTC), Protein-grounded Text Generation (PTG), and Protein-Text
Matching (PTM). Although these tasks utilize the same model structure and input format, they
differ in the attention masking strategy applied between queries and text, thereby modulating their
interaction.

Protein-Text Contrastive Learning (PTC). For Protein-Text Contrastive Learning, by maximizing
the mutual information, we aim to ensure the latent representation of protein and text are well-aligned.
Specifically, given the query representation from the protein transformer Eseq, we align it with the
corresponding text embedding t. This is achieved by maximizing the similarity of positive pairs
against those negative pairs where we directly use the embedding of [cls] tokens from the text
transformer as t. Given that the output of the protein transformer comprises multiple embeddings, we
calculate the pairwise similarity between each query output and t. We then choose the highest value
to represent the protein-text similarity. To prevent any information leakage, we utilize an unimodal
self-attention mask that restricts direct interaction between queries and text.

Protein-grounded Text Generation (PTG). The PTG task is designed to ensure that the learned
queries can efficiently derive text-relevant information from the protein sequence. To accomplish this,
we train the PLP-former to produce descriptions matching the respective protein sequences. Since
the PLP-former prevents direct interaction between the frozen ESM-1b and text tokens, the data
needed for description generation must first be garnered by the queries, ensuring efficient information
extraction. We use a multimodal causal self-attention mask, to manage the interaction between
queries and text. While queries can interact with one another, they cannot engage with the text tokens.
Conversely, each text token can reference all queries as well as its preceding text tokens. Additionally,
we substitute the [CLS] token with a [DEC] token at the beginning of the text sequence to indicate
the decoding task.

Protein-Text Matching (PTM). Protein-Text Matching task is leveraged for fine-grained protein-
text representation alignment. This task is designed as a binary classification task where the model
needs to determine if a given image-text pair aligns (positive) or misaligns (negative). We employ a
bi-directional self-attention mask, allowing all queries and texts to mutually attend. As a result, the
obtained query embeddings, Eseq , encompass multimodal information. Each of these embeddings is
then passed through a binary linear classifier to derive a logit, with the final matching score being
the average of logits across all queries. For crafting informative negative pairs, we utilize the hard
negative mining technique as described in (Li et al., 2021).

B DETAILS ON METRICS

In our implementation, we use seven different metrics on the proposed ProtChatGPT to verify the
performance. These metrics not only focus on the low-level lexical and syntactic alignment but also
on high-level semantic information.

BLEU (Papineni et al., 2002) (BiLingual Evaluation Understudy) serves as a crucial metric for
assessing the quality of the machine-generated text, particularly in machine translation contexts. It
quantifies the similarity between the candidate and reference text, yielding a score within the range
of 0 to 1. A higher BLEU score indicates a closer match between the candidate and reference texts.
BLEU is mathematically defined as follows:

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)∑
C′∈{Candidates}

∑
n-gram′∈C′

Count(n-gram′)
(6)
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BP =

{
1 if c > r

e(1−r/c) if c ≤ r
(7)

BLEU = BP · exp

(
N∑

n=1

wnlogpn

)
(8)

where BP (Brevity Penalty) helps penalize overly short translations and pn represents the precision
of n-grams, ranging from 1 to a predefined maximum.

ROUGE-L (Lin & Hovy, 2002) finds frequent use in the automatic evaluation of text summarization
and machine translation. It calculates the longest common subsequence between the candidate and
reference texts, prioritizing recall over precision. ROUGE-L can be expressed mathematically as:

Rlcs =
LCS(X,Y )

m
(9)

Plcs =
LCS(X,Y )

n
(10)

ROUGE-L =
(1 + β2)RlcsPlcs

Rlcs + β2Plcs
(11)

In this context, X represents the predicted text with a length of n. Y represents the ground truth text
with a length of m. β is a hyperparameter used to adjust the emphasis on precision and recall. LCS
calculates the length of the longest common subsequence, Rlcs measures recall, and Plcs measures
precision, respectively.

METEOR (Banerjee & Lavie, 2005) provides a comprehensive evaluation of machine-generated text
by considering not only exact word matches but also synonyms and stemming. It combines precision,
recall, and alignment factors to offer a holistic assessment. METEOR is mathematically represented
as:

F =
(α2 + 1)P

R+ αP
(12)

Meteor = (1− Penalty) · F (13)

where Penalty penalizes excessive word mismatches, α is a configurable parameter, R and P
represents recall and precision respectively.

CIDEr (Vedantam et al., 2015) (Consensus-based Image Description Evaluation) primarily assesses
the quality of image captions produced by automated systems. It places importance on consensus
among multiple reference captions and emphasizes the inclusion of diverse descriptive words.

The mathematical formulation of CIDEr is given by:

CIDErn(c, S) =
1

M

M∑
i=1

gn(c) · gn(Si)

||gn(c)|| × ||gn(Si)||
(14)

In the formula, c represents the candidate text, S denotes the set of reference texts, n specifies the
use of n-grams, M represents the number of reference texts, and g corresponds to the TF-IDF vector
based on n-grams.

SPICE (Anderson et al., 2016) offers a metric designed to evaluate the semantic content of image
captions, with a focus on their precision within generated captions.

SPICE’s mathematical expression is as follows:

P (c, S) =
|T (G(c))⊗ T (G(S))|

|T (G(c))|
(15)
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R(c, S) =
|T (G(c))⊗ T (G(S))|

|T (G(S))|
(16)

SPICE(c, S) =
2 · P (c, S) ·R(c, S)

P (c, S) +R(c, S)
(17)

where the binary matching operator ⊗ is the function that returns matching tuples in two scene
graphs, P represents the precision of semantic propositions and R signifies the recall of semantic
propositions, respectively.

BertScore (Zhang et al., 2019) is a metric that leverages contextual embeddings from BERT models
to assess the quality of machine-generated text. It measures the similarity between the candidate text
and the reference text using contextual embeddings.

PubMed BERTScore comes from the classical BertScore (Zhang et al., 2019), which is a metric
that leverages contextual embeddings from BERT models to assess the quality of machine-generated
text. It measures the similarity between the candidate text and the reference text using contextual
embeddings. In our implementation, to better assess the quality of ProtChatGPT in generating protein-
related descriptions, we further replaced the encoder with the encoder of PubMedBERT (Gu et al.,
2021). PubMedBERT is the latest BERT (Devlin et al., 2018) model pre-trained on the biomedical
corpus, which outperformed BioBERT on the BLURB (Gu et al., 2021) (Biomedical Language
Understanding and Reasoning Benchmark).
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