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Abstract

We investigate fingerprints in pretraining datasets for large language models (LLMs)
through dataset classification experiments. Building on prior work demonstrating
the existence of fingerprints or biases in popular computer vision datasets, we
analyze popular open-source pretraining datasets for LLMs derived from Com-
monCrawl including C4, RefinedWeb, DolmaCC, RedPajama-V2, FineWeb, and
DCLM-Baseline. Despite those datasets being obtained with similar curation steps,
neural networks can classify surprisingly well which dataset a single text sequence
belongs to, significantly better than a human can. This indicates that small dif-
ferences in filtering and processing pipelines induce fingerprints, that we find are
evident in formatting, vocabulary, and content distributions. Such fingerprints can
negatively impact cross-dataset generalization. Additionally, we show that these
fingerprints propagate through training: sequences generated by models trained
on those datasets can be accurately classified by a classifier trained on the orig-
inal datasets. This can offer insights into data characteristics that are typically
undisclosed by LLM developers, including pretraining mixture proportions and
finetuning data sources.

1 Introduction

In 2011, Torralba and Efros [TE11] proposed the dataset classification experiment to examine unique
fingerprints (or biases) present in common computer vision datasets. The paper demonstrated that
computer vision researchers can classify well which dataset an image from a computer vision dataset
popular at the time (e.g., PASCAL, Caltech101, ImageNet,...) belongs to. Moreover, classifiers can
be trained to relatively reliably classify which dataset an image comes from. While some of the
fingerprints can be accounted for by isolating specific objects the different datasets focus on, Torralba
and Efros [TE11] found that the fingerprints or biases are still present in some form, even if those
effects are isolated.

Recently, Liu and He [LH25] revisited the dataset classification experiment in the current era of large-
scale and diverse vision datasets like YFCC [Tho+16], DataComp [Gad+23], and LAION [Sch+22].
Those datasets are collected to train generalizable representations, as opposed to datasets collected
for a specific purpose (for example for urban scene understanding [Cor+16]). Liu and He [LH25]
found, perhaps surprisingly, that even for those large and diverse datasets, classifiers can relatively
accurately assign single images to the datasets.

In this paper we study the fingerprints or biases of popular pretraining datasets for large language
models (LLMs), investigate their origin, and show that they propagate through training. We also
study how those fingerprints can impact generalization, and can be leveraged to gain information on
the training and finetuning data of LLMs.
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We consider the most popular open web-based datasets for general purpose LLMs, specifically
C4 [Raf+20], RefinedWeb [Pen+23], DolmaCC [Sol+24], RedPajama-V2 [Tog23a], FineWeb and
FineWeb-edu [Pen+24], and DCLM-Baseline [Li+24]. These datasets consist of sequences of text of
average length ranging from 477 to 1235 tokens (see Appendix A), and are obtained by pre-processing
and filtering CommonCrawl. These datasets are diverse and are commonly used for pretraining
LLMs.

Our main findings are:

• Distinguishability: Sequences from popular pretraining text datasets can be well classified
to belong to a certain dataset, highlighting unique fingerprints inherent in these datasets. For
example, the datasets C4, RefinedWeb, and FineWeb are all obtained from CommonCrawl
using similar deduplication and heuristic quality filtering steps. Yet an LLM trained to
distinguish between C4, RefinedWeb, and FineWeb achieves 74.8% accuracy, well above
chance (33.3% accuracy) and human accuracy.

• Distinguishing features: We analyze the features that enable detectability of sequences,
and find that the datasets differ in format, vocabulary, and content distributions. However,
there is not a single feature on its own that makes the sequences easily distinguishable, and
even rewritten sequences with removed formatting are well distinguishable by a classifier.

• Fingerprint propagation through training: Sequences generated by models trained on
these datasets can be accurately classified to belong to their respective datasets using a
classifier trained on the original data.

• Finetuned models: Popular LLMs including GPT-4o, Claude-3.5-Sonnet, Qwen-2.5,
Gemini-2.0-Flash, LLama-3.3, DeepSeek-V3, and GPT-OSS generate sequences that are
generally well distinguishable, but GPT-4o and DeepSeek-V3 generate surprisingly difficult
to distinguish sequences depending on the prompt distribution.

Implications of our findings are:

• Cross-dataset generalization: The distinguishability of sequences in the datasets suggests
that despite the datasets being large and diverse, they contain dataset-specific features. As a
result, models pretrained on a single dataset can struggle to generalize to others, as measured
by perplexity, as we demonstrate. Jointly training on a mixture of datasets leads to improved
generalization measured in perplexity.

• Mixture proportions estimation: LLMs pretrained on several data sources can generate
random sequences that reflect the proportion of the data sources in the pretraining mixture.
By classifying the generated sequences with a classifier trained to distinguish between the
original data sources, we can estimate the pretraining mixture proportions.

• Insights into finetuning data: Responses from GPT-4o and DeepSeek-V3 to OpenHermes
prompts are particularly difficult to distinguish, relative to other LLMs and datasets. This
hints at the potential inclusion of GPT-4o-generated responses to OpenHermes prompts in
DeepSeek-V3’s finetuning data.

In an earlier version of this paper, we used the term bias instead of fingerprints following prior
computer vision literature [TE11; ZYL24; LH25]. However, bias can be easily be mistaken for social
or stereotypical biases (e.g., gender, race), so we instead adopt the more specific term fingerprints.

2 Related work

This work is inspired by Torralba and Efros [TE11]’s dataset classification experiment for vision
datasets and Liu and He [LH25]’s recent work that revisited the dataset classification experiment in
the context of modern large scale dataset. Liu and He [LH25] found, similar as we find for language
datasets, that images from the large scale and diverse computer vision datasets YFCC [Tho+16],
CC [Cha+21], and DataComp [Gad+23] can be accurately classified as belonging to one of those
datasets. Zeng et al. [ZYL24] extended Liu and He [LH25]’s work, and explored the specific forms of
fingerprints present in large-scale vision datasets by performing classification experiments on various
transformations of the original datasets. In our work, we identify fingerprints for text datasets, study
their origin, propagation, and implications.
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A variety of works study the problem of classifying LLM generated text. [Han+24] and many phrase
this as a classification problem [Sol+19; Tia+24; HCH23]. Guo et al. [Guo+23] demonstrate that
ChatGPT generated answers can be well distinguished from human answers by a classifier, if the text
is sufficiently long. In this work we focus on distinguishing popular pretraining text datasets with a
classifier, not AI vs human generated text.

Shi et al. [Shi+23] and Maini et al. [Mai+24] consider the problem of detecting pretraining data
based on blackbox access of LLMs; specifically given a text and blackbox acccess to an LLM, was
the LLM trained on that text? Carlini et al. [Car+21] and Nasr et al. [Nas+23] attempt to extract
training data from LLMs. They show that an adversary can extract verbatim text sequences from
the model’s training data by querying the LLM with no previous information of the training set. In
Sec. 5 we study the loosely related problem whether a classifier trained to distinguish training data
can distinguish data generated by LLMs trained on it.

Xie et al. [Xie+23] and Ge et al. [Ge+24] optimize the mixture proportions of different data sources
for pretraining an LLM to maximize its performance on specific tasks. In Sec. 5.1 we obtain an
LLM pretrained on different data sources, and estimate the proportion of each source in the training
mixture.

3 Setup and datasets considered

Throughout this paper, we perform dataset classification for language datasets as follows. Each
dataset consists of a set of sequences, and a classifier is trained to distinguish the sequences from
N such datasets. We measure performance on a test set consisting of an equal amount of sequences
from each of the N datasets.

As classifier, we use a pretrained autoregressive transformer with 160M parameters, which we
finetune on a training set of sequences to perform N -way classification. See Appendix B for the
details of the model used and training specifications.

3.1 Distinguishing data from different sources

LLMs are often pretrained on data from different sources, for example LLama 1’s [Hug+23]’s
pretraining data, and reproduction of the data, RedPajama-1T [Tog23b], consists of the sources C4,
CommonCrawl (CC), Arxiv, Github, Wikipedia, and Stack Exchange. Some of those sources are very
easy for humans to distinguish, for example Github (containing code) and C4/CC (containing little
code). Thus, it is perhaps not surprising that we find that six-way classification of the Redpajama-1T
sources (C4, CC, Arxiv, Github, Wikipedia, Stack Exchange) yields an accuracy of 98.25%.

3.2 Datasets considered

We consider seven of the largest and most popular open datasets for pretraining general-purpose LLMs
based on web-filtered data: C4 [Raf+20], RefinedWeb [Pen+23], DolmaCC [Sol+24], RedPajama-
V2 [Tog23a], FineWeb and FineWeb-edu [Pen+24], and DCLM-Baseline [Li+24]. See Appendix C
for a detailed description of each dataset.

The datasets are based on web crawls from CommonCrawl, a nonprofit that provides a publicly
available web archive. Much of the text extracted by CommonCrawl is not useful for training, like
three-word sentences and HTML artifacts.

All datasets are obtained by i) extracting text using parsers like resiliparse or using Common-
Crawl’s pre-extracted text, ii) applying heuristic filtering (e.g., language filtering, removing very
short texts, and removing texts with curly brackets { since those indicate code), iii) deduplication
(for example, identical or nearly identical webpages are filtered out), and iv) machine learning based
filtering (for example filtering based on a classifier trained to distinguish high quality data from
average data). The exact choices of those steps have a significant effect on the composition of the
datasets and on the performance of the models trained on them.

All datasets are based on web crawls, are large in scale, and are broad, i.e., not focused on a specific
topic or area (such as Arxiv, Github, etc). Therefore it is perhaps surprising that sequences of these
datasets can be relatively reliably distinguished.
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# Classes Category 1 Category 2 Category 3 AccuracyC4 FineWeb RefinedWeb DolmaCC RedPajama-V2 DCLM FineWeb-Edu
✗ ✗ ✗ 80.50%
✗ ✗ ✗ 79.27%

✗ ✗ ✗ 77.99%
✗ ✗ ✗ 75.74%

✗ ✗ ✗ 74.76%
✗ ✗ ✗ 74.09%

✗ ✗ ✗ 73.04%
3 ✗ ✗ ✗ 72.90%

✗ ✗ ✗ 68.84%
✗ ✗ ✗ 67.55%

✗ ✗ ✗ 94.12%
✗ ✗ ✗ 92.94%

✗ ✗ ✗ 89.76%
✗ ✗ ✗ 85.16 %

✗ ✗ ✗ 84.55%
✗ ✗ ✗ ✗ 70.31%
✗ ✗ ✗ ✗ 68.98%

4 ✗ ✗ ✗ ✗ 67.88%
✗ ✗ ✗ ✗ 67.45%
✗ ✗ ✗ ✗ 64.44%

5 ✗ ✗ ✗ ✗ ✗ 60.70%

Table 1: Classification accuracy across different combinations from the three dataset categories.
Despite the similarity in the filtering techniques, high classification accuracy is observed, specially
for category 3.

4 Dataset classification experiments

We group the seven datasets into three categories based on their preprocessing techniques. Category
1 consists of the language filtered, heuristically filtered, and deduplicated datasets C4, FineWeb, and
RefinedWeb datasets. Category 2 consists of datasets processed with Category 1 steps and additional
light filtering based on Wikipedia perplexity scores, and includes the Dolma and RedPajama-V2
datasets. Category 3 consists of datasets processed with Category 1 steps and carefully selected
machine learning-based text filtering techniques and includes DCLM-Baseline and FineWeb-Edu.

We perform all possible combinations of three-way, four-way, and five-way classification using
the five datasets from categories 1 and 2. Additionally, we perform five three-way classification
experiments that pair the two datasets from category 3 with each of the five datasets from the other
categories. We also report the results for all two-way combinations in Appendix D. We train a 160M
transformer on 160M training tokens per dataset, i.e., 480M for three-way, 640M for four-way, and
800M for five-way classification. As a test set we take 8192 unseen sequences from every dataset.

As seen in Table 1, across all dataset combinations, the classifiers consistently achieve high accuracy.
Particularly high accuracy is obtained when classifying sequences from DCLM-Baseline vs the other
datasets, which is perhaps not surprising since those sequences are relatively distinct, see Appendix E
for examples.

However, it is perhaps surprising that sequences from the datasets processed with similar language and
heurisitc filtering and deduplication steps are easily distinguishable. Humans perform significantly
worse in assigning text sequences to datasets, see Section 4.1 below.

In Appendix F we provide ablation studies justifying the choice of our classifier including scaling the
training data and model size.

4.1 Classification accuracy achieved by humans

Our experiments show that classifiers can accurately differentiate between datasets, even when the
differences are subtle to human perception, as seen from the two examples from C4 and FineWeb in
Figure 1. More examples are in Appendix E.

We conducted a dataset classification experiment to measure human performance. The task is binary
classification between C4 and FineWeb. We gave two machine learning researchers several sequences
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Datasets Training sets
C4 FineWeb RefinedWeb DolmaCC RedPajama-V2 DCLM FineWeb-Edu Mixture

E
va

lu
at

io
n

se
ts

C4 30.5 34.2 34.2 35.4 38.0 41.2 43.5 32.8
FineWeb 39.2 34.4 35.2 40.8 39.3 41.4 45.1 34.8

RefinedWeb 46.1 38.9 35.1 49.8 43.1 46.2 51.9 37.4
DolmaCC 33.0 32.9 32.9 31.9 33.8 36.9 39.6 32.0

RedPajama-V2 34.8 29.5 28.9 34.9 26.7 33.1 35.7 27.2
DCLM 54.8 53.1 45.4 48.0 54.3 32.3 57.2 33.4

FineWeb-Edu 31.4 28.9 29.5 30.4 29.2 28.9 23.7 26.4
Mixture 37.8 35.3 34.1 38.0 36.8 36.4 40.6 31.6

WikiText-103 47.3 44.6 46.0 46.5 49.0 46.3 45.4 42.7
Paloma 55.9 54.3 47.6 61.8 55.0 42.2 66.3 41.2

Table 2: Cross dataset and benchmark generalization in terms of perplexity. For each row, the lowest
and second lowest perplexity values are shown in bold and underlined, respectively.

from each dataset for inspection. For testing, the researchers were given 50 unlabeled sequences from
each set.

The researchers achieved an average accuracy of 63%, only 13% above random guessing. In contrast,
the 160M sized classifier attains 88%, which highlights the model’s ability to identify subtle patterns
that are not easily distinguishable by humans.

C4

•Made it back, can I come inside for a
change? Made of glass and falling fast
all the way! Thanks for correcting Tokyo
Police Club - Miserable lyrics!
•Jamie Oliver is a famous CHEF from
the UK. Here you can learn how to make
scramble eggs in three different ways:
English, French and American way! EN-
JOY IT!

FineWeb

•Short-term and long-term changes in the
strength of synapses in neural networks
underlie working memory and long-term
memory storage in the brain.
•Yesterday, we indulged in all the good-
ness of sweets, so I thought it only ap-
propriate that we feature the other side
of the coin: Salty. Now, I’m a girl who
loves her potato chips.

Figure 1: Sample text sequences from C4 and FineWeb. For a Human, it is difficult to identify
patterns to distinguish between the datasets.

4.2 Generalization and significance of dataset classification

If two datasets can be reliably distinguished through classification experiments, this suggests that they
contain dataset-specific features. Consequently, a model pretrained on one dataset may not generalize
well to others, as measured by perplexity. Therefore, when datasets are well distinguishable, like the
pretraining datasets considered here, this can suggest that mixing them can improve generalization.
To verify this, we pretrain a transformer (with 160M parameters on 3.2B tokens for next token
prediction) on each of the seven datasets, as well as on a mixture of them (a total of 3.2B tokens,
equally sampled from each dataset).

We measure performance in perplexity, a standard evaluation metric, which measures how well an
LLM predicts a sequence of text, and often correlates with performance on real-world downstream
tasks [KP02; Gon+23; TPH25]. For evaluation, we sample 1000 unseen sequences from each dataset.
We compute the perplexity of each pretrained model on each evaluation set individually, and on the
mixture of all evaluation sets. The results are in Table 2.

We also evaluate on two benchmarks: WikiText-103 [Mer+17], which is extracted from the set of
verified Good and Featured articles on Wikipedia, and is considered to have high quality texts, and
Paloma [Mag+24], a comprehensive benchmark for evaluating the perplexity of LLMs, covering a
diverse set of domains, including Twitter, code, Reddit, StackExchange, and academic text, making it
a robust measure of generalization across various real-world data sources.

Models pretrained on a single data source have lowest perplexity on that source, but high perplexity
on other sources. In contrast, the model trained on the mixture consistently has the second lowest
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perplexity on each individual dataset, and the lowest perplexity on the mixture evaluation data, and
importantly, also on the benchmarks WikiText-103 and Paloma.

The reduction in perplexity due to mixing data sources, that are well distinguishable by a classifier,
highlights the benefit of training on a diverse corpus, which improves the model’s ability to generalize
across a broader range of language distributions.

4.3 Features enabling dataset distinguishability

To gain insights into what makes the sequences distinguishable, we conduct rewrite, reformatting, and
dataset categorization experiments. We find that format, vocabulary, and content are all characteristics
that enable differentiating between the datasets, but no single feature on its own fully explains the
distinguishability. While some of these features are easily identifiable, others are subtle and not easily
identifiable by humans.

An easily identifiable example feature is the formatting of DCLM-Baseline. The DCLM team used
resiliparse to extract text, which very frequently inserts new lines between the sentences (i.e., ends
sentences with \n\n). This makes DCLM sequences particularly distinct, see Appendix E. This is also
reflected in the high accuracy a model attains when classifying DCLM sequences as seen in Tables 1
and 5.

Another example is FineWeb-Edu. Most of the sequences are educational and scientific, and thus
classifying educational and scientific sequences as FineWeb-Edu sequences can work relatively well,
see Appendix E for examples.

4.3.1 Rewrite experiments

We rewrite original data with an LLM and classify the rewritten texts. We rephrase the datasets with
GPT-4o-mini prompted with the following three prompts:

Prompt 1: “Rewrite the following text sentence by sentence while preserving its length and the
accuracy of its content. Maintain the overall format, structure, and flow of the text:”

Prompt 2: “Rewrite the following text while preserving its length and the accuracy of its content:”

Prompt 3: “Rewrite the following text while preserving its length and the accuracy of its content.
Do not use newlines, new paragraphs, itemization, enumeration, and other formatting, unless it is
important or appropriate for better readability:”

The prompts encourage increasing degrees of deviation of the rephrased texts from the originals as
seen in Appendix G.

We consider the binary classification task between C4 and FineWeb, i.e., we train a 160M transformer
to distinguish rephrased C4 from rephrased FineWeb. Using each of the prompts, we rephrase 160M
training tokens and 8192 test sequences from every dataset.

The classification accuracy between the original text is 87.4% followed by (i) 83.2% for the text
rephrased with Prompt 1, (ii) 79.5% for Prompt 2, and (iii) 66.0% for Prompt 3.

Interestingly, while the rephrased text is more difficult to distinguish, when rewritten with Prompt
1 and Prompt 2, the sequences are still distinguishable for a classifier. This suggests that the
distinguishability of the texts does not overly rely on wording. Subtle format differences play a more
significant role, as suggested in the large accuracy drop with Prompt 3.

4.3.2 Removing formatting and classifying based on word frequencies only

To gain further insights into the effect of formatting and vocabulary on the datasets’ distinguishability,
we unify formatting, and classify based on unique word frequencies only.

Removing formatting We remove structural formatting of C4 and FineWeb by removing all newlines,
itemization and enumeration patterns, including numbers, bullet points and similar markers that
commonly denote list elements, excessive spaces, and other special characters such as tabs and
carriage returns. The resulting text is a single continuous block of text.
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C4 FineWeb Refined
Web

Dolma
CC

Red
Pajama

V2

DCLM
FineWeb

Edu

Health,Wellness & Fitness
Food & Nutrition
Lifestyle & Recreation
News & Media
Science
Technology
Education

Business & Finance
Politics & Policy
Arts & Entertainment
Society & Culture
Community
Other
Advertisement

Figure 2: Categorization of datasets into 13 thematic categories. Similarly filtered datasets have
comparable categorical distributions.

We train the 160M model to classify between regex preprocessed C4 and FineWeb. We use 320M
training tokens (160M tokens per dataset), and 8192 test sequences. The accuracy is 72.42%, about
15% less than the accuracy on the original datasets (87.37%). This drop in accuracy suggests that
models detect patterns in formatting that are important for classification. However, the fact that
classification remains relatively accurate even after unifying the formatting, suggests that there are
fingerprints beyond format and structure.

Bag of Words is a simple text classification method that represents text as a collection of unique
words, disregarding format, grammar, word order, or context. Each text sequence is transformed
into a vector with the frequency of each unique word within the text. For instance, Bag of Words
transforms the following two texts: “I like apples but not bananas” and “I like bananas but not apples”
to the same exact vector representation.

We use Bag of Words to distinguish between C4 and FineWeb, and achieve a classification accuracy
of 63.45%. Classification with Bag of Words is higher than a random guess despite reducing each text
sequence to a vector with the frequency of words within it. Bag of Words disregards any semantic
relationship between the words, it is based solely on the vocabulary used, which suggests that the
vocabulary distributions of C4 and FineWeb are different.

4.3.3 Dataset categorization

To get a deeper understanding of the characteristics that differentiate the datasets, we obtain a random
sample from each of the seven datasets, and categorize its text sequences into the 13 thematic
categories in Figure 2. We use GPT-4o-mini’s API by prompting it to classify the text to the most
appropriate category. If none of the categories are appropriate, it chooses “Other”.

The results in Figure 2 reveal that the content distribution is close for similarly filtered datasets. For
instance C4, FineWeb, and RefinedWeb are filtered with standard heuristics and deduplication, and
therefore have a comparable distribution. DolmaCC and RedPajama-V2 are additionally filtered with
respect to Wikipedia perplexity and thus also exhibit similar distributions.

The machine learning filtered datasets (Dolma, RedPajama, DCLM, and FineWeb-Edu) have signifi-
cantly less advertisement content than C4, FineWeb, and RefinedWeb. Also, FineWeb-Edu is filtered
for educational content, and therefore has many sequences categorized as “Science” and “Education”.
Such content differences across datasets provide a basis for distinguishability.
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Figure 3: Percentage of generated sequences assigned to different data sources by a classifier trained
on original data. [a] Sequences generated by an LLM trained on four sources and classified by a
classifier trained on the same four sources. [b] Same as [a] but seven sources. [c] Sequences generated
by an LLM trained on four sources and classified by a classifier trained on seven sources.

5 Fingerprint propagation

We now explore how the fingerprints inherent in the datasets propagate to text generated by LLMs
trained on those datasets. To this end, we evaluate how well a classifier trained to distinguish the
original data can classify the generated data.

We consider the following three publicly available LLMs pre-trained on individual datasets from the
seven datasets considered in this study:

• Falcon-7B: A 7B parameter model pretrained on 1.5 trillion tokens from the RefinedWeb
dataset by TII (Technology Innovation Institute) [Alm+23].

• DCLM-7B: A 7B model pretrained on 2.5 trillion tokens from the DCLM-Baseline dataset
by the DCLM team [Li+24].

• FineWeb-Edu-1.8B: A 1.8B parameter model trained by Huggingface on 350 billion tokens
from the FineWeb-Edu dataset.

All LLMs are pretrained base models that are not instruction finetuned. See Appendix H for the
propagation of fingerprints in instruction-finetuned models.

We generate 8192 test sequences from each LLM by prompting the LLM with a single token, sampled
from the distribution of tokens that appear as the first token in the sequences derived from the original
training data of the LLM. See Appendix I for sample generated sequences.

Using the three-way classifier trained on the original RefinedWeb, DCLM-Baseline, and FineWeb-
Edu data (as described in Sec. 4), we classify the generated data. The classifier achieves 89.15%
accuracy on the generated data, only 0.61% less than the accuracy on the original data (89.76% as in
Table 1). This indicates that the unique fingerprints inherent in pretraining datasets propagate through
training, and can be measured surprisingly well from the outputs of models trained on those datasets.

5.1 Estimating mixture proportions

We next show how the fingerprint propagation can be utilized to roughly estimate the mixture
proportions of pretraining datasets of an LLM.

LLMs are typically pretrained on a mixture of datasets with certain mixture proportions. These
proportions impact model performance and are non-trivial to optimize [Xie+23; Alb+23; Ge+24].
LLM developers often do not disclose the training data and mixture proportions.

We hypothesize that an LLM pretrained on multiple datasets, when prompted with a random token,
will generate sequences that closely follow the proportions of its training mixture, since LLMs learn
the underlying data distribution during training [Del+24], and generate tokens by sampling from the
probability distribution of the learned patterns.

To verify this hypothesis, we utilize SlimPajama [She+24], a refined version of RedPajama-1T
[Tog23b]. SlimPajama consists of seven data sources: Arxiv, Books, Github, C4, CC (Common
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Figure 4: Two-way classification error for distinguishing text generated from popular LLMs by
prompting them with OpenHermes-2.5 prompts.

Crawl), SE (Stack Exchange), and Wikipedia. The SlimPajama team provides two 1.3B LLMs
trained on 330B tokens from the SlimPajama dataset. The first LLM is trained on only four sources:
Books, Github, CC, and Wikipedia, and the second one is trained on all seven sources. The mixture
proportion of each source is known.

We train a four-way classifier on the original data from the four sources: Books, Github, CC, and
Wikipedia, and another seven-way classifier on the original data from all seven sources. We use the
160M model as a classifier, and 160M training tokens from each source. We generate 2048 random
sequences from each LLM by prompting the LLM with one random token, then classify the generated
sequences using the the classifiers trained on the original data.

We classify the sequences generated by the LLM trained on four and seven sources using the four-way
and seven-way classifiers respectively, and report the percentage of sequences classified as belonging
to one of the sources in Figure 3 [a,b]. The estimated proportions approximate the true proportions
well across most sources. However, the estimates of C4 and CC slightly deviate from the true ones as
seen in [b], as some CC sequences are classified as C4. This is somewhat expected as C4 is a subset
of CC.

In Figure 3 [c], we use the seven-way classifier to classify the sequences generated by the LLM
trained on the four sources, to verify if the classifier correctly refrains from assigning sequences to
the 3 excluded sources: Arxiv, C4, and SE. Almost no sequences were classified as Arxiv or SE,
confirming that the LLM has not been trained on any of them. As observed previously, a discrepancy
appears with some CC sequences misclassified as C4.

6 Distinguishability of sequences from popular instruction finetuned LLMs

We now investigate the distinguishability of text generated by popular instruction finetuned LLMs
including GPT-4o, Gemini-2.0-Flash, Claude-3.5-Sonnet, DeepSeek-V3 [DA+24], Qwen-2.5-72B
[Qwe+25], Llama-3.3-70B [Gra+24], and GPT-OSS-20B [Ope+25].

Generating random sequences with those models is challenging, as directly prompting them with
a single token (as we did for pretrained models) results in responses consistent with their task as
assistants, for example “Hello, how can I help you?”.

Instead, we prompt each of the models with the prompts from OpenHermes-2.5 [Tek23], a popular
and broad instruction finetuning dataset. We generate 10k responses (about 5M tokens) for training
and 400 test responses with each LLM. The performance of a 160M-paramter transformer model
trained for pairwise classification of all pairs is in Figure 4.

It can be seen that for the 160M classifier, all LLM pairs are relatively well distinguishable, apart from
DeepSeek-V3 and GPT-4o, that are essentially indistinguishable for the classifier (48.7% error rate).
This is consistent with the anecdotal evidence that DeepSeek-V3 provides very similar responses to
GPT-4o (Appendix J), and hints at part of the instruction finetuning data being generated by GPT-4o.
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Figure 5: Classification error between texts generated by GPT-4o and DeepSeek-V3 using prompts
from three datasets: OpenHermes-2.5, Alpaca, and UltraChat using two classifiers.

To see whether the sequences remain essentially indistinguishable for a much stronger classifier, we
train LLM2Vec [Beh+24], which finetunes a Llama-8B-Instruct model using bidirectional attention,
and performs very well at higher computational cost. The classification error with this classifier drops
to 30%, demonstrating that for an excellent classifier, the responses from DeepSeek-V3 and GPT-4o
are distinguishable, but interestingly much less so than sequences from the other models.

To investigate the distinguishability of GPT-4o and DeepSeek-V3 generated sequences further, we
now prompt GPT-4o and DeepSeek-V3 with prompts from Alpaca [Tao+23] and UltraChat [Din+23],
two popular instruction finetuning datasets. In a recent paper [Sun+25] that appeared after the first
version of this paper, the authors carried out dataset classification experiments as well for responses
to UltraChat prompts of different LLMs.

The classification accuracy for the 160M transformer and for LLM2Vec shows that GPT-4o and
DeepSeek-V3 responses to Alpaca and UltraChat prompts are significantly more distinguishable
relative to OpenHermes, see Figure 5.

A hypothesis why DeepSeek-V3 and GPT-4o responses are difficult to distinguish is that OpenHermes
prompts with GPT-4o generated responses were part of the finetuning data used for DeepSeek-V3.

Finetuning a model on GPT-4o distilled responses can indeed make the sequences generated by
such a model less distinguishable from GPT-4o: We construct a supervised finetuning dataset by
prompting GPT-4o with 30k prompts from OpenHermes-2.5 and collecting its responses. We then
finetune Qwen-2.5-7B-Instruct on this GPT-4o-generated dataset.

Using OpenHerms prompts distinct from the 30k finetuning prompts, we generate training and
evaluation data from both the original Qwen-2.5-7B-Instruct as well as its variant finetuned on the
GPT-4o-generated dataset. We train LLM2Vec to distinguish between (i) the original Qwen and
GPT-4o, and (ii) the finetuned Qwen and GPT-4o.

The classification accuracy between the original Qwen and GPT-4o is 97.4%, whereas for the
finetuned Qwen, it drops by about 20% to 79.8%. This demonstrates that, unsurprisingly, distillation
makes sequences from the student and teacher model less distinguishable. These findings highlight
the potential of dataset classification experiments in providing insights into the finetuning data of
popular LLMs.

7 Conclusion

In this work, we demonstrated that popular web-filtered pretraining datasets possess unique and
measurable fingerprints, despite their similar origins and curation methods. Through classification ex-
periments, we showed that neural networks can identify a sequence’s source dataset with surprisingly
high accuracy, a task at which humans perform poorly. We identified that these fingerprints stem
from subtle distinctions in formatting, vocabulary, and content distributions. Moreover, we found that
these fingerprints propagate through pretraining and finetuning.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets used in this paper are referenced, see the supplementary material.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The asset introduced by the paper is the code for reproducing the results, which
is in the supplementary material, and in the GitHub link.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLMs usage in this paper does not impact the core methodology, scientific
rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Reproducibility

This work is fully reproducible, as all resources and tools used are publicly available. Our classifier is
based on the languge model code from the OpenLM repository [Gur+23], which is a public repository
designed for research on medium-sized language models. All datasets considered in this study are
publicly available. The rewriting (Sec. 4.3.1) and dataset categorization (Sec. 4.3.3) experiments are
performed with GPT-4o mini, and thus leverage the OpenAI API. For our fingerprint propagation
experiments we use publicly available pretrained LLMs. For the instruction finetuned LLMs (Sec.
6), we use the respective APIs for the closed-source models (GPT-4o, Claude, Gemini) and the
Together AI API for the open-source ones (Llama, Qwen, DeepSeek, GPT-OSS). All code, dataset
and LLM download links, and reproduction instructions are on Github: https://github.com/MLI-
lab/LLM_data_bias .

We ran all the experiments on A100 GPUs. Our default configuration for the 3-way classification
experiment with 480M training tokens and the 160M transformer takes about 75 minutes on one
A100 GPU. Pretraining the 160M transformer compute optimal on 3.2B tokens, takes 2.5 hours on
four A100 GPUs.

Limitations

In this paper we demonstrated that popular pretraining text datasets for LLMs contain inherent
fingerprints that propagate through training, enabling a classifier trained on original data to effectively
classify generated data and, consequently estimate the pretraining mixture proportions. We showed
that classification is possible under various conditions such as rephrasing and finetuning.

However, one case where classification accuracy is severely degraded is when datasets consist
of the same data sources but differ solely in their mixture proportions. Consider two perfectly
distinguishable dataset sources, A and B. Two datasets X and Y are constructed with different
mixtures of A and B, where X has a higher proportion of A than Y, and Y has a higher proportion
of B than X. Sequences from A in Y may be misclassified as belonging to X, since X has seen more
sequences from A. Similarly, sequences from B in X are likely to be misclassified as originating
from Y. This setup highlights how classification becomes unreliable when datasets differ only in
data source proportions rather than content or filtering techniques.

A Dataset statistics

The datasets we consider in this paper consist of millions to billions of sequences with varying
lengths. In this section, we present a statistical analysis on the sequence lengths of the seven datasets.
To obtain representative statistics, we randomly sample 100,000 sequences from each dataset and
tokenize them with the GPT-NeoX tokenizer. The statistics of the lengths of the tokenized sequences
are summarized in Table 3 and histograms are in Figure 6.

Dataset Mean St. Deviation Mode Median Range
C4 477 823 58 253 31188

FineWeb 700 1540 129 410 118422
RefinedWeb 624 1549 82 314 137104
DolmaCC 825 1647 96 451 132310

RedPajama-V2 1137 3191 12 603 274814
DCLM-Baseline 1235 2600 101 665 153768

FineWeb-Edu 1059 1993 261 597 120240
Table 3: Statistics of the sequence lengths (in number of tokens) of the seven main datasets considered
in this paper.

20

https://github.com/MLI-lab/LLM_data_bias
https://github.com/MLI-lab/LLM_data_bias


5k

10k

15k

F
re
qu
en
cy

C4 FineWeb RefinedWeb

1k 2k 3k 4k 5k

5k

10k

15k

Sequence Length

F
re
qu
en
cy

DolmaCC

1k 2k 3k 4k 5k
Sequence Length

RedPajama-V2

1k 2k 3k 4k 5k
Sequence Length

DCLM-Baseline

1k 2k 3k 4k 5k
Sequence Length

FineWeb-Edu

Figure 6: Histograms of the sequence lengths of the main datasets considered. Lengths exceeding
5000 tokens are omitted for ease of visualization.

B Model, training details, and hyperparameters

In this section, we detail the architecture of the classifier we use throughout as well as the training
procedure and hyperparameters. For all experiments, we utilize the GPT-NeoX tokenizer [Bla+22],
which has a vocabulary size of 50,432 tokens.

B.1 Model

Our primary classifier is a 160M transformer model that we pretrain (for next token prediction)
compute optimally [Hof+22] on 3.2B tokens from C4. The C4 data used for pretraining is disjoint
from the C4 data used for classification in all other experiments. The same pretrained classifier is used
for all classification experiments. After pretraining, we adapt the transformer for our classification
tasks, by replacing the final layer with a classification head, similar to the reward model in RLHF
[Ouy+22]. Specifically, the original last layer, a linear transformation that maps from the embedding
dimension to the vocabulary size, is substituted with a classification head. This classification head
is a linear layer that maps from the embedding dimension to N , where N represents the number of
classification classes.

Additionally, we conduct ablation studies using models of sizes 25M, 87M, and 410M parameters.
All models are standard autoregressive transformers, with parameters provided in Table 4.

Model 25M 87M 160M 410M
Embedding dimension 192 488 768 1024

Num. heads 12 12 12 16
Num. layers 12 12 12 24

Context length 2048 2048 2048 2048
Vocab. size 50432 50432 50432 50432
MLP ratio 8/3 8/3 8/3 8/3
Activation SwiGLU SwiGLU SwiGLU SwiGLU

Weight tying no no no no
Table 4: Model parameters. All models have the same architecture, and differ only in the embedding
dimension, number of heads, and number of layers.
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B.2 Training and testing details

To prepare the training data, we follow the standard procedure for LLM pretraining. We first tokenize
the text sequences using the GPT-NeoX tokenizer. We then construct input sequences of length 2048
tokens, corresponding to the model’s context length, by appending sequences of the same dataset
together.

An < |endoftext| > token is added at the end of every sequence before concatenating it with the
subsequent sequence. The resulting training sequences, each of length 2048, are partitioned into
shards. Each shard contains 8192 sequences, resulting in a total of 8192× 2049 = 16.78M tokens
per shard.

We train the transformer with a classification head to classify which dataset a text sequence is coming
from using the cross-entropy loss. The loss is computed at the token level, where the model classifies
every sub-sequence within a given sequence. For instance, a sequence of length 2048 tokens is seen
by the model as a series of sub-sequences of lengths 1, 2, 3, ..., 2047, and 2048. Each sub-sequence
is classified individually under the same class as the original sequence, ensuring that the model learns
to predict the class consistently across all sub-sequence lengths.

At test time, the text sequences are tokenized and fed into the model in their original form, without
concatenation. Consequently, the test sequences vary in length. If a sequence originally exceeds 2048
tokens, the model processes only the first 2048 tokens, as this is its maximum context length. Unlike
the training phase, where sub-sequences are classified, the model classifies the entire sequence as a
whole during testing.

B.3 Hyperparameters

In all experiments, we train each model for a single epoch, which means that each training token is
seen by the model only once. We use a batch size of 16 and apply gradient clipping with a norm of 1
to stabilize training. The initial learning rate is set to 0.0003 and is decayed to zero using a cosine
annealing scheduler, with a warm-up phase of 2000 steps.

The optimizer used is AdamW [KB15] with hyperpameters: β1 = 0.9, β2 = 0.95, ϵ = 1 × 10−8,
and weight decay 0.2. We also use automatic mixed precision training with brain floating point 16
(bfloat16) to enhance computational efficiency throughout the training process.

C Description of the datasets

In this section we provide a description of the seven main datasets considered in the paper:

C4: The Colossal Clean Crawled Corpus [Raf+20] is a popular dataset consisting of 360B Tokens
obtained from CommonCrawl text extracted in April 2019, followed by i) language filtering, ii)
heurisitc filtering, and iii) deduplication.

FineWeb: FineWeb [Pen+24] is a 15T token dataset extracted from CommonCrawl through i)
language and ii) heuristic quality filtering and iii) deduplication. The heuristic filters and deduplication
steps are carefully chosen based on ablation studies.

RefinedWeb: RefinedWeb [Pen+23] is a large scale (5T tokens, 600B publicly available) obtained
from CommonCrawl by i) language and ii) heuristic filtering and iii) deduplication.

Dolma CC: Dolma [Sol+24] is an open corpus of 3T tokens from different sources. The biggest
proportion, about 2.4T tokens, is obtained from CommonCrawl. We consider the CommonCrawl part,
which was obtained by first downloading about a quarter of the most recent CommonCrawl data in
2023 (i.e., data from 2020-05 to 2023-06), and was processed with i) language and ii) heuristic quality
filtering and iii) deduplication. As a machine learning based quality filtering step, for each sequence
the perplexity was computed to measure Wikipedia-likeness (following the CCNet pipeline [Wen+20])
and partitioned into head, middle, and tail by perplexity; we consider the head and middle parts.

RedPajama-V2: RedPajama-V2 [Tog23a] is a corpus of 30T filtered and deduplicated tokens also
processed with i) language and ii) heuristic quality filtering, and iii) deduplication. We consider the
20.5T token part of the corpus consisting of English speaking documents, as for all other datasets
we also consider the English part only. The data contains a broad coverage of CommonCrawl, and
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comes with quality annotations that enables slicing and filtering the data. As a machine learning
based quality filtering step, for each sequence the perplexity was computed to identify Wikipedia-like
documents and partitioned into head, middle, and tail, and head and middle was retained. We consider
head and middle as for Dolma CC.

DCLM-Baseline: DCLM-Baseline [Li+24] was obtained from CommonCrawl through i) text
extraction with resiliparse and language and ii) heuristic quality filtering, deduplication, and iv)
machine learning based quality filtering. All steps where chosen by ablation studies to obtain a
dataset so that models trained on it perform well. The final, machine learning based filtering step is
important and is trained to classify instruction-formatted data from OpenHermes 2.5 and high-scoring
posts from the r/ExplainLikeImFive subreditt from RefinedWeb. Models trained on this dataset
perform very well on common benchmarks.

FineWeb-Edu: FineWeb-Edu [Pen+24] is obtained from FineWeb through machine learning based
quality filtering to obtain data with educational text, and consists of 1.3T tokens. Models trained on
FineWeb-Edu perform very well on knowledge and reasoning benchmarks such as MMLU [Hen+21].

D Two-way classification

Our main results in Table 1 are for three-, four-, and five-way classification between the main datasets
considered in this study. In this section, we report the classification accuracy for all possible binary
combinations between the seven datasets, i.e.,

(
7
2

)
= 21 possible combinations.

As before, we use the 160M model with 160M training tokens and 8192 test sequences per dataset.
The results are in Table 5.

C4 FineWeb RefinedWeb DolmaCC RedPajama-V2 DCLM FineWeb-Edu
C4 87.37% 90.72% 69.42% 95.64% 98.85% 92.88%

FineWeb 87.37% 75.49% 82.70% 80.54% 99.15% 78.05%
RefinedWeb 90.72% 75.49% 88.32% 80.68% 99.03% 84.74%
DolmaCC 69.42% 82.70% 88.32% 90.91% 97.03% 91.08%

RedPajama-V2 95.64% 80.54% 80.68% 90.91% 99.05% 77.69%
DCLM 98.85% 99.15% 99.03% 97.03% 99.05% 98.54%

FineWeb-Edu 92.88% 78.05% 84.74% 91.08% 77.69% 98.54%

Table 5: Classification accuracy for all possible two-way combinations of the seven main datasets in
this study.

E Original sequences

We display sequences from the original seven main datasets considered in this study: C4, FineWeb,
RefinedWeb, DolmaCC, RedPajama-V2, DCLM-Baseline, and FineWeb-Edu. A detailed description
of the creation of those datasets is in Appendix C.

For clarity and ease of visualization, only short sequences are shown here. Some sequences are
considerably longer and span multiple pages. Therefore, the sequences shown here do not reflect the
average sequence length.
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C4

• Beginners BBQ Class Taking Place in Missoula!
Do you want to get better at making delicious BBQ? You will have the opportunity, put this
on your calendar now. Thursday, September 22nd join World Class BBQ Champion, Tony
Balay from Lonestar Smoke Rangers. He will be teaching a beginner level class for everyone
who wants to get better with their culinary skills.
He will teach you everything you need to know to compete in a KCBS BBQ competition,
including techniques, recipes, timelines, meat selection and trimming, plus smoker and fire
information.
The cost to be in the class is $35 per person, and for spectators it is free. Included in the cost
will be either a t-shirt or apron and you will be tasting samples of each meat that is prepared.

• Hurrah! A cooperative worldwide effort to rescue Thailand children trapped in a flooded
cave rescued them all in less than 3 weeks from the time they entered the cave to the time of
their rescue.
It should be much easier, shouldn’t even take a heroic effort, to rescue children trapped in
separation from their families at the Mexican border. These things are possible, but this week,
the administration did not even meet the first deadline to get all the children below 5 years
old reunited with their families.
It should even be logistically possible with a cooperative world wide effort to develop
economic systems that could rescue all the hungry children everywhere living in poverty.
In the U.S. alone, 1 in 5 children live in poverty, according to a recently released United
Nations report.

FineWeb

• Originally Posted by bradhs
The only thing you can do is create a Search and Save it with a shortcut key. I do this when I
only want to see my corporate email.
1. Go into your Messages and select Search.
2. Set the Service option to the Enterprise Email.
3. Save the Search. Give it a name and a shortcut key.
Use the shortcut key to restrict the email list to only Enterprise email.
Hm. This isn’t working for me... When I initiate the search, it comes back with no messages,
and I do have some that it should show... The service option choices are: All Services, my
pop email address, and Desktop. I selected Desktop. That right?

• I have just updated my TV and Blu ray player but not my amp.
I didn’t want to update my Sony STR-DG820 amp because it works so well, but I did want to
keep my options open for playing 3D discs so I got the Panasonic DMP-BDT310 because it
has two HDMI ports and could route sound through the amp and picture to the TV.
I’ve gone through every setup and I’m not getting DTS-HD or TRUE-HD. The manual doesn’t
help at all and this is becoming a little silly. Could some one go through a step by step guide
in the setup.
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RefinedWeb

• A huge thank you goes to those who helped with the hedge cutting on the road side of the
churchyard recently. This was a very much needed task, the pathway is nice and clear now.
We are also very grateful to whoever donated the funds to provide the skip, again this was a
much needed requirement.
If anyone is interested in helping to maintain the churchyard, please contact Mr Mike McCrea
on 01283 214473. Any assistance will be gratefully received.

• Free US shipping on orders over $50!
Pumpkin dominates the fall fragrance scene! This best seller combines brown sugar, molasses,
vanilla, and classic holiday baking spices to make an aroma that is simply irresistible!
—–!
Amy’s review:
"I love these candles. So clever that they’re in a coconut shell! The scents fill my house and
they have a long burn time! I’ve purchased from them twice and will continue to support this
business! Can’t wait to go home and try my fall scents!"

DolmaCC

• Wowed by the lights and prospects of city life, Loveness leaves her small mining town in
search of a new life in Harare. She imagines herself falling for a hot-shot city man becoming
his wife and spending her life in luxury while tending to her city children. The man she
considers the love of her life is anything but a hot shot, and he is abusive and uncaring. To top
all this off, he his HIV positive. Loveness is at a crossroads. She must consider her choices.
Although, Waste Not Your Tears does not shy away from misfortune, it is also a novel of
forgiveness and hope. Loveness is an unlikely heroine on a stage set during the crisis of
HIV/AIDS in Zimbabwe. She lives, however, amongst us, and reading this sensitive and
thoughtful novel provides insights into the challenges of making the wrong choices, but
having the strength to move forward.

• The Avon Lake Sports Hall of Fame’s purpose is to give lasting recognition to the outstanding
sports figures and/or teams of Avon Lake who have demonstrated outstanding athletic ability
at the high school, college, amateur or professional sports levels.
We strive to recognize those individuals who have contributed greatly to the promotion of
sports through leadership, sponsoring, coaching or providing assistance to athletes of athletic
programs.
It is our utmost desire to promote more interest in the athletic programs of Avon Lake.
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RedPajama-V2

• Updaty posty thingy Sooo....
Chainmaille was a disaster. I need someone to show me how to construct. It was moot
anyway, as I had an anxiety attack and barely made it in to the con. I am so embarased, but
glad it wasn’t a long term thing.
I am still working on getting the chaim maille done. Maybe it will look fine. I don’t know. I
also need to work on the scale spoon maille.
Right now, though, my main focus is finding a job. I thought I had extended unemployment
until I was done wtih school. Turns out that was not entirely true, and now I am kind of up
a creek. I have been saving money, so right now I have been paying bills with my savings.
However that is also about to run out. I have applied for abawd.

• Brooklyn Man Who Stabbed 75-Year-Old Woman and Left Her for Dead Sentenced to 75
Years in Prison
Brooklyn Man Who Stabbed 75-Year-Old Woman and
Left Her for Dead Sentenced to 75 Years in Prison
Defendant, a Friend of the Victim’s Grandson, Forced His Way into Apartment
Brooklyn District Attorney Ken Thompson today announced that a Brownsville man has been
sentenced to 75 years in prison following his conviction on second-degree attempted murder
and other charges for stabbing an elderly woman repeatedly and leaving her seriously injured
on her apartment floor.
District Attorney Thompson said, “This defendant savagely stabbed a defenseless 75-year-old
woman all over her body, robbed her of what little money she had and then left her to die. He
deserves every day of his 75-year prison sentence.”

DCLM-Baseline

• Economic Indicators for Libertarians 101

Why Ron Paul is Unique? (Galvanizers and Diplomats)

Ron Paul is a unique figure in libertarianism, able to not only be a diplomat and figure that
people outside of libertarianism can empathize with, but also a diehard who can galvanize the
most radical of libertarians. It’s very rare a figure like him can exist, and let’s be glad he does.

• Tuesday, 26 April 2011

tea parties, wonderland, high tea, garden party

I want to hold a cute girly tea party and everyone has to wear their sunday best. I just love the
idea. of pretty pastel colours, cupcakes, cooking for your girls and everyone looking pretty

1. This is a beautiful Idea, Ive always wanted to host a tea party and these photos have
inspired me to actually go through with it.

2. Beautiful! Could you tell me where you got your cart from? I’m trying to create something
similar and they’re deceivingly hard to find...

Thankyou for commenting! x
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FineWeb-Edu

• A “magic” herb, Carissa Edulis, that drew thousands of people to a remote Loliondo village
in Tanzania was identified by Kenyan scientists a few years ago as a cure for a drug-resistant
strain of a sexually transmitted disease, gonorrhoea. This herb also is believed to cure many
other diseases besides gonorrhoea. The Kamba refer to as mukawa or mutote and use it for
chest pains, while the Nandi boil the leaves and bark to treat breast cancer, headache and
chest pains.
Researchers discovered the plant could be used for the treatment of the herpes virus. Led
by Dr Festus M Tolo of the Kenya Medical Research Institute (Kemri), the team from the
University of Nairobi and the National Museums of Kenya found the herb could provide an
alternative remedy for herpes infections.
“An extract preparation from the roots of Carissa edulis, a medicinal plant locally growing
in Kenya, has exhibited remarkable anti-herpes virus activity for both wild type and drug
resistant strains,” they reported in the Journal of Ethnopharmacology.

• Dinosaurs’ active lifestyles suggest they were warm-blooded
H. Pontzer, V. Allen, J.R. Hutchinson/PLoS ONE
Whether dinosaurs were warm-blooded or cold-blooded has been a long-standing question
in paleobiology. Now, new research on how two-legged dinosaurs walked and ran adds new
evidence to the argument for warm-bloodedness, and suggests that even the earliest dinosaurs
may have been warm-blooded.
Warm-blooded (or endothermic) dinosaurs — able to regulate their own body temperatures —
would have been more active and could have inhabited colder climates than cold-blooded
(or ectothermic) dinos, which would have functioned more like modern reptiles — animals
that become animated only as temperatures warm. Endothermic dinosaurs would have also
required more energy to maintain their higher metabolic rates.

F Ablation studies

In this section we perform ablation studies justifying the choice of our classifier. The ablation studies
are performed on the three-way classification of C4, FineWeb, and RefinedWeb. Unless stated
otherwise, we use the default 160M model with 480M training tokens (160M per dataset) for every
ablation study.

We start by scaling the model size, pretraining data, and training data. We find that high accuracy is
obtained with different model sizes and dataset set sizes.

Scaling model and pretraining data: The default model has 160M parameters and is pretrained
on 3.2B tokens. We study the impact of the model size by considering the model sizes 25M, 87M,
160M, and 410M pretrained compute optimally on 0.5B, 1.7B, 3.2B, and 8.2B tokens, respectively.
The finetuning set size is kept constant at 480M tokens.

The results are in Figure 7, left panel. For the model sizes considered, the model size and pretraining
data amount play a relatively insignificant role; the difference in classification accuracy between the
smallest and largest model is only 0.56%.

Scaling classification training data: The default training set size used to finetune the pretrained
model is 480M tokens. In this study we consider the 160M model pretrained with 3.2B tokens, and
finetune it for classification with training sets of different sizes. We start with a training set size of
60M tokens, and then double it up to 1.92B tokens, i.e., we consider the following sizes: 60M, 120M,
240M, 480M, 960M, and 1.92B.

The results are in Figure 7, right panel. The accuracy initially significantly increases with the training
data, but saturates close to 480M, which is our default training set size. Quadrupling the training data
from 480M to 1.92B tokens only gives a gain of 0.82% in accuracy.

Accuracy vs sequence length: As seen in Appendix A, the sequence length varies a lot between the
datasets, and even within a given dataset. To evaluate the impact of sequence length on classification
accuracy, we analyze sequences of lengths ranging from 0 to 2000 tokens, and divide them into
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Figure 7: Left: Scaling model size and pretraining data with constant training data. Right: Scaling
training data with constant model size and pretraining data. Scaling model size and pretraining data
has a minimal effect on the accuracy, but the effect of the training data is more prominent.

intervals of 200 tokens (i.e., 0-200, 200-400, ..., 1800-2000). For each interval, we sample 1024 test
sequences from each dataset.

The results, illustrated in Figure 8, show a steady improvement in classification accuracy as se-
quence length increases. This trend aligns with the expectation that longer sequences contain more
information (2000 tokens is around 1500 words), which allows the classifier to identify more dis-
tinguishable patterns and improve classification performance. However, even short sequences can
perhaps surprisingly be classified well.
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Figure 8: Classification accuracy vs sequence length. Longer sequences attain higher accuracy than
shorter ones.

Training without pretraining: All classification experiments are carried out by finetuning a model
pretrained to predict the next token. To study the impact of pretraining for classification accuracy, we
train a randomly initialized model (without any pretraining) directly for classification. This gives
an accuracy of 71.59%, which is 3.17% less than the pretrained model (74.76%). Since pretraining
improves performance by 3.17%, which is significantly more than increasing the model size, we
choose to work with the pretrained model throughout all our experiments.

LLM2Vec: LLM2Vec [Beh+24] is a powerful text encoder that also excels as a text classifier. In
Sec. 6, we saw that it significantly outperforms the 160M transformer when training data was limited
(5M tokens per dataset). In a setup with more data (80M tokens per dataset), the 160M transformer
achieves 73% on the three-way classification task of C4, FineWeb, and RefinedWeb. LLM2Vec
reaches 82%, still demonstrating superior performance at the cost of increased compute, as it finetunes
parameters of a Llama-8B model.

BERT: Next we use BERT as a classifier. Unlike autoregressive transformers, BERT [Dev+19]
is a bidirectional transformer model that captures contextual information from both preceding and
succeeding tokens within a sequence, without the use of causal masks that limit attention to preceding
tokens. As a result, BERT processes the entire sequence at once during training, rather than treating it

28



as a series of subsequences. We plot its performance as a function of the number of training sequences
in Figure 9.

For reference, we also plot the performance of the autoregressive transformer relative to the training
sequences instead of the training tokens (as in Figure 7 right panel). To obtain the number of
sequences, we divide the number of tokens by the average sequence length of C4, FineWeb, and
RefinedWeb (see Table 3).

The performance of BERT and the autoregressive transformer are relatively similar. BERT initially
achieves slightly lower accuracy but eventually reaches a marginally higher accuracy. The observation
that BERT requires more training sequences is somewhat expected, as the autoregressive transformer
has a loss associated with each subsequence, while BERT processes each sequence only once.

FastText classifier: FastText [Jou+16] is an efficient text classification library designed to provide
fast and scalable text classification tasks, particularly suitable for classification of large-scale datasets.
FastText relies on a simple shallow neural network architecture that enables rapid training and
inference. Similar to BERT, FastText processes each sequence as a whole.

We plot FastText’s performance as a function of the number of training sequences in Figure 9. The
transformer-based classifier and BERT significantly outperform FastText, but are significantly slower,
and require significantly more compute.

0.25 0.5 1 2 4 8 16

50

60

70

80

Training Sequences (M)

Transformer BERT FastText

Figure 9: Classification accuracy of BERT and FastText classifier compared to an autoregressive
transformer.

Majority vote at test time: We classify a given sequence as a whole at test time throughout the paper.
In this ablation study, we classify all subsequences of one test sequence, and then determine the final
prediction as the majority vote. For instance, a sequence of length n tokens will yield n predictions.
The final predicted class is the most frequent on of the individual predictions. Using majority voting
reduces accuracy to 67.37%, which is a 7.39% decrease compared to the default whole sequence
classification.

Aggregating sequences: Throughout the paper, we classify individual sequences. In this ablation
study we combine the sequences of the same dataset together to form sequences of length 2048
tokens, aligning with the context length of our transformer model. This creates a uniform test set with
sequences of equal length, were each sequence utilizes the entire attention span of the transformer.

The aggregation of sequences yields an impressive 95.18% classification accuracy, approximately
10% higher than the default sequence based testing with sequences of length 1800-2000 tokens as
seen in Figure 8. This suggests that providing the classifier with multiple concatenated sequences
simplifies the classification task, making it easier than classifying a single sequence of similar
combined length.

Linear probing: Linear probing refers to training a linear classifier on fixed pretrained representations.
It is often used as a simple evaluation metric as it offers a quick assessment of how well a pretrained
model can classify data using only a linear classifier. We freeze the weights of the pretrained model,
and train only the last linear layer, i.e., the classification head, which results in 33.18 %, equivalent to
a random guess.
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G Rewritten sequences

In Sec. 4.3.1 we rewrote sequences from C4 and FineWeb by prompting GPT-4o-mini with three
distinct prompts that increasingly cause the rewritten texts to deviate from the original ones. We
display an example sequence from C4 rewritten with the three prompts.

Original Text

What is the length of the coordinates in the two inertial systems S and S’ at the velocity v,
according to relativity - if the length of the coordinates are identical at v = zero?
1) Is the physical length of the coordinates greatest in S?
2) Is the physical length of the coordinates in S equal to the physical length of the coordinates
in S’?
If the physical lengths are identical, will it then be possible to have any physical length
contractions according to relativity?

Text rephrased with Prompt 1

What is the length of the coordinates in the two inertial systems S and S’ moving at velocity
v, given that the lengths of the coordinates are the same when v equals zero?
1) Is the physical length of the coordinates maximized in S?
2) Is the physical length of the coordinates in S the same as the physical length of the
coordinates in S’?
If the physical lengths are the same, is it then feasible to have any physical length contractions
as described by relativity?

Text rephrased with Prompt 2

What is the length of the coordinates in the two inertial reference frames, S and S’, moving at
velocity v, in accordance with relativity, if the coordinate lengths remain the same when v =
0?

1) Is the physical length of the coordinates longest in S?
2) Are the physical lengths of the coordinates in S and S’ equal?

If the physical lengths are equal, can length contractions according to relativity even occur?

Text rephrased with Prompt 3

What is the coordinate length in the two inertial systems S and S’ at velocity v, given that the
lengths are the same when v equals zero? 1) Is the physical length of the coordinates larger in
S? 2) Is the physical length of the coordinates in S equivalent to that of the coordinates in
S’? If the physical lengths are the same, can there be any length contractions as described by
relativity?

The rephrased text from Prompt 1 is the closest to the original, followed by Prompt 2, and then
Prompt 3. Prompt 1 preserves the formatting and rephrases primarily through replacing a few words.
Prompt 2 alters the format slightly, introducing changes such as line breaks. It also changes the text
structure by making it more compact, for example, the final sentence in Prompt 2 conveys the same
meaning as the original text and Prompt 1 but in a more concise form. Prompt 3 significantly alters
both the structure and format of the original text.

The effect of the prompts on the compactness of the rephrased texts is reflected in the average
sequence lengths displayed in Table 6.
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Prompt Original Prompt 1 Prompt 2 Prompt 3
C4 av. length 425 436 408 371

FineWeb av. length 621 627 580 489
Table 6: Effect of the rephrasing prompts on the sequence lengths of C4 and FineWeb. Average
length is measured as the average number of tokens per sequence in the test set.

H Extended results on fingerprint propagation

In Sec. 5 we saw how fingerprints propagate through pretrained models that have not been finetuned.
We next consider instruction finetuned models, and investigate to what extent supervised finetuning
influences the fingerprints present in the models’ outputs.

We consider Falcon-7B-Instruct, an instruction finetuned variant of Falcon-7B, and DCLM-7B-IT,
an instruction finetuned variant of DCLM-7B. We train a 160M model on 320M tokens from the
original datasets of RefinedWeb and DCLM (160M tokens from each dataset). We generate 8192
test sequences from Falcon-7B-Instruct and DCLM-7B-IT by prompting them with a single token
sampled from the original RefinedWeb and DCLM datasets respectively.

We evaluate the classifier trained on the original datasets on (i) original data, (ii) generated data from
the pretrained models (without finetuning), and (iii) generated data from the instruction finetuned
models. The accuracies achieved are (i)99.0%, (ii)97.4%, and (iii)89.1%.

The results suggest that supervised finetuning of a model causes its outputs to diverge from the
original data it was pretrained on. However, the inherent fingerprints still persist, enabling a classifier
trained on the original data to differentiate between the outputs after finetuning.

In Sec. 5 we classified generated data with a classifier trained on the original data. We now consider
a classifier trained on the generated data and see how well it can distinguish original data and other
generated data.

Using the same 3 LLMs: Falcon-7B, DCLM-7B, and FineWeb-Edu-1.8B that are pretrained on
RefinedWeb, DCLM, and FineWeb-Edu respectively, we generate 160M training tokens and 8192
test sequences from each LLM.

Original vs generated: By inspecting the generated data, we observe that the outputs of the LLMs
resemble the data on which they are trained (see Appendix I for examples). Despite that, we find that
a classifier is able to distinguish between the original and generated data with high accuracy.

We train three classifiers to differentiate original datasets from their generated counterparts: (i)
original vs. generated RefinedWeb, (ii) original vs. generated DCLM, and (iii) original vs. generated
FineWebEdu. Each classifier is a 160M model on trained on 320M tokens (160M original, 160M
generated). The accuracies are as follows: (i) RefinedWeb 89.64%, (ii) DCLM-Baseline 89.61%,
and (iii) FineWeb-Edu 89.84%. This is perhaps unsurprising, as it is well established that text
generated with current LLMs can be relatively well distinguished from human-written text if the text
is sufficiently long [Han+24; Tia+24].

Generated vs generated: We next study how well we can distinguish between the generated data.
We train a 160M model on 480M training tokens (160M per generated dataset) for the three-way
classification task of generated RefinedWeb, generated DCLM-Baseline, and generated FineWeb-Edu
data.

The classifier achieves an accuracy of 95.59%, indicating that these generated datasets are easily
distinguishable, even easier than the original datasets (89.76% as in Table 1). This is likely because
the generated data comes from different LLMs, and each LLM introduces its fingerprints in the data
it generates.

I Generated Sequences

In Sec. 5 we generated data using the three publicly available LLMs: Falcon-7B, DCLM-7B,
and FineWeb-Edu-1.8B, which are pretrained on RefinedWeb, DCLM-Baseline, and FineWeb-Edu
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respectively. We generate data from each of the LLMs by prompting them with a random token, and
display sample sequences below.

Falcon-7B

• I have sold a property at 2001 208A ST in Langley.
Welcome to this well maintained rancher located in one of Langley’s most desirable areas.
This home has a large open concept kitchen with a breakfast nook, a formal dining room, a
gas fireplace in the living room and a large master bedroom with a 4 piece ensuite. The home
has had numerous upgrades over the years including the roof, windows, furnace, hot water
tank and newer appliances. Enjoy the spacious covered patio, fully fenced back yard and a
single garage with additional parking in the driveway. Close to schools, shopping, restaurants
and all other amenities. This is a great home in a great neighbourhood! Call today for a
viewing!

• Deploying 3D Models in the Web
The Web has long been a source for sharing 2D content, from photos and text to music and
video. But sharing 3D content on the Web is not so common, due to bandwidth limitations,
browser support and more.
However, 3D models can be used in the Web in various ways: as 3D printing instructions,
as part of Augmented Reality or Virtual Reality applications, as part of an interactive online
exhibit, as part of a video game, and more.
We present the most common ways to share 3D models on the Web and describe how to
deploy models using Web technologies, such as WebGL and 3D CSS.

DCLM-7B

• Exercise 1: I’ve been trying to do this exercise for a couple of weeks, and have failed each
time. I was able to get the hang of it on this week’s attempt, but still couldn’t finish before
the timer ran out.

Here is what I did: 1) Find the equation for the line that goes through (1,0) and (2,4). This
turned out to be y=2x-1.

2) Set up a table for my function g(x) = 2x-1

3) Plot g(x)

4) Put both g(x) and f(x) in a scatter plot

5) Solve for x so that y=0. That means there will be no intersection when the function is less
than 0. For my function, x=-1/2, which was easy enough. For my line, since y=2x-1, x=y+1/2

The result looks something like this (if it displays correctly):

•Aluminium chloride is not a compound that you would normally make in the lab, but it can
be made by reacting aluminium with chlorine or hydrochloric acid. It reacts violently with
water and so if you do get any on your hands, wash them thoroughly under a tap. The reaction
of these two elements produces hydrogen gas and sodium chloride as products. Aluminum
Chloride Formula - AlCl 3; Molecular Weight: 133.34 g/mol; Structural Formula Drawing
(BF4)3-Lewis Dot Structure for BF4- Boron trifluoride has three pairs of non-bonding
electrons around it.

The other product is hydrogen chloride, HCl(g). When aluminum metal is exposed to air,
it forms a thin protective layer of alumina, which protects the metal from further corrosion.
In this experiment, an aqueous solution of aluminum chloride will react with potassium
carbonate to produce solid aluminum hydroxide and aqueous potassium chloride.
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FineWeb-Edu-1.8B

• The number of individuals with this condition increased in the United States between the
years 2000 and 2010, according to the National Institute of Neurological Disorders and
Stroke.
The most common causes of acquired cerebral arteriovenous malformations include:
- Injury to blood vessels or arteries
- High blood pressure
- Brain tumors
Acquired cerebral arteriovenous malformations are usually congenital, meaning that they
were present at birth. The exact cause of these malformations is unknown.
In some cases, the cause of an acquired cerebral arteriovenous malformation is known. This
can occur when a specific event (such as bleeding) occurred near the malformation.

• A series of experiments was conducted at the University of Texas, Austin to determine
the effects of an electromagnetic field on the rate and amount of protein binding between
DNA and a transcription factor. The study found that when DNA was placed in an external
magnetic field, the rate of DNA binding by the transcription factor increased threefold. When
DNA and a transcription factor are bound together, it is often referred to as a complex.
In this study, the researchers found that the rate of protein binding could be enhanced up to
five times in some instances by exposing the DNA to a magnetic field. This finding has been
linked to the possibility that the magnetic field could act as a trigger for the transcription
factors to bind together more easily.

J DeepSeek-V3

We show an example in Figure 10 for how DeepSeek-V3 hosted at HuggingFace responds that it is
called ChatGPT when asked which model it is. This is consistent with the classification results shown
in Figure 4 that GPT-4o and DeepSeek-V3 responses are harder to classify compared to other LLMs.

Figure 10: Response of DeepSeek-V3 when asked which model it is at HuggingFace. GPT-4o also
responds that it based on the GPT-4 architecture when asked which model it is.
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