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Abstract
We consider the Bayesian theory of mind (BTOM)
framework for learning from demonstrations via
inverse reinforcement learning (IRL). The BTOM
model consists of a joint representation of the
agent’s reward function and the agent’s inter-
nal subjective model of the environment dynam-
ics, which may be inaccurate. In this paper, we
make use of a class of prior distributions that
parametrize how accurate the agent’s model of
the environment is to develop efficient algorithms
to estimate the agent’s reward and subjective dy-
namics in high-dimensional settings. The BTOM
framework departs from existing offline model-
based IRL approaches by performing simultane-
ous estimation of reward and dynamics. Our anal-
ysis reveals a novel insight that the estimated pol-
icy exhibits robust performance when the (expert)
agent is believed (a priori) to have a highly ac-
curate model of the environment. We verify this
observation in the MuJoCo environment and show
that our algorithms outperform state-of-the-art of-
fline IRL algorithms.

1. Introduction
Inverse reinforcement learning (IRL) is the problem of
extracting the reward function and policy of a value-
maximizing agent from its behavior (Ng et al., 2000; Osa
et al., 2018). IRL is an important tool in domains where
manually specifying reward functions or policies is difficult,
such as in autonomous driving (Phan-Minh et al., 2022), or
when the extracted reward function can reveal novel insight
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about a target population, such as in biology and economics
(Yamaguchi et al., 2018; Rust, 1987). Furthermore, IRL
has been argued as a central mechanism of human theory of
mind (Jara-Ettinger, 2019) and one of the main approaches
for building value-aligned artificial intelligence (Russell,
2019). However, wider application of IRL faces two interre-
lated algorithmic challenges: 1) having access to the target
deployment environment or an accurate simulator thereof
and 2) robustness of the learned policy and reward function
due to the covariate shift between the training and deploy-
ment environments (Ross & Bagnell, 2010; Spencer et al.,
2021; Kuefler et al., 2017).

To tackle the first challenge, recent IRL research has fo-
cused on the offline setting, where only a fixed dataset is
provided as opposed to the target environment or an accu-
rate simulator (Chan & van der Schaar, 2021; Garg et al.,
2021; Kostrikov et al., 2019; Rafailov et al., 2021; Das et al.,
2020). Model-free approaches to offline IRL attempt to
directly estimate expert reward and policy without building
an explicit model of the environment dynamics (Chan &
van der Schaar, 2021; Garg et al., 2021; Kostrikov et al.,
2019). In contrast, model-based offline IRL approaches es-
timate a dynamics model from the offline dataset (Das et al.,
2020; Rafailov et al., 2021; Yue et al., 2023; Zeng et al.,
2023). Both model-free and model-based offline IRL suffer
from covariate shift due to error in either the policy or the
dynamics model. However, model-based approaches, which
will be our focus, hold more promise due to the ability to
generate synthetic data and leverage model generalization.

A notable class of these model-based offline IRL methods
estimate the dynamics and reward in a two-stage, decou-
pled fashion (Rafailov et al., 2021; Das et al., 2020; Yue
et al., 2023; Zeng et al., 2023). In the first stage, a dynamics
model is estimated from the fixed dataset. Then, param-
eters of the dynamics model are fixed while training the
reward and policy in the second stage. To overcome covari-
ate shift in the estimated dynamics, recent methods design
density estimation-based “pessimistic” penalties to prevent
the learner policy from entering uncertainty regions in the
state-action space (i.e., space not covered in the demonstra-
tion dataset) (Chang et al., 2021; Zeng et al., 2023; Yue
et al., 2023).

In this paper, we instead approach IRL from the Bayesian
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Theory of Mind perspective (Baker et al., 2011), where we
simultaneously estimate the expert’s reward function and
their internal model of the environment dynamics. The
core idea of BTOM is that expert decisions convey their
beliefs about the environment (Baker et al., 2011) and thus
should affect the update direction of the dynamics model as
opposed to it being fixed. BTOM has mostly been used to
understand human biases encoded in the internal dynamics
in simple and highly constrained domains (Jarrett et al.,
2021; Reddy et al., 2018; Herman et al., 2016; Wu et al.,
2018; Makino & Takeuchi, 2012; Schmitt et al., 2017; Gong
& Zhang, 2020). In contrast to these works, we study how
BTOM naturally enables learning high-performance and
robust policies given a limited dataset.

We first propose a class of priors parameterizing how ac-
curate we believe the expert’s model of the environment
is. We then show that if the expert is believed a priori to
have a highly accurate model, robustness emerges naturally
from BTOM’s simultaneous estimation approach by plan-
ning against the worst-case dynamics outside the offline
data distribution. We further analyze how varying the prior
affects the performance of the learner agent and pair our
analysis with a set of algorithms which extend prior simul-
taneous estimation approaches (Herman et al., 2016; Wu
et al., 2018) to high-dimensional continuous-control settings.
We show that the proposed algorithms outperform state-of-
the-art (SOTA) offline IRL methods without the need for
designing pessimistic penalties.

In summary, our contributions are the following:

• We show that BTOM under appropriate formulation
of the prior is robust to inaccuracies in the estimated
dynamics model.

• We propose a set of practical algorithms for simul-
taneous estimation of reward and dynamics in high-
dimensional environments.

• We perform extensive experiments in the MuJoCo envi-
ronment to confirm our analysis and show that the pro-
posed algorithms outperform pessimistic approaches.

2. Preliminaries
2.1. Markov Decision Process

We consider modeling agent behavior using infinite-horizon
entropy-regularized Markov decision processes (MDP; Neu
et al., 2017) defined by tuple (S,A, µ, P, �, R) with state
space S, action space A, initial state distribution µ(s0) 2
�(S), transition probability distribution P (s0|s, a) 2 �(S),
discount factor � 2 (0, 1), and reward function R(s, a) 2
R. We denote the discounted occupancy measure as
⇢⇡P (s, a) = Eµ,P,⇡ [

P1
t=0 �

tP (st = s, at = a)] and the

marginal state-action distribution as d⇡P (s, a) = (1 �

�)⇢⇡P (s, a). We further denote the discounted occupancy
measure starting from a specific state-action pair (s, a) with
⇢⇡P (s̃, ã|s, a). The agent selects actions from an optimal
policy ⇡(a|s) 2 �(A) that achieves the maximum ex-
pected discounted cumulative rewards and policy entropy
H(⇡(a|s)) = �

P
ã ⇡(ã|s) log ⇡(ã|s) in the MDP:

max
⇡

J(⇡) = Eµ,P,⇡

" 1X

t=0

�t (R(st, at) +H(⇡(at|st)))

#

(1)

The optimal policy satisfies the following conditions (i.e.,
Boltzmann rationality; Haarnoja et al., 2018a):

⇡(a|s) / exp (Q(s, a))

Q(s, a) = R(s, a) + �EP (s0|s,a) [V (s0)]

V (s) = log
X

a0

exp (Q(s, a0))
(2)

2.2. Inverse Reinforcement Learning

The majority of contemporary IRL approaches have con-
verged on the Maximum Causal Entropy (MCE) IRL frame-
work, which aims to find a reward function R✓(s.a) with
parameters ✓ such that the entropy-regularized learner pol-
icy ⇡̂ has matching state-action feature with the unknown
expert policy ⇡ (Ziebart, 2010).

A related formulation casts IRL as maximum discounted
likelihood (ML) estimation (Gleave & Toyer, 2022; Zeng
et al., 2022a;b), subject to the constraint that the policy is
entropy-regularized. Given a dataset of N expert trajectories
each of length T : D = {⌧i}Ni=1, ⌧ = (s1:T , a1:T ) sampled
from the expert policy in environment P with occupancy
measure ⇢D := ⇢⇡P , ML-IRL aims to solve the following
optimization problem:

max
✓

E(st,at)⇠D

" 1X

t=0

�t log ⇡̂✓(at|st)

#

s.t. ⇡̂✓(a|s) = argmax
⇡̂2⇧

E⇢⇡̂
P
[R✓(s, a) +H(⇡̂(·|s)]

(3)

where the policy is implicitly parameterized by the reward
parameters ✓.

It can be shown that MCE-IRL and ML-IRL are equiva-
lent under linear reward parameterization (Gleave & Toyer,
2022; Zeng et al., 2022a), however (3) permits non-linear
reward parameterization through the following surrogate
optimization problem:

max
✓

E⇢D [R✓(s, a)]� E⇢⇡̂
P
[R✓(s, a)]

s.t. ⇡̂✓(a|s) = argmax
⇡̂2⇧

E⇢⇡̂
P
[R✓(s, a) +H(⇡̂(·|s)]

(4)
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(4) can be efficiently solved via alternating training of
the learner policy and the reward function, similar to
Generative Adversarial Network (GAN)-based algorithms
(Ghasemipour et al., 2020; Ho & Ermon, 2016; Ke et al.,
2021; Finn et al., 2016a;b; Fu et al., 2017). However, these
methods all require access to the ground truth environment
dynamics or a high quality simulator in order to compute or
sample from the learner occupancy measure ⇢⇡P .

2.3. Offline Model-Based IRL & RL

Existing offline model-based IRL algorithms such as
Rafailov et al. (2021) and Das et al. (2020) adapt (4) using
a two-step process. First, an estimate P̂ of the environment
dynamics is obtained from the offline dataset, e.g., using
maximum likelihood estimation. Then, P̂ is fixed and used
in place of P to compute ⇢⇡

P̂
while optimizing (4). However,

this simple replacement incurs a gap between (4) and (3)
which scales with the dynamics model error and the esti-
mated value (Zeng et al., 2023). This puts a high demand
on the accuracy of the estimated dynamics.

A related challenge is to prevent the policy from exploiting
inaccuracies in the estimated dynamics, which can lead to
erroneously high estimated value. This has been extensively
studied in both online and offline model-based RL literature
(Levine et al., 2020; Chua et al., 2018; Janner et al., 2019;
Jafferjee et al., 2020). The majority of recent offline model-
based RL methods combat model-exploitation via a notion
of “pessimism”, which penalizes the learner policy from vis-
iting states where the model is likely to be incorrect (Levine
et al., 2020). These pessimistic penalties are often designed
based on quantifying uncertainty about transition dynam-
ics through the estimated model (Yu et al., 2020; Kidambi
et al., 2020). Drawing on these advances, recent offline IRL
methods also incorporate pessimistic penalties into their
RL subroutine (Zeng et al., 2023; Yue et al., 2023; Chang
et al., 2021). However, it should be noted that designing
pessimistic penalties involves nontrivial decisions to ensure
that they can accurately capture out-of-distribution samples
(Lu et al., 2021).

An orthogonal approach to avoid model-exploitation is to
perform policy training against the worst-case dynamics
in out-of-distribution states (Uehara & Sun, 2021), similar
to robust MDP (Nilim & El Ghaoui, 2005; Iyengar, 2005).
Rigter et al. (2022) implemented this idea in the RAMBO
algorithm and showed that it is competitive with pessimistic
penalty-based approaches while requiring significantly less
tuning. We will show that robust MDP corresponds to a
sub-problem of IRL under the BTOM formulation.

3. Bayesian Theory of Mind
We consider IRL under the Bayesian Theory of Mind frame-
work, where the observed expert decisions are the results

of an unknown reward function R✓1(s, a) and their inter-
nal model of the environment dynamics P̂✓2(s

0
|s, a). We

denote the concatenated parameters with ✓ = {✓1, ✓2} and
condition the policy on ✓ as ⇡̂(a|s; ✓) to emphasize that the
expert configuration is determined by both the reward and
dynamics parameters. We make no additional assumption
about the expert other than that their policy is Boltzmann
rational (2) with respect to their internal reward and dynam-
ics. This means that their internal dynamics can potentially
deviate from the true environment dynamics.

Upon observing a finite set of expert demonstrations D,
BTOM aims to compute the posterior distribution P(✓|D)
given a choice of a prior distribution P(✓):

P(✓|D) / P(D|✓)P(✓)

=
NY

i=1

TY

t=1

⇡̂(ai,t|si,t; ✓)P(✓)
(5)

where we have omitted the true environment transition prob-
abilities

QN
i=1

QT
t=1 P (si,t+1|si,t, ai,t) from the likelihood

because they do not depend on ✓.

We consider a class of prior distributions of the form:

P(✓) / exp

 
�

NX

i=1

TX

t=1

log P̂✓2(si,t+1|si,t, ai,t)

!
(6)

where the prior precision hyperparameter � represents how
accurate we believe the expert’s model of the environment
is.

Let L(✓) := 1
NT logP(✓|D) be the log-posterior (normal-

ized by the data size). It can be easily verified that

L(✓) = E(s,a,s0)⇠D

h
log ⇡̂(a|s; ✓) + � log P̂✓2(s

0
|s, a)

i

In this paper, we consider finding a Maximum A Posteri-
ori (MAP) estimate of the BTOM model by solving the
following bi-level optimization problem:

max
✓

L(✓)

s.t. ⇡̂(a|s; ✓) = argmax
⇡̂2⇧

E⇢⇡̂
P
[R✓(s, a) +H(⇡̂(·|s))]

(7)

Note that this formulation differs from (3) and the decou-
pled approaches because it includes log likelihood of the
dynamics in the objective (weighted by �).

It should be noted that obtaining the full posterior distri-
bution (or an approximation) is feasible using popular ap-
proximate inference methods (e.g., stochastic variational
inference or Langevin dynamics; Kingma & Welling, 2013;
Welling & Teh, 2011) and does not significantly alter the
proposed estimation principles and algorithms.
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3.1. Naive Solution

We start by presenting a naive solution to (7) which can
be seen as an extension of the tabular simultaneous reward-
dynamics estimation algorithms proposed by Herman et al.
(2016) and Wu et al. (2018) to the high-dimensional setting.

Solving (7) requires: 1) computing the optimal policy with
respect to ✓, and 2) computing the gradient r✓ log ⇡̂(a|s; ✓)
which requires inverting the policy optimization process
itself. Both operations can be done exactly in the tabular set-
ting as in prior works but are intractable in high-dimensional
settings. We propose to overcome the intractability using
sample-based approximation.

In this section, we focus on approximating the gradient of
the policy r✓ log ⇡̂(a|s; ✓), which is less obvious. We can
show that the r✓ log ⇡̂(a|s; ✓) has the following form (see
Appendix A for all proofs and derivations):

r✓ log ⇡̂(a|s; ✓) = r✓Q✓(s, a)�r✓V✓(s)

= r✓Q✓(s, a)� Eã⇠⇡̂[r✓Q✓(s, ã)]
(8)

where r✓Q✓(s, a) = [r✓1Q✓(s, a),r✓2Q✓(s, a)] is the
concatenation of reward and dynamics gradients defined
as:

r✓1Q✓(s, a) = E⇢⇡̂
P̂
(s̃,ã|s,a) [r✓1R✓1(s̃, ã)] (9)

r✓2Q✓(s, a) = E⇢⇡̂
P̂
(s̃,ã|s,a)

"
�
X

s0

V✓(s
0)r✓2 P̂✓2(s

0
|s̃, ã)

#

(10)

Given (9) and (10) are tractable to compute using sample-
based approximation of expectations, we construct the fol-
lowing surrogate objective L̃(✓) with the same gradient as
the original MAP estimation problem (7):

L̃(✓) = E(s,a)⇠D[E✓(s, a)]� Es⇠D,a⇠⇡̂[E✓(s, a)]

+ �E(s,a,s0)⇠D[log P̂✓2(s
0
|s, a)]

(11)

where

E✓(s, a) = E⇢⇡̂
P̂
(s̃,ã|s,a) [R✓(s̃, ã) + �EV✓(s̃, ã)] (12)

EV✓(s, a) =
X

s0

P̂✓2(s
0
|s, a)V✓(s

0) (13)

Optimizing (11) is now the same as optimizing (7) but
tractable.

An interesting consequence of maximizing the first line of
(11) alone is that we both increase the reward and modify the
internal dynamics to generate states with higher expected
value (EV ) upon taking expert actions then following the
learner policy ⇡̂, and we do the opposite when taking learner
actions. Intuitively, reward and dynamics play complemen-
tary roles in determining the value of actions and thus should

be regularized (Armstrong & Mindermann, 2018; Reddy
et al., 2018; Shah et al., 2019). Otherwise, one cannot disen-
tangle the effect of truly high reward and falsely optimistic
dynamics. Our prior (6) alleviates this unidentifiability to
some extent.

3.2. A Robust BTOM Model

We now present our main observation that the IRL learner
exhibits robust performance as a natural consequence of the
BTOM formulation under the dynamics accuracy prior (6).

We start by analyzing a discounted, full-trajectory version
of the BTOM likelihood (7). Note that discounting does not
change the optimal solution to (7) under expressive reward
and dynamics model class; nor does it require infinite data
because we can truncate the summation at T = int

⇣
1

1��

⌘

and obtain nearly the same estimator as with infinite se-
quence length. We restate a decomposition of the discounted
likelihood in (Zeng et al., 2023) as follows:

EP (⌧)

" 1X

t=0

�t log ⇡̂✓(at|st)

#

= EP (⌧)

" 1X

t=0

�t (Q✓(st, at)� V✓(st))

#

= E⇢⇡
P


R✓1(st, at) + �Es0⇠P̂ [V✓(s

0)]

�
� E⇢⇡

P


V✓(st)

�

= E⇢⇡
P


R✓1(st, at)

�
� Eµ


V✓(s0)

�

| {z }
`(✓)

+ �E⇢⇡
P


Es0⇠P̂ (·|st,at)

V✓(s
0)� Es00⇠P (·|st,at)V✓(s

00)

�

| {z }
T1

(14)

where T1 corresponds to the value difference under the real
and estimated dynamics. We can show that T1 is negligible
if the estimated dynamics is accurate under the expert data
distribution:

Lemma 3.1. Let Rmax = maxs,a |R✓(s, a)|+ log |A| and
✏ = E(s,a)⇠P (⌧)DKL(P (·|s, a)||P̂ (·|s, a)), it holds that

|T1| 
�Rmax

(1� �)2
p

2✏ (15)

Thus, if E(s,a)⇠P (⌧)DKL(P (·|s, a)||P̂ (·|s, a))  ✏ holds
for sufficiently small ✏, for example by setting a large �,
T1 can be dropped from (14) and the discounted likelihood
reduces to `(✓).

`(✓) highlights the reason why the proposed BTOM ap-
proach can be robust to a limited dataset. It poses the offline
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Algorithm 1 Deep Bayesian Theory of Mind (BTOM)

Require: Dataset D = {⌧}, dynamics model P̂✓2(s
0
|s, a),

reward model R✓1(s, a), hyperparameters �1, �2

1: for k = 1 : K do
2: Run MBPO to update learner policy ⇡̂(a|s; ✓) and

value function Q✓(s, a) in dynamics P̂
3: Sample real trajectory ⌧real starting from (s, a) ⇠

D and following P̂ and ⇡̂
4: Sample fake trajectory ⌧fake starting from s ⇠

D, afake ⇠ ⇡̂(·|s; ✓) and following P̂ and ⇡̂
5: Evaluate (16) and take a gradient step
6: Evaluate (17) and take a few gradient steps.
7: end for

IRL problem as maximizing the cumulative reward of ex-
pert trajectories in the real environment, and minimizing
the cumulative reward generated by the learner in the esti-
mated dynamics with respect to both reward and dynamics.
In other words, it aims to find performance-matching re-
ward and policy under the worst-case, pessimistic dynamics,
which is trained adversarially outside the data distribution.
This connects BTOM to the robust MDP approach to offline
model-based RL (Uehara & Sun, 2021; Rigter et al., 2022).

3.3. Proposed Algorithms

Using the insights from the previous sections, we propose
two scalable Deep Bayesian Theory of Mind algorithms to
find the MAP solution to (7). The first algorithm (BTOM;
1) applies the naive solution with surrogate objective (11),
while the second algorithm (RTOM; 2) exploits the obser-
vation in section 3.2 to derive a more efficient algorithm for
high � via surrogate objective `(✓).

The estimation problem (7) has an inherently nested struc-
ture where, for each update of parameters ✓ (the outer
problem), we have to solve for the optimal policy ⇡̂(a|s; ✓)
(the inner problem). Following recent ML-IRL approaches
(Zeng et al., 2022a; 2023), we perform the nested optimiza-
tion using two-timescale stochastic approximation (Borkar,
1997; Hong et al., 2020), where the inner problem is solved
via stochastic gradient updates on a faster time scale than
the outer problem. For both algorithms, we solve the inner
problem using Model-Based Policy Optimization (MBPO;
Janner et al., 2019) which uses Soft Actor-Critic (SAC;
Haarnoja et al., 2018a) in a dynamics model ensemble.

BTOM. For the BTOM outer problem, we estimate the
expectations in (11) and (12) via sampling and perform
coordinate-ascent optimization. Specifically, for each up-
date step, we first sample a mini-batch of state-action pairs
(s, a) ⇠ D and a mini-batch of (fake) actions afake ⇠

⇡̂(·|s; ✓) and simulate both (s, a) and (s, afake) forward in
the estimated dynamics P̂ to get the real and fake trajecto-

Algorithm 2 Robust Theory of Mind (RTOM)

Require: Dataset D = {⌧}, dynamics model P̂✓2(s
0
|s, a),

reward model R✓1(s, a), hyperparameters �1, �2

1: for k = 1 : K do
2: Run MBPO to update learner policy ⇡̂(a|s; ✓) and

value function Q✓(s, a) in dynamics P̂
3: Sample fake trajectory ⌧fake starting from s ⇠ D

and following P̂ and ⇡̂
4: Evaluate (19) and take a gradient step
5: Evaluate (20) and take a few gradient steps
6: end for

ries ⌧real, ⌧fake. We then optimize the reward function first
by taking a single gradient step to optimize the following
objective function:

max
✓1

E(s,a)⇠D,⇢⇡̂
P̂
(s̃,ã|s,a) [R✓1(s̃, ã)]

� Es⇠D,afake⇠⇡̂,⇢⇡̂
P̂
(s̃,ã|s,afake) [R✓1(s̃, ã)]

(16)

Lastly, we optimize the dynamics model by taking a few
gradient steps (a hyperparameter) to optimize the following
objective function using on-policy rollouts branched from
mini-batches of expert state-actions as in RAMBO (Rigter
et al., 2022):

max
✓2

�1E(s,a)⇠D,⇢⇡̂
P̂
(s̃,ã|s,a) [EV✓2(s̃, ã)]

� �1Es⇠D,afake⇠⇡̂,⇢⇡̂
P̂
(s̃,ã|s,afake) [EV✓2(s̃, ã)]

+ �2E(s,a,s0)⇠D

h
log P̂✓2(s

0
|s, a)

i
(17)

where we have introduced weighting coefficients �1 and
�2 to facilitate tuning the prior precision � and dynamics
model learning rate.

We estimate the dynamics gradient using the REINFORCE
method with baseline:

r✓2EV✓(s, a)

=
X

s0

V✓(s
0)r✓2 P̂✓2(s

0
|s, a)

= Es0⇠P̂ (·|s,a)

h
(V✓(s

0)� b(s, a))r✓2 log P̂✓2(s
0
|s, a)

i

(18)

Following Rigter et al. (2022), we set the baseline to
b(s, a) = Q✓(s, a) � R✓1(s, a) to reduce gradient vari-
ance and further normalize V✓(s0) � b(s, a) across the
mini-batch to stabilize training. In the continuous-control
setting, the value function can be estimated as V✓(s) =
Ea⇠⇡̂✓ [Q✓(s, a)� log ⇡̂(a|s; ✓)] with a single sample.

RTOM. We adapt the BTOM algorithm slightly for the
RTOM outer problem, where we only simulate a single
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trajectory for each state in the mini-batch and update the
reward using the following objective:

max
✓1

E⇢D [R✓1(s, a)]� E⇢⇡̂
P̂
[R✓1(s, a)] (19)

We then update the dynamics by dropping the first term in
(17):

max
✓2

� �1Es⇠D,afake⇠⇡̂,⇢⇡̂
P̂
(s̃,ã|s,afake) [EV✓2(s̃, ã)]

+ �2E(s,a,s0)⇠D

h
log P̂✓2(s

0
|s, a)

i (20)

We provide additional details about the proposed algorithms
in Appendix B.

3.4. Performance Guarantees

In this section, we study how policy and dynamics estima-
tion error affect learner performance in the real environment.
Vemula et al. (2023) provided the following result relating
expert-learner performance gap in the real and estimated
environment in the context of model-based RL:

Lemma 3.2. (Performance difference via advantage in
model; Lemma 4.1 in (Vemula et al., 2023)) Let d⇡P de-
note the marginal state-action distribution following policy
⇡ in environment P . The following relationship holds:

E(s,a)⇠d⇡
P

⇥
log ⇡̂P̂ (a|s)

⇤
(21)

= Es⇠d⇡
P

⇥
Ea⇠⇡Q

⇡̂
P̂
(s, a)� V ⇡̂

P̂
(s)
⇤

(22)

= (1� �)Es⇠µ

⇥
V ⇡
P (s)� V ⇡̂

P (s)
⇤

| {z }
Performance difference in real environment

(23)

+ �E(s,a)⇠d⇡̂
P

⇥
Es0⇠PV

⇡̂
P̂
(s0)� Es00⇠P̂V

⇡̂
P̂
(s00)

⇤
| {z }

Model (dis)advantage under learner distribution

(24)

+ �E(s,a)⇠d⇡
P

⇥
Es0⇠P̂V

⇡̂
P̂
(s0)� Es00⇠PV

⇡̂
P̂
(s00)

⇤
| {z }

Model advantage under expert distribution

(25)

Intuitively, maximizing the policy likelihood (21) w.r.t. P̂
(including the reward) increases the performance gap (23)
between the expert and the learner, increases model advan-
tage under the expert data distribution, and decreases model
advantage under the (unknown) learner data distribution.
The performance gap is then to be closed by the learner
during the inner optimization problem.

Using this result, we arrive at the follow performance bound:

Theorem 3.3. Let ✏⇡̂ = �E(s,a)⇠d⇡
P
[log ⇡̂P̂ (a|s)]

be the policy estimation error and ✏P̂ =

E(s,a)⇠d⇡
P
DKL[P (·|s, a)||P̂ (·|s, a)] be the dynamics

estimation error. Assuming bounded expert-learner
marginal state-action density ratio

���d⇡̂
P (s,a)

d⇡
P (s,a)

���
1

 C, we

have the following (absolute) performance bound for the
IRL agent:

|JP (⇡̂)� JP (⇡)| 
1

1� �
✏⇡̂ +

�(C + 1)Rmax

(1� �)2
p
2✏P̂

(26)

This bound highlights the connection between IRL and be-
havior cloning and the Bayesian nature of IRL: by incorpo-
rating the dynamics and Bellman-optimality as regulariza-
tions, we can achieve better generalizations than behavior
cloning. We believe a tighter bound can be obtained by
further analyzing the density ratio C given that the BTOM
policy will act conservatively as a result of planning against
worst-case dynamics. We leave this to future work.

4. Experiments
We aim to answer the following questions with our experi-
ments:

1. How does the dynamics accuracy prior affect BTOM
agent behavior?

2. How well does BTOM and RTOM perform compared
to SOTA offline IRL algorithms?

We investigate Q1 using a Gridworld environment. We
investigate Q2 using the standard D4RL dataset on MuJoCo
continuous control benchmarks.

4.1. Gridworld Example

We use a 5x5 gridworld environment to understand the be-
havior of the BTOM algorithm. The environment has de-
terministic transitions conditioned on the following set of
actions: up, down, left, right, and stay. Any actions pointing
in the direction of the boundary when the agent is already
in a boundary cell will keep the agent in the same cell. The
expert agent, who knows the true transition dynamics and
plans using a discount factor of � = 0.7, starts in the lower
left corner and receives a reward when reaching the upper
right corner. We represent the reward function as the log
probability of the target state: log P̃ (s), where the upper
right corner has a target probability of 1.

Using 100 expert trajectories of length 50, we trained 3
BTOM agents with transition likelihood penalty � of 0.001,
0.5, and 10, respectively. As a comparison, we also trained
a decoupled agent whose dynamics model is fixed after an
initial maximum likelihood pretraining step and its reward
is estimated using the same gradient update rule as BTOM
in (9).

Given that the environment is simple and both the policy,
reward, and dynamics models are well-specified, all agents
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Figure 1. Gridworld experiment results. (Row 1) Ground truth and estimated target state distributions (softmax of reward) for agent using
decoupled estimation and BTOM agents with � = [0.001, 0.5, 10]. BTOM agents with higher � obtain more accurate reward estimates.
(Row 2) Sample paths generated by the ground truth agent, decoupled, and BTOM agents. BTOM agents with higher � generate fewer
illegal (diagonal) transitions. Illegal transitions generated by BTOM agents have a strong tendency to point towards the goal state.

Table 1. MuJoCo benchmark performance using 10 expert trajectories from the D4RL dataset. Each row reports the mean and standard
deviation of performance over 5 random seeds.

Environment Dataset BTOM (ours) RTOM (ours) ML-IRL Expert
HalfCheetah Medium 8813.35± 997.49 8085.18± 597.86 7706.43± 159.39 12156.16± 88.01
HalfCheetah Medium-replay 7508.65± 190.75 6961.28± 130.61 9383.34± 358.67 12156.16± 88.01
HalfCheetah Medium-expert 11519.98± 149.69 11289.09± 258.70 11276.09± 551.94 12156.16± 88.01

Hopper Medium 2243.15± 922.75 3306.59± 473.60 2461.45± 705.70 3512.64± 17.10
Hopper Medium-replay 3520.69± 29.50 3307.11± 471.38 2889.73± 542.65 3512.64± 17.10
Hopper Medium-expert 3209.91± 731.66 3550.25± 28.85 3350.79± 264.96 3512.64± 17.10

Walker2D Medium 4307.99± 855.55 4035.21± 247.23 4195.36± 352.86 5365.62± 55.79
Walker2D Medium-replay 3960.70± 1521.52 3880.54± 713.29 4092.58± 308.71 5365.62± 55.79
Walker2D Medium-expert 4862.66± 100.37 4941.10± 38.99 4363.54± 729.60 5365.62± 55.79

recover the ground-truth policy in state-actions pairs visited
by the expert. The ground truth and estimated target state
probabilities are shown in the first row of Figure 1. All
agents correctly estimated that the upper right corner has
the highest reward, although not with the same precision as
the ground truth sparse reward. BTOM agents with � = 0.5
and � = 10 are able to assign high reward only to states
close to the true goal state, where as the BTOM agent with
� = 0.001 and the decoupled agent assigned high rewards
to state much further away from the true goal state.

We visualize the estimated dynamics models by sampling
100 imagined rollouts using the estimated policies in the sec-
ond row of Figure 1. This figure shows that the BTOM(� =
0.001) and the decoupled agent would take significantly
more illegal transitions (i.e., diagonal transitions) than
BTOM agents with higher �. Comparing among BTOM
agents, we see that increasing � decreases the number of

illegal transitions. In contrast to the decoupled agent whose
illegal transitions are rather random, the illegal transitions
generated by BTOM agents with lower � have a strong ten-
dency to point towards the goal state. This corroborates
with our analysis that BTOM optimizes model advantage
under the expert distribution.

4.2. MuJoCo Benchmarks

In this section, we compare the performance of BTOM and
RTOM with SOTA offline IRL algorithms in the MuJoCo
continuous control environments (Todorov et al., 2012) us-
ing the D4RL dataset (Fu et al., 2020). We use ML-IRL
(Zeng et al., 2023), an offline model-based IRL algorithm
based on MOPO (Yu et al., 2020), as our comparison.

We use the following MuJoCo environments: HalfCheetah,
Hopper, and Walker2D. For each environment, D4RL of-
fers 4 types of datasets: medium, medium-replay, medium-
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expert, and expert. Following prior IRL evaluation pro-
tocols, our agents maintain two datasets: 1) a transition
dataset is used to train the dynamics model and the actor-
critic networks and 2) an expert dataset is used to train the re-
ward function. The transition dataset is selected from one of
the first three types of D4RL datasets and is not sub-sampled.
The expert dataset contains 10 randomly sampled D4RL ex-
pert trajectories. For both BTOM and RTOM, we set the
model objective weighting terms to �1 = 0.01,�2 = 1 to
encourage an accurate model under the data distribution.
For each environment and transition dataset, we train our
algorithms for a fixed number of epochs and repeat this
process for 5 random seeds. After the final epoch, we evalu-
ate the agent for 10 episodes in the MuJoCo environments.
We provide additional implementation and hyperparameter
details in Appendix B.

Table 1 reports the mean and standard deviation of the eval-
uation performance across different seeds for each setting.
For ML-IRL, we list the results reported in the original
publication. Our algorithms outperform the benchmark in
almost all settings. On the medium-expert dataset, which
has the best coverage of expert trajectories, our algorithms
perform near optimally and overall have smaller variance
than ML-IRL.

Between the two proposed algorithms, BTOM and RTOM
perform comparably on the medium-expert datasets. How-
ever, BTOM outperforms RTOM on the medium and
medium-replay datasets in the Halfcheetah and Walker2D
environments. Training the dynamics model on these
datasets corresponds to violating the dynamics accuracy
assumption for optimizing only `(✓) in (14) as T1 would
be large in this case. For BTOM, this is not a problem be-
cause the dynamics log likelihood only serves as a prior and
the surrogate objective (11) is not affected. However, for
RTOM, relaxing the dynamics accuracy assumption causes
`(✓) to deviate from the true objective.

Finally, we remark that BTOM has less stable training dy-
namics than RTOM where its evaluation performance may
alternate between periods of near optimal performance and
periods of medium performance (thus the larger variance
in Table 1). While stability is a known issue for training
energy-based models using contrastive divergence objec-
tives (i.e., objective (11); Du et al., 2020), we believe the
current issue is related to BTOM’s two-sample path method
having weaker and noisier learning signal. Another source
of instability is likely introduced by simultaneously training
the dynamics model, which may be improved in future work
by adding Lipschitz regularizations (Asadi et al., 2018).

5. Related Work and Discussions
Bayesian IRL. Ramachandran & Amir (2007) first pro-
posed a Bayesian formulation of IRL to solve the reward

ambiguity problem. A MAP inference approach was pro-
posed in (Choi & Kim, 2011) and a variational inference
approach was proposed in (Chan & van der Schaar, 2021).
Their formulations consider non-entropy-regularized poli-
cies and the dynamics model is fixed during reward infer-
ence. In contrast, simultaneous estimation of reward and
dynamics can potentially infer the demonstrator’s biased
beliefs about the environment, which is desirable for psy-
chology and human-robot interaction studies (Baker et al.,
2011; Wu et al., 2018; Reddy et al., 2018). Despite the at-
tractiveness, simultaneous estimation is challenging because
of the need to invert the agent’s planning process, especially
in continuous domains. Reddy et al. (2018) avoids this
by representing agent discrete choice policies using neural
network-parameterized Q functions and regularizing the
Bellman error to be small over the entire state-action space.
This method however cannot be straightforwardly adapted
to the continuous action case. Kwon et al. (2020) avoids
this by first training a task-conditioned policy on a distri-
bution of environments with known parameters using meta
reinforcement learning and then use the meta-trained policy
to guide inference. This precludes the method from being
used in general settings with unknown task distributions.
To our knowledge, our proposed algorithms are the first to
address simultaneous estimation in general environments.

Decision-aware model learning. Decision-aware model
learning aims to solve the objective mismatch problem in
model-based RL (Lambert et al., 2020). Many proposed
methods in this class use value-targeted regression similar to
our model loss in (17) (Grimm et al., 2020; Farahmand et al.,
2017). Our analysis and that of Vemula et al. (2023) suggest
that value-targeted model objectives may be related to robust
objectives. Furthermore, since the set of value-equivalent
models only shrink for an increasingly larger set of poli-
cies and values (Grimm et al., 2020), using value-aware
model objectives alone may not be optimal and additional
prediction-based regularizations may be needed.

Theory of Mind. Theory of Mind inference is known to
be unidentifiable in general. Many researchers believe that
reliable inference in human theory of mind relies on highly
structured priors and normative assumptions (Jara-Ettinger,
2019; Armstrong & Mindermann, 2018; Langley et al.,
2022). We took a small step in understanding the relation-
ship between a type of structured prior, i.e., the dynamics
accuracy prior (6), and the inference outcome. Different
from prior works which also use accuracy-based regular-
izations but assume known ground truth dynamics (Reddy
et al., 2018; Shah et al., 2019), our prior is more general
and flexible since it is estimated partially from data. While
our goal in this work has been to understand BTOM infer-
ence of expert demonstrators, an interesting future direction
is to identify appropriate priors to reliably infer reward
and internal dynamics from sub-optimal and biased human
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demonstrators.

Our observation of the robustness of BTOM also has in-
teresting cognitive science implications. It suggests that
inference of (Boltzmann) rational agents naturally gives rise
to a form of “pessimism in the face of uncertainty”, which
provides a testable hypothesis of Boltzmann rationality as a
model of human theory of mind. Furthermore, this knowl-
edge can potentially be applied in machine teaching and
multi-agent coordination settings to design more efficient
and human-like communicative actions (Ho et al., 2016;
Foerster et al., 2019; Mirsky et al., 2022).

6. Conclusion
We showed that inverse reinforcement learning under the
Bayesian Theory of Mind framework gives rise to robust
policies. This yielded a set of novel offline model-based IRL
algorithms achieving SOTA performance in the MuJoCo
continuous control benchmarks without ad hoc pessimistic
penalty design.
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