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Abstract

Predictive Coding (PC) is a theoretical framework
in cognitive science suggesting that the human
brain processes cognition through spatiotempo-
ral prediction of the visual world. Existing stud-
ies have developed spatiotemporal prediction neu-
ral networks based on the PC theory, emulating
its two core mechanisms: Correcting predictions
from residuals and hierarchical learning. How-
ever, these models do not show the enhancement
of prediction skills on real-world forecasting tasks
and ignore the Precision Weighting mechanism
of PC theory. The precision weighting mecha-
nism posits that the brain allocates more attention
to signals with lower precision, contributing to
the cognitive ability of human brains. This work
introduces the Cognitive Diffusion Probabilistic
Models (CogDPM), which demonstrate the con-
nection between diffusion probabilistic models
and PC theory. CogDPM features a precision
estimation method based on the hierarchical sam-
pling capabilities of diffusion models and weight
the guidance with precision weights estimated by
the inherent property of diffusion models. We
experimentally show that the precision weights
effectively estimate the data predictability. We
apply CogDPM to real-world prediction tasks us-
ing the United Kindom precipitation and ERA
surface wind datasets. Our results demonstrate
that CogDPM outperforms both existing domain-
specific operational models and general deep pre-
diction models by providing more proficient fore-
casting.
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1. Introduction
Predictive Coding (PC) is a theoretical construct in cogni-
tive science, positing that the human brain cognizes the vi-
sual world through predictive mechanisms (Spratling, 2017;
Hohwy, 2020). The PC theory elucidates that the brain hi-
erarchically amends its perception of the environment by
anticipating changes in the visual world. Researchers have
developed computational models based on the PC theory
to simulate the brain’s predictive mechanisms (Keller &
Mrsic-Flogel, 2018). Neuroscientists employ these models
to empirically validate the efficacy of the PC theory and to
find new characteristics. Precision weighting, a pivotal fea-
ture of the PC theory, suggests that the brain assigns more
attention to signals with lower precision by using precision
as a filter in weighting prediction errors.

With the advancement of deep learning, predictive learning
has emerged as one of the principal learning methods (Rane
et al., 2020; Bi et al., 2023). Neural networks are now
capable of making effective predictions in video data (Shi
et al., 2015; Wang et al., 2017; Ho et al., 2022c). Deep video
prediction models have rich applications, such as weather
forecasting (Ravuri et al., 2021; Zhang et al., 2023) and
autonomous driving simulation (Wang et al., 2018; Wen
et al., 2023).

Researchers design cognitively inspired video prediction
models utilizing the PC theory. PredNet (Lotter et al., 2020),
which employs multi-layer ConvLSTM (Shi et al., 2015)
networks to predict the next frame in a video sequence, is re-
sponsible for predicting the residual between the outcomes
of a network layer and the ground truth values. However, the
predictive capability of PredNet does not show significant
improvement over non-hierarchical video prediction models
and has not been validated in real-world video prediction
tasks. We posit that the hierarchical modeling mechanism
in PredNet is not effectively implemented. PredNet directly
targets low signal-to-noise ratio residuals as learning objec-
tives, which complicates the learning process, and fails to
extract fundamentally distinct features between layers. Ad-
ditionally, PredNet lacks the capability to model precision,
leading to uniform weighting in learning residuals across
different regions. This results in redundant noise informa-
tion becoming a supervisory signal and hinders the model’s
ability to learn from important information.
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In this study, we propose PC-inspired Cognitive Diffusion
Probabilistic Models (CogDPM), which align the main fea-
tures of PC theory with Diffusion Probabilistic Models
(DPMs), a specialized branch of deep generative models.
The CogDPM framework innovatively abstracts the multi-
step inference process characteristic of Diffusion Probabilis-
tic Models into a hierarchically structured model, where
each layer is responsible for processing signals at distinct
spatiotemporal scales. This hierarchical approach allows for
a progressive enhancement in the model’s interpretation of
sensory inputs, actively working to reduce prediction errors
through iterative refinement. A key feature of the CogDPM
framework is its ability to estimate spatiotemporal precision
weights based on the variance of states in each hierarchical
layer. This methodology plays a crucial role in optimizing
the overall precision of predictions, and represents a novel
advancement in predictability modeling.

We verify the effectiveness of precision weights as well as
the predictions skills of CogDPM on real-world spatiotem-
poral forecasting tasks. To verify precision weights, we
use synthetic motion datasets of both rigid body and fluid.
Results show precision weights get higher salience on the
hard-to-predict region. To validate the prediction capabil-
ities of CogDPM, we apply CogDPM to real-world tasks
including precipitation nowcasting (Shi et al., 2015; Ravuri
et al., 2021) and high wind forecasting (Barbounis et al.,
2006; Soman et al., 2010). We evaluate CogDPM through
case studies focusing on extreme weather events and scien-
tific numerical metrics. CogDPM outperforms operational
domain-specific models FourCastNet (Pathak et al., 2022)
and DGMR (Ravuri et al., 2021) as well as the general deep
predictive models. We demonstrate that CogDPM has strong
extreme event prediction capabilities and verify the effec-
tiveness of precision estimations of CogDPM which provide
useful information for weather-driven decision-making.

In summary, we identify the following advantages of
CogDPM:

• CogDPM aligns diffusion probabilistic models with
Predictive Coding theory, which inherently integrates
hierarchy prediction error minimization with precision-
weighting mechanics.

• CogDPM delivers skillful and distinct prediction re-
sults, particularly in scientific spatiotemporal forecast-
ing, demonstrating a marked improvement in proba-
bilistic forecasting metrics.

• CogDPM presents a novel method for predictability
estimation, providing index of confidence modeling
for probabilistic forecasting.

2. Related Work
Predictive Learning. Predictive learning is a subfield of
machine learning that utilizes historical data to make pre-
dictions about future events or outcomes. As an important
aspect of human cognition that plays a crucial role in our
ability to perceive and understand the world, spatiotempo-
ral predictive learning has triggered a substantial amount
of research efforts, such as ConvLSTM (Shi et al., 2015),
PredRNN (Wang et al., 2017), and ModeRNN (Yao et al.,
2023). Recently, diffusion models (Ho et al., 2020) have
been successfully applied in video generation (Ho et al.,
2022a) so as to capture spatiotemporal correlations, show-
ing a promising trend as a spatiotemporal predictive learning
framework.

Predictive Coding. In neuroscience, predictive coding is a
theory of brain function about how brains create predictions
about the sensory input. Rao & Ballard translates the idea
of predictive coding into a computational model based on
extra-classical receptive-field effects, and shows the brain
mechanism of trying to efficiently encode sensory data us-
ing prediction. Further research in neuroscience (Friston,
2009; Clark, 2013; Emberson et al., 2015; Spratling, 2017)
presents different interpretations of predictive coding theory.

Predictive Coding Neural Networks. The development
of deep learning has arisen plenty of deep predictive net-
works with cognition-inspired mechanisms. PredNet (Lotter
et al., 2016) implements hierarchical predictive error with
ConvLSTM for spatiotemporal prediction using principles
of predictive coding. CPC (Oord et al., 2018; Henaff, 2020)
and MemDPC (Han et al., 2020) incorporate contrastive
learning in the latent space via a predictive-coding-based
probabilistic loss. PCN (Wen et al., 2018; Han et al., 2018)
proposes a bi-directional and recurrent network to learn
hierarchical image features for recognition. Such models
introduce the motivation of predictive coding in their task-
specific manners. However, these works ignore precision
weighting, a pivotal mechanism in PC theory. Besides, these
works have not explored a proper PC-based framework of
diffusion models.

3. Method
Spatiotemporal forecasting involves extracting patterns from
a sequence of vector fields c−N0:0 and providing future evo-
lution x1:N . We give a brief introduction to the framework
of predictive coding and propose our CogDPM for imple-
menting Predictive Coding into spatiotemporal forecasting.

To avoid confusion, we use the superscript N to represent
different moments allowed by time, and the subscript t to
denote the ordinal number of the inference steps in the
diffusion model.

2



CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding

3.1. CogDPM via Predictive Coding

Figure 1a presents a conceptual demonstration of a pre-
dictive coding (PC) system. Based on PC theory, we pro-
pose Cognitive Diffusion Probabilistic Models (CogDPM)
for spatiotemporal forecasting based on multi-step denois-
ing (Ho et al., 2020), which realizes the core mechanisms
of hierarchical inference and prediction error minimization.
Fig. 1b shows the framework of CogDPM, which takes
past observations as input to forecast the evolution of future
fields and estimate corresponding prediction error.

Hierarchical Inference. Predictive coding theory de-
scribes that the brain makes spatiotemporal predictions of
the sensations through hierarchical inference with multi-
layer organized estimators (Walsh et al., 2020). While dif-
ferent layers of the PC system are responsible for processing
features at different spatial scales, the hierarchical system
gradually performs prediction error minimization and con-
verges on a final consistent predictions (Wiese & Metzinger,
2017). CogDPM aligns the multi-step inference of DPM
with the hierarchical inference of the PC system. In the infer-
ence phase of CogDPM, the forecast is gradually generated
in the hidden states evolution process from xT ,xT−1, . . .
to x0, where xT is a Gaussian prior and x0 indicates the
generated target distribution of forecast. CogDPM inherits
the properties of DPM that the different inference steps have
varying spatial and temporal scales of feature expression
capabilities (Zheng et al., 2022). In the initial stages of
inference, the model yields holistic and vague results. As
it approaches the final steps, the model shifts its focus to-
wards supplementing with detailed information, which is
also aligned with the hierarchical property of the PC sys-
tem. In each internal inference step, the guidance of the
diffusion model plays a similar role with the error units of
the PC system, taking observation sequence as input and
strengthen the correlation between generated results and
observations (Dhariwal & Nichol, 2021).

Prediction Error Minimization. Each layer in the PC
system outputs two key components: predictions for future
sensations and estimations of prediction errors (van Elk,
2021). This process is enabled by interactions between two
functionally distinct neural sub-components in the layer:
expectation units and error units (Walsh et al., 2020). The
expectation unit updates expected sensory states from the
previous level to the error units, without directly receiving
sensory-driven signals as input. The error unit receives and
analyzes the discrepancies between perceptual and expected
sensory states to compute the error, which is then fed back
to the expectation unit in the next layer. The goal of the
information transfer between multiple layers is to minimize
prediction errors, ultimately resulting in more accurate envi-
ronmental perceptions. CogDPM couples a generative DPM

Gθ with a perceptual DPM Pθ, where θ represents their shar-
ing parameters. The previous state xt is the sharing input
of both models, while observations c can only be attached
by the perceptual DPM. With the previous state as observa-
tion, the perceptual DPM acts as sensory stimuli and thus
aligns with the bottom-up process in the PC system. The
generative DPM, as a comparison, performs as the top-down
prediction based on conceptual knowledge. Fig. 1c provides
detailed schematic diagram of a single step in CogDPM.
Given the outputs Gθ(xt) and Pθ(xt, c) separately for each
step t, the guidance for predictive error minimization can be
expressed by:

Guidance[xt] = Pθ(xt, c)−Gθ(xt), (1)

i.e., the difference between sensations and predictions.

3.2. Precision Weighting in CogDPM

Precision weighting stands as the pivotal mechanism for
filtering information transmitted between adjacent layers. It
posits that the brain expends more effort in comprehending
imprecise information, recognizing that sensory input often
contains a substantial proportion of redundant information,
which does not necessitate repetitive processing (Hohwy,
2020). During each error minimization phase of the predic-
tive coding (PC) approach, the error unit generates precision
maps. These maps selectively filter the signal transmitted
to the subsequent layer, assigning greater weight to signals
characterized by higher imprecision.

Following precision weighting in PC theory, our goal is to
design a modeling of imprecision for each denoising pro-
cess of CogDPM. We therefore delve into the progressive
denoising mechanism in the backward process of DPMs. In
each denoising step for xt, the model predicts a noise to-
wards the corresponding groundtruth x0 (Song et al., 2020).
The model usually shifts xt into xt−1 within a tiny step and
recursively performs the process to get x0, but can either
directly obtain x0 within a single larger step. If the direct
predictions from step t and from step t+ 1 with generative
DPM Gθ differ in a significant manner for a certain spa-
tiotemporal region, the single step produces inconsistent
signal from previous steps, indicating the imprecision of the
generative model at such region of the current state. Hence,
we use the fluctuation field of direct predictions x0 from
{xt, . . . ,xt+k−1} to estimate such imprecision of state xt

for each coordinate, formulated by Eq. (2):

U[xt] = Var [EGθ
[x0 | xt] , . . . ,EGθ

[x0 | xt+k−1]] , (2)

where Var stands for the variance field along the denoising
step, and k is the hyperparameter for window length. In this
way, CogDPM provides a modeling of the inverse precision
field for multiscale spatiotemporal coordinates in the infer-
ence steps. Since only the past observation is given in the
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Figure 1. a, A general predictive coding framework. The system recognizes the sensation fields with hierarchy error units and expectation
units and generates the predictions and precision maps during the process. b, Cognitive Diffusion Probabilistic Models (CogDPM)
framework, providing predictions and precision weights with multi-step denoising process. c, Updates of latent states with precision-
weighted predictive error.

forecasting tasks, this precision is a good substitution for the
actual precision to weight the minimization. We implement
precision weighting in the CogDPM framework, which can
be formulated as Eq. (3),

xt−1 = Gθ(xt) + f(U[xt]) · Guidance[xt], (3)

where f is a parameter-free normalization function shown
in Eq. (8). Precision weighting helps to control the balance
between diversity and the alignments with the observation,
with larger guidance increasing the alignments and decreas-
ing the diversity or the quality of generations. Through
this precision weighting mechanism, CogDPM strategically
allocates greater guidance intensity to regions with lower
predictability, thereby enhancing local precision in a focused
manner.

Computational details. The framework of a standard
DPM starts with x0 sampled from data distribution, and
latent states {x1, x2, . . . ,xT } following the forward pro-
cess along a Markov chain as Eq. (4).

q(xt+1 | xt) = N
(√

αtxt,
√
1− αtI

)
, (4)

where {αt}t=1,2,...,T are constant parameters. Each latent
state is a corrupted estimation for the future inputs with the

three-dimensional shape of N ×H ×W .

In each step of the backward process, we update the la-
tent state with the denoising network ϵθ. We denote the
sensation input as c, which has a shape of N0 × H × W .
The perceptual model Pθ and generative model Gθ can be
preformed separately as Eq. (5) and (6).

Pθ(xt, c) =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, c)

)
, (5)

Gθ(xt) =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt,∅)

)
, (6)

where ᾱt =
∏t

s=1 αs and ϵθ is the denoising network of the
DPM. CogDPM provides inverse precision estimation with
Eq. (2), and EGθ

[x0 | xt] can be computed as Eq. (7):

EGθ
[x0 | xt] =

1√
ᾱt

(
xt −

√
1− ᾱtϵθ(xt,∅)

)
. (7)

For implementation, we push Gθ (xt) into the estimation
queue with a maximal queue length of k, and estimate
the precision with Eq. (2). Thus, we can merge Gθ(xt)
and Pθ(xt, c) with respect to the control of precision with
Eq. (3). Considering numerical stability, we normalize the
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inverse precision field in U(xt) and clip the value in a fixed
range. The formulation of f is following:

f(w) = λ · clip
(
w − w̄

σ(w)
, 0, 1

)
+ 1, (8)

where w̄ and σ(w) are the mean and standard error of w, λ
is a constant that controls the guidance strength. Finally, we
merge Gθ(xt) and Pθ(xt, c) with the guidance weight by in-
verse precision as Eq. (3). The pseudo code of the inference
process of CogDPM framework is shown in Algorithm 1.

Objective function. CogDPM follows the training
schema in diffusion probabilistic model (Ho et al., 2020)
that predicts the noise from the corrupted inputs. We de-
note the loss term as L(θ). The denoising U-Net ϵθ has
parameters θ, and takes the corrupted future observations
xs, contexts c and the scalar diffusion step s as input. We
adopt the L1 loss to minimize the error between injected
noise and the prediction of the denoising U-Nets.

L(θ) = Et,x0,ϵ,c

[
∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, c, t

)
∥1
]

(9)

To jointly train the conditional and unconditional models, c
is replaced by Z ∼ N (0, I) with 10% probability.

Algorithm 1 Inference Process of CogDPM framework
Input: Context input c, denosing model ϵθ, maximul
queue length L
xT ∼ N (0x, Ix)
Define free estimation queue Qfree

for t = T to 1 do
ϵc ∼ N (0c, Ic)
ϵcond
t = ϵθ(x̂t, c) {Network output with condition c.}
ϵfree
t = ϵθ(x̂t, ϵc) {Network output without condition.}
Pθ(xt, c) =

1√
αt
(xt − 1−αt√

1−ᾱt
ϵcond
t )

Gθ(xt) =
1√
αt
(xt − 1−αt√

1−ᾱt
ϵfree
t )

x̂t→0 = 1√
ᾱt

(
xt −

√
1− ᾱtϵ

free
t

)
{Estimate x0 with

xt.}
Push x̂t→0 into Qfree

if Length of Qfree exceeds L then
Drop last term from Qfree

end if
Get inverse precision estimation w = f(Var(Qfree))
xt−1 = Gθ(xt)+w·(Pθ(xt, c)−Gθ(xt)) {Prediction
error minimization with precision weighting.}

end for
Output: x0

4. Experiments
We demonstrate that by incorporating the novel design in-
spired by the cognitive predictive process, CogDPM can

deliver more skillful and improved results in tasks of scien-
tific spatiotemporal field prediction.

4.1. Synthesis Data Experiments

In this section, we compare the predictive performance of
CogDPM with other mainstream deep predictive networks
and investigate the interpretability of Precision weighting
within the CogDPM framework in the context of spatiotem-
poral prediction. We expect high correlation between the
precision estimation and the predictability of CogDPM. The
inverse precision estimator should allocate more attention
to the region with higher prediction difficulty.

Benchmarks. We conduct experiments on the MovingM-
NIST dataset (Wu et al., 2021), which simulates the motion
of rigid bodies, and the Turbulence flow dataset, which
models fluid dynamics. The Moving MNIST dataset is gen-
erated with the same method as (Wu et al., 2021). We create
sequences with 20 frames, and each frame contains three
handwriting digits. The motion of digits consists of tran-
sition, reflection, and rotation. Models predict the next 16
frames with 4 continuous context frames. The turbulent
flow dataset is proposed by (Rui et al., 2020). We follow
the same dataset parameters as Rui et al. and generate a
sequence with 15 frames and 64 x 64 grids on each frame.
Four frames are taken to predict the next 11 frames.

We have selected a diverse array of deep spatiotemporal fore-
casting models as baselines for our study. These include the
Transformer-based spatiotemporal forecasting model Four-
CastNet (Pathak et al., 2022) , RNN-type networks such
as MotionRNN (Wu et al., 2021) and PredRNN-v2 (Wang
et al., 2022), the physics-inspired predictive model PhyD-
Net (Guen & Thome, 2020), and a predictive DPM model
that employs naive Classifier-free Guidance (Ho & Sali-
mans, 2021) and utilizes the same network architecture as
CogDPM.

For the evaluation metrics, we have chosen the
Neighborhood-based CRPS (Continuous Ranked Probabil-
ity Score), CSI (Critical Success Index), and FSS (Fractional
Skill Score), which are commonly used in scientific fore-
casting tasks. The CRPS metric emphasizes the ensemble
forecasting capabilities of the model, with lower values indi-
cating better predictive performance. On the other hand, the
CSI and FSS metrics focus on assessing the accuracy of the
model’s predictions in peak regions, with higher values de-
noting stronger predictive capabilities. The implementation
details of these metrics are provided in the appendix D, and
we will continue to employ them in subsequent experiments
on real-world datasets.
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Methods / Metrics MovingMNIST Turbulence
CRPS ↓ CSI ↑

(w5)
FSS ↑
(w5)

CRPS ↓ CSI ↑
(w5)

FSS ↑
(w5)(w8, avg) (w8, max) (w8, avg) (w8, max)

FourCastNet 0.0619 0.2288 0.1915 0.3261 0.0098 0.0119 0.3761 0.6558
MotionRNN 0.0377 0.1232 0.4859 0.6758 0.0037 0.0046 0.7235 0.9354
PhyDNet 0.0325 0.0983 0.6161 0.7969 0.0079 0.009 0.5456 0.8254
PredRNN-v2 0.027 0.0774 0.688 0.8471 0.0033 0.0042 0.7529 0.9507
DPM 0.0323 0.082 0.6959 0.822 0.0023 0.0096 0.6725 0.9668
CogDPM (ours) 0.027 0.0697 0.7365 0.8588 0.0023 0.0034 0.7962 0.9722

Table 1. Numerical Evaluation of Prediction Skills on MovingMNIST and Turbulence Datasets
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Figure 2. Predictions and inverse precision of CogDPM on rigid-body MovingMNIST dataset (left) and Turbulence flow dataset (right).

Numerical Results Table 4 presents the numerical eval-
uation results for two datasets. Here, w denotes the win-
dow size employed in the Neighborhood-based assessment
method, while avg and max represent the average and
maximum values obtained from this method, respectively.
The CogDPM model demonstrates consistent improvements
over the baseline models in terms of the CRPS, which mea-
sures the average ensemble forecasting capability, as well as
the CSI and FSS indicators, which assess the accuracy of the
model’s predictions in the peak regions. Additionally, when
compared to the DPM model based on naive Classifier-free
Guidance, CogDPM exhibits superior performance. This un-
derscores the beneficial impact of introducing the Precision
Weighting mechanism on enhancing the model’s predictive
efficacy.

Interpretability of precision weights. Figure 2 presents
the outcomes of the CogDPM model. The initial two rows
delineate the ground truth images alongside the correspond-
ing prediction results generated by CogDPM. The third row
illustrates the prediction residuals, representing the discrep-
ancies between the actual and predicted data as depicted in

the preceding rows. The fourth row features images that
overlay the inverse precision map, highlighting the top 20%
of values with a black contour line, against a backdrop of
the residual map. The fifth row shows the precision map
estimated by Monte Carlo sampling which estimate the
prediction confidence with the variation among multiple
independent predictions with difference noise prior (Zhang,
2021).

CogDPM provides reasonable predictions in both datasets.
In the prediction of rigid body motion, the estimated Inverse
Precision effectively encompasses the Precision Residuals,
which are primarily located at the edges of objects. The
edges of objects present a greater challenge for prediction
compared to blank areas or the interior of objects. This
outcome aligns with our expectations for the estimation of
the precision map. Precision estimated with MC sampling
works similarly but provide more false positive region in
frame 12 and 14.

In the prediction of fluid motion, regions with large temporal
residuals exhibit higher accelerations, indicating increased
predictive difficulty. The estimated Inverse Precision in-
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Figure 3. Experiments on high wind forecasting. a, a Case study of the ERA5 wind forecast from 2017-03-04 18:00. High wind and
tornadoes attacked the Mideast USA at 2017-03-06 18:00(T=48h) (Twin Cities, 2017). CogDPM provides alarming forecasts, covering
states with the most severe weather reports, Iowa and Missouri. CogDPM precision indicate the credibility of the predictions, helping
forecasters to identify the missing and false positive regions. b, Numerical scores on ERA5 wind dataset from 2017-01-01 to 2019-12-31.
We report CSI with 12 m/s (first) and 16 m/s (second) threshold, RMSE (third), and CRPS across four ensembles (fourth).

deed covers the Temporal Residuals well, meeting our ex-
pectations. We observe that in both fluid and rigid body
motion prediction tasks, the Precision weights of CogDPM
exhibit varying styles, yet consistently depict the model’s
confidence on current case. On comparison, MC sampling
method almost fails in this case due to the over-confidence
of the prediction result. Difference among multiple predic-
tions have no significant signals but random noise. While,
the CogDPM is not effected because its precision describe
the continuous enhancing process of model’s confidence
during the hierarchy inference.

4.2. Surface Wind Forecasting Experiments

Benchmarks. We first evaluate our model by applying it
to the task of surface wind forecasting, using the ERA5
reanalysis dataset (Hersbach et al., 2023). Accurate wind
field forecasting is crucial for various applications in energy
and weather domains. Ensemble forecasting is a key tech-

nique to provide more useful information for the forecasters,
which provides multiple predictions and the confidence of
its predictions. We show that CogDPM not only provide
better ensemble forecasts results, but also estimate the pre-
diction confidence with its precision weights.

We choose real-world operational metrics for evaluation. In
the meteorology domain, forecasters focus on evaluating
the risk of high wind and confirming the time for extreme
weather issue warnings. On this purpose, we use Critical
Success Index (CSI) to measure the consistency between
heavy wind regions in forecasts and ground truths. In the
energy domain, accurate wind field forecasting supports
the prediction of wind power, which is essential for the
fluctuation control of clean energy generation (Marugán
et al., 2018). Absolute wind speed is the dominant factor
that affect the power production of the wind turbine (Porté-
Agel et al., 2013); thus, we consider pixel-wise Root Mean
Square Error (RMSE) and Radially Continuous ranked prob-
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Figure 4. Experiments on precipitation nowcasting. Case study
on an extreme precipitation event starting on 2019-07-24 at 03:15
in the UK timezone, CogDPM successfully predicts movement
and intensity variation of the squall front, while DGMR produces
results with early dissipation.

ability score (CRPS) on wind speed for the evaluation of
this scenario (Barbounis et al., 2006). Applendix D shows
detailed implemation of these metrics.

Results. We use the ERA5 reanalysis surface wind data
and crop patches centered in the US spanning from 1979 to
2021. We evaluate predictions for the next 48 hours with
6-hour intervals using the observations in past 24 hours. We
compare the proposed method with FourCastNet (Pathak
et al., 2022), a domain-specialized network for reanalysis
field forecasting, and predictive recurrent networks for deter-
ministic video prediction. FourCastNet provides ensemble
forecasts based on the Gaussian disturbance on the initial
states following (Evensen, 2003).

Figure 3a shows studies on a case starting from 2017-03-04
18:00. The results from FourCastNet indicate a failure to
accurately forecast the growing high wind region, and the
high wind region is underestimated in the 48-hour forecast.
In contrast, results from CogDPM not only locate the high
wind region more accurately, but also provide intensity esti-
mates much closer to the ground truth, supporting the need
for 48-hour-ahead precautions. CogDPM are capable of pro-
viding alarming forecasts around 2017-03-06 18:00, when
high wind and tornadoes attacked the Mideast USA1.

1Summary of March 06 2017 Severe Weather Outbreak - Ear-
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Figure 5. Experiments on precipitation nowcasting. Numerical
verification scores on sampled the United Kingdom precipitation
dataset in 2019. CRPS is computed with four ensembles for spatial
pooling size 1km x 1km (left top) and 2 km x 2 km (right top);
Economic value with 20 mm/h accumulative rain threshold (left
bottom); Radially averaged power spectral density on predictions
at 90 minutes (right bottom). CogDPM surpasses the operational
forecast model DGMR in ensemble forecasting precision and fore-
cast skillfulness.

We also visualize the inverse precision fields corresponding
to the forecasts, since confidence estimation provide key
information for decision-making. In the forecast for the first
24 hours, the uncertainty fields given by FourCastNet are
relatively dispersed and not closely related to the evolution
of the associated wind field. In the next time period to the
48 hours, FourCastNet produces unreasonable estimates for
the windless area in the upper right corner. The inverse
precision fields given by CogDPM had much closer cor-
relations to the weather process. In the 48-hour forecast,
CogDPM underestimated the forecast intensity in Wyoming
and Colorado, but allocated lower precision on that region.

Figure 3b shows that CogDPM outperforms baseline meth-
ods on CSI, particularly for heavier wind thresholds. For
the measurement of RMSE, we take the mean across eight
ensemble forecasts for all methods. Although DPMs are not
directly optimized by the Mean Squared Error (MSE) loss,
the mean ensemble results are competitive with predictive
models trained with MSE losses. The CogDPM exhibits a
lower CRPS across all prediction times, indicating its ability
to effectively generate ensemble forecasts.

Our results demonstrate that CogDPM is capable of mak-
ing predictions under severe conditions, supported by the

liest Known Tornado in Minnesota’s History, https://www.
weather.gov/mpx/SevereWeather_06March2017
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probabilistic forecast ability of the PEM process, while de-
terministic models avoid predicting severe cases to reduce
mistake-making risk.

4.3. Precipitation Nowcasting Experiments

Benchmarks. We evaluate our model on the precipita-
tion nowcasting task using the United Kingdom precipita-
tion dataset (Ravuri et al., 2021). Precipitation nowcasting
aims to predict high-resolution precipitation fields up to
two hours ahead, which provides socioeconomic value on
weather-dependent decision-making (Ravuri et al., 2021).
Precipitation data is extremely unbalanced on spatiotem-
poral scales, demanding nowcasting models to focus on
vital parts of the field. Fig. 4a shows a case study selected
by the chief meteorologist from MetOffice (Ravuri et al.,
2021), which involves a squall line sweeping across the
United Kingdom. We choose DGMR as a strong baseline
on skillful nowcasting (Ravuri et al., 2021), which is data-
driven method that forecast precipitation with a generative
adversarial network. DGMR is also the operational method
deployed by Met Office of the United Kingdom.

Results. In Figure 4, our results accurately forecast both
the trajectory and intensity fluctuations of the squall line,
as depicted by the red precipitation line in the top right
segment. CogDPM’s forecasts consistently show the squall
line progressing over 30 and 60 minutes, followed by dis-
sipation at the 90-minute mark, mirroring actual events.
Conversely, predictions from DMGR indicate a rapid dissi-
pation of the squall line within 30 minutes, and significantly
weaker outcomes are projected for the 60-minute mark. We
posit that the suboptimal performance of the DGMR model
is attributable to the simultaneous use of generative loss and
pixel-wise alignment loss functions during its training phase,
which leads to unstable training process and still keeps the
drawback of dissipation of deterministic alignments. While
the generative loss alone is capable of simulating realistic
meteorological processes, it falls short in accurately predict-
ing the extent of precipitation and is abandoned in DGMR.
On the contrary, CogDPM does not require additional deter-
ministic alignment during training but enhances precision
with precision-weighted guidance during inference steps.
We present additional case studies in Appendix F.

We further explore the numerical evaluations in Fig 5 with
metrics on different forecast properties focusing on the ac-
curacy, reality and diversity. Radially Continuous ranked
probability score (CRPS) measures the alignment between
probabilistic forecast and the ground truth. We also report
the spatially aggregated CRPS (Ravuri et al., 2021) to test
prediction performance across different spatial scales. De-
tails of these metrics can be found in Extended Data. The
first row in Fig 4 shows CogDPM consistently outperforms
baseline models for the whole time period. We adopt the

decision-analytic model to evaluate the Economic value of
ensemble predictions (Ravuri et al., 2021). Curves in Fig-
ure 5 with greater under-curve area provide better economic
value, and CogDPM outperforms baseline models in this
regard. Radially averaged power spectral density (PSD)
evaluates the variations of spectral characteristics on differ-
ent spatial scale. CogDPM achieves the minimal gap with
ground truth characteristics.

The superior performance metrics of CogDPM stem from
its diffusion models’ ability to emulate the hierarchical in-
ference of predictive coding, resulting in smaller prediction
errors compared to single-step forecasting models. Fur-
thermore, the integration of precision weighting allows the
model to dynamically assess the precision of inputs and
adjust the intensity of conditional control accordingly. This
targeted approach effectively reduces errors in areas that are
challenging to predict, thereby enhancing the accuracy of
the model in delineating boundaries and extreme regions.

5. Discussion
CogDPM is related to classifier-free diffusion models (Ho
& Salimans, 2021), which enhance the class guidance with
a conditional DPM and an unconditional DPM. CogDPM
framework builds the connection between classifier-free dif-
fusion models and predictive coding. We also introduce
the precision estimation method with the reverse diffusion
process and use precision to control the guidance strength in
spatiotemporal scales. We adopt the ablation study to show
the enhancement in prediction skills of the CogDPM frame-
work compared with the vanilla CFG method in appendix E.

Active inference (Parr et al., 2019) is also a widely discussed
theory of the predictive coding framework, which states that
cognition system actively interact with the environment to
minimize the prediction error. Active inference is omitted
in this work. We take a computational predictive coding
model with both active inference and precision weighting
as the future work.

6. Conclusion
We propose CogDPM, a novel spatiotemporal forecast-
ing framework based on diffusion probabilistic models.
CogDPM shares main properties with predictive coding and
is adapted for field prediction tasks. The multi-step reverse
diffusion process models the hierarchy of predictive error
minimization. The precision of a latent expectation can be
estimated from the variance of states in the neighboring lev-
els. The CogDPM framework has demonstrated its ability to
provide skillful spatiotemporal predictions in precipitation
nowcasting and wind forecasting. Case studies and numeric
evaluations demonstrate that CogDPM provides competitive
forecasting skills.
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A. Preliminary
Diffusion Models. Diffusion models are the state-of-the-art deep generative models on image synthesis(Dhariwal &
Nichol, 2021; Song & Ermon, 2019; Ho et al., 2020), and have been explored widely in numerous tasks, such as computer
vision(Baranchuk et al., 2021), time series modeling (Rasul et al., 2021) and molecular graph modeling (Hoogeboom et al.,
2022; Xu et al., 2021). Diffusion probabilistic models (DPMs), a major paradigm in diffusion models, handly construct
the forward process q(x1:T | x0) by progressively injecting noise to a data distribution q(x0), and generate samples with a
denoising backward process. Formally, we define a Markov forward process q with latent variables x1,x2, . . .xT , which
follows Eq. (10) and Eq. (11):

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1), (10)

q(xt | xt−1) = N (xt |
√

1− βtxt−1, βtI), (11)

where βt ∈ (0, 1), t = 1, . . . , T schedule the forward process. In this work, we select cosine β scheduling (Nichol &
Dhariwal, 2021). Eq. (12) allows to directly sample an arbitrary latent variable conditioned on the input x0. Let αt = 1− βt

and ᾱt =
∏t

s=1 αs, we formulate the marginal distribution as:

q(xt | x0) = N (xt |
√
ᾱtx0, (1− ᾱt)I). (12)

We define the reverse process for Eq. (10) and Eq. (11) as pθ(x0:T ), with initial state p(xT ) = N (xT | 0, I) and
parameterized marginal distributions:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt), (13)

pθ(xt−1 | xt) = N (xt−1 | µθ(xt, t),Σθ(xt, t)). (14)

Diffusion models transfer the goal of generating target distribution into minimizing distance between forward and backward
processes, formulated in Eq. (16). Eq. (17) shows that the alignment between two processes can be factorized into the
alignment between marginal conditional distributions.

min
{µt,Σ2

t}T
t=1

Lvb(q, pθ) (15)

⇔ min
{µt,Σ2

t}T
t=1

DKL(q(x0:T )∥pθ(x0:T )) (16)

⇔ min
{µt,Σ2

t}T
t=1

T∑
t=1

DKL(q(xt−1 | xt,x0)∥pθ(xt−1 | xt)). (17)

Ho et al. (Ho et al., 2020) adopt a denoising network ϵθ(xt, t) to parameterize µθ(xt, t), and simplify the above loss as
Eq. (18):

Et∼U(1,T ),x0∼q(x0)ϵ∼N (0,I)∥ϵ− ϵθ(xt, t)∥2. (18)

We train the diffusion models with Eq. (18), and CogDPM inference results with the same methodology as Eq. (14).

Video generation with Diffusion Models. Considering the success in image synthesis, diffusion models can be naturally
applied to video generation and prediction tasks. Unlike static images, video generation faces two main problems: 1.
considerable computation consumption, which also cause slow inference speed; 2. inconsistency between adjacent frames.
For the first problem, previous works focus on enhancing the computation efficiency of the back-bone U-Net in diffusion
models (Ho et al., 2022c; Voleti et al., 2022). Video-Image joint training helps accelerating the optimization progress (Ho
et al., 2022c).
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Yang et al. (2023) combine a deterministic prediction model with a residual prediction diffusion model. The diffusion model
learn to generate the stochastic error between the deterministic prediction and the ground truth video, and the deterministic
model ensure the continuity between adjacent frames. Ho et al. (2022c) introduce a gradient based conditional sampling
method to improve temporally coherency, and also adapt cascaded architectures from image-based to video-based diffusion
models(Ho et al., 2022a), leading to enhanced video quality.

To maintain temporal consistency across extended video sequences, researchers also design auto-regressive conditioning
procedures (Voleti et al., 2022; Harvey et al., 2022; Höppe et al., 2022; Yang et al., 2023). These models recursively utilize
preceding outputs as inputs to sequentially generate subsequent frames. Voleti et al. and Höppe et al. use masked sequences
to train the model(Voleti et al., 2022; Höppe et al., 2022), while Yang et al. treat the process from a purely probabilistic
view(Yang et al., 2023).

Blattmann et al. (2023b) extend 2D Latent Diffusion Models (LDMs) to 3D versions by inserting temporal layers between
each blocks, which called spatial layers, in original U-Nets. Spatial layers concentrate on synthesizing individual frames
in the video, while temporal layers are dedicated to the alignment between different frames. Leveraging pre-trained 2D
LDMs, 3D LDMS can generate long videos without losing much image quality. Stable Video Diffusion is a large-scale
implementation of 3D LDMs (Blattmann et al., 2023a), which exhibits its outstanding performance in video sythesis.

Previous works prove that DPMs can generate realistic and coherent videos with considerable diversity, and corresponding
experiments mainly focus on general videos photoed by RGB cameras. Spatiotemporal forecasting is another brand of video
prediction, which focus on scientific applications. In these tasks, beyond frame consistency, forecast accuracy, diversity and
skillfulness are the mainly concerned metrics. In this work, we explore the field evolution forecasting with diffusion models,
and enhance model forecasting value on real-world applications.

B. Implementation Details
Architecture design. CogDPM adopts the U-Net (Ronneberger et al., 2015; Ho et al., 2022c) backbone coupled with a
vision transformer (ViT) (Dosovitskiy et al., 2021) encoder.

Inputs of the ViT encoder contain three parts: 1) patches of context cubes, 2) cube positional embedding, and 3) diffusion
step embedding. The inputs are summed together after a linear projection and then fed into the ViT encoder. We adopt a
random mask among the ViT inputs for better efficiency.

The architecture of the U-Net consists of a down-sampling tower, mid-blocks, an up-sampling tower, and short-cut
connections. The down-sampling tower progressively reduces the spatial dimensions of the input while increasing the
number of channels. The mid-blocks maintain the shape of the intermediate representations. The up-sampling tower reverses
the operations of the down-sampling tower, and the short-cut connections provide direct connections between corresponding
down-sampling and up-sampling blocks.

A single U-Net block employs separate neural modules for spatial and temporal modeling, including a spatial residual block
with convolution neural networks and a temporal block with axial attention. We use cross-attention layers to merge the
representations from the context encoder into the U-Net blocks. We repeat these blocks several times, followed by a bilinear
interpolation operation that doubles or halves the spatial shapes.

We further introduce the cascade diffusion pipeline to accelerate sampling speed for the participation nowcasting task (Ho
et al., 2022b). We parallel couple a low resolution CogDPM model with an additional super-resolution CogDPM, and
allocate fewer inference steps on the super-resoluation model to decrease the total inference time compared to a single
high-resolution model.

Evaluation. For the precipitation nowcasting, we follow the metrics used in (Ravuri et al., 2021), including CRPS, window
pooled CRPS, economic values and PSD. The computational details are listed in the supplementary materials.

We uniformly sample 10,000 cases from the 512 km × 512 km cropped test dataset provided by (Ravuri et al., 2021). We
crop the central 256 km × 256 km as model inputs to keep the same input shape with the pretrained DGMR. We take
quantitative evaluations of the central 128 km × 128 km to avoid the boundary effects, as the similar method in (Ravuri
et al., 2021).

For surface wind forecasting, we report CSI for the high wind precaution task and report CRPS and RMSE for the electric
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power prediction task.

We also evaluate on the central 64 × 144 grids to concentrate on the land measurement while also eliminating the boundary
effect from partial observation.

Training. We train a two-stage cascade diffusion model for the United Kingdom precipitation dataset and one-stage
diffusion models for the others.

The one-stage models are trained for 1× 106 steps. The learning rate is 2× 10−5, using Adam optimizer with β1 = 0.9 and
β2 = 0.999. We randomly replace conditions as i.i.d. standard Gaussian noise with a probability of 10%, following the
classifier-free diffusion models (Ho & Salimans, 2021). On the ERA5 dataset, we train the model on 2 GPU cores (NVIDIA
A100) for two weeks using a batch size of 16 per training step. On the turbulence flow and Moving MNIST dataset, we train
the model on 1 GPU core (NVIDIA A100) for one week using a batch size of 36 per training step.

The two-stage model cascades a low-resolution DPM and a super-resolution DPM. The low-resolution DPM has the same
training recipe as a model for Moving MNIST. The super-resolution DPM is trained for 5× 106 steps, using 4 GPU cores
(NVIDIA A100) for two weeks using a batch size of 8 per training step.

C. Datasets
In this study, we conduct experiments on synthesis datasets for interpreting precision estimations and on real-world datasets
for evaluating prediction skills.

For interpreting precision estimations, we adopt The Moving MNIST dataset which is generated with the same method
as (Wu et al., 2021). We create sequences with 20 frames, and each frame contains three handwriting digits. The motion of
digits consists of transition, reflection, and rotation. We use four initial frames to predict the movements of the digits in the
following 16 frames, and each frame has 64 × 64 grids. We generate 100,000 sequences for training, 1,000 for validation
and 1,000 for testing. The turbulent flow dataset is proposed by (Rui et al., 2020). We follow the same dataset parameters
as (Rui et al., 2020) and generate a sequence with 15 frames and 64 x 64 grids on each frame. Four frames are taken to
predict the next 11 frames. We generate 20,000 sequences for training, 1,000 for validation, and 1,000 for testing.

For testing the wind field forecasting, we use the ERA5 dataset, a high-resolution global atmospheric reanalysis produced
by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Hersbach et al., 2023). We select the region
covering the United States, the region from longitude 130 degrees West to 60 degrees West, and latitude 20 degrees North
to 56 degrees North. The dataset has the time scale from 1959 to 2019, and the 6-hour time interval. We use the 24-hour
surface wind and zonal wind speed to predict the next 48 hours. We use the data from 1959-01-01 to 2013-12-31 for training,
2014-01-01 to 2016-12-31 for validation, and 2017-01-01 to 2019-12-31 for testing.

For evaluating the skill of precipitation nowcasting of CogDPM, we adopt the United Kingdom precipitation dataset, which
contains radar composites from the Met Office RadarNet4 network from 2017 to 2019, and the experiment settings used
in (Ravuri et al., 2021). The dataset is patched into 24 × 256 × 256 composites with a time interval of 5 minutes and 1 km x
1 km spatial grids. The model forecasts precipitation fields of 90 minutes with 20-minute observations. We note that the UK
precipitation dataset is a large high resolution spatiotemporal forecasting dataset which takes about 1 TB saved with TF
Records. We follow the dataset splits and importance sampling techniques described in (Ravuri et al., 2021).

We list the detailed information of these datasets in the table C.

Table 2. Overview of Datasets for Different Tasks
Feature MovingMNIST Turbulence US Surface wind UK Precipitation

Image shape (64, 64) (64, 64) (144, 280) (256, 256)
Sequence length 20 15 12 22

Channel 1 2 3 1
Size of training set 100,000 100,000 73,000 5,788,800

Size of validation set 1,000 1,000 4,380 1,000
Size of test set 1,000 1,000 4,380 10,000
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D. Verification Metrics
We outline the five standard evaluation metrics used in this article.

Critical Success Index (CSI) (Schaefer, 1990) quantifies the accuracy of binary predictive decisions, determining whether
the target intensity value exceeds a specific threshold. To calculate this metric, we sum the hits, misses, and false alarms
across all grid points and compute their ratio. CSI evaluates precision and recall simultaneously and is widely used to assess
high wind forecasting. It is worth noting that the CSI metric counts the hit, miss, and false alarm over the entire test set.

CSI-Neighborhood (Jolliffe & Stephenson, 2012) is the CSI metric computed based on the neighborhood. Neighborhood
methods evaluate the forecasts within a spatial window surrounding each grid, which can assess the ‘closeness’ of the
forecasts. This metric is particularly suitable for verifying high-resolution forecasts.

Radially Continuous ranked probability score (CRPS) (Gneiting & Raftery, 2007) measures the alignment between
probabilistic forecasts and ground truth data. It is widely used in the evaluation of weather forecasting models. The
CRPS takes into account the entire distribution of forecasting probabilities, making it a more comprehensive evaluation
metric compared to traditional point forecast metrics. We also report the neighborhood CRPS (Ravuri et al., 2021), also
following (Jolliffe & Stephenson, 2012)

Fractional Skill Score (FSS) as described by Roberts and Lean (2008) (Roberts & Lean, 2008) represents another
neighborhood-based metric, delineated by target thresholds. For each grid cell within a piece of test data, the proportion
of surrounding cells exceeding a defined threshold within a spatial window is calculated. Subsequently, the summation
of these proportions—predicted versus observed—across all grid cells is termed the Fractional Brier Score (FBS). The
FSS is derived from the normalized FBS, relying on a threshold to determine local value occurrences and employs the
Fractional Brier Score (FBS) to contrast predicted and observed value frequencies. Unlike the CSI-Neighborhood, which
solely focuses on the accuracy of hit predictions, the FSS also facilitates the comparison of the rate of grid cells exceeding
the threshold within a spatial window.

Power Spectral Density (PSD) (Harris et al., 2001; Sinclair & Pegram, 2005) measures the power distribution over each
spatial frequency, comparing the intensity variability of forecasts to that of the observations. We use the PSD implementation
from the PySTEPS package (Pulkkinen et al., 2019). Forecasts that have minor differences with observations are preferred.

Economic Value (Ravuri et al., 2021) evaluates the outcome of forecasts with a cost-loss ratio decision model. It shows the
relative loss decrease with a forecasting-based precaution policy for a particular cost-loss ratio. For fair comparison, we
follow the implementation from DGMR (Ravuri et al., 2021).

E. Ablation Study
We demonstrate ablation experiments on precision weighting mechanism and network design. We compare the video
diffusion model (VDM) (Ho et al., 2022c) with numerical evaluation. VDM shares the same training schema and U-Net
architecture with CogDPM, and maintains a constant Classifier-free guidance during inference. Figure 6 reports the
performance of MAE, RMSE, CRPS, and CSI metrics with different wind speed thresholds on the ERA5 surface wind
dataset. The results show that CogDPM has significant enhancements in MAE, RMSE, and CRPS metrics, and achieves
comparable or better results on CSI indices with different wind speed thresholds. This demonstrates that precision-weighted
guidance can increase the precision of CogDPM in high-wind regions and provide more diverse forecasts, thereby improving
the skillfulness of the forecast results.

F. Additional Case Studies
In Figure 7, we present additional case studies on ERA5 surface wind prediction. The inverse precision field of CogDPM
indicate an informative unpredictable region.

In Figure 8, we present additional case studies on the United Kingdom precipitation dataset. The precision field of CogDPM
effectively described the boundaries of the precipitation range.
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Figure 6. Numerical comparison between CogDPM and video diffusion models (VDM) on the ERA5 wind forecast task. The first
row shows CSI metrics with thresholds of 8.0 m/s, 12.0 m/s and 16.0 m/s. The second row shows MAE, RMSE and CRPS relatively.
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Figure 7. Additional case studies on ERA5 surface wind prediction. a Case study of the ERA5 wind forecast from 2017-01-02 18:00.
The CogDPM successfully prediction the high wind region moving from mideast USA to the Great Lakes. FourCastNet overestimate
the moving spatial scale and underestimate its intensity for T=36h and T=48h. The inverse precision field of CogDPM indicate an
unpredictable region for mideast USA at T=48h where the prediction neglect. FourCastNet uncertainty focus on the east-south USA at
T=48, but is irrelevant with the truth field. Maps produced by the Cartopy package.
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Figure 8. Additional case studies on the United Kingdom precipitation dataset. In this case, the forecast results of CogDPM maintained
the bifurcated structure of the two squall lines and their precipitation range, with predicted locations closely matching actual observations.
On the other hand, the results of DGMR showed the two squall lines merging at 60 minutes, and the 90-minute forecast significantly
misreported the precipitation range. The precision field of CogDPM effectively described the boundaries of the precipitation range, while
the precision field of DGMR duplicated the predicted precipitation intensity information.
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