

000 001 002 003 004 005 REVIVEEDIT: ROBUST SEQUENTIAL EDITING VIA 006 DOMINANT SUBSPACE PRESERVATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

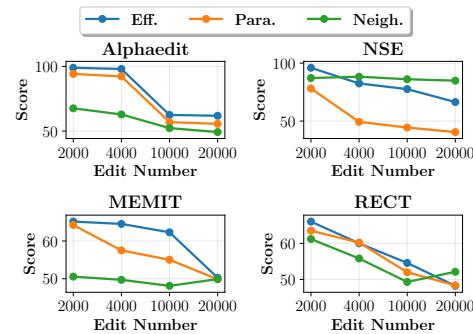
ABSTRACT

027 Sequential knowledge editing in large language models often causes catastrophic
028 collapse of the model’s general abilities, particularly for parameter-modifying
029 methods. Existing approaches attempt to mitigate this issue with heuristic con-
030 straints, but they lack a principled understanding of the underlying failure mech-
031 anism and overlook the structured impact of edits on model parameters. In this
032 work, we conduct a spectral analysis and identify a key failure mechanism: the
033 progressive corruption of the dominant singular subspace of weight matrices, a
034 low-rank subspace that we show is both crucial for encoding general abilities and
035 highly sensitive to perturbations. Based on this insight, we propose REVIVE, a
036 novel plug-and-play framework that prevents model collapse by explicitly pre-
037 serving this dominant subspace. REVIVE projects any given update onto the
038 singular vector basis of the original weight matrix and removes all components
039 that would interfere with the protected subspace. This allows new knowledge to
040 be integrated through less critical directions without damaging the model’s core
041 structure. Extensive experiments show that REVIVE substantially outperforms
042 existing methods, maintaining high editing efficacy and preserving general capa-
043 bilities even under extreme sequences of up to 20,000 edits.
044

1 INTRODUCTION

045 Large language models (LLMs) often generate outdated or incorrect information due to flawed pre-
046 training data or evolving real-world knowledge (Cao et al., 2021; Mitchell et al., 2022a; Sriramanan
047 et al., 2024). Knowledge editing (Meng et al., 2022b) addresses this issue by updating specific facts
048 in a lightweight and targeted manner. In practice, updates occur frequently, motivating the study of
049 **sequential editing**, where a model undergoes multiple edits over time (Fang et al., 2024; Jiang et al.,
050 2025b). This setting requires not only high edit success but also preservation of the model’s general
051 abilities (Gu et al., 2024), which poses particular challenges for parameter-modifying approaches,
052 which are the focus of this paper. To alleviate issues of forgetting and collapse, recent methods such
053 as RECT (Gu et al., 2024), NSE (Jiang et al., 2025b), PRUNE (Ma et al., 2024), and AlphaEdit
054 (Fang et al., 2024) impose constraints at different levels. Such methods are generally based on the
055 locate-then-edit paradigm, which first identifies the location of knowledge storage before updating
056 it, thus making the research focus on how to modify the located matrix \mathbf{W} .
057

058 Despite demonstrating some effectiveness, the per-
059 formance of existing methods remains unsatisfac-
060 tory under cumulative updates. As shown in Fig-
061 ure 1, mainstream methods exhibit steadily declin-
062 ing effectiveness as the number of edits increases.
063 We argue this is because existing methods largely
064 overlook how the update matrix $\Delta\mathbf{W}$ precisely in-
065 teracts with the original parameter matrix \mathbf{W} . This
066 oversight impedes the ability to control adverse side
067 effects from individual edits, ultimately leading to
068 model collapse under cumulative updates. Specif-
069 ically, methods such as RECT reduce harmful up-
070 dates by thresholding parameter magnitudes. How-
071 ever, due to the black-box nature of LLMs, merely
072



073 Figure 1: Results of current methods editing
074 COUNTERFACT with LLaMA3.
075

054 constraining the scale of $\Delta\mathbf{W}$ provides little insight into how general abilities or factual are actually
 055 affected. Neuron-level approaches like NSE modify specific neurons, but since individual neurons
 056 often encode entangled information, it remains challenging to precisely update facts without degrad-
 057 ing general capabilities. Matrix-level constraints, as employed by PRUNE, regulate the condition
 058 number of $\Delta\mathbf{W}$ but fail to provide a fine-grained characterization of the modified matrix $\mathbf{W} + \Delta\mathbf{W}$.
 059 Similarly, AlphaEdit projects updates into the null space of key input vectors to localize changes;
 060 however, this constraint is defined in the input activation space, not the intrinsic parameter space.
 061 Consequently, its updates can still unintentionally disrupt the fundamental structure of the weight
 062 matrix. None of these methods, therefore, possess a systematic mechanism to analyze how edits in-
 063 teract with the intrinsic structure of the original parameters, limiting their effectiveness in preventing
 064 collapse during sequential editing.

065 To address the issue of model collapse under the parameter-modifying paradigm in sequential edit-
 066 ing, we first conduct an in-depth analysis of the mainstream parameter-modifying methods (§ 2).
 067 Through spectral analysis of parameter matrices (§ 2.1) and preliminary experiments (§ 2.2), we
 068 find that the general abilities of LLMs are closely associated with subspaces spanned by the domi-
 069 nant singular values and their corresponding vectors. As edits accumulate, these dominant compo-
 070 nents are progressively perturbed, resulting in reduced editing success and impaired general ability.
 071 Based on these observations, we hypothesize that **model collapse in sequential editing is primarily**
 072 **caused by noise interfering with high-singular-value directions of weight matrices, which**
 073 **are essential for encoding general abilities.**

074 Building on this insight, we develop a **Robust sEquential editing Via domInant subspace**
 075 **preserVation framEwork (REVIVE)** (§ 3), which explicitly preserves the subspace spanned by the
 076 dominant singular values and vectors during sequential updates to prevent model collapse. Specifi-
 077 cally, the key idea is to align all updates with the singular vector basis of the original weight matrix,
 078 enabling fine-grained decomposition of how edits interact with intrinsic functional directions. Based
 079 on this representation, REVIVE identifies the dominant subspace via a spectral energy criterion and
 080 constructs safe updates by filtering out components that interfere with this critical region. In this
 081 way, REVIVE preserves the high singular directions essential for general abilities while still allow-
 082 ing factual knowledge to be integrated over long editing sequences, thereby avoiding the cumulative
 083 degradation observed in existing methods.

084 Our contributions can be summarized as follows:

- 085 • We empirically establish that a key mechanism behind model collapse in sequential editing is the
 086 interference of updates with the dominant singular subspace of the original parameter matrices.
- 087 • We introduce a novel plug-and-play framework REVIVE that explicitly preserves the subspace
 088 spanned by the dominant singular values and singular vectors. This enables fine-grained modeling
 089 of how update matrices affect the original parameters, thereby ensuring that the model’s general
 090 abilities are preserved during consecutive edits.
- 091 • We conduct extensive experiments on multiple models and benchmarks, demonstrating that RE-
 092 VIVE consistently and substantially outperforms state-of-the-art methods in both editing efficacy
 093 and the preservation of a model’s general abilities.

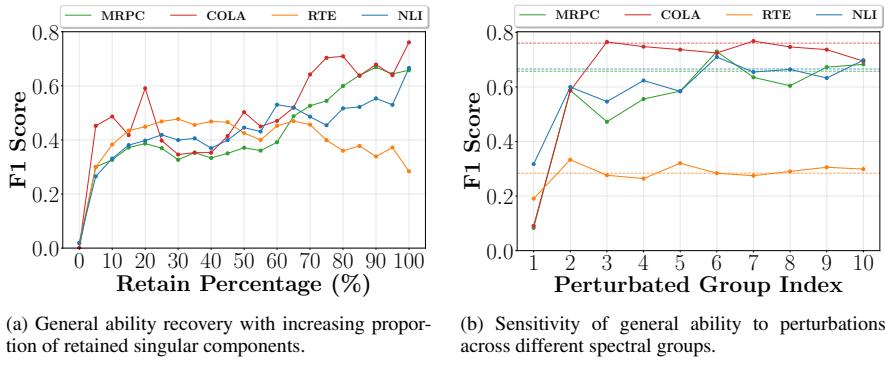
095 2 WHY SEQUENTIAL EDITING COLLAPSES: A SPECTRAL PERSPECTIVE

096 To understand why sequential editing leads to model collapse, this section presents a spectral anal-
 097 ysis of parameter matrices. As mainstream editing methods primarily target feed-forward network
 098 (FFN) layers for modification(Meng et al., 2022b;a), we ground our investigation in the FFN mat-
 099 rices of LLaMA3-8B. We first establish a view of each weight matrix as a composition of independent
 100 input-output mappings derived from its Singular Value Decomposition (SVD). This perspective al-
 101 lows us to investigate two critical questions: 1) Where are the model’s general abilities concentrated
 102 within these mappings? and 2) How robust are these crucial components to perturbation? We then
 103 empirically demonstrate how existing editing methods, like MEMIT, progressively distort these
 104 mappings, leading to performance degradation. These analyses provide the foundation for our cen-
 105 tral hypothesis: **sequential editing fails because the cumulative noise from updates corrupts**
 106 **the dominant singular directions of weight matrices, which are essential for encoding general**
 107 **abilities.**

108 2.1 SPECTRAL VIEW OF PARAMETER MATRICES AS INPUT-OUTPUT MAPPINGS
109110 From a spectral perspective, a parameter matrix $\mathbf{W} \in \mathbb{R}^{m \times n}$ can be decomposed into a set of
111 independent input-output mappings using Singular Value Decomposition (SVD):
112

113
$$\mathbf{W} = \mathbf{U}\Sigma\mathbf{V}^\top = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^\top, \quad (1)$$

114

115 where $\mathbf{U} \in \mathbb{R}^{m \times m}$ and $\mathbf{V} \in \mathbb{R}^{n \times n}$ contain the orthogonal left and right singular vectors, respec-
116 tively, and $\Sigma \in \mathbb{R}^{m \times n}$ contains the singular values $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r \geq 0$. Each rank-one
117 component $\sigma_i \mathbf{u}_i \mathbf{v}_i^\top$ acts as a distinct input-output mapping: an input vector $\mathbf{x} \in \mathbb{R}^n$ is projected
118 onto \mathbf{v}_i , scaled by σ_i , and expanded along \mathbf{u}_i to produce the output. The orthogonality of the singu-
119 lar vectors ensures these mappings operate independently. Pretraining learns this highly structured
120 functional decomposition, making it a critical component of the model’s general abilities (Wang
121 et al., 2024b). Consequently, parameter-modifying methods (Meng et al., 2022a;b) that alter these
122 matrices risk disrupting this fundamental structure.
123124 2.2 CONCENTRATION AND ROBUSTNESS OF GENERAL ABILITIES
125126 The spectral view raises two key questions: *where are general abilities concentrated among these*
127 *mappings, and how robust are these components under perturbations?* We address these through
128 two targeted experiments.
129141 Figure 2: Spectral concentration and fragility of general abilities.
142143 2.2.1 CONCENTRATION OF GENERAL ABILITIES.
144145 To locate where general abilities reside, we evaluate model performance on GLUE tasks (MRPC,
146 CoLA, RTE, NLI) (Wang et al., 2019) using weight matrices reconstructed from a subset of their
147 singular components. We define the singular value energy of an index set \mathcal{I} as $E_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \sigma_i$ and
148 reconstruct \mathbf{W} using the top components that capture $n\%$ of the total energy, $E_{\text{total}} = \sum_{i=1}^r \sigma_i$. This
149 reconstruction is given by: $\tilde{\mathbf{W}}^n = \sum_{i \in \mathcal{I}} \sigma_i \mathbf{u}_i \mathbf{v}_i^\top$.
150151 **Finding: General abilities are highly concentrated in the dominant singular subspace.** As
152 shown in Figure 2a, reconstructing weight matrices with just the top 5% of singular components (by
153 energy) is sufficient to recover about 62.6% of the model’s original accuracy. This finding confirms
154 that a model’s general capabilities are encoded within a small, low-rank subspace which is spanned
155 by the singular vectors corresponding to a few of the largest singular values.
156157 2.2.2 ROBUSTNESS OF DOMINANT SUBSPACE MAPPINGS.
158159 To evaluate the robustness of different singular components, we partition the singular components
160 into ten non-overlapping groups by cumulative energy (0–10%, ..., 90–100%). For each group \mathcal{G} ,
161 we inject a structured rank-one perturbation. First, a random perturbation matrix is generated:
162

163
$$\Delta = \sum_{j \in \mathcal{G}} \sum_{i=1}^r \alpha_{i,j} \mathbf{u}_i \mathbf{v}_j^\top, \quad \alpha_{i,j} \sim \mathcal{N}(0, 1). \quad (2)$$

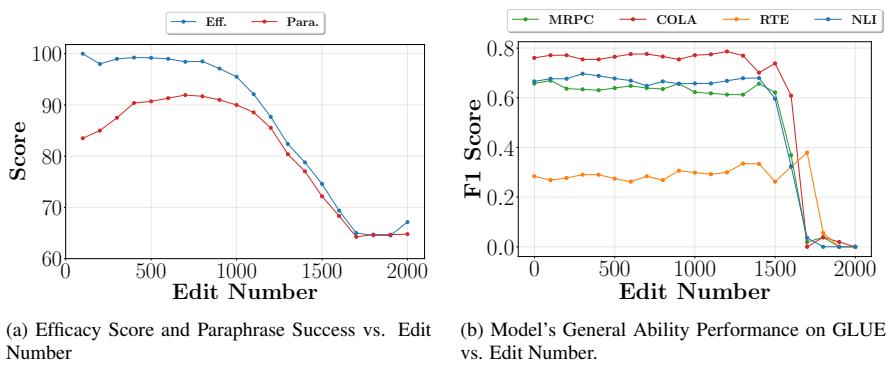
162 This matrix randomly remaps the input directions $\{v_j\}_{j \in G}$ to output directions. The perturbation
 163 is then normalized and scaled to a fixed strength: $\varepsilon: \tilde{\Delta} = \varepsilon \cdot \frac{\Delta}{\|\Delta\|_F}$. This ensures all perturbations
 164 have an equal Frobenius norm, allowing for a fair comparison. We then measure the impact of
 165 perturbed matrix $\mathbf{W}' = \mathbf{W} + \tilde{\Delta}$ on the model’s general performance. A symmetric analysis on
 166 output directions is in the Appendix F.1 and shows similar trends.
 167

168 **Finding: Modes associated with large singular values are highly sensitive to perturbations.**

169 As shown in Figure 2b, perturbations to the high-energy singular components (e.g., 0–20%) cause
 170 sharp and consistent degradation in performance. In contrast, perturbing the low-energy groups (70–
 171 100%) have only minor or negligible effects. These results reveal a paradoxical property: **the sub-
 172 spaces associated with the largest singular values, which are most crucial for general ability,
 173 are also the ones most susceptible to perturbations.** This fragility explains why indiscriminate pa-
 174 rameter updates in sequential editing can easily disrupt general ability by corrupting the high-energy
 175 singular modes.

2.3 HOW SEQUENTIAL EDITING CORRUPTS THE DOMINANT SUBSPACE

178 Having established that general abilities are concentrated in a fragile and dominant singular sub-
 179 space, we now analyze how these critical subspaces degrade during sequential editing progress. We
 180 introduce two spectral metrics and apply 2,000 edits from COUNTERFACT dataset to LLaMA3 us-
 181 ing MEMIT in 20 rounds (100 edits per round). We also conducted the same analytical experiments
 182 on AlphaEdit; results are deferred to Appendix F.2 due to space constraints. After each round, we
 183 evaluate the model’s editing performance on key metrics (Efficacy Score and Paraphrase Score),
 184 its general abilities on the GLUE benchmark, and our spectral metrics, in order to investigate the
 185 **correlation** between overall model performance and internal parameters changes.



196 Figure 3: Performance collapse during sequential editing.
 197

200 **Spectrum-based metrics.** We measure the stability of the dominant subspace (top 10% com-
 201 ponents by singular value energy) at both macroscopic and microscopic levels.

- 204 • **Low-rank Subspace Similarity (LS)** measures the macroscopic drift of the entire dominant sin-
 205 gular subspace. It is the cosine similarity between the reconstructed low-rank approximations of
 206 the original matrix $\hat{\mathbf{W}}_0$ and the edited matrix $\hat{\mathbf{W}}_t$ (where t denotes the editing round):

$$207 \quad \text{LS}_t = \frac{\langle \hat{\mathbf{W}}_t, \hat{\mathbf{W}}_0 \rangle_F}{\|\hat{\mathbf{W}}_t\|_F \|\hat{\mathbf{W}}_0\|_F}. \quad (3)$$

- 209 • **Singular Vector Similarity (SS)** provides a microscopic view by measuring how individual dom-
 210 inant singular vectors rotate. We compute the cosine similarity between a dominant singular vec-
 211 tor \mathbf{v}_t from the edited matrix \mathbf{W}_t and every original singular vector \mathbf{v}_j from \mathbf{W}_0 (a vector basis):
 212 $\text{SS}_t^j = \langle \mathbf{v}_t, \mathbf{v}_j \rangle$. Results for left singular vectors show the same trend, see Appendix F.3.

214 **Finding: Sequential editing causes model collapse precisely because it progressively corrupts**
 215 **the dominant singular subspace.** The evidence for this connection is clear across all levels of
 216 analysis. At the *behavioral level* (Figure 3a, 3b), both edit success and general ability decline

steadily after round 10, collapsing almost completely by round 20. This performance degradation is perfectly tracked at the *macroscopic level* by our Low-rank Subspace Similarity (LS) metric (Figure 4), which remains high initially before drifting and declining sharply after round 15. The *microscopic* cause of this drift is revealed by our Singular Vector Similarity (SS) metric (Figure 5), which shows that individual dominant singular vectors steadily rotate away from their original directions, becoming nearly orthogonal by round 20. This signifies a fundamental corruption of the learned input-output mappings. Together, these results provide strong evidence that model collapse is structurally rooted in the degradation of the dominant singular subspace.

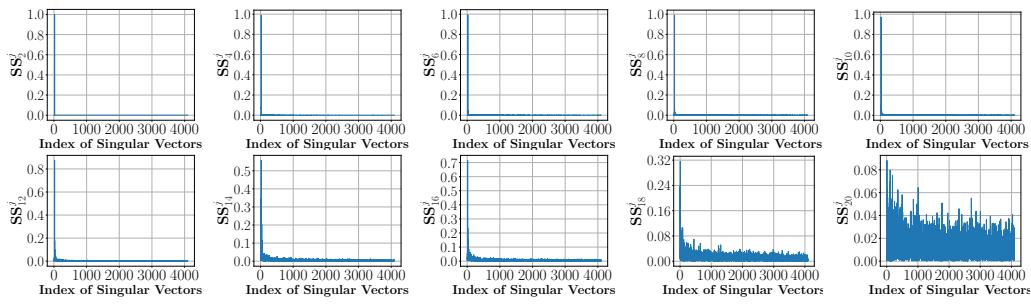
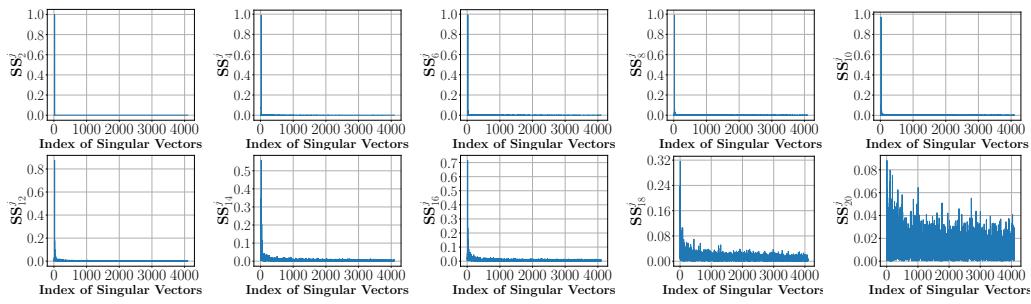
Figure 4: LS_t vs. Editing Rounds

Figure 5: Singular Vector Similarity (SS) across sequential edits (rounds 2-20, every 2 rounds).

3 METHODOLOGY

Our spectral analysis in Section 2 reveals a key mechanism behind model collapse in sequential editing: the cumulative corruption of the dominant singular subspace, which encodes the model’s general abilities. Motivated by this finding, we propose Robust Equential editing Via domInant subspace preserVation framEwork (REVIVE), designed to directly counteract this failure mechanism. The overall architecture is illustrated in Figure 6. The core idea of REVIVE is to represent and constrain edits within the singular vector basis of the original weight matrix. This allows us to first identify the dominant subspace critical for general abilities and then construct a safe update by surgically removing any components that would interfere with this protected region. The full algorithm is detailed in Appendix D.

3.1 SVD-ALIGNED DECOMPOSITION OF UPDATES

The foundation of our approach is to analyze any update matrix $\Delta\mathbf{W}$ within the intrinsic coordinate system defined by the original weight matrix \mathbf{W} . As shown in Equation (1), the SVD of \mathbf{W} provides its left and right singular vectors, $\{\mathbf{u}_i\}$ and $\{\mathbf{v}_j\}$. The set of their rank-one outer products, $\{\mathbf{u}_i\mathbf{v}_j^\top\}_{ij}$, forms a complete orthogonal basis for the matrix space $\mathbb{R}^{m \times n}$ (see Appendix C). We project an arbitrary update matrix $\Delta\mathbf{W}$, generated by any editing method, onto this SVD basis to decompose its effect along each of the original matrix’s functional directions:

$$\Delta\mathbf{W} = \sum_{i=1}^m \sum_{j=1}^n \alpha_{ij} \mathbf{u}_i \mathbf{v}_j^\top. \quad (4)$$

270 This decomposition provides a fine-grained view of the update. The coefficients $\alpha_{ij} =$
 271 $\langle \Delta\mathbf{W}, \mathbf{u}_i \mathbf{v}_j^\top \rangle_F$ precisely quantify how much the edit affects the mapping from each original input
 272 direction \mathbf{v}_j to each original output direction \mathbf{u}_i . This representation is key to precisely controlling
 273 the update’s impact.
 274

275 **3.2 DOMINANT SUBSPACE PROTECTION**
 276

277 The structure of \mathbf{W} is dominated by its larger singular values, which capture the most critical and sta-
 278 ble general ability learned during pretraining. Sequential editing, however, often introduces nonzero
 279 α_{ij} aligned with these dominant subspace mappings. While a single perturbation may have little ef-
 280 fect, their accumulation over long editing sequences erodes the high-singular subspace and leads to
 281 collapse. Our proposed Dominant Subspace Protection (DSP) module counters this problem through
 282 two steps: identifying the dominant subspace and constructing safe updates.
 283

284 **Dominant Subspace Identification.** To identify the critical components for preservation, we
 285 adopt an energy-based criterion. Specifically, we define a **singular-value energy threshold** $\tau \in$
 286 $(0, 1)$ (the impact of τ can be found in Section 4.2.) and select the smallest index k such that the
 287 cumulative energy of the top- k singular values exceeds this threshold:
 288

$$\frac{\sum_{i=1}^k \sigma_i}{\sum_{i=1}^r \sigma_i} \geq \tau \quad (5)$$

291 The singular vectors corresponding to these top- k singular values, $\{\mathbf{u}_i\}_{i=1}^k$ and $\{\mathbf{v}_i\}_{i=1}^k$, span the
 292 dominant input and output subspaces.
 293

294 **Safe Update Construction.** Once the dominant subspace is identified, we construct a *safe update*
 295 by removing all components of $\Delta\mathbf{W}$ associated with the dominant singular vectors. Concretely, we
 296 set any coefficient α_{ij} to zero if its corresponding input vector \mathbf{v}_j or output vector \mathbf{u}_i is part of
 297 the dominant subspace (i.e., if $j \leq k$ or $i \leq k$). The resulting safe update matrix, $\Delta\mathbf{W}_{\text{safe}}$, contains
 298 only components that operate outside of this protected region:
 299

$$\Delta\mathbf{W}_{\text{safe}} = \sum_{i>k} \sum_{j>k} \alpha_{ij} \mathbf{u}_i \mathbf{v}_j^\top. \quad (6)$$

301 This operation ensures that any modification is realized exclusively through low-energy directions,
 302 thereby avoiding interference with the dominant components that are essential for preserving general
 303 abilities.
 304

305 By explicitly shielding the dominant subspace from perturbation, REVIVE allows factual knowledge
 306 to be continuously integrated without corrupting the core components responsible for the model’s
 307 general abilities. As a result, the model maintains stability across long editing sequences and avoids
 308 the cumulative degradation that typically leads to catastrophic collapse.
 309

310 **4 EXPERIMENTS**
 311

312 **4.1 EXPERIMENT SETUP**
 313

314 **Base Models.** We conduct experiments on three widely adopted LLMs in the knowledge editing:
 315 GPT2-XL (1.5B) (Radford et al., 2019), GPT-J (6B) (Wang & Komatsuzaki, 2021), and LLaMA3
 316 (8B) (Grattafiori et al., 2024).
 317

318 **Baselines.** We compare REVIVE against a suite of strong baselines, including the canonical
 319 MEMIT (Meng et al., 2022b), as well as four state-of-the-art methods designed for sequential
 320 editing: ALPHAEDIT (Fang et al., 2024), PRUNE (Ma et al., 2024), RECT (Gu et al., 2024), and
 321 NSE (Jiang et al., 2025b). Further details and comparisons are available in Appendix E.1.
 322

323 **Datasets and Metrics.** We use two standard factual knowledge editing benchmarks, COUNTER-
 324 FACT (Meng et al., 2022b) and ZsRE (Levy et al., 2017). For ZsRE, we measure Efficacy, Para-
 325 phrase, and Neighborhood Scores. For COUNTERFACT, we add Fluency and Consistency metrics.
 326 Detailed definitions are provided in Appendix E.2, E.3, and E.4.
 327

324 Table 1: Performance on sequential editing over 10,000 Samples. The abbreviations *Eff.* (Efficacy Success),
 325 *Para.* (Paraphrase Success), *Neigh.* (Neighborhood Success), *Flu.* (Generation Entropy), and *Consis.* (Reference Score)
 326 denote respective evaluation metrics. Relative improvements (%) are shown in blue and decreases
 327 in orange. $\uparrow\uparrow$ indicates a large improvement where the baseline score was near zero.

328 Method	329 Counterfact					330 ZsRE		
	331 Eff.↑	332 Para.↑	333 Neigh.↑	334 Flu.↑	335 Consis.↑	336 Eff.↑	337 Para.↑	338 Neigh.↑
LLaMA3	7.02	9.44	89.73	635.47	24.24	35.67	34.81	31.83
MEMIT	62.3	55.02	48.11	522.1	4.4	0.08	0.08	1.36
+REVIVE	95.62 \uparrow 53.5%	84.60 \uparrow 53.8%	62.17 \uparrow 29.2%	603.22 \uparrow 15.5%	29.39 \uparrow 568.0%	83.45 $\uparrow\uparrow$	79.90 $\uparrow\uparrow$	32.01 $\uparrow\uparrow$
PRUNE	59.98	55.72	48.56	571.27	1.89	0.00	0.00	0.08
+REVIVE	80.57 \uparrow 34.3%	69.54 \uparrow 24.7%	54.76 \uparrow 12.8%	570.85 \downarrow 0.1%	28.49 $\uparrow\uparrow$	56.61 $\uparrow\uparrow$	53.30 $\uparrow\uparrow$	27.74 $\uparrow\uparrow$
RECT	60.23	54.9	50.56	441.61	5.08	0.00	0.00	0.00
+REVIVE	92.69 \uparrow 53.9%	79.95 \uparrow 45.6%	63.09 \uparrow 24.8%	600.13 \uparrow 35.9%	29.28 \uparrow 476.8%	84.20 $\uparrow\uparrow$	80.27 $\uparrow\uparrow$	31.92 $\uparrow\uparrow$
AlphaEdit	62.48	56.9	52.31	505.5	4.25	90.57	85.66	30.5
+REVIVE	98.74 \uparrow 58.0%	90.08 \uparrow 58.4%	60.19 \uparrow 15.1%	615.97 \uparrow 21.9%	32.66 \uparrow 668.5%	93.40 \uparrow 3.1%	89.31 \uparrow 4.3%	31.72 \uparrow 4.0%
NSE	77.59	44.42	86.12	607.86	23.31	45.61	45.04	31.27
+REVIVE	98.89 \uparrow 27.4%	92.28 \uparrow 107.8%	65.72 \downarrow 23.6%	618.66 \uparrow 1.8%	32.74 \uparrow 40.5%	94.37 \uparrow 107.0%	90.57 \uparrow 101.2%	32.17 \uparrow 2.9%
GPT-J	15.22	17.65	83.50	622.01	29.61	26.45	25.74	27.04
MEMIT	54.03	52.66	53.63	594.16	5.17	0.10	0.10	0.17
+REVIVE	97.63 \uparrow 80.7%	87.76 \uparrow 66.6%	66.52 \uparrow 24.1%	616.47 \uparrow 3.8%	40.69 \uparrow 687.4%	88.88 $\uparrow\uparrow$	83.22 $\uparrow\uparrow$	27.87 $\uparrow\uparrow$
PRUNE	52.92	51.47	53.91	576.95	5.14	0.03	0.02	0.05
+REVIVE	86.95 \uparrow 64.3%	81.03 \uparrow 57.5%	64.21 \uparrow 19.1%	583.05 \uparrow 1.1%	35.73 \uparrow 595.7%	63.08 $\uparrow\uparrow$	58.90 $\uparrow\uparrow$	26.03 $\uparrow\uparrow$
RECT	63.60	55.33	56.69	404.13	4.49	23.60	22.02	12.44
+REVIVE	94.96 \uparrow 49.4%	77.27 \uparrow 39.6%	67.78 \uparrow 19.6%	612.76 \uparrow 244.4%	38.69 \uparrow 761.7%	81.28 \uparrow 244.4%	74.78 \uparrow 239.6%	28.20 \uparrow 126.7%
AlphaEdit	96.51	86.76	60.80	544.18	19.33	87.84	78.65	22.31
+REVIVE	99.50 \uparrow 3.1%	93.92 \uparrow 8.3%	67.35 \uparrow 10.8%	600.64 \uparrow 10.4%	40.63 \uparrow 110.3%	97.53 \uparrow 11.0%	91.33 \uparrow 16.1%	23.40 \uparrow 4.9%
NSE	88.95	69.69	75.46	611.35	33.31	44.03	42.39	24.86
+REVIVE	94.88 \uparrow 6.7%	89.49 \uparrow 28.4%	64.06 \downarrow 15.1%	608.12 \downarrow 0.5%	40.18 \uparrow 20.6%	97.80 \uparrow 122.1%	91.75 \uparrow 116.4%	26.84 \uparrow 8.0%
GPT2-XL	21.82	24.16	78.32	626.69	31.34	22.17	21.28	24.20
MEMIT	70.56	62.42	55.94	516.26	8.74	53.00	46.27	12.76
+REVIVE	90.46 \uparrow 28.2%	75.88 \uparrow 21.5%	63.83 \uparrow 14.1%	598.21 \uparrow 15.9%	34.32 \uparrow 292.7%	68.20 \uparrow 28.7%	60.80 \uparrow 31.4%	27.09 \uparrow 112.4%
PRUNE	57.61	54.01	52.87	596.56	6.93	0.21	0.19	2.06
+REVIVE	82.00 \uparrow 42.4%	70.90 \uparrow 31.3%	62.82 \uparrow 18.8%	600.99 \uparrow 0.7%	34.55 \uparrow 398.1%	40.92 $\uparrow\uparrow$	37.61 $\uparrow\uparrow$	25.29 \uparrow 1127.2%
RECT	86.52	69.50	55.71	499.64	11.41	29.80	27.17	6.94
+REVIVE	82.99 \downarrow 4.1%	69.20 \downarrow 0.4%	65.60 \uparrow 17.7%	595.69 \uparrow 19.2%	34.05 \uparrow 198.3%	62.45 \uparrow 109.6%	55.17 \uparrow 103.0%	26.20 \uparrow 278.0%
AlphaEdit	92.13	76.80	56.85	581.49	31.72	53.00	46.27	12.76
+REVIVE	94.48 \uparrow 2.6%	78.70 \uparrow 2.5%	62.87 \uparrow 10.6%	587.94 \uparrow 1.1%	38.51 \uparrow 21.5%	68.10 \uparrow 28.5%	57.17 \uparrow 23.5%	20.35 \uparrow 59.4%
NSE	69.22	54.54	69.26	596.41	28.87	33.71	32.31	22.70
+REVIVE	96.12 \uparrow 38.8%	84.49 \uparrow 54.9%	64.17 \downarrow 7.4%	592.71 \downarrow 0.6%	37.74 \uparrow 30.9%	77.83 \uparrow 131.0%	70.55 \uparrow 118.4%	24.84 \uparrow 9.4%

4.2 RESULTS AND ANALYSIS

This section presents a comprehensive evaluation of REVIVE. We first demonstrate its effectiveness in a 10,000-edit sequential task, assessing both editing success and the preservation of general abilities. We then conduct further analyses of its robustness, including hyperparameter sensitivity, scalability to 20,000 edits, and a visualization of its ability to preserve representational structure.

Sequential Editing Performance. To validate the effectiveness of our REVIVE in sequential editing, we evaluate REVIVE’s performance over an extended sequence of 10,000 edits, applied in 100 rounds of 100 edits each, on the COUNTERFACT and ZsRE benchmarks. As shown in Table 1, applying REVIVE as a plug-and-play module leads to substantial and consistent performance gains across all base methods and models. The most dramatic improvements occur on the challenging ZsRE dataset, where methods like MEMIT and RECT quickly collapse to near-zero performance

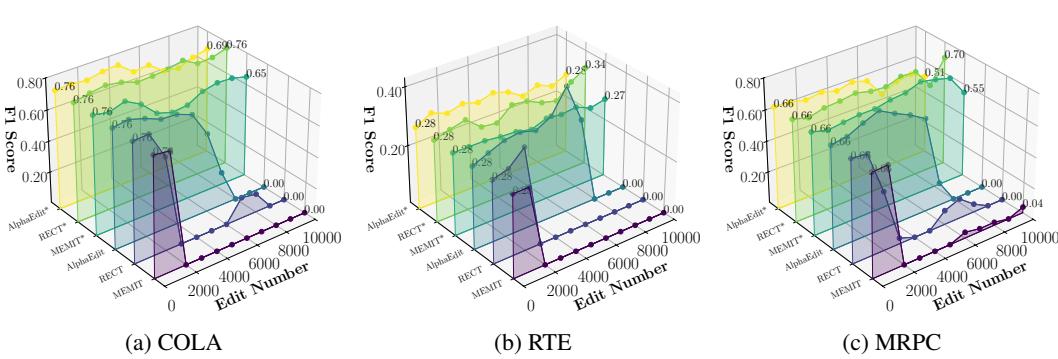


Figure 7: Performance of baselines and their REVIVE-enhanced versions (*) on GLUE datasets.

on their own. With REVIVE, however, they are not only stabilized but achieve high efficacy scores (e.g., 83.45% for MEMIT+REVIVE on LLaMA3), demonstrating that our method can rescue baselines from complete failure. Notably, the standard MEMIT+REVIVE combination consistently surpasses specialized sequential baselines like PRUNE and RECT, suggesting that proactively protecting the dominant subspace is a more effective strategy than post-hoc constraints. We note that for some methods like NSE, applying REVIVE leads to a numerical decrease in Neighborhood Success. This is likely because the baseline’s high score is an artifact of its low editing efficacy; an edit that fails to modify the model will trivially preserve neighborhood consistency. Therefore, REVIVE’s ability to achieve massive gains in Efficacy and Paraphrase while keeping Neighborhood Success high represents a more genuine and robust form of successful editing.

Preservation of General Abilities. To evaluate the ability of our method to preserve general abilities, we assess how well REVIVE preserves general abilities by evaluating the edited LLaMA3 model on the GLUE benchmark after 10,000 sequential edits. For brevity, we present results on three representative datasets in Figure 7 and include full results in Appendix F.4, as all datasets show consistent trends. As shown in Figure 7, baseline methods without protection degrade rapidly. MEMIT and RECT collapse to near-zero performance after only 3,000 edits, and even the more robust ALPHAEDIT eventually suffers a complete collapse after 8,000 edits. In contrast, REVIVE enhanced methods maintains an overall average 86.34% of its performance across all tasks after 10,000 edits. These results clearly demonstrate that shielding the dominant singular subspace is a highly effective strategy for preserving a model’s general abilities during sequential editing.

Sensitivity Analysis. We evaluate the stability of REVIVE by analyzing its sensitivity to its single intrinsic hyperparameter, the singular value energy threshold. This parameter (τ) is defined in Section 3.2, controls the size of the dominant subspace shielded from edits. A higher τ better preserves the model’s fragile general abilities but may limit edit capacity, while a lower τ allows for more impactful edits at the risk of corrupting critical singular directions. Figure 8 shows that REVIVE exhibits strong robustness, maintaining high performance across a wide range of τ values. This stability indicates that our method is not sensitive to the exact delineation of the dominant subspace and removes the need for costly hyperparameter tuning. Further hyperparameter results for all models are in Appendix F.5, and an additional analysis of batch size impact is provided

Scalability under Extreme Sequential Editing. To stress-test the scalability of REVIVE, we conduct experiments at a significantly larger scale on LLaMA3. We apply 20,000 sequential edits on COUNTERFACT (in 200 rounds of 100) and the full 19,086 edits on ZsRE. As shown in Figure 9, REVIVE continues to deliver substantial gains over the original base methods, averaging +75.1%

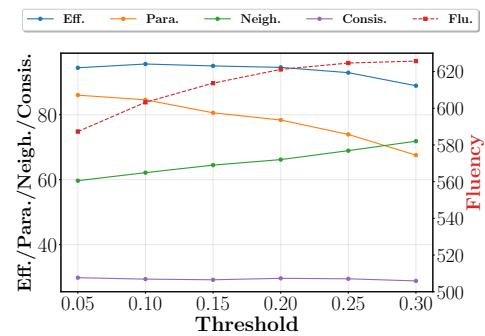


Figure 8: Performance of MEMIT-REVIVE on LLaMA3 (CounterFact) under different thresholds.

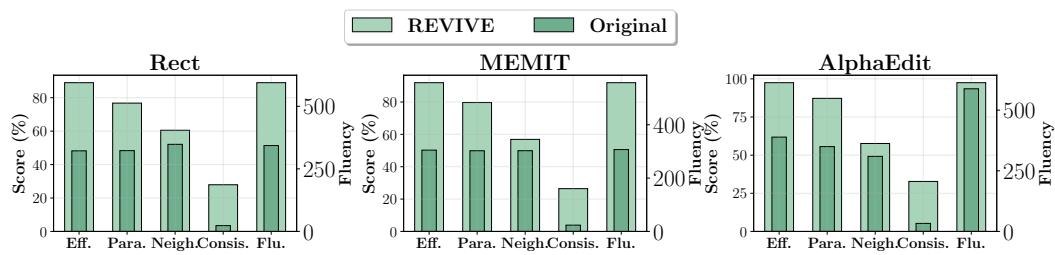


Figure 9: REVIVE vs. original methods under 20,000 sequential edits on COUNTERFACT.

in Efficacy and +53.1% in Fluency on Counterfact. Complete results for all metrics and methods, provided in Appendix F.7, demonstrate that our module effectively maintains editing performance even when the number of edits is significantly scaled up.

Visualization of Representational Stability. To visually inspect how sequential editing affects the model’s internal geometry, we use t-SNE (Maaten & Hinton, 2008) to visualize the representations of 1,000 factual prompts from LLaMA3, both before and after applying 20,000 edits. As illustrated in Figure 10, a strong baseline like ALPHAEDIT causes a noticeable distributional shift, where post-edit representations drift away from their original positions. In contrast, MEMIT+REVIVE keeps the post-edit representations tightly clustered with their original counterparts. This visualization offers powerful qualitative evidence for our core claim: by preserving the dominant subspace, REVIVE maintains not just downstream performance but also the fundamental representational structure of the model.

5 RELATED WORK

Our work focuses on parameter-modifying methods for knowledge editing. While early approaches (Mitchell et al., 2022a; Meng et al., 2022b) are effective for single edits, they often fail in sequential scenarios due to accumulating interference. To mitigate this, recent methods have introduced various heuristic constraints, such as enforcing sparsity (RECT (Gu et al., 2024)), controlling update condition numbers (PRUNE (Ma et al., 2024)), or projecting into a null space (ALPHAEDIT (Fang et al., 2024)). These approaches, however, target symptoms of degradation rather than the underlying cause. In contrast, our method is based on a spectral analysis that identifies the root cause of collapse as the corruption of dominant functional subspaces, and it intervenes directly to preserve them. A comprehensive review of the field is provided in Appendix E.7.

6 CONCLUSION

In this work, we investigated the critical challenge of model collapse in sequential knowledge editing. We conducted a spectral analysis that identified a key failure mechanism: the cumulative corruption of the dominant singular subspace of weight matrices, which is essential for preserving a model’s general abilities. To counteract this, we introduced REVIVE, a plug-and-play framework that safeguards this critical subspace. By projecting updates onto the SVD basis of the original weights and removing components that interfere with the dominant subspace, REVIVE allows for robust and scalable editing. Extensive experiments confirmed that our approach substantially improves editing efficacy and preserves general abilities far better than existing methods, even under extreme editing scenarios. Our findings provide a deeper, structural understanding of model collapse and offer a principled, effective solution to ensure the long-term stability of edited LLMs.

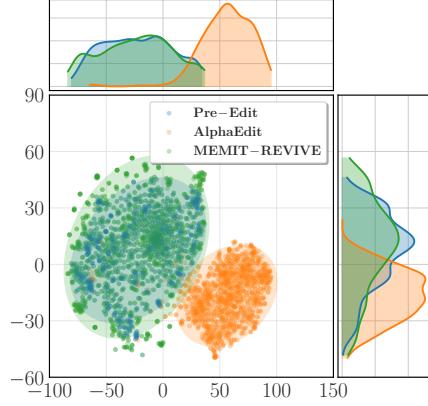


Figure 10: t-SNE visualization of representations after 20,000 sequential edits on LLaMA3.

486 ETHICAL CONSIDERATIONS
487

488 Our research focuses on improving the reliability of large language models by correcting factual
489 inaccuracies, which is a beneficial application of knowledge editing. The methods developed are
490 intended to enhance the safety and trustworthiness of AI systems. However, we acknowledge that
491 any model editing technology could potentially be misused for malicious purposes, such as injecting
492 biased or harmful information. Our proposed method, REVIVE, is designed to be a general-purpose
493 tool for stabilizing sequential edits and does not inherently favor any particular type of content. The
494 responsibility for the nature of the edited content lies with the user applying the method. Further-
495 more, all datasets used in our experiments (COUNTERFACT, ZSRE, GLUE) are standard, publicly
496 available academic benchmarks that have been widely vetted by the research community. We do not
497 foresee any direct negative societal impacts stemming from our work.

498 REPRODUCIBILITY STATEMENT
499

500 We are committed to ensuring the full reproducibility of our research. To this end, our source
501 code, is provided in the supplementary materials. Our work relies exclusively on publicly available
502 models (GPT2-XL, GPT-J, LLaMA3) and standard benchmarks (COUNTERFACT, ZSRE, GLUE),
503 as detailed in our Experimental Setup (§E.1). The theoretical underpinnings of our method are
504 described Section 3.1, with proofs provided in the Appendix C. All hyperparameters required to
505 reproduce our main results are also detailed in the Appendix E.6, providing a clear path for the
506 replication of our results.

507 REFERENCES
508

510 Luisa Bentivogli, Bernardo Magnini, Ido Dagan, Hoa Trang Dang, and Danilo Giampiccolo. The
511 fifth PASCAL recognizing textual entailment challenge. In *TAC*. NIST, 2009.

512 Yuchen Cai and Ding Cao. O-edit: Orthogonal subspace editing for language model sequential
513 editing. *arXiv preprint arXiv:2410.11469*, 2024.

514 Ding Cao, Yuchen Cai, Rongxi Guo, Xuesong He, and Guiquan Liu. Deltaedit: Enhancing se-
515 quential editing in large language models by controlling superimposed noise. *arXiv preprint
516 arXiv:2505.07899*, 2025.

517 Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
518 *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp.
519 6491–6506, 2021.

520 William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
521 In *IWP@IJCNLP*. Asian Federation of Natural Language Processing, 2005.

522 Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. Calibrating factual
523 knowledge in pretrained language models. In *Findings of the Association for Computational
524 Linguistics: EMNLP 2022*, pp. 5937–5947, 2022.

525 Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich
526 Schütze, and Yoav Goldberg. Measuring and improving consistency in pretrained language mod-
527 els. *Transactions of the Association for Computational Linguistics*, 9:1012–1031, 2021.

528 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Jie Shi, Xiang Wang, Xiangnan He, and
529 Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. In
530 *The Thirteenth International Conference on Learning Representations*, 2024.

531 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
532 key-value memories. In *Proceedings of the 2021 Conference on Empirical Methods in Natural
533 Language Processing*, pp. 5484–5495, 2021.

534 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
535 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
536 of models. *arXiv preprint arXiv:2407.21783*, 2024.

540 Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
 541 Peng. Model editing harms general abilities of large language models: Regularization to the
 542 rescue. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-*
 543 *cessing, EMNLP 2024*, pp. 16801–16819, 2024.

544 Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
 545 Aging with grace: Lifelong model editing with discrete key-value adaptors. *Advances in Neural*
 546 *Information Processing Systems*, 36:47934–47959, 2023.

547 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 548 Steinhardt. Measuring massive multitask language understanding. In *The Ninth International*
 549 *Conference on Learning Representations*, 2021.

550 Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
 551 Transformer-patcher: One mistake worth one neuron. In *The Eleventh International Conference*
 552 *on Learning Representations*, 2023.

553 Houcheng Jiang, Junfeng Fang, Ningyu Zhang, Mingyang Wan, Guojun Ma, Xiang Wang, Xiangnan
 554 He, and Tat-Seng Chua. Anyedit: Edit any knowledge encoded in language models. In *Forty-*
 555 *second International Conference on Machine Learning*, 2025a.

556 Houcheng Jiang, Junfeng Fang, Tianyu Zhang, Baolong Bi, An Zhang, Ruipeng Wang, Tao Liang,
 557 and Xiang Wang. Neuron-level sequential editing for large language models. In Wanxiang Che,
 558 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the*
 559 *63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 560 2025, pp. 16678–16702, 2025b.

561 Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
 562 reading comprehension. In *21st Conference on Computational Natural Language Learning*,
 563 *CoNLL 2017*, pp. 333–342. Association for Computational Linguistics (ACL), 2017.

564 Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. Perturbation-restrained
 565 sequential model editing. In *The Thirteenth International Conference on Learning Representa-*
 566 *tions*, 2024.

567 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine*
 568 *learning research*, 9(Nov):2579–2605, 2008.

569 Aman Madaan, Niket Tandon, Peter Clark, and Yiming Yang. Memory-assisted prompt editing to
 570 improve GPT-3 after deployment. In *Proceedings of the 2022 Conference on Empirical Methods*
 571 *in Natural Language Processing, EMNLP 2022*, pp. 2833–2861, 2022.

572 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 573 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022a.

574 Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 575 memory in a transformer. In *The Eleventh International Conference on Learning Representations*,
 576 2022b.

577 Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
 578 model editing at scale. In *The Tenth International Conference on Learning Representations*,
 579 2022a.

580 Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
 581 based model editing at scale. In *International Conference on Machine Learning*, pp. 15817–
 582 15831. PMLR, 2022b.

583 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 584 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

585 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
 586 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
 587 treebank. In *Conference on Empirical Methods in Natural Language Processing.*, pp. 1631–1642,
 588 2013.

594 Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kat-
 595 takinda, and Soheil Feizi. Llm-check: Investigating detection of hallucinations in large language
 596 models. *Advances in Neural Information Processing Systems*, 37:34188–34216, 2024.

597
 598 Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning.
 599 In *The Twelfth International Conference on Learning Representations*, 2024.

600
 601 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
 602 GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
 603 *The Seventh International Conference on Learning Representations*, 2019.

604 Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model,
 605 2021.

606
 607 Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
 608 and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
 609 language models. *Advances in Neural Information Processing Systems*, 37:53764–53797, 2024a.

610
 611 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
 612 decomposition for large language model compression. In *The Thirteenth International Conference
 613 on Learning Representations*, 2024b.

614 Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
 615 *Trans. Assoc. Comput. Linguistics*, 7:625–641, 2019.

616
 617 Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus for
 618 sentence understanding through inference. In *NAACL-HLT*, pp. 1112–1122. Association for Com-
 619 putational Linguistics, 2018.

620
 621 Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
 622 dynamic lora. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 623 19449–19457, 2024.

624
 625 Mengqi Zhang, Xiaotian Ye, Qiang Liu, Pengjie Ren, Shu Wu, and Zhumin Chen. Knowledge graph
 626 enhanced large language model editing. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
 627 Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
 628 Processing, EMNLP 2024*, pp. 22647–22662, 2024a.

629
 630 Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou,
 631 Xi Chen, and Huajun Chen. Instructedit: Instruction-based knowledge editing for large language
 632 models. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelli-
 633 gence*, 2024, pp. 6633–6641, 2024b.

634
 635 Ningyu Zhang, Zekun Xi, Yujie Luo, Peng Wang, Bozhong Tian, Yunzhi Yao, Jintian Zhang,
 636 Shumin Deng, Mengshu Sun, Lei Liang, et al. Oneedit: A neural-symbolic collaboratively knowl-
 637 edge editing system. *Proceedings of the VLDB Endowment. ISSN*, 2150:8097, 2024c.

638 Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
 639 we edit factual knowledge by in-context learning? In *Proceedings of the 2023 Conference on
 640 Empirical Methods in Natural Language Processing, EMNLP 2023*, pp. 4862–4876, 2023.

641 A USAGE OF LARGE LANGUAGE MODELS

642
 643 In the preparation of this work, large language models (LLMs) have been utilized to assist in sev-
 644 eral stages of writing. In particular, LLMs played a significant role in polishing the manuscript by
 645 improving readability and correcting grammatical issues. Moreover, they provided valuable assis-
 646 tance in certain aspects of data visualization, such as generating and refining plotting scripts, which
 647 streamlined the experimental analysis process.

648 **B LIMITATIONS & FUTURE DISCUSSION**
649
650651 While our work demonstrates the effectiveness of preserving the dominant singular subspace, we
652 acknowledge several limitations that open avenues for future research.653 First, our method relies on a one-time SVD of the original weight matrices, which may bring additional
654 computational and storage cost. Future work could explore more efficient, decomposition-free
655 methods for identifying and protecting these critical subspaces.656 Second, while REVIVE protects the subspace critical for general abilities, it does not guarantee
657 every specific pieces of knowledge is preserved. This can lead to perturbation in metrics like Neigh-
658 borhood Success, as observed with NSE. Designing a more precise, knowledge-aware subspace
659 protection mechanism that distinguishes between general abilities and specific facts is a promising
660 direction for future work.661 Third, our analysis and experiments have primarily focused on the feed-forward network layers.
662 While these are critical for knowledge storage, extending this spectral analysis to other components
663 like attention mechanisms is an important next step.664
665
666 **C COMPARISON WITH EXISTING PROJECTION-BASED EDITING APPROACHES**
667
668669 In this section, we offer a detailed exposition of how the REVIVE framework differs from existing
670 projection-based editing approaches. We further analyze the usability, computational effectiveness,
671 and scalability of REVIVE within the singular-vector space, and articulate the considerations that
672 motivate its post-hoc projection design.673 **Difference from AlphaEdit.** Although both methods involve applying projection to parameter
674 updates, the underlying motivations are fundamentally different. AlphaEdit(Fang et al., 2024) as-
675 sumes that sequential degradation is caused by knowledge interference and constructs a knowledge
676 covariance matrix from 100k factual triples to extract a null space that avoids such interference. Its
677 preserved subspace therefore comes from *external knowledge statistics*.678 In contrast, our analysis identifies a different failure mode—*erosion of the dominant singular sub-*
679 *space* of FFN parameters—which encodes general model abilities. REVIVE thus protects the *in-*
680 *trinsic dominant subspace* derived from the model’s own spectral structure. While both approaches
681 use projections in form, the protected subspaces and the mechanisms they address are fundamentally
682 different. This distinction also explains behavioral differences: AlphaEdit performs well early on
683 but begins to deteriorate around 8k edits, whereas methods augmented with REVIVE remain stable
684 beyond 20k edits.685
686
687 **Difference from PRUNE.** PRUNE(Ma et al., 2024) directly suppresses update singular values
688 larger than the maximum singular value of the original parameter matrix, without distinguishing the
689 directions associated with those singular values. This magnitude-only suppression cannot effectively
690 preserve the model’s functional subspace and may attenuate useful update components while allow-
691 ing harmful ones to remain. In contrast, REVIVE explicitly preserves dominant singular directions
692 and filters only components that would distort them, addressing a type of degradation that PRUNE
693 is not designed to handle.694
695 **Difference from Delta-Edit and O-Edit.** Delta-Edit(Cao et al., 2025) and O-Edit(Cai & Cao,
696 2024) track directions of previous edits and project new updates to avoid overwriting past changes.
697 Their protected subspaces are derived from *accumulated edit history* and address inter-edit inter-
698 ference. REVIVE targets a different failure mode: progressive corruption of the dominant singular
699 subspace of FFN parameters (energy decay and directional rotation), which arises even when edits
700 are unrelated. Accordingly, REVIVE preserves the dominant singular directions of the parameter
701 matrix rather than historical edit directions.

702 **C PROOF OF THE SVD-ALIGNED MATRIX BASIS**
 703

704 This section provides the formal proof for the claim made in Section 3.1 that the set of rank-one
 705 outer products $\{\mathbf{u}_i \mathbf{v}_j^\top\}_{i,j}$ derived from the singular vectors of a matrix \mathbf{W} , forms an orthonormal
 706 basis for the space of matrices $\mathbb{R}^{m \times n}$.

707 **Theorem 1** (Outer-product bases from two orthonormal vector bases). *Let $\{\mathbf{u}_1, \dots, \mathbf{u}_m\} \subset \mathbb{R}^m$
 708 and $\{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subset \mathbb{R}^n$ be orthonormal bases of \mathbb{R}^m and \mathbb{R}^n respectively. Consider the set of mn
 709 matrices*

$$710 \quad \mathcal{B} = \{ \mathbf{u}_p \mathbf{v}_q^\top : p = 1, \dots, m, q = 1, \dots, n \}.$$

711 *Then \mathcal{B} forms an orthonormal basis of the real vector space $\mathbb{R}^{m \times n}$ with respect to the Frobenius
 712 inner product $\langle \mathbf{X}, \mathbf{Y} \rangle_F = \text{tr}(\mathbf{X}^\top \mathbf{Y})$. In particular, every $\mathbf{X} \in \mathbb{R}^{m \times n}$ admits the unique expansion*

$$714 \quad \mathbf{X} = \sum_{p=1}^m \sum_{q=1}^n c_{pq} \mathbf{u}_p \mathbf{v}_q^\top, \quad c_{pq} = \langle \mathbf{X}, \mathbf{u}_p \mathbf{v}_q^\top \rangle_F = \mathbf{u}_p^\top \mathbf{X} \mathbf{v}_q.$$

717 *Proof.* We split the proof into three parts: (i) orthogonality, (ii) spanning (completeness), and (iii)
 718 uniqueness / coefficient formula.

720 **(i) Orthogonality.** Take two generic elements $\mathbf{u}_p \mathbf{v}_q^\top$ and $\mathbf{u}_{p'} \mathbf{v}_{q'}^\top$ from \mathcal{B} . Their Frobenius inner
 721 product is

$$722 \quad \langle \mathbf{u}_p \mathbf{v}_q^\top, \mathbf{u}_{p'} \mathbf{v}_{q'}^\top \rangle_F = \text{tr}((\mathbf{u}_p \mathbf{v}_q^\top)^\top (\mathbf{u}_{p'} \mathbf{v}_{q'}^\top)) = \text{tr}(\mathbf{v}_q \mathbf{u}_p^\top \mathbf{u}_{p'} \mathbf{v}_{q'}^\top).$$

723 By cyclicity of the trace,

$$724 \quad \langle \mathbf{u}_p \mathbf{v}_q^\top, \mathbf{u}_{p'} \mathbf{v}_{q'}^\top \rangle_F = (\mathbf{u}_p^\top \mathbf{u}_{p'})(\mathbf{v}_q^\top \mathbf{v}_{q'}).$$

725 Since $\{\mathbf{u}_p\}$ and $\{\mathbf{v}_q\}$ are orthonormal bases, we have

$$727 \quad \mathbf{u}_p^\top \mathbf{u}_{p'} = \delta_{pp'}, \quad \mathbf{v}_q^\top \mathbf{v}_{q'} = \delta_{qq'},$$

728 where δ_{ij} is the Kronecker delta:

$$729 \quad \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

731 Therefore,

$$732 \quad \langle \mathbf{u}_p \mathbf{v}_q^\top, \mathbf{u}_{p'} \mathbf{v}_{q'}^\top \rangle_F = \delta_{pp'} \delta_{qq'}.$$

734 In particular, if either $p \neq p'$ or $q \neq q'$, then one of the Kronecker deltas vanishes, making the inner
 735 product equal to 0. This proves that distinct basis elements are orthogonal.

736 **(ii) Spanning (completeness).** The vector space $\mathbb{R}^{m \times n}$ has dimension mn . We have produced mn
 737 elements in \mathcal{B} which are mutually orthonormal; mutual orthonormality implies linear independence.
 738 Because we have exactly mn linearly independent matrices in an mn -dimensional space, \mathcal{B} must
 739 span $\mathbb{R}^{m \times n}$, and therefore forms a basis.

740 For a constructive argument, let $\mathbf{X} \in \mathbb{R}^{m \times n}$ be arbitrary. Define coefficients

$$742 \quad c_{pq} = \langle \mathbf{X}, \mathbf{u}_p \mathbf{v}_q^\top \rangle_F = \mathbf{u}_p^\top \mathbf{X} \mathbf{v}_q.$$

743 Form the matrix

$$745 \quad \widehat{\mathbf{X}} = \sum_{p=1}^m \sum_{q=1}^n c_{pq} \mathbf{u}_p \mathbf{v}_q^\top.$$

747 For any fixed indices (p', q') we compute

$$748 \quad \langle \widehat{\mathbf{X}}, \mathbf{u}_{p'} \mathbf{v}_{q'}^\top \rangle_F = \sum_{p,q} c_{pq} \langle \mathbf{u}_p \mathbf{v}_q^\top, \mathbf{u}_{p'} \mathbf{v}_{q'}^\top \rangle_F = \sum_{p,q} c_{pq} \delta_{pp'} \delta_{qq'} = c_{p'q'}.$$

750 But by definition $c_{p'q'} = \langle \mathbf{X}, \mathbf{u}_{p'} \mathbf{v}_{q'}^\top \rangle_F$, hence

$$752 \quad \langle \widehat{\mathbf{X}} - \mathbf{X}, \mathbf{u}_{p'} \mathbf{v}_{q'}^\top \rangle_F = 0 \quad \text{for all } p', q'.$$

754 Since \mathcal{B} spans the space, the only matrix orthogonal to every basis element is the zero matrix;
 755 therefore $\widehat{\mathbf{X}} - \mathbf{X} = \mathbf{0}$, proving $\mathbf{X} = \widehat{\mathbf{X}}$. This provides an explicit expansion of any matrix in the
 basis \mathcal{B} , proving completeness.

756 **(iii) Uniqueness and coefficient formula.** Orthogonality gives immediately that the coefficients
 757 are unique and equal to the Frobenius inner products:
 758

$$759 \quad c_{pq} = \langle \mathbf{X}, \mathbf{u}_p \mathbf{v}_q^\top \rangle_F = \mathbf{u}_p^\top \mathbf{X} \mathbf{v}_q.$$

760 This completes the proof. Therefore, using the \mathbf{u} and \mathbf{v} matrices obtained from the SVD of a matrix
 761 to construct such outer-product basis matrices is valid and well-founded. \square
 762

763 D ALGORITHM DETAILS
 764

766 **Algorithm 1** REVIVE
 767

768 **Require:** Current weight matrix $\mathbf{W} \in \mathbb{R}^{m \times n}$; update matrix $\Delta\mathbf{W}$; singular-value energy threshold
 769 $\tau \in (0, 1)$

770 **Ensure:** Safe update $\Delta\mathbf{W}_{\text{safe}}$

771 1: **SVD-Aligned Decomposition:**
 772 2: $\{\mathbf{u}_i\}_{i=1}^m, \{\sigma_i\}_{i=1}^r, \{\mathbf{v}_i\}_{i=1}^n = \text{SVD}(\mathbf{W})$
 773 3: Construct orthogonal basis $\{\mathbf{u}_i \mathbf{v}_j^\top \mid i = 1, \dots, m; j = 1, \dots, n\}$
 774 4: **for** $i = 1$ to m **do**
 775 5: **for** $j = 1$ to n **do**
 776 6: $\alpha_{ij} \leftarrow \langle \Delta\mathbf{W}, \mathbf{u}_i \mathbf{v}_j^\top \rangle_F$
 777 7: **end for**
 778 8: **end for**
 779 9: Represent update as $\Delta\mathbf{W} = \sum_{i=1}^m \sum_{j=1}^n \alpha_{ij} \mathbf{u}_i \mathbf{v}_j^\top$
 780 10: **Dominant Subspace Identification:**
 781 11: Find smallest k s.t. $\frac{\sum_{i=1}^k \sigma_i}{\sum_{i=1}^r \sigma_i} \geq \tau$
 782 12: Define dominant subspace $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}, \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$
 783 13: **Safe Update Construction:**
 784 14: Initialize $\Delta\mathbf{W}_{\text{safe}} \leftarrow 0$
 785 15: **for** $i = 1$ to m **do**
 786 16: **for** $j = 1$ to n **do**
 787 17: **if** $i > k$ **and** $j > k$ **then**
 788 18: $\Delta\mathbf{W}_{\text{safe}} \leftarrow \Delta\mathbf{W}_{\text{safe}} + \alpha_{ij} \mathbf{u}_i \mathbf{v}_j^\top$
 789 19: **end if**
 790 20: **end for**
 791 21: **end for**
 792 22: **return** $\Delta\mathbf{W}_{\text{safe}}$

793 E EXPERIMENTAL DETAIL
 794

795 E.1 BASELINES

796 • **MEMIT** (Meng et al., 2022b) is the first method to support large-scale knowledge injection across
 797 multiple layers. It exploits the key–value structure (Geva et al., 2021) of FFNs and improves upon
 798 ROME by restricting updates to a contiguous set of layers, allowing thousands of new facts to be
 799 inserted in one pass. However, MEMIT does not consider sequential editing, leaving space for
 800 later improvements.

801 • **RECT** (Gu et al., 2024)RECT is designed to mitigate the degradation of general abilities during
 802 sequential editing. It observes that general ability performance declines as more edits are applied,
 803 and addresses this by updating parameters based on the magnitude of change in individual weights.
 804 However, as our earlier analysis suggests, general abilities are governed by mappings between
 805 directions rather than individual parameters. Consequently, RECT remains too **localized** at the
 806 parameter level and fails to effectively preserve general abilities in long-horizon sequential editing.

807 • **PRUNE** (Ma et al., 2024) is specifically designed for sequential editing with the goal of protecting
 808 the general abilities of LLMs. From the perspective of matrix conditioning, it constrains the
 809

810 maximum singular value of the update matrix so that it does not exceed that of the original parameter matrix, thereby reducing the risk of collapse. However, unlike our method, PRUNE does not filter the directions associated with large singular values, which may weaken knowledge retention. 811 Moreover, its constraint only limits singular values to remain below a threshold, effectively attenuating but not eliminating the influence of noise. As a result, PRUNE still struggles to maintain 812 general abilities under long-horizon sequential editing.

813

- 814 • **NSE** (Jiang et al., 2025b) is a method specifically designed for sequential knowledge editing. It 815 preserves the original parameters during update computation, ensuring that each new edit does 816 not interfere with previously injected knowledge. Inspired by the key–value view of FFN layers 817 (Geva et al., 2021), NSE treats each (k, v) pair as a neuron and uses activation values to identify 818 those neurons most relevant to the current update, restricting parameter changes within this subset. 819 While this reduces unnecessary disturbance to the model, neuron-level selection alone cannot fully 820 protect general abilities due to the problem of *superposition*, where a single neuron may encode 821 multiple orthogonal directions. As a result, NSE still fails to maintain general abilities under 822 long-horizon sequential editing.
- 823 • **AlphaEdit** (Fang et al., 2024) is a method specifically designed for sequential knowledge editing. It 824 constructs a protection subspace for previously stored knowledge by collecting 100K 825 (subject, relation, object) triples from Wikipedia. During subsequent edits, parameter updates 826 are projected onto the null space of this protection subspace to prevent interference with existing 827 knowledge. However, based on our earlier analysis, sequential editing primarily perturbs the 828 subspace associated with general abilities rather than factual knowledge alone. Thus, the choice 829 of protection subspace in AlphaEdit is not sufficiently precise. As shown in our experiments, AlphaEdit 830 can withstand more editing steps compared to other baselines, but eventually still suffers 831 from a collapse of general abilities.

832

E.2 DATASETS

833

- 834 • **ZsRE** Levy et al. (2017) is a question-answering (QA) dataset. Each sample contains a subject 835 string and a corresponding answer, which serve as the editing target to assess **Efficacy**. To evaluate 836 **Paraphrase**, it utilizes rephrased questions generated through back-translation. Following prior 837 work, it employs out-of-scope Natural Questions to measure **Neighborhood** (also referred to as 838 **Locality**).
- 839 • **Counterfact** Meng et al. (2022b) is a more challenging dataset that contrasts Counterfactual with 840 factual statements. Each record is derived from an entry in the PARAREL dataset Elazar et al. 841 (2021), with all entities originating from WikiData. It uses metrics similar to ZsRE to evaluate 842 **Efficacy Score**, **Paraphrase Score**, and **Neighborhood Score**. For its out-of-scope data, it re- 843 places the subject entity with an approximate entity that shares the same predicate. Furthermore, 844 Counterfact uniquely includes multiple generation prompts with the same meaning to test the 845 **Fluency**(Generation Entropy) and **Consistency**(Reference Score) of the generated text.

846

E.3 ZsRE METRICS

847 In line with prior work (Meng et al., 2022a;b), we define the evaluation metrics on the ZSRE dataset. 848 Given a language model f_θ , a factual prompt (s_i, r_i) , its target output o_i , and the model’s pre-edit 849 prediction o_i^c , the following metrics are used:

850

- 851 • **Efficacy**: This metric reflects the model’s accuracy on the edited samples, computed as the average 852 top-1 success rate:

$$\mathbb{E}_i \left\{ o_i = \arg \max_o \mathbb{P}_{f_\theta}(o \mid (s_i, r_i)) \right\}. \quad (7)$$

853

- 854 • **Paraphrase**: This measures how well the model transfers the edit to paraphrased forms of (s_i, r_i) , 855 denoted as $N((s_i, r_i))$. It is defined as the average top-1 accuracy over these rephrasings:

$$\mathbb{E}_i \left\{ o_i = \arg \max_o \mathbb{P}_{f_\theta}(o \mid N((s_i, r_i))) \right\}. \quad (8)$$

861

- 862 • **Neighborhood**: This evaluates whether unrelated prompts $O(s_i, r_i)$ remain unaffected by the edit. 863 It is measured as the proportion of cases where predictions for such prompts stay consistent:

$$\mathbb{E}_i \left\{ o_i^c = \arg \max_o \mathbb{P}_{f_\theta}(o \mid O((s_i, r_i))) \right\}. \quad (9)$$

864 E.4 COUNTERFACT METRICS
865

866 In line with prior work (Meng et al., 2022a;b), we further define the metrics used in the Counterfact
867 benchmark. Given a language model f_θ , a factual prompt (s_i, r_i) , a target output o_i , and the model’s
868 pre-edit prediction o_i^c , we define:

- 870 • **Efficacy Score:** The fraction of cases where, for the prompt (s_i, r_i) , the target o_i receives higher
871 probability than the original output o_i^c :

$$872 \mathbb{E}_i [\mathbb{P}_{f_\theta}[o_i | (s_i, r_i)] > \mathbb{P}_{f_\theta}[o_i^c | (s_i, r_i)]] . \quad (10)$$

- 874 • **Paraphrase Score:** The proportion of paraphrased prompts $N((s_i, r_i))$ where the edited output
875 o_i is ranked higher than the original response o_i^c :

$$876 \mathbb{E}_i [\mathbb{P}_{f_\theta}[o_i | N((s_i, r_i))] > \mathbb{P}_{f_\theta}[o_i^c | N((s_i, r_i))]] . \quad (11)$$

- 878 • **Neighborhood Score:** The proportion of semantically related but distinct prompts $O((s_i, r_i))$
879 where the model maintains correct predictions, assigning higher probability to o_i over o_i^c :

$$880 \mathbb{E}_i [\mathbb{P}_{f_\theta}[o_i | O((s_i, r_i))] > \mathbb{P}_{f_\theta}[o_i^c | O((s_i, r_i))]] . \quad (12)$$

- 881 • **Fluency:** A measure of output repetition, defined using the entropy of the n-gram distribution:

$$883 -\frac{2}{3} \sum_k g_2(k) \log_2 g_2(k) + \frac{4}{3} \sum_k g_3(k) \log_2 g_3(k), \quad (13)$$

885 where $g_n(\cdot)$ denotes the frequency distribution over n -grams.

- 886 • **Consistency:** This evaluates how consistent the model’s generations are with external references.
887 Given a subject s , we compute the cosine similarity between TF-IDF embeddings of the model’s
888 text and the corresponding Wikipedia article about o .

890 E.5 DETAILS OF GLUE
891

892 GLUE (Wang et al., 2019) is a comprehensive benchmark, and this paper leverages the following
893 six subtasks:

- 894 • **SST** (Socher et al., 2013) (Stanford Sentiment Treebank): A single-sentence classification task
895 based on movie reviews, where the goal is to predict binary sentiment labels.
- 897 • **MRPC** (Dolan & Brockett, 2005) (Microsoft Research Paraphrase Corpus): A sentence-pair task
898 aiming to identify whether two sentences are semantically equivalent.
- 899 • **MMLU** (Hendrycks et al., 2021) (Massive Multi-task Language Understanding): A broad bench-
900 mark covering diverse subjects, designed to evaluate models under zero-shot and few-shot condi-
901 tions.
- 902 • **RTE** (Bentivogli et al., 2009) (Recognizing Textual Entailment): A natural language inference
903 task where the objective is to determine if a premise entails its corresponding hypothesis.
- 904 • **CoLA** (Warstadt et al., 2019) (Corpus of Linguistic Acceptability): A single-sentence classifica-
905 tion benchmark that tests whether sentences are grammatically acceptable.
- 907 • **NLI** (Williams et al., 2018) (Natural Language Inference): A task requiring models to infer the
908 logical relationship between a premise and a hypothesis.

909 E.6 METHOD IMPLEMENTATION DETAILS
910

911 All experiments based on GPT-J and LLaMA3 are conducted on NVIDIA A800 GPUs with 80GB
912 memory, while experiments involving GPT2-XL are performed on NVIDIA RTX 4090 GPUs with
913 24GB memory. For baselines, we directly adopt the official implementations of ALPHAEDIT and
914 NSE without modifying their original hyperparameter configurations. The only additional hyperpa-
915 rameter introduced by our method is the singular value projection threshold. Following the results
916 in Appendix F.5, we consistently set this threshold to preserve the top 10% singular values across
917 all models. This choice is justified as our projection strategy is independent of the specific baseline
but only depends on the underlying model.

918 E.7 RELATED WORK (FULL VERSION)
919

920 **Parameter-Preserving Methods.** Parameter-preserving approaches maintain the base model’s pa-
921 rameters unchanged and instead incorporate external mechanisms to realize edits. A common di-
922 rection is to attach additional modules that store and retrieve edited knowledge. For example,
923 SERAC (Mitchell et al., 2022b) introduces an auxiliary memory with a Counterfactual model,
924 CaliNet (Dong et al., 2022) and T-Patcher (Huang et al., 2023) insert neuron-based units, and
925 GRACE (Hartvigsen et al., 2023) organizes edits in a dynamic codebook. MELO (Yu et al., 2024)
926 uses additional LoRA-style adapters to preserve original parameters, while WISE (Wang et al.,
927 2024a) improves stability and general ability with dual-memory and conflict-free sharding. Another
928 line of work performs edits through prompting: MemPrompt (Madaan et al., 2022) and IKE (Zheng
929 et al., 2023) rely on injecting new facts into the input context. More recent efforts combine symbolic
930 structures with neural editing, such as OneEdit (Zhang et al., 2024c), which leverages knowledge
931 graphs for collaborative knowledge updates.

932 **Parameter-Modifying Methods.** Parameter-modifying methods directly update the model’s
933 weights to encode new knowledge. Meta-learning based techniques predict parameter shifts through
934 hypernetworks, including MEND (Mitchell et al., 2022a), MALMEN (Tan et al., 2024), and In-
935 structEdit (Zhang et al., 2024b). Locate-then-edit methods first determine the locations where
936 knowledge is stored and then apply targeted modifications. Typical examples are ROME (Meng
937 et al., 2022a), which computes updates using closed-form equations, MEMIT (Meng et al., 2022b),
938 which scales editing to batches, GLAME (Zhang et al., 2024a), which integrates knowledge graphs,
939 and AnyEdit (Jiang et al., 2025a), which recursively edits knowledge of arbitrary structure. When
940 edits are carried out in a sequential manner, however, additional difficulties arise. Consecutive up-
941 dates can accumulate interference and eventually harm model performance. To counter these issues,
942 several improvements have been proposed: RECT (Gu et al., 2024) enforces sparsity on update
943 parameters at single parameter level, PRUNE (Ma et al., 2024) controls the condition number of pa-
944 rameter updates, AlphaEdit (Fang et al., 2024) constrains modifications to a null space of previous
945 stored knowledge, and NSE (Jiang et al., 2025b) select the modification position that contributes the
946 most to knowledge storage based on the activation values of the neurons.

947 F DETAILED EXPERIMENT RESULTS
948949 F.1 ROBUSTNESS UNDER OUTPUT-SIDE PERTURBATIONS ACROSS SINGULAR VALUE
950 GROUPS.

951 **Symmetric Output-side Perturbation.** To complement the input-side analysis in the main text,
952 we also evaluate robustness under *output-side perturbations*. Specifically, for a chosen group of left
953 singular vectors \mathcal{H} (partitioned by cumulative energy of singular values in the same way as before),
954 we inject structured rank-one perturbations of the form:

$$956 \quad \Delta = \sum_{i \in \mathcal{H}} \sum_{j=1}^r \beta_{i,j} \mathbf{u}_i \mathbf{v}_j^\top, \quad \beta_{i,j} \sim \mathcal{N}(0, 1).$$

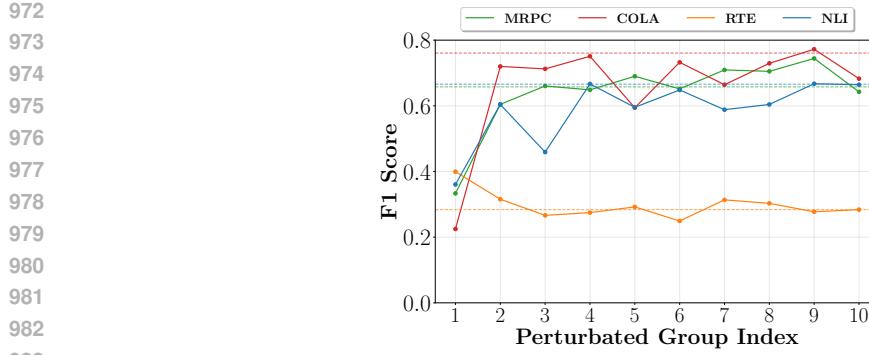
955 The perturbation is normalized and scaled to fixed strength as

$$956 \quad \tilde{\Delta} = \varepsilon \cdot \frac{\Delta}{\|\Delta\|_F}.$$

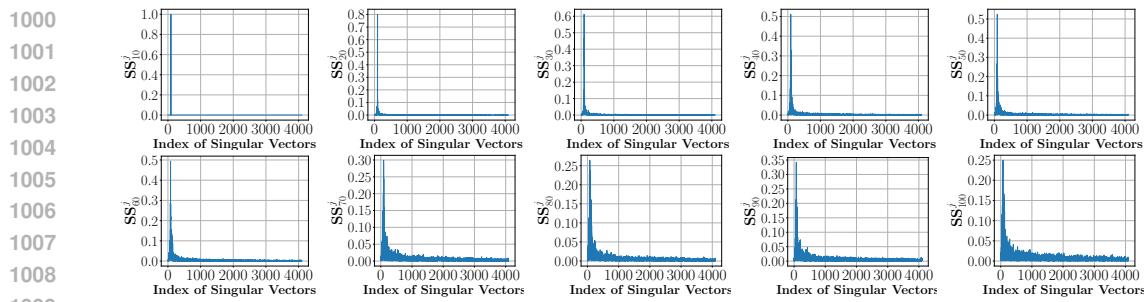
957 The resulting perturbed weight matrix is $\mathbf{W}' = \mathbf{W} + \tilde{\Delta}$, which can be interpreted as altering
958 the *input representation* of selected outputs $\{\mathbf{u}_i\}_{i \in \mathcal{H}}$ (left singular vector) into random mixtures of
959 all inputs $\{\mathbf{v}_j\}_{j=1}^r$ (right singular vector). We report the corresponding robustness curves across
960 different output groups in Figure 11, and the observed trends are consistent with the input-side
961 perturbation experiments.

962 F.2 A SPECTRUM ANALYSIS COMPARISON BETWEEN ALPHAEDIT AND MEMIT-REVIVE
963

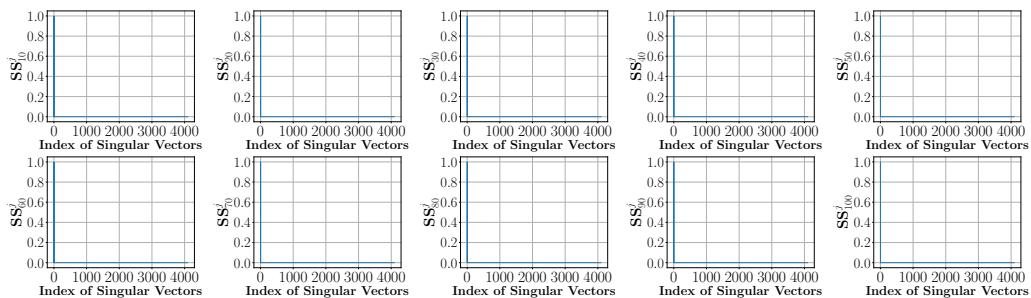
964 In Section 2.3, we present the SS performance of MEMIT under long editing sequences, where
965 we observe that significant shifts in critical subspace singular vectors emerge after around twenty



988 rounds of editing. In this section, we analyze and record the SS dynamics of the current strongest
989 baseline, ALPHAEDIT, under long-sequence editing, and compare them with MEMIT-REVIVE.
990 The experimental setup involves editing 10,000 samples (100 samples per round for 100 rounds)
991 from the COUNTERFACT dataset on the LLAMA3 model. As illustrated in Figure 12, ALPHAEDIT
992 maintains relatively small shifts in the critical subspace vectors during the early editing rounds, but
993 its maximum SS inevitably decreases as editing proceeds. By the end of the editing process, the
994 maximum SS drops below 0.3, which aligns with its performance degradation on the GLUE bench-
995 mark in Figure 7. In contrast, MEMIT-REVIVE consistently preserves an SS maximum value of
996 1 throughout the entire editing sequence (as illustrated in Figure 13), indicating the stability of its
997 critical vector subspace, which also corresponds well with its stable performance on GLUE. Over-
998 all, these results demonstrate that our REVIVE method effectively safeguards the critical vector
999 subspace, ensuring that the model’s general capabilities remain stable under long-sequence editing.



1024 Figure 12: Evolution of SS of AlphaEdit over sequential editing, from SS_{10} to SS_{100} with
1025 step size 10.



1024 Figure 13: Evolution of SS of MEMIT-REVIVE over sequential editing, from SS_{10} to SS_{100} with
1025 step size 10.

1026
1027

F.3 A FINE-GRAINED ANALYSIS ON LEFT VECTORS CHANGES

1028
1029
1030

In the main text, we report the variations of the right singular vectors, while here we illustrate the changes of the left singular vectors. It can be observed from Figure 14 that both exhibit essentially the same trend.

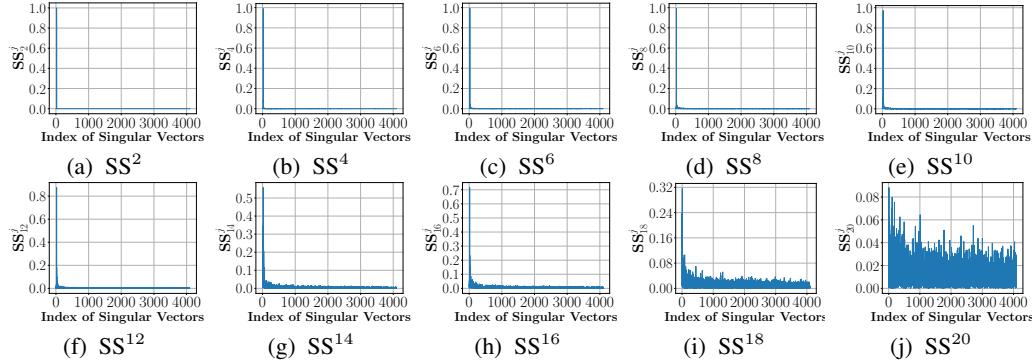
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

Figure 14: Evolution of Left Singular Vector Similarity (SS) over sequential editing from SS_2 to SS_{20} with step size 2.

1044

F.4 FULL GLUE RESULTS

1045
1046
1047
1048

Here, we present the remaining GLUE evaluation metrics that were omitted in Section 4.2 due to space constraints. The results of the rest three datasets are presented in Figure 15.

1049
1050
1051

F.5 FULL THRESHOLD EXPERIMENTS RESULTS

1052
1053
1054
1055
1056
1057
1058
1059
1060

Since the projection threshold is primarily related to the model itself and less influenced by the chosen method, we only present the performance variation of MEMIT-REVIVE across three different models with respect to the projection threshold. The detailed changes in editing metrics with varying thresholds are recorded in Table 2, while Figure 16 shows the variation in the LLaMA3 model's performance on the GLUE benchmark with different projection thresholds. Note that the GPT-J and GPT2-XL models, due to their relatively poor performance on GLUE even before editing, are not included in the results presented here.

1061
1062

F.6 ANALYSIS ON BATCHSIZE

1063
1064
1065
1066
1067
1068
1069

Here, we investigate the model's robustness to the edit batch size. We conduct an experiment with a fixed total of 5,000 editing samples from COUNTERFACT, while varying the batch size per edit as 100, 200, and 500. As shown in Figure 17, prior baselines are highly sensitive to changes in batch size. This observation supports our earlier hypothesis: as the number of edits increases, perturbations along specific input–output directions accumulate, leading to model collapse. In contrast, when our REVIVE is integrated, the baselines exhibit stable performance that does not fluctuate significantly with batch size.

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

F.7 REVIVE ENHANCED BASELINES UNDER EXTREME SETTINGS

Here, we further present the complete results of the REVIVE method under extreme test conditions, including its performance on the ZsRE dataset, which was not shown in the main text.

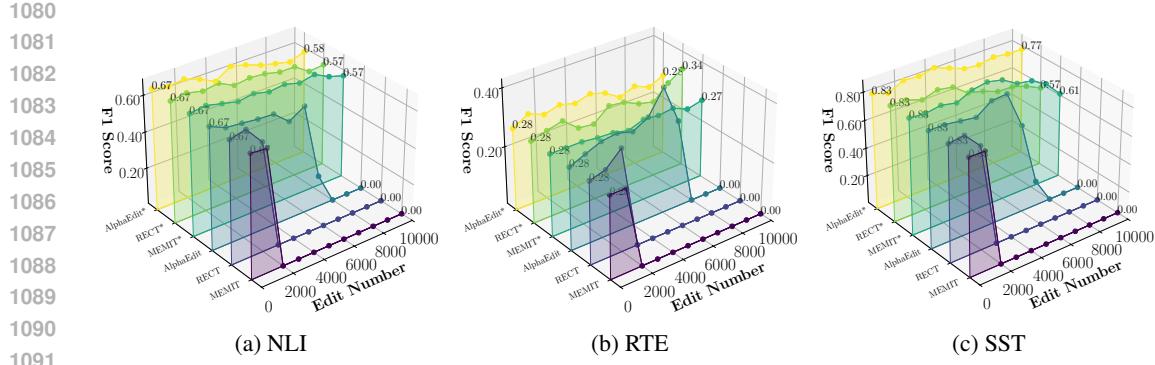


Figure 15: Baseline and corresponding REVIVE version(*) performance on GLUE across datasets.

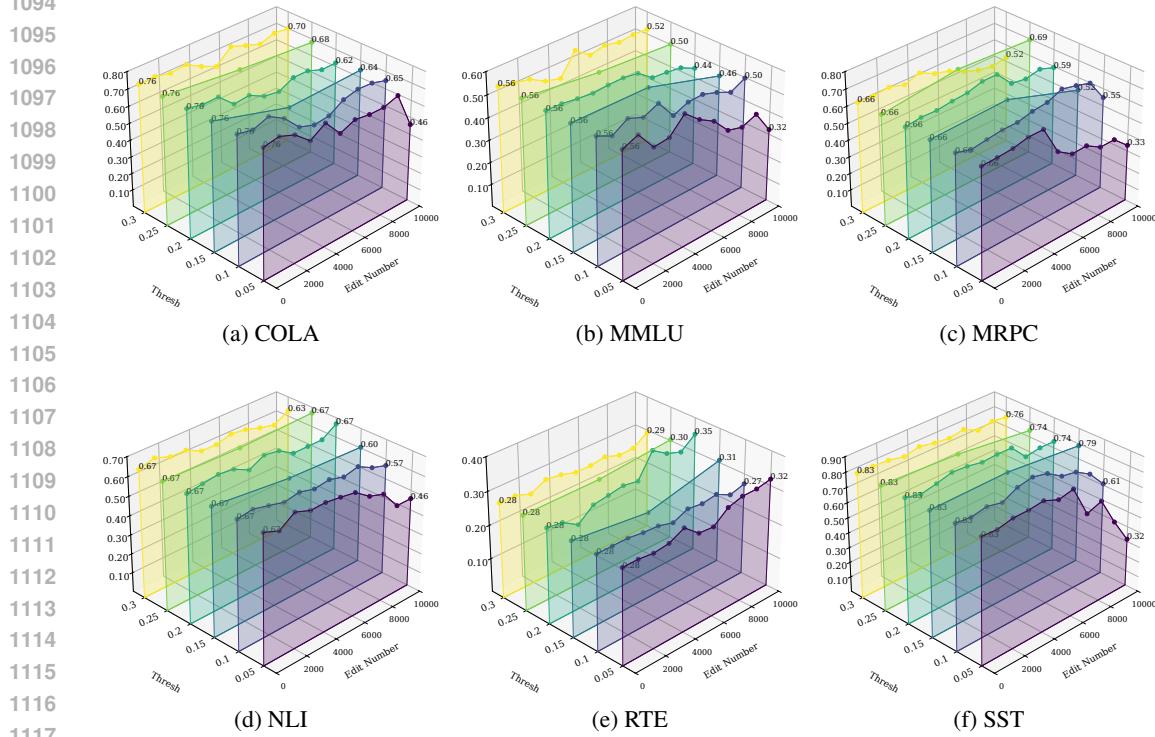


Figure 16: GLUE evaluation results on LLaMA3 after 10,000 edits on the CounterFact dataset using MEMIT-REVIVE with different protection thresholds.

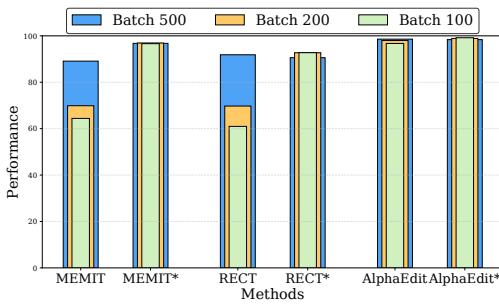


Figure 17: Performance of methods and their REVIVE-enhanced versions under different batch sizes. * denotes methods with REVIVE.

1134
 1135
 1136
 1137
 1138
Table 2: Performance results of MEMIT-REVIVE on sequential editing task under different singular value
 1139
 energy thresholds (10,000 Samples from CounterFact).

Model	Thresh	Counterfact					ZsRE		
		Eff.↑	Para.↑	Neigh.↑	Flu.↑	Consis.↑	Eff.↑	Para.↑	Neigh.↑
LLaMA3	0.05	94.46	86.03	59.70	587.30	29.83	78.66	75.89	29.29
	0.10	95.62	84.60	62.17	603.22	29.39	86.56	83.07	31.88
	0.15	95.03	80.60	64.49	613.66	29.19	87.10	83.36	32.41
	0.20	94.58	78.38	66.19	621.15	29.63	86.85	83.46	32.75
	0.25	92.96	73.94	68.94	624.63	29.49	83.85	80.23	33.27
	0.30	88.94	67.56	71.86	625.68	28.84	81.18	77.81	33.02
GPT-J	0.05	91.23	83.72	57.26	596.20	33.29	78.50	73.19	27.44
	0.10	97.09	87.01	67.10	616.15	40.00	83.87	77.28	29.77
	0.15	96.74	81.20	69.98	617.42	39.63	88.57	82.87	29.15
	0.20	94.95	76.59	72.13	621.01	38.36	85.83	79.97	29.27
	0.25	92.84	69.42	74.15	621.61	37.19	81.67	74.67	27.59
	0.30	88.49	64.30	74.94	623.53	36.66	81.32	73.54	28.56
GPT2-XL	0.05	91.89	80.72	61.13	575.14	32.12	62.13	55.40	25.90
	0.10	90.82	77.24	63.73	595.36	34.28	63.34	55.29	25.93
	0.15	87.82	73.39	65.89	607.06	35.33	66.19	58.40	27.13
	0.20	83.10	66.95	68.44	615.17	35.46	64.53	57.45	26.60
	0.25	78.77	61.82	69.66	618.28	35.17	58.11	51.80	26.89
	0.30	73.03	57.28	71.12	621.46	34.60	57.05	51.15	26.42

1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
Table 3: Performance results of REVIVE enhanced Baseline under extreme sequential editing (20000 edits).
 1176

Model	Method	Counterfact					ZsRE		
		Eff.↑	Para.↑	Neigh.↑	Flu.↑	Consis.↑	Eff.↑	Para.↑	Neigh.↑
LLaMA3	MEMIT-REVIVE	91.94	79.67	56.90	557.61	26.44	84.11	79.85	32.92
	RECT-REVIVE	89.00	76.78	60.54	594.38	27.93	79.35	76.35	30.24
	AlphaEdit-REVIVE	97.50	87.24	57.65	613.22	32.77	92.62	88.25	31.31
	NSE-REVIVE	98.50	90.38	61.78	615.65	33.23	93.91	89.67	31.58