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ABSTRACT

Sequential knowledge editing in large language models often causes catastrophic
collapse of the model’s general abilities, particularly for parameter-modifying
methods. Existing approaches attempt to mitigate this issue with heuristic con-
straints, but they lack a principled understanding of the underlying failure mech-
anism and overlook the structured impact of edits on model parameters. In this
work, we conduct a spectral analysis and identify a key failure mechanism: the
progressive corruption of the dominant singular subspace of weight matrices, a
low-rank subspace that we show is both crucial for encoding general abilities and
highly sensitive to perturbations. Based on this insight, we propose REVIVE, a
novel plug-and-play framework that prevents model collapse by explicitly pre-
serving this dominant subspace. REVIVE projects any given update onto the
singular vector basis of the original weight matrix and removes all components
that would interfere with the protected subspace. This allows new knowledge to
be integrated through less critical directions without damaging the model’s core
structure. Extensive experiments show that REVIVE substantially outperforms
existing methods, maintaining high editing efficacy and preserving general capa-
bilities even under extreme sequences of up to 20, 000 edits.

1 INTRODUCTION

Large language models (LLMs) often generate outdated or incorrect information due to flawed pre-
training data or evolving real-world knowledge (Cao et al., 2021; Mitchell et al., 2022a; Sriramanan
et al., 2024). Knowledge editing (Meng et al., 2022b) addresses this issue by updating specific facts
in a lightweight and targeted manner. In practice, updates occur frequently, motivating the study of
sequential editing, where a model undergoes multiple edits over time (Fang et al., 2024; Jiang et al.,
2025b). This setting requires not only high edit success but also preservation of the model’s general
abilities (Gu et al., 2024), which poses particular challenges for parameter-modifying approaches,
which are the focus of this paper. To alleviate issues of forgetting and collapse, recent methods such
as RECT (Gu et al., 2024), NSE (Jiang et al., 2025b), PRUNE (Ma et al., 2024), and AlphaEdit
(Fang et al., 2024) impose constraints at different levels. Such methods are generally based on the
locate-then-edit paradigm, which first identifies the location of knowledge storage before updating
it, thus making the research focus on how to modify the located matrix W.

2000 4000 10000 20000
Edit Number

50

100

S
co

re

Alphaedit

2000 4000 10000 20000
Edit Number

50

100

S
co

re

NSE

2000 4000 10000 20000
Edit Number

50

60

S
co

re

MEMIT

2000 4000 10000 20000
Edit Number

50

60

S
co

re

RECT

Eff. Para. Neigh.

Figure 1: Results of current methods editing
COUNTERFACT with LLaMA3.

Despite demonstrating some effectiveness, the per-
formance of existing methods remains unsatisfac-
tory under cumulative updates. As shown in Fig-
ure 1, mainstream methods exhibit steadily declin-
ing effectiveness as the number of edits increases.
We argue this is because existing methods largely
overlook how the update matrix ∆W precisely in-
teracts with the original parameter matrix W. This
oversight impedes the ability to control adverse side
effects from individual edits, ultimately leading to
model collapse under cumulative updates. Specif-
ically, methods such as RECT reduce harmful up-
dates by thresholding parameter magnitudes. How-
ever, due to the black-box nature of LLMs, merely
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constraining the scale of ∆W provides little insight into how general abilities or factual are actually
affected. Neuron-level approaches like NSE modify specific neurons, but since individual neurons
often encode entangled information, it remains challenging to precisely update facts without degrad-
ing general capabilities. Matrix-level constraints, as employed by PRUNE, regulate the condition
number of ∆W but fail to provide a fine-grained characterization of the modified matrix W+∆W.
Similarly, AlphaEdit projects updates into the null space of key input vectors to localize changes;
however, this constraint is defined in the input activation space, not the intrinsic parameter space.
Consequently, its updates can still unintentionally disrupt the fundamental structure of the weight
matrix. None of these methods, therefore, possess a systematic mechanism to analyze how edits in-
teract with the intrinsic structure of the original parameters, limiting their effectiveness in preventing
collapse during sequential editing.

To address the issue of model collapse under the parameter-modifying paradigm in sequential edit-
ing, we first conduct an in-depth analysis of the mainstream parameter-modifying methods (§ 2).
Through spectral analysis of parameter matrices (§ 2.1) and preliminary experiments (§ 2.2), we
find that the general abilities of LLMs are closely associated with subspaces spanned by the domi-
nant singular values and their corresponding vectors. As edits accumulate, these dominant compo-
nents are progressively perturbed, resulting in reduced editing success and impaired general ability.
Based on these observations, we hypothesize that model collapse in sequential editing is primar-
ily caused by noise interfering with high-singular-value directions of weight matrices, which
are essential for encoding general abilities.

Building on this insight, we develop a Robust sEquential editing Via domInant subspace
preserVation framEwork (REVIVE) (§ 3), which explicitly preserves the subspace spanned by the
dominant singular values and vectors during sequential updates to prevent model collapse. Specifi-
cally, the key idea is to align all updates with the singular vector basis of the original weight matrix,
enabling fine-grained decomposition of how edits interact with intrinsic functional directions. Based
on this representation, REVIVE identifies the dominant subspace via a spectral energy criterion and
constructs safe updates by filtering out components that interfere with this critical region. In this
way, REVIVE preserves the high singular directions essential for general abilities while still allow-
ing factual knowledge to be integrated over long editing sequences, thereby avoiding the cumulative
degradation observed in existing methods.

Our contributions can be summarized as follows:

• We empirically establish that a key mechanism behind model collapse in sequential editing is the
interference of updates with the dominant singular subspace of the original parameter matrices.

• We introduce a novel plug-and-play framework REVIVE that explicitly preserves the subspace
spanned by the dominant singular values and singular vectors. This enables fine-grained modeling
of how update matrices affect the original parameters, thereby ensuring that the model’s general
abilities are preserved during consecutive edits.

• We conduct extensive experiments on multiple models and benchmarks, demonstrating that RE-
VIVE consistently and substantially outperforms state-of-the-art methods in both editing efficacy
and the preservation of a model’s general abilities.

2 WHY SEQUENTIAL EDITING COLLAPSES: A SPECTRAL PERSPECTIVE

To understand why sequential editing leads to model collapse, this section presents a spectral anal-
ysis of parameter matrices. As mainstream editing methods primarily target feed-forward network
(FFN) layers for modification(Meng et al., 2022b;a), we ground our investigation in the FFN matri-
ces of LLaMA3-8B. We first establish a view of each weight matrix as a composition of independent
input-output mappings derived from its Singular Value Decomposition (SVD). This perspective al-
lows us to investigate two critical questions: 1) Where are the model’s general abilities concentrated
within these mappings? and 2) How robust are these crucial components to perturbation? We then
empirically demonstrate how existing editing methods, like MEMIT, progressively distort these
mappings, leading to performance degradation. These analyses provide the foundation for our cen-
tral hypothesis: sequential editing fails because the cumulative noise from updates corrupts
the dominant singular directions of weight matrices, which are essential for encoding general
abilities.
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2.1 SPECTRAL VIEW OF PARAMETER MATRICES AS INPUT-OUTPUT MAPPINGS

From a spectral perspective, a parameter matrix W ∈ Rm×n can be decomposed into a set of
independent input-output mappings using Singular Value Decomposition (SVD):

W = UΣV⊤ =

r∑
i=1

σiuiv
⊤
i , (1)

where U ∈ Rm×m and V ∈ Rn×n contain the orthogonal left and right singular vectors, respec-
tively, and Σ ∈ Rm×n contains the singular values σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. Each rank-one
component σiuiv

⊤
i acts as a distinct input-output mapping: an input vector x ∈ Rn is projected

onto vi, scaled by σi, and expanded along ui to produce the output. The orthogonality of the singu-
lar vectors ensures these mappings operate independently. Pretraining learns this highly structured
functional decomposition, making it a critical component of the model’s general abilities(Wang
et al., 2024b). Consequently, parameter-modifying methods (Meng et al., 2022a;b) that alter these
matrices risk disrupting this fundamental structure.

2.2 CONCENTRATION AND ROBUSTNESS OF GENERAL ABILITIES

The spectral view raises two key questions: where are general abilities concentrated among these
mappings, and how robust are these components under perturbations? We address these through
two targeted experiments.
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(a) General ability recovery with increasing propor-
tion of retained singular components.
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(b) Sensitivity of general ability to perturbations
across different spectral groups.

Figure 2: Spectral concentration and fragility of general abilities.

2.2.1 CONCENTRATION OF GENERAL ABILITIES.

To locate where general abilities reside, we evaluate model performance on GLUE tasks (MRPC,
CoLA, RTE, NLI) (Wang et al., 2019) using weight matrices reconstructed from a subset of their
singular components. We define the singular value energy of an index set I as EI =

∑
i∈I σi and

reconstruct W using the top components that capture n% of the total energy, Etotal =
∑r

i=1 σi. This
reconstruction is given by: W̃n =

∑
i∈I σiuiv

⊤
i .

Finding: General abilities are highly concentrated in the dominant singular subspace. As
shown in Figure 2a, reconstructing weight matrices with just the top 5% of singular components (by
energy) is sufficient to recover about 62.6% of the model’s original accuracy. This finding confirms
that a model’s general capabilities are encoded within a small, low-rank subspace which is spanned
by the singular vectors corresponding to a few of the largest singular values.

2.2.2 ROBUSTNESS OF DOMINANT SUBSPACE MAPPINGS.

To evaluate the robustness of different singular components, we partition the singular components
into ten non-overlapping groups by cumulative energy (0–10%, . . . , 90–100%). For each group G,
we inject a structured rank-one perturbation. First, a random perturbation matrix is generated:

∆ =
∑
j∈G

r∑
i=1

αi,j uiv
⊤
j , αi,j ∼ N (0, 1). (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This matrix randomly remaps the input directions {vj}j∈G to output directions. The perturbation
is then normalized and scaled to a fixed strength: ε: ∆̃ = ε · ∆

∥∆∥F
. This ensures all perturbations

have an equal Frobenius norm, allowing for a fair comparison. We then measure the impact of
perturbed matrix W′ = W + ∆̃ on the model’s general performance. A symmetric analysis on
output directions is in the Appendix F.1 and shows similar trends.

Finding: Modes associated with large singular values are highly sensitive to perturbations.
As shown in Figure 2b, perturbations to the high-energy singular components (e.g., 0–20%) cause
sharp and consistent degradation in performance. In contrast, perturbing the low-energy groups (70–
100%) have only minor or negligible effects. These results reveal a paradoxical property: the sub-
spaces associated with the largest singular values, which are most crucial for general ability,
are also the ones most susceptible to perturbations. This fragility explains why indiscriminate pa-
rameter updates in sequential editing can easily disrupt general ability by corrupting the high-energy
singular modes.

2.3 HOW SEQUENTIAL EDITING CORRUPTS THE DOMINANT SUBSPACE

Having established that general abilities are concentrated in a fragile and dominant singular sub-
space, we now analyze how these critical subspaces degrade during sequential editing progress. We
introduce two spectral metrics and apply 2, 000 edits from COUNTERFACT dataset to LLaMA3 us-
ing MEMIT in 20 rounds (100 edits per round). We also conducted the same analytical experiments
on AlphaEdit; results are deferred to Appendix F.2 due to space constraints. After each round, we
evaluate the model’s editing performance on key metrics (Efficacy Score and Paraphrase Score),
its general abilities on the GLUE benchmark, and our spectral metrics, in order to investigate the
correlation between overall model performance and internal parameters changes.
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Figure 3: Performance collapse during sequential editing.

Spectrum-based metrics. We measure the stability of the dominant subspace (top 10% compo-
nents by singular value energy) at both macroscopic and microscopic levels.

• Low-rank Subspace Similarity (LS) measures the macroscopic drift of the entire dominant sin-
gular subspace. It is the cosine similarity between the reconstructed low-rank approximations of
the original matrix Ŵ0 and the edited matrix Ŵt (where t denotes the editing round):

LSt =
⟨Ŵt,Ŵ0⟩F

∥Ŵt∥F ·∥Ŵ0∥F
. (3)

• Singular Vector Similarity (SS) provides a microscopic view by measuring how individual dom-
inant singular vectors rotate. We compute the cosine similarity between a dominant singular vec-
tor vt from the edited matrix Wt and every original singular vector vj from W0(a vector basis):
SSj

t = ⟨vt,vj⟩. Results for left singular vectors show the same trend, see Appendix F.3.

Finding: Sequential editing causes model collapse precisely because it progressively corrupts
the dominant singular subspace. The evidence for this connection is clear across all levels of
analysis. At the behavioral level (Figure 3a, 3b), both edit success and general ability decline
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steadily after round 10, collapsing almost completely by round 20. This performance degrada-
tion is perfectly tracked at the macroscopic level by our Low-rank Subspace Similarity (LS) metric
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Figure 4: LSt vs. Editing Rounds

(Figure 4), which remains high initially before drifting
and declining sharply after round 15. The microscopic
cause of this drift is revealed by our Singular Vector Sim-
ilarity (SS) metric (Figure 5), which shows that individual
dominant singular vectors steadily rotate away from their
original directions, becoming nearly orthogonal by round
20. This signifies a fundamental corruption of the learned
input-output mappings. Together, these results provide
strong evidence that model collapse is structurally rooted
in the degradation of the dominant singular subspace.
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Figure 5: Singular Vector Similarity (SS) across sequential edits (rounds 2-20, every 2 rounds).

3 METHODOLOGY

SVD

SVD-Aligned Decompostion

Domain
Subspace
Protection

Figure 6: An overview of the REVIVE. An ar-
bitrary update matrix ∆W is first projected onto
the SVD basis of the original weight matrix W.
The dominant subspace, identified via an energy
threshold τ , is then used to filter the projected up-
date, resulting in a safe update ∆Wsafe that avoids
corrupting the model’s core structure.

Our spectral analysis in Section 2 reveals a
key mechanism behind model collapse in se-
quential editing: the cumulative corruption of
the dominant singular subspace, which encodes
the model’s general abilities. Motivated by
this finding, we propose Robust sEquential
editing Via domInant subspace preserVation
framEwork (REVIVE), designed to directly
counteract this failure mechanism. The over-
all architecture is illustrated in Figure 6. The
core idea of REVIVE is to represent and con-
strain edits within the singular vector basis of
the original weight matrix. This allows us to
first identify the dominant subspace critical for
general abilities and then construct a safe up-
date by surgically removing any components
that would interfere with this protected region.
The full algorithm is detailed in Appendix D.

3.1 SVD-ALIGNED DECOMPOSITION OF UPDATES

The foundation of our approach is to analyze any update matrix ∆W within the intrinsic coordinate
system defined by the original weight matrix W. As shown in Equation (1), the SVD of W provides
its left and right singular vectors, {ui} and {vj}. The set of their rank-one outer products, {uiv

⊤
j }ij ,

forms a complete orthogonal basis for the matrix space Rm×n (see Appendix C). We project an
arbitrary update matrix ∆W, generated by any editing method, onto this SVD basis to decompose
its effect along each of the original matrix’s functional directions:

∆W =

m∑
i=1

n∑
j=1

αij uiv
⊤
j . (4)
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This decomposition provides a fine-grained view of the update. The coefficients αij =
⟨∆W,uiv

⊤
j ⟩F precisely quantify how much the edit affects the mapping from each original input

direction vj to each original output direction ui. This representation is key to precisely controlling
the update’s impact.

3.2 DOMINANT SUBSPACE PROTECTION

The structure of W is dominated by its larger singular values, which capture the most critical and sta-
ble general ability learned during pretraining. Sequential editing, however, often introduces nonzero
αij aligned with these dominant subspace mappings. While a single perturbation may have little ef-
fect, their accumulation over long editing sequences erodes the high-singular subspace and leads to
collapse. Our proposed Dominant Subspace Protection (DSP) module counters this problem through
two steps: identifying the dominant subspace and constructing safe updates.

Dominant Subspace Identification. To identify the critical components for preservation, we
adopt an energy-based criterion. Specifically, we define a singular-value energy threshold τ ∈
(0, 1)(the impact of τ can be found in Section 4.2.) and select the smallest index k such that the
cumulative energy of the top-k singular values exceeds this threshold:∑k

i=1 σi∑r
i=1 σi

≥ τ (5)

The singular vectors corresponding to these top-k singular values, {ui}ki=1 and {vi}ki=1, span the
dominant input and output subspaces.

Safe Update Construction. Once the dominant subspace is identified, we construct a safe update
by removing all components of ∆W associated with the dominant singular vectors. Concretely, we
set any coefficient αij to zero if its its corresponding input vector vj or output vector ui is part of
the dominant subspace (i.e., if j ≤ k or i ≤ k). The resulting safe update matrix, ∆Wsafe, contains
only components that operate outside of this protected region:

∆Wsafe =
∑
i>k

∑
j>k

αij uiv
⊤
j . (6)

This operation ensures that any modification is realized exclusively through low-energy directions,
thereby avoiding interference with the dominant components that are essential for preserving general
abilities.

By explicitly shielding the dominant subspace from perturbation, REVIVE allows factual knowledge
to be continuously integrated without corrupting the core components responsible for the model’s
general abilities. As a result, the model maintains stability across long editing sequences and avoids
the cumulative degradation that typically leads to catastrophic collapse.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Base Models. We conduct experiments on three widely adopted LLMs in the knowledge editing:
GPT2-XL (1.5B) (Radford et al., 2019), GPT-J (6B) (Wang & Komatsuzaki, 2021), and LLaMA3
(8B) (Grattafiori et al., 2024).

Baselines. We compare REVIVE against a suite of strong baselines, including the canonical
MEMIT (Meng et al., 2022b) , as well as four state-of-the-art methods designed for sequential
editing: ALPHAEDIT (Fang et al., 2024), PRUNE (Ma et al., 2024), RECT (Gu et al., 2024), and
NSE (Jiang et al., 2025b). Further details and comparisons are available in Appendix E.1.

Datasets and Metrics. We use two standard factual knowledge editing benchmarks, COUNTER-
FACT (Meng et al., 2022b) and ZSRE (Levy et al., 2017). For ZSRE, we measure Efficacy, Para-
phrase, and Neighborhood Scores. For COUNTERFACT, we add Fluency and Consistency metrics.
Detailed definitions are provided in Appendix E.2, E.3, and E.4.
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Table 1: Performance on sequential editing over 10,000 Samples. The abbreviations Eff. (Efficacy Success),
Para. (Paraphrase Success), Neigh. (Neighborhood Success), Flu. (Generation Entropy), and Consis. (Refer-
ence Score) denote respective evaluation metrics. Relative improvements (%) are shown in blue and decreases
in orange . ↑↑ indicates a large improvement where the baseline score was near zero.

Method Counterfact ZsRE

Eff.↑ Para.↑ Neigh.↑ Flu.↑ Consis.↑ Eff.↑ Para.↑ Neigh.↑

LLaMA3 7.02 9.44 89.73 635.47 24.24 35.67 34.81 31.83

MEMIT 62.3 55.02 48.11 522.1 4.4 0.08 0.08 1.36
+REVIVE 95.62 ↑53.5% 84.60 ↑53.8% 62.17 ↑29.2% 603.22 ↑15.5% 29.39 ↑568.0% 83.45 ↑↑ 79.90 ↑↑ 32.01 ↑↑

PRUNE 59.98 55.72 48.56 571.27 1.89 0.00 0.00 0.08
+REVIVE 80.57 ↑34.3% 69.54 ↑24.7% 54.76 ↑12.8% 570.85 ↓0.1% 28.49 ↑↑ 56.61 ↑↑ 53.30 ↑↑ 27.74 ↑↑

RECT 60.23 54.9 50.56 441.61 5.08 0.00 0.00 0.00
+REVIVE 92.69 ↑53.9% 79.95 ↑45.6% 63.09 ↑24.8% 600.13 ↑35.9% 29.28 ↑476.8% 84.20 ↑↑ 80.27 ↑↑ 31.92 ↑↑

AlphaEdit 62.48 56.9 52.31 505.5 4.25 90.57 85.66 30.5
+REVIVE 98.74 ↑58.0% 90.08 ↑58.4% 60.19 ↑15.1% 615.97 ↑21.9% 32.66 ↑668.5% 93.40 ↑3.1% 89.31 ↑4.3% 31.72 ↑4.0%

NSE 77.59 44.42 86.12 607.86 23.31 45.61 45.04 31.27
+REVIVE 98.89 ↑27.4% 92.28 ↑107.8% 65.72 ↓23.6% 618.66 ↑1.8% 32.74 ↑40.5% 94.37 ↑107.0% 90.57 ↑101.2% 32.17 ↑2.9%

GPT-J 15.22 17.65 83.50 622.01 29.61 26.45 25.74 27.04

MEMIT 54.03 52.66 53.63 594.16 5.17 0.10 0.10 0.17
+REVIVE 97.63 ↑80.7% 87.76 ↑66.6% 66.52 ↑24.1% 616.47 ↑3.8% 40.69 ↑687.4% 88.88 ↑↑ 83.22 ↑↑ 27.87 ↑↑

PRUNE 52.92 51.47 53.91 576.95 5.14 0.03 0.02 0.05
+REVIVE 86.95 ↑64.3% 81.03 ↑57.5% 64.21 ↑19.1% 583.05 ↑1.1% 35.73 ↑595.7% 63.08 ↑↑ 58.90 ↑↑ 26.03 ↑↑

RECT 63.60 55.33 56.69 404.13 4.49 23.60 22.02 12.44
+REVIVE 94.96 ↑49.4% 77.27 ↑39.6% 67.78 ↑19.6% 612.76 ↑244.4% 38.69 ↑761.7% 81.28 ↑244.4% 74.78 ↑239.6% 28.20 ↑126.7%

AlphaEdit 96.51 86.76 60.80 544.18 19.33 87.84 78.65 22.31
+REVIVE 99.50 ↑3.1% 93.92 ↑8.3% 67.35 ↑10.8% 600.64 ↑10.4% 40.63 ↑110.3% 97.53 ↑11.0% 91.33 ↑16.1% 23.40 ↑4.9%

NSE 88.95 69.69 75.46 611.35 33.31 44.03 42.39 24.86
+REVIVE 94.88 ↑6.7% 89.49 ↑28.4% 64.06 ↓15.1% 608.12 ↓0.5% 40.18 ↑20.6% 97.80 ↑122.1% 91.75 ↑116.4% 26.84 ↑8.0%

GPT2-XL 21.82 24.16 78.32 626.69 31.34 22.17 21.28 24.20

MEMIT 70.56 62.42 55.94 516.26 8.74 53.00 46.27 12.76
+REVIVE 90.46 ↑28.2% 75.88 ↑21.5% 63.83 ↑14.1% 598.21 ↑15.9% 34.32 ↑292.7% 68.20 ↑28.7% 60.80 ↑31.4% 27.09 ↑112.4%

PRUNE 57.61 54.01 52.87 596.56 6.93 0.21 0.19 2.06
+REVIVE 82.00 ↑42.4% 70.90 ↑31.3% 62.82 ↑18.8% 600.99 ↑0.7% 34.55 ↑398.1% 40.92 ↑↑ 37.61 ↑↑ 25.29 ↑1127.2%

RECT 86.52 69.50 55.71 499.64 11.41 29.80 27.17 6.94
+REVIVE 82.99 ↓4.1% 69.20 ↓0.4% 65.60 ↑17.7% 595.69 ↑19.2% 34.05 ↑198.3% 62.45 ↑109.6% 55.17 ↑103.0% 26.20 ↑278.0%

AlphaEdit 92.13 76.80 56.85 581.49 31.72 53.00 46.27 12.76
+REVIVE 94.48 ↑2.6% 78.70 ↑2.5% 62.87 ↑10.6% 587.94 ↑1.1% 38.51 ↑21.5% 68.10 ↑28.5% 57.17 ↑23.5% 20.35 ↑59.4%

NSE 69.22 54.54 69.26 596.41 28.87 33.71 32.31 22.70
+REVIVE 96.12 ↑38.8% 84.49 ↑54.9% 64.17 ↓7.4% 592.71 ↓0.6% 37.74 ↑30.9% 77.83 ↑131.0% 70.55 ↑118.4% 24.84 ↑9.4%

4.2 RESULTS AND ANALYSIS

This section presents a comprehensive evaluation of REVIVE. We first demonstrate its effectiveness
in a 10, 000-edit sequential task, assessing both editing success and the preservation of general
abilities. We then conduct further analyses of its robustness, including hyperparameter sensitivity,
scalability to 20, 000 edits, and a visualization of its ability to preserve representational structure.

Sequential Editing Performance. To validate the effectiveness of our REVIVE in sequential edit-
ing, we evaluate REVIVE’s performance over an extended sequence of 10,000 edits, applied in 100
rounds of 100 edits each, on the COUNTERFACT and ZSRE benchmarks. As shown in Table 1,
applying REVIVE as a plug-and-play module leads to substantial and consistent performance gains
across all base methods and models. The most dramatic improvements occur on the challenging
ZSRE dataset, where methods like MEMIT and RECT quickly collapse to near-zero performance
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Figure 7: Performance of baselines and their REVIVE-enhanced versions (*) on GLUE datasets.

on their own. With REVIVE, however, they are not only stabilized but achieve high efficacy scores
(e.g., 83.45% for MEMIT+REVIVE on LLaMA3), demonstrating that our method can rescue base-
lines from complete failure. Notably, the standard MEMIT+REVIVE combination consistently
surpasses specialized sequential baselines like PRUNE and RECT, suggesting that proactively pro-
tecting the dominant subspace is a more effective strategy than post-hoc constraints. We note that for
some methods like NSE, applying REVIVE leads to a numerical decrease in Neighborhood Success.
This is likely because the baseline’s high score is an artifact of its low editing efficacy; an edit that
fails to modify the model will trivially preserve neighborhood consistency. Therefore, REVIVE’s
ability to achieve massive gains in Efficacy and Paraphrase while keeping Neighborhood Success
high represents a more genuine and robust form of successful editing.

Preservation of General Abilities. To evaluate the ability of our method to preserve general abil-
ities, we assess how well REVIVE preserves general abilities by evaluating the edited LLaMA3
model on the GLUE benchmark after 10,000 sequential edits. For brevity, we present results on
three representative datasets in Figure 7 and include full results in Appendix F.4, as all datasets
show consistent trends. As shown in Figure 7,baseline methods without protection degrade rapidly.
MEMIT and RECT collapse to near-zero performance after only 3,000 edits, and even the more
robust ALPHAEDIT eventually suffers a complete collapse after 8,000 edits. In contrast, REVIVE
enhanced methods maintains an overall average 86.34% of its performance across all tasks after
10,000 edits. These results clearly demonstrate that shielding the dominant singular subspace is a
highly effective strategy for preserving a model’s general abilities during sequential editing.
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Figure 8: Performance of MEMIT-REVIVE
on LLaMA3 (CounterFact) under different
thresholds.

Sensitivity Analysis. We evaluate the stability of
REVIVE by analyzing its sensitivity to its single
intrinsic hyperparameter, the singular value energy
threshold. This parameter (τ ) is defined in Sec-
tion 3.2, controls the size of the dominant subspace
shielded from edits. A higher τ better preserves the
model’s fragile general abilities but may limit edit
capacity, while a lower τ allows for more impactful
edits at the risk of corrupting critical singular direc-
tions. Figure 8 shows that REVIVE exhibits strong
robustness, maintaining high performance across a
wide range of τ values. This stability indicates that
our method is not sensitive to the exact delineation
of the dominant subspace and removes the need for
costly hyperparameter tuning. Further hyperparam-
eter results for all models are in Appendix F.5, and
an additional analysis of batch size impact is provided in Appendix F.6.

Scalability under Extreme Sequential Editing. To stress-test the scalability of REVIVE, we
conduct experiments at a significantly larger scale on LLaMA3. We apply 20,000 sequential edits
on COUNTERFACT (in 200 rounds of 100) and the full 19,086 edits on ZSRE. As shown in Figure 9,
REVIVE continues to deliver substantial gains over the original base methods, averaging +75.1%
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Figure 9: REVIVE vs. original methods under 20,000 sequential edits on COUNTERFACT.

in Efficacy and +53.1% in Fluency on Counterfact. Complete results for all metrics and methods,
provided in Appendix F.7, demonstrate that our module effectively maintains editing performance
even when the number of edits is significantly scaled up.

Visualization of Representational Stability. To visually inspect how sequential editing af-
fects the model’s internal geometry, we use t-SNE (Maaten & Hinton, 2008) to visualize
the representations of 1,000 factual prompts from LLaMA3, both before and after apply-
ing 20,000 edits. As illustrated in Figure 10, a strong baseline like ALPHAEDIT causes a

−100 −50 0 50 100 150
−60

−30

0

30

60

90
Pre−Edit

AlphaEdit

MEMIT−REVIVE

Figure 10: t-SNE visualization of repre-
sentations after 20,000 sequential edits
on LLaMA3.

noticeable distributional shift, where post-edit represen-
tations drift away from their original positions. In con-
trast, MEMIT+REVIVE keeps the post-edit represen-
tations tightly clustered with their original counterparts.
This visualization offers powerful qualitative evidence
for our core claim: by preserving the dominant sub-
space, REVIVE maintains not just downstream perfor-
mance but also the fundamental representational structure
of the model.

5 RELATED WORK

Our work focuses on parameter-modifying methods for
knowledge editing. While early approaches (Mitchell
et al., 2022a; Meng et al., 2022b) are effective for sin-
gle edits, they often fail in sequential scenarios due to
accumulating interference. To mitigate this, recent meth-
ods have introduced various heuristic constraints, such
as enforcing sparsity (RECT (Gu et al., 2024)), con-
trolling update condition numbers (PRUNE (Ma et al., 2024)), or projecting into a null space
(ALPHAEDIT (Fang et al., 2024)). These approaches, however, target symptoms of degradation
rather than the underlying cause. In contrast, our method is based on a spectral analysis that identi-
fies the root cause of collapse as the corruption of dominant functional subspaces, and it intervenes
directly to preserve them. A comprehensive review of the field is provided in Appendix E.7.

6 CONCLUSION

In this work, we investigated the critical challenge of model collapse in sequential knowledge edit-
ing. We conducted a spectral analysis that identified a key failure mechanism: the cumulative cor-
ruption of the dominant singular subspace of weight matrices, which is essential for preserving a
model’s general abilities. To counteract this, we introduced REVIVE, a plug-and-play framework
that safeguards this critical subspace. By projecting updates onto the SVD basis of the original
weights and removing components that interfere with the dominant subspace, REVIVE allows for
robust and scalable editing. Extensive experiments confirmed that our approach substantially im-
proves editing efficacy and preserves general abilities far better than existing methods, even under
extreme editing scenarios. Our findings provide a deeper, structural understanding of model collapse
and offer a principled, effective solution to ensure the long-term stability of edited LLMs.
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ETHICAL CONSIDERATIONS

Our research focuses on improving the reliability of large language models by correcting factual
inaccuracies, which is a beneficial application of knowledge editing. The methods developed are
intended to enhance the safety and trustworthiness of AI systems. However, we acknowledge that
any model editing technology could potentially be misused for malicious purposes, such as injecting
biased or harmful information. Our proposed method, REVIVE, is designed to be a general-purpose
tool for stabilizing sequential edits and does not inherently favor any particular type of content. The
responsibility for the nature of the edited content lies with the user applying the method. Further-
more, all datasets used in our experiments (COUNTERFACT, ZSRE, GLUE) are standard, publicly
available academic benchmarks that have been widely vetted by the research community. We do not
foresee any direct negative societal impacts stemming from our work.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. To this end, our source
code, is provided in the supplementary materials. Our work relies exclusively on publicly available
models (GPT2-XL, GPT-J, LLaMA3) and standard benchmarks (COUNTERFACT, ZSRE, GLUE),
as detailed in our Experimental Setup (§E.1). The theoretical underpinnings of our method are
described Section 3.1, with proofs provided in the Appendix C. All hyperparameters required to
reproduce our main results are also detailed in the Appendix E.6, providing a clear path for the
replication of our results.
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A USAGE OF LARGE LANGUAGE MODELS

In the preparation of this work, large language models (LLMs) have been utilized to assist in sev-
eral stages of writing. In particular, LLMs played a significant role in polishing the manuscript by
improving readability and correcting grammatical issues. Moreover, they provided valuable assis-
tance in certain aspects of data visualization, such as generating and refining plotting scripts, which
streamlined the experimental analysis process.
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B LIMITATIONS & FUTURE DISCUSSION

While our work demonstrates the effectiveness of preserving the dominant singular subspace, we
acknowledge several limitations that open avenues for future research.

First, our method relies on a one-time SVD of the original weight matrices, which may bring addi-
tional computational and storage cost. Future work could explore more efficient, decomposition-free
methods for identifying and protecting these critical subspaces.

Second, while REVIVE protects the subspace critical for general abilities, it does not guarantee
every specific pieces of knowledge is preserved. This can lead to perturbation in metrics like Neigh-
borhood Success, as observed with NSE. Designing a more precise, knowledge-aware subspace
protection mechanism that distinguishes between general abilities and specific facts is a promising
direction for future work.

Third, our analysis and experiments have primarily focused on the feed-forward network layers.
While these are critical for knowledge storage, extending this spectral analysis to other components
like attention mechanisms is an important next step.

C. COMPARISON WITH EXISTING PROJECTION-BASED EDITING APPROACHES

In this section, we offer a detailed exposition of how the REVIVE framework differs from existing
projection-based editing approaches. We further analyze the usability, computational effectiveness,
and scalability of REVIVE within the singular-vector space, and articulate the considerations that
motivate its post-hoc projection design.

Difference from AlphaEdit. Although both methods involve applying projection to parameter
updates, the underlying motivations are fundamentally different. AlphaEdit(Fang et al., 2024) as-
sumes that sequential degradation is caused by knowledge interference and constructs a knowledge
covariance matrix from 100k factual triples to extract a null space that avoids such interference. Its
preserved subspace therefore comes from external knowledge statistics.

In contrast, our analysis identifies a different failure mode—erosion of the dominant singular sub-
space of FFN parameters—which encodes general model abilities. REVIVE thus protects the in-
trinsic dominant subspace derived from the model’s own spectral structure. While both approaches
use projections in form, the protected subspaces and the mechanisms they address are fundamentally
different. This distinction also explains behavioral differences: AlphaEdit performs well early on
but begins to deteriorate around 8k edits, whereas methods augmented with REVIVE remain stable
beyond 20k edits.

Difference from PRUNE. PRUNE(Ma et al., 2024) directly suppresses update singular values
larger than the maximum singular value of the original parameter matrix, without distinguishing the
directions associated with those singular values. This magnitude-only suppression cannot effectively
preserve the model’s functional subspace and may attenuate useful update components while allow-
ing harmful ones to remain. In contrast, REVIVE explicitly preserves dominant singular directions
and filters only components that would distort them, addressing a type of degradation that PRUNE
is not designed to handle.

Difference from Delta-Edit and O-Edit. Delta-Edit(Cao et al., 2025) and O-Edit(Cai & Cao,
2024) track directions of previous edits and project new updates to avoid overwriting past changes.
Their protected subspaces are derived from accumulated edit history and address inter-edit inter-
ference. REVIVE targets a different failure mode: progressive corruption of the dominant singular
subspace of FFN parameters (energy decay and directional rotation), which arises even when edits
are unrelated. Accordingly, REVIVE preserves the dominant singular directions of the parameter
matrix rather than historical edit directions.
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C PROOF OF THE SVD-ALIGNED MATRIX BASIS

This section provides the formal proof for the claim made in Section 3.1 that the set of rank-one
outer products {uivj⊤}i,j derived from the singular vectors of a matrix W, forms an orthonormal
basis for the space of matrices Rm×n.
Theorem 1 (Outer-product bases from two orthonormal vector bases). Let {u1, . . . ,um} ⊂ Rm

and {v1, . . . ,vn} ⊂ Rn be orthonormal bases of Rm and Rn respectively. Consider the set of mn
matrices

B = {upv
⊤
q : p = 1, . . . ,m, q = 1, . . . , n }.

Then B forms an orthonormal basis of the real vector space Rm×n with respect to the Frobenius
inner product ⟨X,Y⟩F = tr(X⊤Y). In particular, every X ∈ Rm×n admits the unique expansion

X =

m∑
p=1

n∑
q=1

cpq upv
⊤
q , cpq = ⟨X,upv

⊤
q ⟩F = u⊤

p Xvq.

Proof. We split the proof into three parts: (i) orthogonality, (ii) spanning (completeness), and (iii)
uniqueness / coefficient formula.

(i) Orthogonality. Take two generic elements upv
⊤
q and up′v⊤

q′ from B. Their Frobenius inner
product is

⟨upv
⊤
q , up′v⊤

q′⟩F = tr
(
(upv

⊤
q )

⊤(up′v⊤
q′)

)
= tr

(
vqu

⊤
p up′v⊤

q′
)
.

By cyclicity of the trace,
⟨upv

⊤
q , up′v⊤

q′⟩F = (u⊤
p up′)(v⊤

q vq′).

Since {up} and {vq} are orthonormal bases, we have

u⊤
p up′ = δpp′ , v⊤

q vq′ = δqq′ ,

where δij is the Kronecker delta:

δij =

{
1, i = j,

0, i ̸= j.

Therefore,
⟨upv

⊤
q , up′v⊤

q′⟩F = δpp′δqq′ .

In particular, if either p ̸= p′ or q ̸= q′, then one of the Kronecker deltas vanishes, making the inner
product equal to 0. This proves that distinct basis elements are orthogonal.

(ii) Spanning (completeness). The vector space Rm×n has dimension mn. We have produced mn
elements in B which are mutually orthonormal; mutual orthonormality implies linear independence.
Because we have exactly mn linearly independent matrices in an mn-dimensional space, B must
span Rm×n, and therefore forms a basis.

For a constructive argument, let X ∈ Rm×n be arbitrary. Define coefficients

cpq = ⟨X,upv
⊤
q ⟩F = u⊤

p Xvq.

Form the matrix

X̂ =

m∑
p=1

n∑
q=1

cpq upv
⊤
q .

For any fixed indices (p′, q′) we compute

⟨X̂,up′v⊤
q′⟩F =

∑
p,q

cpq ⟨upv
⊤
q ,up′v⊤

q′⟩F =
∑
p,q

cpq δpp′δqq′ = cp′q′ .

But by definition cp′q′ = ⟨X,up′v⊤
q′⟩F , hence

⟨X̂−X,up′v⊤
q′⟩F = 0 for all p′, q′.

Since B spans the space, the only matrix orthogonal to every basis element is the zero matrix;
therefore X̂ − X = 0, proving X = X̂. This provides an explicit expansion of any matrix in the
basis B, proving completeness.
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(iii) Uniqueness and coefficient formula. Orthogonality gives immediately that the coefficients
are unique and equal to the Frobenius inner products:

cpq = ⟨X,upv
⊤
q ⟩F = u⊤

p Xvq.

This completes the proof.Therefore, using the u and v matrices obtained from the SVD of a matrix
to construct such outer-product basis matrices is valid and well-founded.

D ALGORITHM DETAILS

Algorithm 1 REVIVE

Require: Current weight matrix W ∈ Rm×n; update matrix ∆W; singular-value energy threshold
τ ∈ (0, 1)

Ensure: Safe update ∆Wsafe
1: SVD-Aligned Decomposition:
2: {ui}mi=1, {σi}ri=1, {vi}ni=1 = SVD(W)
3: Construct orthogonal basis {uiv

⊤
j | i = 1, . . . ,m; j = 1, . . . , n}

4: for i = 1 to m do
5: for j = 1 to n do
6: αij ← ⟨∆W,uiv

⊤
j ⟩F

7: end for
8: end for
9: Represent update as ∆W =

∑m
i=1

∑n
j=1 αijuiv

⊤
j

10: Dominant Subspace Identification:
11: Find smallest k s.t.

∑k
i=1 σi∑r
i=1 σi

≥ τ

12: Define dominant subspace {u1, . . . ,uk}, {v1, . . . ,vk}
13: Safe Update Construction:
14: Initialize ∆Wsafe ← 0
15: for i = 1 to m do
16: for j = 1 to n do
17: if i > k and j > k then
18: ∆Wsafe ← ∆Wsafe + αijuiv

⊤
j

19: end if
20: end for
21: end for
22: return ∆Wsafe

E EXPERIMENTAL DETAIL

E.1 BASELINES

• MEMIT (Meng et al., 2022b) is the first method to support large-scale knowledge injection across
multiple layers. It exploits the key–value structure (Geva et al., 2021) of FFNs and improves upon
ROME by restricting updates to a contiguous set of layers, allowing thousands of new facts to be
inserted in one pass. However, MEMIT does not consider sequential editing, leaving space for
later improvements.

• RECT (Gu et al., 2024)RECT is designed to mitigate the degradation of general abilities during
sequential editing. It observes that general ability performance declines as more edits are applied,
and addresses this by updating parameters based on the magnitude of change in individual weights.
However, as our earlier analysis suggests, general abilities are governed by mappings between
directions rather than individual parameters. Consequently, RECT remains too localized at the
parameter level and fails to effectively preserve general abilities in long-horizon sequential editing.

• PRUNE (Ma et al., 2024) is specifically designed for sequential editing with the goal of protect-
ing the general abilities of LLMs. From the perspective of matrix conditioning, it constrains the

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

maximum singular value of the update matrix so that it does not exceed that of the original param-
eter matrix, thereby reducing the risk of collapse. However, unlike our method, PRUNE does not
filter the directions associated with large singular values, which may weaken knowledge retention.
Moreover, its constraint only limits singular values to remain below a threshold, effectively atten-
uating but not eliminating the influence of noise. As a result, PRUNE still struggles to maintain
general abilities under long-horizon sequential editing.

• NSE (Jiang et al., 2025b) is a method specifically designed for sequential knowledge editing. It
preserves the original parameters during update computation, ensuring that each new edit does
not interfere with previously injected knowledge. Inspired by the key–value view of FFN layers
(Geva et al., 2021), NSE treats each (k, v) pair as a neuron and uses activation values to identify
those neurons most relevant to the current update, restricting parameter changes within this subset.
While this reduces unnecessary disturbance to the model, neuron-level selection alone cannot fully
protect general abilities due to the problem of superposition, where a single neuron may encode
multiple orthogonal directions. As a result, NSE still fails to maintain general abilities under
long-horizon sequential editing.

• AlphaEdit (Fang et al., 2024) is a method specifically designed for sequential knowledge edit-
ing. It constructs a protection subspace for previously stored knowledge by collecting 100K
(subject, relation, object) triples from Wikipedia. During subsequent edits, parameter updates
are projected onto the null space of this protection subspace to prevent interference with exist-
ing knowledge. However, based on our earlier analysis, sequential editing primarily perturbs the
subspace associated with general abilities rather than factual knowledge alone. Thus, the choice
of protection subspace in AlphaEdit is not sufficiently precise. As shown in our experiments, Al-
phaEdit can withstand more editing steps compared to other baselines, but eventually still suffers
from a collapse of general abilities.

E.2 DATASETS

• ZsRE Levy et al. (2017) is a question-answering (QA) dataset. Each sample contains a subject
string and a corresponding answer, which serve as the editing target to assess Efficacy. To evaluate
Paraphrase, it utilizes rephrased questions generated through back-translation. Following prior
work, it employs out-of-scope Natural Questions to measure Neighborhood (also referred to as
Locality).

• Counterfact Meng et al. (2022b) is a more challenging dataset that contrasts Counterfactual with
factual statements. Each record is derived from an entry in the PARAREL dataset Elazar et al.
(2021), with all entities originating from WikiData. It uses metrics similar to ZsRE to evaluate
Efficacy Score, Paraphrase Score, and Neighborhood Score. For its out-of-scope data, it re-
places the subject entity with an approximate entity that shares the same predicate. Furthermore,
Counterfact uniquely includes multiple generation prompts with the same meaning to test the
Fluency(Generation Entropy) and Consistency(Reference Score) of the generated text.

E.3 ZSRE METRICS

In line with prior work (Meng et al., 2022a;b), we define the evaluation metrics on the ZSRE dataset.
Given a language model fθ, a factual prompt (si, ri), its target output oi, and the model’s pre-edit
prediction oci , the following metrics are used:

• Efficacy: This metric reflects the model’s accuracy on the edited samples, computed as the average
top-1 success rate:

Ei

{
oi = argmax

o
Pfθ (o | (si, ri)

}
. (7)

• Paraphrase: This measures how well the model transfers the edit to paraphrased forms of (si, ri),
denoted as N((si, ri)). It is defined as the average top-1 accuracy over these rephrasings:

Ei

{
oi = argmax

o
Pfθ (o | N((si, ri))

}
. (8)

• Neighborhood: This evaluates whether unrelated prompts O(si, ri) remain unaffected by the edit.
It is measured as the proportion of cases where predictions for such prompts stay consistent:

Ei

{
oci = argmax

o
Pfθ (o | O((si, ri))

}
. (9)
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E.4 COUNTERFACT METRICS

In line with prior work (Meng et al., 2022a;b), we further define the metrics used in the Counterfact
benchmark. Given a language model fθ, a factual prompt (si, ri), a target output oi, and the model’s
pre-edit prediction oci , we define:

• Efficacy Score: The fraction of cases where, for the prompt (si, ri), the target oi receives higher
probability than the original output oic:

Ei

[
Pfθ [oi | (si, ri)] > Pfθ [o

i
c | (si, ri)]

]
. (10)

• Paraphrase Score: The proportion of paraphrased prompts N((si, ri)) where the edited output
oi is ranked higher than the original response oci :

Ei

[
Pfθ [oi | N((si, ri))] > Pfθ [o

i
c | N((si, ri))]

]
. (11)

• Neighborhood Score: The proportion of semantically related but distinct prompts O((si, ri))
where the model maintains correct predictions, assigning higher probability to oi over oic:

Ei

[
Pfθ [oi | O((si, ri))] > Pfθ [o

i
c | O((si, ri))]

]
. (12)

• Fluency: A measure of output repetition, defined using the entropy of the n-gram distribution:

−2

3

∑
k

g2(k) log2 g2(k) +
4

3

∑
k

g3(k) log2 g3(k), (13)

where gn(·) denotes the frequency distribution over n-grams.

• Consistency: This evaluates how consistent the model’s generations are with external references.
Given a subject s, we compute the cosine similarity between TF-IDF embeddings of the model’s
text and the corresponding Wikipedia article about o.

E.5 DETAILS OF GLUE

GLUE (Wang et al., 2019) is a comprehensive benchmark, and this paper leverages the following
six subtasks:

• SST (Socher et al., 2013) (Stanford Sentiment Treebank): A single-sentence classification task
based on movie reviews, where the goal is to predict binary sentiment labels.

• MRPC (Dolan & Brockett, 2005) (Microsoft Research Paraphrase Corpus): A sentence-pair task
aiming to identify whether two sentences are semantically equivalent.

• MMLU (Hendrycks et al., 2021) (Massive Multi-task Language Understanding): A broad bench-
mark covering diverse subjects, designed to evaluate models under zero-shot and few-shot condi-
tions.

• RTE (Bentivogli et al., 2009) (Recognizing Textual Entailment): A natural language inference
task where the objective is to determine if a premise entails its corresponding hypothesis.

• CoLA (Warstadt et al., 2019) (Corpus of Linguistic Acceptability): A single-sentence classifica-
tion benchmark that tests whether sentences are grammatically acceptable.

• NLI (Williams et al., 2018) (Natural Language Inference): A task requiring models to infer the
logical relationship between a premise and a hypothesis.

E.6 METHOD IMPLEMENTATION DETAILS

All experiments based on GPT-J and LLaMA3 are conducted on NVIDIA A800 GPUs with 80GB
memory, while experiments involving GPT2-XL are performed on NVIDIA RTX 4090 GPUs with
24GB memory. For baselines, we directly adopt the official implementations of ALPHAEDIT and
NSE without modifying their original hyperparameter configurations. The only additional hyperpa-
rameter introduced by our method is the singular value projection threshold. Following the results
in Appendix F.5, we consistently set this threshold to preserve the top 10% singular values across
all models. This choice is justified as our projection strategy is independent of the specific baseline
but only depends on the underlying model.
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E.7 RELATED WORK (FULL VERSION)

Parameter-Preserving Methods. Parameter-preserving approaches maintain the base model’s pa-
rameters unchanged and instead incorporate external mechanisms to realize edits. A common di-
rection is to attach additional modules that store and retrieve edited knowledge. For example,
SERAC (Mitchell et al., 2022b) introduces an auxiliary memory with a Counterfactual model,
CaliNet (Dong et al., 2022) and T-Patcher (Huang et al., 2023) insert neuron-based units, and
GRACE (Hartvigsen et al., 2023) organizes edits in a dynamic codebook. MELO (Yu et al., 2024)
uses additional LoRA-style adapters to preserve original parameters, while WISE (Wang et al.,
2024a) improves stability and general ability with dual-memory and conflict-free sharding. Another
line of work performs edits through prompting: MemPrompt (Madaan et al., 2022) and IKE (Zheng
et al., 2023) rely on injecting new facts into the input context. More recent efforts combine symbolic
structures with neural editing, such as OneEdit (Zhang et al., 2024c), which leverages knowledge
graphs for collaborative knowledge updates.

Parameter-Modifying Methods. Parameter-modifying methods directly update the model’s
weights to encode new knowledge. Meta-learning based techniques predict parameter shifts through
hypernetworks, including MEND (Mitchell et al., 2022a), MALMEN (Tan et al., 2024), and In-
structEdit (Zhang et al., 2024b). Locate-then-edit methods first determine the locations where
knowledge is stored and then apply targeted modifications. Typical examples are ROME (Meng
et al., 2022a), which computes updates using closed-form equations, MEMIT (Meng et al., 2022b),
which scales editing to batches, GLAME (Zhang et al., 2024a), which integrates knowledge graphs,
and AnyEdit (Jiang et al., 2025a), which recursively edits knowledge of arbitrary structure. When
edits are carried out in a sequential manner, however, additional difficulties arise. Consecutive up-
dates can accumulate interference and eventually harm model performance. To counter these issues,
several improvements have been proposed: RECT (Gu et al., 2024) enforces sparsity on update
parameters at single parameter level, PRUNE (Ma et al., 2024) controls the condition number of pa-
rameter updates, AlphaEdit (Fang et al., 2024) constrains modifications to a null space of previous
stored knowledge, and NSE (Jiang et al., 2025b) select the modification position that contributes the
most to knowledge storage based on the activation values of the neurons.

F DETAILED EXPERIMENT RESULTS

F.1 ROBUSTNESS UNDER OUTPUT-SIDE PERTURBATIONS ACROSS SINGULAR VALUE
GROUPS.

Symmetric Output-side Perturbation. To complement the input-side analysis in the main text,
we also evaluate robustness under output-side perturbations. Specifically, for a chosen group of left
singular vectorsH (partitioned by cumulative energy of singular values in the same way as before),
we inject structured rank-one perturbations of the form:

∆ =
∑
i∈H

r∑
j=1

βi,j uiv
⊤
j , βi,j ∼ N (0, 1).

The perturbation is normalized and scaled to fixed strength as

∆̃ = ε · ∆

∥∆∥F
.

The resulting perturbed weight matrix is W′ = W + ∆̃, which can be interpreted as altering
the input representation of selected outputs {ui}i∈H (left singular vector) into random mixtures of
all inputs {vj}rj=1 (right singular vector). We report the corresponding robustness curves across
different output groups in Figure 11, and the observed trends are consistent with the input-side
perturbation experiments.

F.2 A SPECTRUM ANALYSIS COMPARISO BETWEEN ALPHAEDIT AND MEMIT-REVIVE

In Section 2.3, we present the SS performance of MEMIT under long editing sequences, where
we observe that significant shifts in critical subspace singular vectors emerge after around twenty
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Figure 11: Sensitivity of general ability to perturbations across different output side (left singular
vector) spectral groups.

rounds of editing. In this section, we analyze and record the SS dynamics of the current strongest
baseline, ALPHAEDIT, under long-sequence editing, and compare them with MEMIT-REVIVE.
The experimental setup involves editing 10,000 samples (100 samples per round for 100 rounds)
from the COUNTERFACT dataset on the LLAMA3 model. As illustrated in Figure 12, ALPHAEDIT
maintains relatively small shifts in the critical subspace vectors during the early editing rounds, but
its maximum SS inevitably decreases as editing proceeds. By the end of the editing process, the
maximum SS drops below 0.3, which aligns with its performance degradation on the GLUE bench-
mark in Figure 7. In contrast, MEMIT-REVIVE consistently preserves an SS maximum value of
1 throughout the entire editing sequence (as illustrated in Figure 13), indicating the stability of its
critical vector subspace, which also corresponds well with its stable performance on GLUE. Over-
all, these results demonstrate that our REVIVE method effectively safeguards the critical vector
subspace, ensuring that the model’s general capabilities remain stable under long-sequence editing.
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Figure 12: Evolution of SS of AlphaEdit over sequential editing, from SS10 to SS100 with step size
10.
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Figure 13: Evolution of SS of MEMIT-REVIVE over sequential editing, from SS10 to SS100 with
step size 10.
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F.3 A FINE-GRAINED ANALYSIS ON LEFT VECTORS CHANGES

In the main text, we report the variations of the right singular vectors, while here we illustrate the
changes of the left singular vectors. It can be observed from Figure 14 that both exhibit essentially
the same trend.
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Figure 14: Evolution of Left Singular Vector Similarity (SS) over sequential editing.from SS2 to
SS20 with step size 2.

F.4 FULL GLUE RESULTS

Here, we present the remaining GLUE evaluation metrics that were omitted in Section 4.2 due to
space constraints, The results of the rest three datasets are presented in Figure 15.

F.5 FULL THRESHOLD EXPERIMENTS RESULTS

Since the projection threshold is primarily related to the model itself and less influenced by the cho-
sen method, we only present the performance variation of MEMIT-REVIVE across three different
models with respect to the projection threshold. The detailed changes in editing metrics with vary-
ing thresholds are recorded in Table 2, while Figure 16 shows the variation in the LLaMA3 model’s
performance on the GLUE benchmark with different projection thresholds. Note that the GPT-J and
GPT2-XL models, due to their relatively poor performance on GLUE even before editing, are not
included in the results presented here.

F.6 ANALYSIS ON BATCHSIZE

Here, we investigate the model’s robustness to the edit batch size. We conduct an experiment with
a fixed total of 5,000 editing samples from COUNTERFACT, while varying the batch size per edit as
100, 200, and 500. As shown in Figure 17, prior baselines are highly sensitive to changes in batch
size. This observation supports our earlier hypothesis: as the number of edits increases, perturbations
along specific input–output directions accumulate, leading to model collapse. In contrast, when our
REVIVE is integrated, the baselines exhibit stable performance that does not fluctuate significantly
with batch size.

F.7 REVIVE ENHANCED BASELINES UNDER EXTREME SETTINGS

Here, we further present the complete results of the REVIVE method under extreme test conditions,
including its performance on the ZsRE dataset, which was not shown in the main text.
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Figure 15: Baseline and corresponding REVIVE version(*) performance on GLUE across datasets.
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Figure 16: GLUE evaluation results on LLaMA3 after 10,000 edits on the CounterFact dataset using
MEMIT-REVIVE with different protection thresholds.
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Figure 17: Performance of methods and their
REVIVE-enhanced versions under different
batch sizes. * denotes methods with REVIVE.
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Table 2: Performance results of MEMIT-REVIVE on sequential editing task under different singular value
energy thresholds (10,000 Samples from CounterFact).

Model Thresh Counterfact ZsRE

Eff.↑ Para.↑ Neigh.↑ Flu.↑ Consis.↑ Eff.↑ Para.↑ Neigh.↑

LLaMA3

0.05 94.46 86.03 59.70 587.30 29.83 78.66 75.89 29.29

0.10 95.62 84.60 62.17 603.22 29.39 86.56 83.07 31.88

0.15 95.03 80.60 64.49 613.66 29.19 87.10 83.36 32.41

0.20 94.58 78.38 66.19 621.15 29.63 86.85 83.46 32.75

0.25 92.96 73.94 68.94 624.63 29.49 83.85 80.23 33.27

0.30 88.94 67.56 71.86 625.68 28.84 81.18 77.81 33.02

GPT-J

0.05 91.23 83.72 57.26 596.20 33.29 78.50 73.19 27.44

0.10 97.09 87.01 67.10 616.15 40.00 83.87 77.28 29.77

0.15 96.74 81.20 69.98 617.42 39.63 88.57 82.87 29.15

0.20 94.95 76.59 72.13 621.01 38.36 85.83 79.97 29.27

0.25 92.84 69.42 74.15 621.61 37.19 81.67 74.67 27.59

0.30 88.49 64.30 74.94 623.53 36.66 81.32 73.54 28.56

GPT2-XL

0.05 91.89 80.72 61.13 575.14 32.12 62.13 55.40 25.90

0.10 90.82 77.24 63.73 595.36 34.28 63.34 55.29 25.93

0.15 87.82 73.39 65.89 607.06 35.33 66.19 58.40 27.13

0.20 83.10 66.95 68.44 615.17 35.46 64.53 57.45 26.60

0.25 78.77 61.82 69.66 618.28 35.17 58.11 51.80 26.89

0.30 73.03 57.28 71.12 621.46 34.60 57.05 51.15 26.42

Table 3: Performance results of REVIVE enhanced Baseilnes under extreme sequential editing (20000 edits).

Model Method Counterfact ZsRE

Eff.↑ Para.↑ Neigh.↑ Flu.↑ Consis.↑ Eff.↑ Para.↑ Neigh.↑

LLaMA3

MEMIT-REVIVE 91.94 79.67 56.90 557.61 26.44 84.11 79.85 32.92

RECT-REVIVE 89.00 76.78 60.54 594.38 27.93 79.35 76.35 30.24

AlphaEdit-REVIVE 97.50 87.24 57.65 613.22 32.77 92.62 88.25 31.31

NSE-REVIVE 98.50 90.38 61.78 615.65 33.23 93.91 89.67 31.58
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