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Abstract

Continual learning aims to learn multiple tasks sequentially while preserving prior
knowledge, but faces the challenge of catastrophic forgetting when adapting to
new tasks. Recently, approaches leveraging pre-trained models have gained in-
creasing popularity in mitigating this issue, due to the strong generalization ability
of foundation models. To adjust pre-trained models for new tasks, existing meth-
ods usually employ low-rank adaptation, which restricts parameter updates to a
fixed low-rank subspace. However, constraining the optimization space inherently
compromises the model’s learning capacity, resulting in inferior performance. To
address this limitation, we propose Continuous Subspace Optimization for Con-
tinual Learning (CoSO) to fine-tune the model in a series of subspaces rather than
a single one. These sequential subspaces are dynamically determined through the
singular value decomposition of the gradients. CoSO updates the model by pro-
jecting gradients onto these subspaces, ensuring memory-efficient optimization.
To mitigate forgetting, the optimization subspace of each task is constrained to be
orthogonal to the historical task subspace. During task learning, CoSO maintains a
task-specific component that captures the critical update directions for the current
task. Upon completing a task, this component is used to update the historical task
subspace, laying the groundwork for subsequent learning. Extensive experiments
on multiple datasets demonstrate that CoSO significantly outperforms state-of-the-
art methods, especially in challenging scenarios with long task sequences.

1 Introduction

Deep neural networks have achieved remarkable success when trained on large-scale offline data
under the assumption of independent and identically distributed (i.i.d.) samples [He ef all, DOTH,
Vaswani ef all, POT7, Dosovitskiy et all, PZ071]. However, real-world applications often require mod-
els to learn from a sequence of tasks with different data distributions, a scenario known as continual
learning [De Lange et all, 20272, Van de Ven ef all, D07, Masana ef all, 2027, Wang et al], 2024, Zhon
ef-all, P024R]. The major challenge in continual learning is catastrophic forgetting [McCloskey and
Cohen, T98Y], where the model’s performance on previously learned tasks deteriorates significantly
as it adapts to new tasks.

In recent years, pre-trained models especially vision transformers (ViTs) [Dosovitskiy et all, 2021]
have demonstrated exceptional performance across various downstream tasks through their robust
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generalization ability. This property makes pre-trained models highly promising in mitigating catas-
trophic forgetting, leading to a growing research focus on continual learning with foundation models
[Smath_ef-all, 2023, Cu et all, 20724, Ciang and Li, 2024, Zhon et all, 20244, Wu_ef_all, 2025]. To
efficiently fine-tune pre-trained ViTs, existing continual learning methods [(Gao“ef all, D073, Ciang
and 1.1, 2024, Wiref all, P075] employ low-rank adaptation (LoRA) [Hirefall, Z027] to optimize the
models, which confine parameter updates to a specific low-rank subspace to reduce the interference
between tasks. However, this rigid constraint on update directions inherently limits the model’s
learning capacity, leading to inferior performance.

To address this issue, we propose Continuous Subspace Optimization for Continual Learning
(CoSO0), which achieves enhanced adaptability by optimizing the model within multiple subspaces
rather than a fixed one. These sequential subspaces are derived from the singular value decompo-
sition of the gradients. By projecting gradients onto these low-dimensional subspaces for Adam
[Kingma, P0T4] optimization and then projecting back for parameter updates, CoSO achieves
memory-efficient learning. To prevent forgetting, we enforce orthogonality between the optimiza-
tion subspaces of current and historical tasks during training. While learning a task, CoSO leverages
Frequent Directions (FD) [[Ghashami efall, POTH, Wan and Zhang, P0TX, Z027] to maintain a com-
pact task-specific component, which captures critical update directions of the current task with neg-
ligible computational cost. After completing the current task, we use this dedicated component to
estimate the task-specific subspace, which is then integrated into the historical task subspace, laying
the groundwork for subsequent learning.

Experimental results on CIFAR100, ImageNet-R, and DomainNet show that CoSO consistently out-
performs state-of-the-art methods by a significant margin across diverse continual learning settings,
particularly in challenging scenarios involving long task sequences. The substantial performance
gains highlight CoSO’s strong potential for real-world continual learning.

In summary, our contributions are as follows:

* We propose CoSO, a novel continual learning framework that fine-tunes pre-trained models
via continuous gradient-derived subspaces, enabling efficient adaptation to sequential tasks.

* We introduce a lightweight mechanism to maintain the historical task subspace, enabling
CoSO to keep current updates orthogonal to the historical subspace and thereby mitigate
task interference.

* We conduct extensive experiments, demonstrating CoSO’s superior performance over prior
PEFT-based continual learning methods across various datasets and settings.

2 Related Work

In this section, we review related work on continual learning and low-rank optimization in offline
learning.

2.1 Continual Learning

Continual learning [De Lange et all, 20772, Van de_Ven et all, 2077, Masana ef-all, 2077, Wang et all,
P074, Zhon et all, Z024H] aims to enable neural networks to incrementally learn from a sequence
of tasks while retaining previously learned knowledge. These approaches broadly fall into five
categories [Wang et al], 2024]: regularization-based methods [Zenke et all, 20T, Kirkpatrick et all,
20177, Cicand Hoiem, POTT], replay-based methods [Lopez-Paz and Ranzatg, P01, Rebuffi"ef-all,
20T, Chaudhry et all, 201940, Cin_ef_all, 2020, Sun"ef-all, Z027], optimization-based methods
[Farajtabar et all, P0720], Saha’ef all, 2021, Wang et all, P021]], representation-based methods [Madaan
ef all, 20272, Pham ef all, P024)], and architecture-based methods [Yoon ef all, POTR, Ciefall, POTY,
Sokar_ef all, PO, Ciang and Li, P073]. Regularization-based methods introduce additional loss
terms to constrain parameter updates, preventing drastic changes in parameters that are important
for early tasks. Replay-based methods store a small subset of training samples from previous tasks
in a limited buffer and periodically replay these samples alongside new data, allowing the model to
rehearse earlier knowledge. Optimization-based methods manipulate the update directions of each
task according to preserved information of previous tasks. Representation-based methods utilize
statistical information of features to calibrate classifiers. Architecture-based methods dynamically
modify network architectures, dedicating specific model capacity for new tasks.



Early continual learning approaches typically initialize their models with random weights. The
strong generalization capabilities of foundation models, especially vision transformers [Dosovitskiy
ef_all, 2021], have made pre-trained architectures an increasingly attractive solution for continual
learning [Zhon ef all, P(1744]. Recent developments in parameter-efficient fine-tuning (PEFT) based
continual learning methods [Gaoef-all, P023, Ciang and Li, 2024, Lu_ef-all, 2024, Wu_ef all, PO25]
have facilitated efficient adaptation of foundation models through selective parameter optimization,
substantially lowering computational requirements. Existing PEFT-based methods can be broadly
categorized into two groups: (1) prompt-based techniques that focus on optimizing learnable tokens
[Cesferef all, O21, Wang et all, 20274 k8, Smifh_ef all, 2073, Cu_ef all, 2024], and (2) LoRA-based
methods that adjust parameters within constrained low-dimensional subspaces [(Gao_ef-all, D073,
Liang and Li, 2024, Wu_ef all, PO75].

Among prompt-based approaches, L2P [Wang et all, 2027H] introduces task-specific prompt tokens
to modulate the pre-trained model’s behavior, but struggles with knowledge transfer between tasks.
DualPrompt [Wang et all, 2027a] addresses this limitation by maintaining both task-specific and task-
invariant prompts, enabling better knowledge sharing. CODA-Prompt [Smith-ef all, 2073] further
enhances adaptation flexibility through dynamic prompt composition from a shared pool. VPT-NSP?
[CuZef-all, 2074] learns each task by tuning learnable prompts in the null space of previous tasks’
features. However, these methods influence model behavior indirectly through learnable tokens,
which restrict the model’s ability to capture complex task-specific features.

Complementary to prompt-based methods, LoRA-based approaches directly update model param-
eters in a parameter-efficient manner. InfLoRA [Liang and Li, 2074] constrains the parameter up-
dates within a predetermined subspace to reduce the interference between tasks. SD-LoRA [Wii
ef-all, 2025] decouples the learning of the magnitude and direction of LoRA components. However,
both methods confine weight updates to a specific low-rank subspace, which inherently limits the
model’s learning capacity. Unlike these methods, CoSO updates the parameters across a series of
subspaces, enabling the learning of full-rank weights and thereby enhancing the model’s flexibility.

2.2 Low-rank Optimization in Offline Learning

Low-rank adaptation (LoRA) [Huef all, 02?2] has gained significant attention for its ability to
reduce computational and memory requirements when fine-tuning pre-trained models [Mao ef all,
2077, [Zhang et all, Z023]. Specifically, LORA reparameterizes the update of a linear layer’s weights
AW = BA € R™*" where B € R™*" A € R"*" are low-rank matrices. By freezing the
original weights and only updating the low-rank components, LoRA enables parameter-efficient fine-
tuning while preserving performance in many downstream tasks. However, it has been demonstrated
[Xia“efall, 2074] that low-rank weight updates limit the performance compared to full-rank fine-
tuning. Recent works [Cossonef all, D073, Zhao efall, 2024] have shown that neural network
gradients often exhibit low-rank structure. Instead of approximating the weight matrix as low rank,
Galore [Zhao et all, 2024] directly leverages the low-rank gradients to optimize the model. This
methodology enables memory-efficient optimization through effective dimensionality reduction in
gradient spaces.

To be concrete, GaLore utilizes the singular value decomposition (SVD) of G; € R™*"™ to compute
a low-rank projection matrix P, € R™*", where r < n is the target rank. Leveraging P;, Ga-
Lore transforms the gradient G into a compact form P,' G, to achieve memory-efficient parameter
updates. At each training step ¢, the gradient update can be decomposed into three operations:

R; = P;Gt (forward projection)
Ny = Adam(R;) (adam optimizer update)
Gt = P, N;. (backward projection)

The projection matrix F; is periodically updated through SVD to follow the evolving gradient sub-
space. Utilizing the final gradient G, GaLore updates the model parameters with learning rate 7:

Wt = Wtfl — nét

Compared to LoRA, GaLore not only reduces memory storage from (mn + 3mr + 3nr) to (mn +
mr + 2nr), but also achieves higher model capacity by directly optimizing in the most relevant
gradient subspaces rather than constraining updates to a predefined low-rank structure.
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Figure 1: CoSO optimizes the parameters in continual low-rank subspaces, enhancing the learning
capacity of models. To mitigate forgetting, the optimization subspaces of the current task are set to
be orthogonal to the historical task subspace. While learning a task, CoSO consolidates the low-rank
approximation matrices {Qm}le into a task-specific component S, r through Frequent Directions.
The dedicated component is then used to update the historical task subspace spanned by M. _;.

3 Methodology

In this section, we first introduce the necessary preliminaries, then present the details of our ap-
proach.

3.1 Preliminaries

In continual learning, a model needs to learn a sequence of tasks while retaining knowledge of previ-
ous tasks. We consider the class-incremental learning setting, where task identities are unavailable
at inference time and access to historical data is prohibited during learning new tasks [[Wang et all,
0274, Smifh ef-all, 207273, Liang and Li, 2074, Ca-ef all, D024, Wn“ef all, P025]. We denote the task
sequence as D = {Ds, ..., Dy}, where each task dataset D, = {(x; +,yi,r)};~, contains n, input-
label pairs. Following recent work [Wang et all, 20274, Gao_ef all, P073], we adopt a pre-trained
Vision Transformer (ViT) [Dosovitskiy et all, ZO7T] as the backbone network, denoted as fg(-) with
parameters ©, and classifier hg(-) with parameters @, thus the model is he(fo(+)). Formally, the
hidden state Y of feature X’ at the linear layer /, can be calculated as Y,/ = W*XZ, where W*
is the weight matrix of the linear layer. Let G?t denote the gradient at the ¢-th training step of the
linear layer ¢ in task 7. For simplicity, we omit the symbol £, using W to refer W* and G ; to refer
G~ , in the following sections.

3.2 Continuous Subspaces Optimization

Inspired by Galore [Zhao ef-all, 2074], we propose CoSO to address the rigidity of single sub-
space adaptation methods through multiple subspaces optimizing. However, directly using GaL.ore
causes severe interference between different tasks in continual learning. To minimize the interfer-
ence, CoSO enforces orthogonal constraints between current and historical subspace during training.
Motivated by memory consolidation in cognitive neuroscience [[Dudai, 2004], CoSO estimates a
task-specific subspace to consolidate knowledge upon learning each task. This subspace preserves
critical learning directions of the task based on gradients at all training steps, and is incrementally
integrated into the historical task subspace, enabling efficient knowledge accumulation. The whole
process of CoSO is illustrated in Figure . We first introduce how to optimize the model in con-
tinuous subspaces in this section. Then we present how to update the historical task subspace in
Section B3.



In continual learning, the key challenge is to prevent new task updates from interfering with pre-
viously learned knowledge. Building on the insight that gradient updates in neural networks typ-
ically lie in the span of input features [Saha ef all, O], we develop an approach that leverages
this gradient-input feature relationship to minimize task interference through orthogonal projection.
Specifically, we maintain an orthogonal basis matrix M. _; that spans the gradient subspace ac-
cumulated from all previous tasks prior to the current task 7. Since gradients inherently encode
information about the input features they were computed from, this historical subspace captures the
principal directions that were important for learning previous tasks. We recognize that gradient steps
along these historical directions would cause maximal interference with past learning, while gradi-
ent steps orthogonal to this space result in minimal interference. For each gradient G ; computed
during training on task 7, we project it onto the orthogonal complement of historical subspace:

Gf;-,t = GT,t - MT—lM;r_lgT,t- (1

This projection removes the gradient component aligned with the learning directions of previous
tasks, leaving only the orthogonal component G, , for updating the parameters When we update the

werght matrix using these orthogonal gradients, i.e., AW = —p Et 1 G741, the parameter changes
occur in directions that have minimal overlap wrth the optrmrzatron trajectorres of previous tasks.
This approach effectively partitions the parameter space, preserving directions important for past
tasks while utilizing orthogonal directions for new learning. The orthogonal projection thus provides
a principled way to balance plasticity for new tasks with stability for old tasks, enabling the model
to expand its capabilities while mitigating interference.

However, updating the model with the full orthogonal gradient G/ .+ incurs substantial memory over-
head and high computational cost, particularly in vision transformers To achieve memory-efficient
fine-tuning, we follow GaLore [Zhaa ef all, 2024] and decompose G, € R™*" using singular
value decomposition (SVD) to get the projection matrix P, ;:

USVT =SVD,, (G~,)
P..=Ul,:m],

where m and n are the dimensions of the original weight matrix, r; < n is the target projection
rank, and SVD,, (-) denotes a truncated SVD that retains the top-r; singular values. Subsequently,
we project the orthogonalized gradient G/, + into the low-rank subspace spanned by P ;, effectively
reducing the memory footprint of parameter updates:

R.;=P,G. . 3)
Then R, ; is updated by Adam [Kingmad, 2014] as follows:
Mry = (B Mry1+ (1= P1) - Rry) /(1 - B1)
Vee= (B2 Vre—1+ (1 —f2) - T,t) /(1= B3) 4)
N‘r,t— ‘rt/( ‘rt+€)

where 31, 32 are decay rates, M, is the first-order momentum, and V. ; is the second-order mo-
mentum. The low-rank normalized gradient N, ; is then projected back to update the parameters
with learning rate 7:

@

Gr,t - PT7tNT,t

- )
WT,t = W‘r,tfl -n: G'r,t~

Because P, is computed from the projected gradient G/, +» which is orthogonal to the historical
subspace spanned by M, _1, any parameter updates derlved from P;; remain in the null space of
previous tasks’ feature spaces. Consequently, the linear layer’s output for every earlier task remains
unchanged, preventing interference at the representation level. Since P ; is dynamically changed to
capture the most important directions of G, ;, we are optimizing the model in continuous subspaces
rather than a fixed one, thereby expanding the model’s representational adaptability. To balance
computational efficiency, we update the projection matrix P, ; every K steps. By updating R, ; in
lower dimension space, the memory requirement is reduced from (mn + 3mry + 3nry) to (mn +
mry + 2nrq) compared to LoRA-based methods, such as InfLoRA [Liang and Li, 2024] and SD-
LoRA [Wuefall, DO73].



3.3 Historical Task Space Update

Task-Specific Subspace Estimation. To update the orthogonal basis matrix M, _; of the historical
task space, we need to efficiently estimate a task-specific subspace, which retains the critical gradient
directions of the current task. Specifically, for task 7, the model undergoes T training steps, produc-
ing a sequence of gradients {G7 , ..., G/}, where G7., € R™*". To identify the primary direc-

tions of these gradients, we consider the accumulated covariance matrix Zthl G' c Rmxm,
which integrates information from all training steps and characterizes the subspace where most up-
dates occur. However, directly maintaining such accumulated covariance matrix would be com-
putationally expensive, requiring O(m?nT) time complexity. This is particularly challenging for
transformer-based models where the parameter dimension m, n are typically in the order of thou-
sands.

To ensure computational efficiency, we use Frequent Directions (FD) [Ghashamief-all, POT6, Wat
and Zhang, P0T8, PZ027], a deterministic matrix sketching algorithm, to maintain a low-rank ap-
proximation of streaming gradients. The FD algorithm processes the gradients sequentially while
providing a guarantee on approximation quality [Wan and Zhang, POZT, Yang et al], Z075]. Specif-
ically, we first compute a low-rank matrix Q);; € R™*™ with r, < n through singular value
decomposition (SVD):

USV' =SVD,,(G.,)
QT,t =UX.

Here, SVD,, (+) denotes a truncated SVD that retains the top-r2 singular values. The resulting low-
rank matrix (), ; enables us to efficiently approximate the gradient covariance matrix:

(©)

QriQ), ~ GG, (7

Based on this approximation, we further compute a sketch matrix S;; € R™*"2 that incrementally
consolidates the gradient covariance information from all training steps up to step t. This consoli-
dation is achieved by combining the previous sketch matrix S, ;_; with the current approximation
Q. The update of S ; is as follows:

U/Z/V/T — SVDr2 ([S‘r,t—l’ QT,t])

/ 2 /2 ®)
Spi=UNS? —oiL0 =57

We initialize S ;1 = (), 1, and after T iterations, we obtain the final task-specific sketch matrix S; 7,
which satisfies:

T
SrrSle Y GG ©)
t=1

By analyzing the dominant singular vectors of S, 1, we can effectively estimate the principal sub-
space of the current task. Note that we update S- ; every K steps to match the update frequency
of projection matrix Py, ensuring consistency in our approximation process. The effectiveness of
CoSO relies on the accuracy of low-rank approximation, which is formalized through the following
Proposition (.

Proposition 1. Given a sequence of projected gradients {G. ,}_ | and low-rank matrix {Qr¢}{_,,
where G” E R™*™ and Q- € R™*™. The final sketch matrix is Sy 7 € R™*". Let A =

Zt GG A= Zt 1 Q@ tQT . For any k < ro the approximation error is bounded by:

HA [Alell7

|A = S-S 1l2 <Zat —

) (10)

where oy is the (ro + 1)-th singular value of G, , and [A]}, is the minimizer of | A — [A] || overall
rank k matrices.



Remark. Because the gradients often exhibit low-rank structure [Cosson_et all, P0O23, Zhao et all,

2074], their singular values de.ca)f rapidly. Consequ.ently, the error ,Zt,T=1 o2 would be negligibl.y
small when ro exceeds the intrinsic rank of the gradients. By maintaining low-rank sketch matrix
S, we reduce the cost of computing Zthl G’TtG’TTt Jrom O(m?*nT) to O(mm*Q.T), where 1y <
m. Proposition [l ensure that our low-rank approximation captures the most significant directions
in the gradient space. The error bound provides practical guidance for choosing the rank ro: larger
values lead to better approximation at the expense of additional computation and memory. To better
preserve the task information, we set r to be slightly larger than r1, where 11 is the projection rank
introduced in Section B2. The proof is provided in Appendix A.

Update Orthogonal Basis Matrix. Once the final task-specific sketch matrix S, 7 is computed, we
use it to update the orthogonal basis matrix M _; to incorporate the optimization subspace of the
task 7. First, we extract the principal directions of the current task by performing SVD on its sketch
matrix:

U, .V, =SVD(S, 7). (11)

Then, we determine the number of directions to retain based on the sum of squared singular values.
Following the principle of matrix approximation with SVD, we select k as the biggest value that

SatlSﬁeS:
Zk}
7'71

2
a5 < Eth, (12)
Z]Z 10-?

where ¢, € (0, 1] is a threshold hyperparameter controlling the ratio to preserve, and o; is the i-th
singular values in descending order. This criterion ensures that the selected k directions capture at
least €;, fraction of the total variance in the gradient space. Finally, we expand the orthogonal basis
matrix M _; by incorporating these new directions:

M = [M._1,U; [, k] (13)

The above selection and update process ensure that we capture the most important learning directions
for each task while maintaining orthogonality between different tasks’ subspaces.

Due to space constraints, the complete CoSO algorithm is presented in Appendix B.

4 Experiments

We conduct comprehensive experiments with varying numbers of sequential tasks to evaluate
CoSO’s effectiveness across multiple datasets. We first outline our experimental settings, then
present detailed results and analyses.

4.1 Experimental Settings

Datasets and Evaluation Metrics. Following previous works [Wang et all, P027H, Ciang and
i, P024], we evaluate CoSO on three widely-used continual learning benchmarks: ImageNet-
R [Hendrycks et all, 2021], CIFAR100 [Krizhevskyl, P009], and DomainNet [Peng et all, 2ZOT9].
ImageNet-R contains 200 classes from ImageNet with artistic style variations. Similar to existing
works [Smifhef-all, D073, Ciang and Li, 2024, Wiief all, 2025], we create three different splits of
ImageNet-R: 5 tasks with 40 classes per task, 10 tasks with 20 classes per task, and 20 tasks with 10
classes per task. For CIFAR100, we divide it into 10 tasks, each containing 10 classes. DomainNet
consists of 345 classes across six distinct domains and is split into 5 tasks, with 69 classes per task.

We evaluate our method using two complementary metrics that are widely adopted in existing
continual learning methods [Wang et all], 2027H, Ciang and Li, 2024, Wu_ef all, P0O?5]. The first
metric is the final accuracy ACCy, which evaluates the model’s overall performance across all
tasks after the complete training process. The second metric is the average accuracy ACC'r,
which measures the model’s learning stability throughout the training sequence and is calculated
as ACCp = L Z 1 ACC;, where T denotes the total number of tasks. These two metrics cap-
ture both the model S ab111ty to learn new tasks and retain knowledge of previously learned tasks,
providing a comprehensive assessment of continual learning performance.




Table 1: Results (%) on ImageNet-R with varying numbers of tasks (5, 10 and 20). All reported
results with mean and standard deviation are computed over 3 independent runs.

Method ImageNet-R (5 Tasks) ImageNet-R (10 Tasks) ImageNet-R (20 Tasks)
ACCs ACCH ACChg ACChy ACCy ACCy
L2P 65.0340.03 69971015 62.871972 689041058 58.6410.34 65.5710.35
DualPrompt 68.24i0_23 71.82i0_39 65.30i0_52 69.62i0_29 60.471054 65.91i0.52
CODA-P  73.654015 77.882030 72104090 76901041 67161011 72.3450.44
InfLoRA 77.53:|:0_30 82.24:|:0_11 74.43:|:0_31 80.50:|:0_06 70~30:I:0.14 77~04:I:0.06
SD-LoRA 791510090 83.014040 77.341035 82.040004 75264037 80.2210.79
VPT-NSP? 79.7210.10 84.3340290 T77.8710.10 83.094026 75.4210027 81.3240.21
CoSO 82104013 86.38.007 81.104039 85.56.013 7819008 83.69.¢12
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Figure 2: The detailed performance during the learning of ImageNet-R on (a) 5 tasks, (b) 10 tasks,
and (c) 20 tasks.

Baselines and Implementation Details. We compare CoSO with several state-of-the-art PEFT-
based methods: L2P [Wang et all, Z027K], DualPrompt [Wang et all, 2027a], CODA-Prompt (CODA-
P) [Smifh ef all, 2073], InfLoRA [Liang and Li, 2074], VPT-NSP? [[iref all, 2024], and SD-LoRA
[Wn—ef-all, 2075]. Comparing against both prompt-based and LoRA-based methods allows us to
comprehensively evaluate the effectiveness of CoSO. In addition to the ViT-B/16 [Dosovitskiy et all,
70721]] pretrained on ImageNet- 1K, we also evaluate a self-supervised ViT-B/16 obtained with DINO
[Caron ef all, DO71]]. Details of the experimental setup are provided in Appendix O.

4.2 Experimental Results

We evaluate CoSO against state-of-the-art continual learning methods across different experimental
settings. Table [ shows the performance comparison on ImageNet-R under various task partitions
(5, 10, and 20 tasks). Across all partitions, CoSO delivers the highest final accuracy (ACC) and
average accuracy (AC'C), confirming its robustness to mitigate forgetting. For the most challenging
setting (20 tasks), CoSO attains 78.19% final accuracy and 83.69% average accuracy, while the best
baseline method achieves 75.42% and 81.32%, respectively. For the ImageNet-R 10 tasks scenario,
CoSO improves the final accuracy by 3.23% and the average accuracy by 2.47% compared to the
best baseline method. Likewise, in the 5 tasks setting, CoSO still leads by 2.38% in final accuracy
and 2.05% in average accuracy. This margin highlights CoSQO’s exceptional resistance to forgetting
and its strong capacity to integrate new knowledge without eroding prior learning.

Figure D illustrates the evolution of accuracy throughout the continual learning process for various
methods evaluated on ImageNet-R. It is evident that CoSO consistently maintains superior perfor-
mance relative to other approaches, both during the intermediate phases and at the end of training.
This ongoing superiority underscores CoSQO’s effectiveness in reducing interference from newly in-
troduced tasks, resulting in a significantly slower decline in accuracy compared to competing meth-
ods. Complementary results in Table P reveal the same trend on CIFAR100 and DomainNet. On the
DomainNet benchmark, CoSO outperforms the best baseline method by 1.75% in final accuracy and
1.37% in average accuracy, confirming its ability to generalize across heterogeneous visual domains.



Table 2: Results (%) on CIFAR100 (10 Tasks) and DomainNet (5 Tasks). All reported results with
mean and standard deviation are computed over 3 independent runs.

CIFAR100 (10 Tasks) DomainNet (5 Tasks)
ACCqy ACCqg ACCs ACCy

L2P 82.641026 87.904019 70.0310.00 75.6510.06
DualPrompt  84.6810.22 90.1210.05 72.2540.05 77.8410.02
CODA-P 86.601037 91.461000 T73.164007 T78.7510.04
InfLoRA 86.85:|:0_08 91-45:|:0.16 73.09:|:0_11 79~2]-:I:0.08
SD-LoRA 87.30+0.45 91.814p927 73.2040.12 79.0340.04
VPT-NSP?  88.091012 92.48.011 72521013 78.68.40.06
CoSO 88.77i0_16 92-99i0.23 74-27j:0407 80.05i0.04

Method

Table 3: Ablation study results (%) on ImageNet-R with varying numbers of tasks (5, 10 and 20).
ImageNet-R (5 Tasks) ImageNet-R (10 Tasks) ImageNet-R (20 Tasks)

Method

ACCy ACCH ACCyy ACCq ACCy ACCo
w/o Orth  79.35  85.22 75.90 83.43 69.75 78.88
w/o FD 80.72  85.44 78.83 84.45 76.68 82.41
CoSO 82.37  86.46 80.72 85.67 78.27 83.62

A detailed analysis of computational and memory costs are presented in Appendix O. The additional
results with DINO [Caran ef all, P071] are provided in Appendix B.

Ablation Study. We conduct comprehensive ablation studies on ImageNet-R benchmark to validate
the individual contributions of the orthogonal projection mechanism and the Frequent Directions
(FD) based subspace consolidation. Specifically, we compare CoSO with two variants. The first
variant (w/o Orth) removes the orthogonal projection, which directly uses the original gradients
G for optimization instead of the orthogonally projected gradients G’T’t. This variant optimizes
parameters in continuous subspaces without any orthogonality constraint, thereby ignoring task in-
terference. The second variant (w/o FD) retains orthogonality but, instead of employing FD to
consolidate all intermediate gradients from the current task, constructs the task-specific subspace
using only the final subspace obtained at the end of that task.

The results are summarized in Table B. Eliminating orthogonal projection (w/o Orth) leads to a
sharp performance drop (8.52% in final accuracy) on 20 Tasks setting, highlighting the importance
of excluding new gradients from the historical subspace to prevent interference. Replacing FD with
the simplified strategy that builds each task-specific subspace from only the final gradient subspace
(w/o FD) also degrades performance, lowering final accuracy by 1.65%, 1.89% and 1.59% for 5,
10 and 20 Tasks settings, respectively. This drop confirms that aggregating all intermediate gradi-
ents through incremental FD updates captures richer task information than using a single terminal
subspace. Across the table, the full method delivers the highest final and average accuracies, indi-
cating that both orthogonal projection and FD consolidation are indispensable for robust continual
learning.

5 Conclusion

In this paper, we propose Continuous Subspace Optimization for Continual Learning (CoSO). CoSO
optimizes the pre-trained models within continuous subspaces. By maintaining orthogonality be-
tween the current task’s optimization subspace and that of historical tasks, CoSO effectively miti-
gates the interference. CoSO maintains a compact task-specific component while learning a task.
After completing the current task, the task-specific component is used to update the historical task
subspace. Extensive experiments on standard benchmarks demonstrate that CoSO consistently out-
performs state-of-the-art baselines in both final accuracy and average accuracy over time, confirming
its effectiveness and robustness across diverse data streams. In the future, a challenging open prob-
lem is to extend CoSO to multimodal task settings.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Please refer to the supplemental materials.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy]) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section B and Appendix O.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the main results with mean and standard deviation, which are com-
puted over 3 independent runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

 Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Section B and Appendix O.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethics and ensured that our re-
search conforms to it.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This paper is about continual learning and does not involve societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper is about continual learning and does not have a risk for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited all data, code, and models used in this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMSs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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A Proof of Proposition [

Recall that {G ,}]_, C R™*" js the sequence of projected gradients for task 7, A, = G/, ,G,,
A=1 G GTL A =QrQf A=Y Q,,Q], and sketch matrix S, 7 € R"™¥"2,

Because ), ; is the rank 7, approximation of G, ,, for every step ¢, we have
|A; = A2 = o7, (14)
where oy is the (rz + 1) singular value of G7 ,

Using the triangle inequality together with Eq. (I4),
T

D (A -4y

t=1

T

T
Z A — Aylla = af. (15)
t=1

1A~ A2 =

Since we use FD to compute .S - based on {QT’t}thl, from Theorem 1.1 of Ghashami ef all [POTH],
we have ~ PR
- A-[A
1A~ SrrTl < 1A lE, 16)
? o — k
where [A]y, is the minimizer of || A—[A],||  overall rank k matrices. Applying the triangle inequality
to |A — S, 7S] ;| and substituting Eq. (I3) and (I8) gives

1A= S, 7871 ]l2 < ||A —Allg + | A~ Sr.rS 12
HA A% a7

2 |
< Z o
which is exactly (I0).

B CoSO Algorithm

We present the the detailed procedure in Algorithm .

C Experimental Setups and Implementation Details

Following existing works [Smifh”ef-all, D073, Winef all, P075], we adopt ViT-B/16 [Dosovitskiy
ef-all, PO2T] pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K as our backbone model,
which consists of 12 transformer blocks. For fair comparison, all methods use the same ViT-B/16
backbone and optimizer. Additionally, we also evaluate a self-supervised ViT-B/16 obtained with
DINO [Caron“efall, PO02T]. The optimization is performed using Adam [Kingma, Z0T4] optimizer
with 81 = 0.9 and B2 = 0.999. The training epochs vary across datasets: 40 epochs for ImageNet-
R, 20 epochs for CIFAR100, and 5 epochs for DomainNet. We maintain a consistent batch size
of 128 across all experiments. Results are averaged over 3 independent runs, and we report the
corresponding standard deviation. Notably, CoSO only optimize the output projection layers in
multi-head attention module rather than QKV transformations.

We present the detailed hyperparameter settings of CoSO in Table B. These hyperparameters are
carefully tuned to balance memory efficiency and performance, reflecting the varying complexity of
the datasets. The hyperparameter settings of baseline methods are following existing work [Wang
ef all, 20274, Smath ef all, 20773, Ciang and Li, 2024, Caef all, 2024, Wi ef all, 2023]. For all datasets,
we employ minimal data augmentation, consisting of random resized cropping to 224 x 224 pixels
and random horizontal flipping during training, without any additional augmentation techniques. To
prevent overfitting, we followed VPT-NSP? [Lirefall, P(174], setting the temperature parameter in
the cross-entropy loss to 3 for all datasets. All experiments were conducted on NVIDIA A6000
GPUs with 48GB memory using PyTorch 2.5.1.

The projection rank (r;) determines the dimensionality of the low-rank subspace for gradient pro-
jection. For simpler datasets like CIFAR100, a lower value of r; = 15 is sufficient, while more
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Algorithm 1 CoSO for Continual Learning

1: Input: A layer weight matrix W € R"™*", step size 7, decay rates (1, B2, projection rank ry,
FD rank 75, threshold € and update gap K.

2: Initialize first-order moment My € R™*" «+ (

3: Initialize second-order moment Vy € R™*" « 0

4: Initialize sketch matrix Sy € R™*" + 0

5: Initialize orthogonal projection matrix Mg < 0

6. for Task 7 € 1... N do

7: forstept €1...7 do

3: Gt +— VWT’tL(WT,t) > Compute mini-batch gradient for task 7
9: G, G — MT_lMLl Gy > Orthogonal projection
10: if t mod K == 0 then

11: UXV' =SVD(G,,)

12: P.,=Ul[,:m] > Compute projection matrix Py ¢
13: Update S, ; through Eq. (B) and (B) > Use FD to consolidate gradient information
14: else

15: Pr,t <~ P‘r,tfl

16: 57—715 — S-,—7t_1

17: end if

18: Ry < PTT tG’m > Project orthogonal gradient into low rank space
19: Use R, ; to compute N, ; through Eq. (B) > Update R, ; by Adam
20: Grt+ PNy > Project gradient back to original space
21: WT,t <~ WT,t—l -n- GT,t
22: end for

23: Update the historical subspaces basis matrix M _; through Eq. (), (I2) and (I3)
24: end for

Table 4: Hyperparameter settings for different datasets.

Hyperparameter CIFAR100 ImageNet-R DomainNet
Projection rank () 15 50 70
Frequent directions rank (r3) 100 120 160

Update gap (K) 1 1 20
Threshold (e;,) 0.98 0.98 0.98

complex datasets such as ImageNet-R and DomainNet require higher values (r; = 50 and r; = 70,
respectively) to capture a richer set of gradient directions. The Frequent Directions rank () is con-
sistently set higher than r; across all datasets. This design choice ensures that CoSO can capture
a broader range of directions, reducing information loss during continual learning. As the dataset
complexity increases, 72 is adjusted upward to retain more task information.

The update gap K is adjusted based on the characteristics of each dataset. For DomainNet, we use a
larger update gap (K = 20) due to its larger and more diverse task structure, where frequent updates
may become redundant. In contrast, CIFAR100 and ImageNet-R exhibit rapid gradient changes,
necessitating a smaller K. Finally, the threshold (¢) is uniformly set to 0.98 across all datasets. This
value is selected to maintain a high retention rate of gradient information within the subspace.

D Analysis of Computational and Memory Costs

We conducted a comparative analysis of CoSO and baseline methods with respect to computational
cost (reported as estimated GFLOPs) and memory usage, as summarized in Table B. CoSO requires
half the computational cost of prompt-based methods (such as L2P, DualPrompt, and CODA-P),
as it avoids the need for twice forward passes through the network. In terms of memory usage,
CoSO is on par with other low-rank adaptation techniques such as InfLoRA (13.44). Its slightly
higher memory footprint (13.61) stems from using a larger rank for gradient subspace approximation,
which enables better capture of task-specific patterns and leads to superior performance. Notably,
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Table 5: Comparison on ImageNet-R (10 Tasks) in terms of computation (GFLOPs) and memory
usage.

Method GFLOPs Memory Usage (G)

L2P 70.24 12.90
DualPrompt  70.24 12.96
CODA-P 70.24 12.97
InfLoRA 35.12 13.44
SD-LoRA  35.12 15.62
VPT-NSP?  35.83 11.54
CoSO 35.12 13.61

Table 6: Results (%) on ImageNet-R (10 Tasks). All reported results with mean and standard devia-
tion are computed over 3 independent runs.

ImageNet-R (10 Tasks)

Method (DINO)
ACChy ACChy

L2P 61941045 68.7710.27
DualPrompt 60.4040.18 67.6540.07
CODA-P 64.631033 72.2010.30
InfLoRA 67.91i0_23 76.40i0_03
SD-LoRA 69.78:|:(),63 65.73:|:0‘35
VPT-NSP? 69.68410.00 77.2440.16
CoSO 71-60i0.44 79.281()‘16

simply increasing the rank for InfLoRA would not yield similar improvements, as its performance
is limited by the constraint of fixed subspaces. Compared with SD-LoRA (15.62), which incurs the
greatest memory overhead, CoSO offers a more efficient alternative while delivering competitive
performance. Overall, these results highlight CoSO’s ability to strike a favorable balance between
computational efficiency and memory usage, making it a scalable solution for continual learning
across diverse tasks.

E Additional Experiment Results on ImageNet-R

To further verify CoSO’s generality, we test it on a self-supervised ViT-B/16 backbone trained with
DINO [Caron_ef-all, P021] on ImageNet-R (10 Tasks). The results are presented in Table B. CoSO
outperforms the best baseline method with a considerable margin, confirming its ability to generalize
across various vision transformers.
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