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Abstract

Fine-grained Visual Recognition (FGVR) involves differentiating between visually
similar categories, and is challenging due to subtle differences between the cate-
gories and the need for large, expert-annotated datasets. We observe that recent
Multimodal Large Language Models (MLLMs) demonstrate potential in FGVR,
but querying such models for every test input is not practical due to high costs and
time inefficiencies. To address this, we propose a novel pipeline that fine-tunes
a CLIP model for FGVR by leveraging MLLMs. Our approach requires only a
small support set of unlabeled images to construct a weakly supervised dataset,
with MLLMs as label generators. To mitigate the impact of obtained noisy labels,
we construct a candidate set for each image using labels of neighboring images,
thereby increasing the likelihood of having the correct label in the candidate set.
We then employ a partial label learning algorithm to fine-tune a CLIP model using
these candidate sets. Our method sets a new benchmark for efficient fine-grained
classification, achieving comparable performance to MLLMs at just 1/100th of
the inference cost and a fraction of the time taken.

1 Introduction
Fine-grained visual recognition (FGVR) is a task in computer vision that focuses on distinguishing
between highly similar categories within a broader class [1]. For instance, traditional image classifi-
cation aims to differentiate between dogs, cats, and birds, while FGVR aims to distinguish between
different bird species, such as Tennessee Warbler, Yellow-rumped Warbler, Orange-crowned Warbler
and Sedge Warbler. FGVR is crucial for applications requiring high specificity, such as medical
diagnosis [2, 3] and biodiversity studies [4, 5]. FGVR poses significant challenges due to the subtle
differences between categories and the need for large, annotated datasets. Typically, fine-grained
classification datasets are annotated by domain experts who meticulously examine each image and
assign a corresponding label. Multimodal Large Language Models (MLLMs) are trained on extensive
corpora, and excel at zero-shot multimodal tasks. They thus offer a promising avenue for FGVR,
especially when domain-specific, curated datasets are unavailable. We observe that directly querying
MLLMs as "Provide a best fine-grained class label for this image.", results in reasonable performance
in FGVR tasks, but querying such models for every test input is costly and time consuming. For
instance, for the benchmark datasets used in this study, GPT-4o requires approximately 17.5 hours
for querying and incurs a cost of around USD $100 for inference. This underscores the urgent need
for an efficient FGVR system that conserves both time and financial resources while maintaining the
performance of MLLMs. We propose to label a small support set of unlabeled images by querying an
MLLM for each image. The obtained weakly supervised dataset is used to fine-tune a CLIP [6] model,
which can then perform inference in a cost-effective manner. Our approach achieves performance
comparable to that of MLLMs while incurring only 1/100th of the total inference cost.
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Figure 1: Our proposed training workflow consists of three steps: (Step 1) Querying an MLLM to obtain noisy
labels for a small support set of unlabeled images; (Step 2) Forming a candidate set by aggregating MLLM
generated labels of top-k nearest images; and (Step-3) Fine-tuning a CLIP model by optimizing learnable
prompts using a PLL loss. After fine-tuning the model, inference can be performed on test images with the
MLLM label space obtained during training.

Since MLLM outputs may be noisy, the original images and corresponding labels from an MLLM
forms a noisy supervised dataset. To counter this, we propose to build a candidate set for each
image using the labels of other similar images. The intuition here is that, for a given image x,
even if the label l obtained from an MLLM might be incorrect, by building a size k candidate set
S(x) = {l, l1, . . . , lk−1}, using labels of k − 1 most similar images, the chance of a label that is
semantically closer to ground truth is included in S is higher. We then leverage partial label learning
paradigm to adapt a VLM to further reduce the ambiguity of the candidate set. The overall idea is
shown in Fig. 1. In summary, our contributions include: (i) To the best of our knowledge, this is the
first work that uses MLLMs to build a cost-efficient vocabulary-free fine-grained visual recognition
system, (ii) We propose a pipeline that can handle the noisy labels from MLLMs, and (iii) We
outperform all the existing works and match the performance of MLLMs in a cost-efficient way.

2 Related Work
Fine-Grained Visual Recognition (FGVR). FGVR often requires additional supervision in terms of
annotations or domain experts. However such curated data is usually not available for many domains
of interest such as e-commerce and medical data. Thus there is a requirement of performing FGVR
when no or very little supervised data is available. In this work we tackle the FGVR problem by
leveraging MLLMs to annotate a small set of unsupervised images. Foundation Models for FGVR.
Recent advances in MLLMs have led to models that show strong zero-shot performance on a variety
of multimodal tasks [7–9]. Such MLLMs can be directly used for fine-grained classification by
treating it as a VQA problem. However, performing inference for every test point is costly and time
consuming. Recently, FineR [10] proposed a pipeline model consisting of Visual Question Answering
(VQA) systems and Large Language Models (LLMs) to solve the FGVR task using just unsupervised
data. However, their architecture is complex and does not utilize the advances of MLLMs, leading to
inferior performance. Prompt Tuning. Prompt tuning fine-tunes parameters efficiently to enhance
the performance of large pre-trained models on specific tasks. Context Optimization (CoOp) [11] was
the first to introduce text-based prompt tuning, replacing manually designed prompts like "a photo of
a" with adaptive soft prompts. On the other hand, Visual Prompt Tuning [12] introduces learnable
prompts specifically within the vision branch. Among the various approaches for incorporating visual
prompts, we chose a straightforward strategy by implementing the simplest text-based method, CoOp.

3 Methodology
Problem Formalization. Let X = {x1, x2, . . . , xn}, xi ∈ X be the support set of n unlabeled
training images. We assume that the given support set has m-shot samples for each class of the
unknown ground-truth label set. In this work, we explore how state-of-the-art Multimodal Large
Language Models (MLLMs) can be leveraged for fine-grained visual recognition. Let L denote
the MLLM used to generate labels for the training images. For each image xi, we obtain a label
li = L(xi, p), where p is a text prompt that helps the MLLM generate a class label for the image. In
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this work, we use the simple prompt, ‘Provide a best fine-grained class label for this image’. The
resulting dataset D = {(xi, li)}ni=1 consists of image-label pairs, and the label space is denoted by
Y =

⋃n
i=1 li. Notably, the label space generated by the MLLM is larger than the true label set, since

the labeling is noisy, and increases with the size of the support set.

CLIP Classifier. CLIP [6] consists of an image encoder I and a text encoder T trained contrastively
on paired image-text data to learn a common multimodal representation space. For the FGVR task,
we create a dataset D with label space Y as described above. CLIP can now perform zero-shot (ZS)
classification of any image x by choosing the class name with the highest cosine similarity from the
set of label names Y , i.e, predicted class is ŷ(x) = argmaxt∈Y sim(I(x), T (t)). We refer to this
simple approach, of generating feasible label names using MLLMs which then form the label set for
CLIP, as ZS-CLIP. Note that ZS-CLIP does not make use of the supervision information available in
D and only acts as a simple baseline. In the section below, we present our proposal to utilize labels of
nearest-neighbors to learn a better classifier using the weak labeling provided by MLLMs.

3.1 Learning from weak MLLM labels
We propose to leverage local geometry to mitigate the noise in generated labels li. More formally, we
make the manifold assumption, which suggests that similar images should share similar or identical
class labels. This is particularly useful when the label li assigned to the image xi by the MLLM is
incorrect. By constructing a candidate label set, we increase the likelihood of including the true label
or a semantically closer alternative in the candidate set rather than relying solely on the incorrect
label provided by the MLLM. To construct the candidate set in a simple and intuitive manner, we use
CLIP’s image encoder I to extract image features of the entire support set X . For each image xi,
we select the top-k most similar images (including xi itself) and gather their corresponding labels to
form the candidate set Si = (li, l1, . . . , lk−1). In this work, we choose k = 3. The resulting dataset
is reconstructed as D = {(xi, Si)}ni=1, incorporating the candidate sets instead of single labels alone.
To fine-tune CLIP in an efficient manner, we adopt prompt-tuning methods that add a small number
of learnable tokens to the input token sequence of either modality. Specifically, we follow CoOp [11],
which adds prompts to only the text modality. The next step is to define an appropriate training
objective to effectively leverage this supervision. Fortunately, existing loss functions designed for
partial-label learning (PLL), such as PRODEN [13], can be directly applied to this dataset to fine-tune
prompts. We choose PRODEN and CoOp because they are easy to implement and train, allowing us
to demonstrate the effectiveness of our pipeline without relying on sophisticated PLL algorithms or
prompt-tuning techniques.

4 Experiments and Results
Datasets: We perform experiments on five benchmark fine-grained datasets: CaltechUCSD Bird-
200 [14], Stanford Car-196 [15], Stanford Dog-120 [16], Flower-102 [17], Oxford-IIIT Pet-37 [18].
Baselines: We compare against three classes of baseline methods. (i) We evaluate six MLLMs of
varying sizes, including three proprietary models – GPT-4o [8], Gemini Flash, Gemini Pro [9] and
three open-source models – BLIP-2 [7], LLaVA-1.5 with 7 billion and 13 billion parameters [19, 20].
To perform classification, we query each MLLM with the prompt ‘Provide a best fine-grained class
label for this image’ for each test image. (ii) We also consider two contemporary baselines which
do not require expert annotations but use foundational models to perform FGVR – CaSED [21]
and FineR [10]. (iii) Lastly, we compare against zero-shot CLIP with corresponding label spaces
obtained from querying MLLMs: ZS-CLIP-GPT-4o, ZS-CLIP-GeminiFlash & ZS-CLIP-GeminiPro.
We also include ZS-CLIP-WordNet with the label set from WordNet [22]. Evaluation Metrics:
Following [10] we evaluate using three metrics: (i) Semantic Accuracy (sACC), which scores the
predicted class by its semantic similarity to the ground-truth class using Sentence-BERT embeddings;
(ii) Clustering Accuracy (cACC), which measures how well predicted classes cluster the images; and
(iii) Semantic IOU (sIOU), which measures the intersection-over-union between the predicted and
ground-truth class names.

Main Results: In Table 2 we compare the performance of our method against various baselines.
The results of the various MLLMs and ZS-CLIP models were run by us, and we show numbers
of CaSED and FineR as reported in their papers. We note that the proprietary MLLMs perform
the best for all datasets, with the caveat that performing inference for every test sample is costly
and time taking. We hence do not directly compare against these baselines, but treat them as upper
bounds (in gray). Our method with Gemini Pro labels obtains a +6.7% & +3.9% improvement in
sACC and cACC over the state-of-the-art fine-grained classification approach FineR [10]. Part of this

3



Method Training Time Inference Time US$
GPT-4o - ∼ 17.5 ∼ 100
Gem. Flash - > 24∗ ∼ 47
Gem. Pro - > 24∗ ∼ 47

ZS-CLIP GPT-4o - 0.03 ∼ 1
ZS-CLIP Gem. Flash - 0.03 ∼ 1
ZS-CLIP Gem.Pro - 0.03 ∼ 1

Ours (GPT-4o) 0.6 0.03 ∼ 1
Ours (Gem. Flash) 0.6 0.03 ∼ 1
Ours (Gem. Pro) 0.6 0.03 ∼ 1

Table 1: Time in hours and cost in
US$ incurred by each method. *Only
10000 API calls per day.
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Figure 2: We illustrate the performance of our method compared to other
baselines when varying the number of shots m per class, for k = 3.

success can be attributed to the advancements in the latest MLLMs, as their zero-shot baselines are
already significantly stronger than prior methods. We also show a significant improvement of 3%
over the corresponding ZS baselines using our simple proposed pipeline. Our proposed method is
cost-effective, fast, and achieves comparable performance to the MLLM upper bounds, showing a
drop of just 2.3% in average sACC. Table 1 presents the training time, inference time, and associated
costs for running the method, summarizing its effectiveness in terms of time and cost savings relative
to other baselines while considering performance gains.

Method Bird-200 Car-196 Dog-120 Flower-102 Pet-37 Average
sACC cACC sIOU sACC cACC sIOU sACC cACC sIOU sACC cACC sIOU sACC cACC sIOU sACC cACC sIOU

†GPT-4o 85.2 68.8 68.4 61.5 37.4 16.8 80.4 71.1 61.4 51.6 50.5 19.6 83.5 68.2 69.8 72.4 59.2 47.2
†Gemini Flash 74.8 49.3 49.9 60.2 51.2 16.0 76.3 62.3 53.8 57.9 31.1 16.6 77.8 61.1 49.6 69.4 51.0 37.2
†Gemini Pro 82.7 66.1 64.9 62.8 35.4 18.1 81.2 65.8 57.3 54.3 45.3 20.1 85.7 71.3 71.7 73.3 56.8 46.5
‡BLIP-2 56.8 30.9 - 57.9 43.1 - 58.6 39.0 - 59.1 61.9 - 60.5 61.3 - 58.6 47.2
‡LLaVA-1.5-7B 45.6 5.6 2.3 48.3 11.9 5.3 45.0 3.8 2.8 44.3 8.6 4.9 42.8 6.6 0.1 45.2 7.3 3.0
‡LLaVA-1.5-13B 42.8 10.0 2.5 12.1 4.4 0.1 33.0 13.0 0.9 35.2 20.7 35 37.9 1.0 12.9 31.5 10.1 1.1

CaSED 50.1 25.6 - 41.4 26.9 - 55.9 38.0 - 52.3 67.2 - 63.6 60.9 - 52.6 43.7 -
FineR 69.5 51.1 - 63.5 49.2 - 64.9 48.1 - 51.3 63.8 - 72.4 72.9 - 64.3 57.0 -

ZS-CLIP-WordNet 57.7 39.3 - 33.3 18.3 - 70.6 53.9 - 49.8 42.1 - 61.9 55.4 - 54.7 41.8 -
ZS-CLIP-GPT-4o 72.5 48.8 46.6 59.5 42.9 14.4 69.1 51.0 43.8 53.0 62.1 18.2 78.7 68.2 59.9 66.6 54.6 36.6
ZS-CLIP-GeminiFlash 71.8 47.4 44.4 58.8 44.9 13.3 68.8 50.9 40.2 53.5 53.1 13.4 75.3 70.9 44.2 65.6 53.4 31.1
ZS-CLIP-GeminiPro 74.6 51.7 50.5 61.7 41.6 16.3 72.6 58.9 40.7 49.1 57.7 13.7 78.6 71.7 60.8 67.3 56.3 36.4

Ours (GPT-4o) 78.7 56.6 58.1 60.5 49.6 15.7 75.5 63.9 53.7 52.3 69.0 21.8 84.7 78.3 72.5 70.3 63.5(+5.4) 44.4(+6.5)
Ours (Gemini Flash) 74.6 50.0 48.2 58.8 51.1 14.9 72.0 57.7 47.4 58.4 57.3 18.1 79.1 75.1 51.6 68.6 58.2 36.1
Ours (Gemini Pro) 76.9 56.9 56.1 61.6 42.8 17.0 75.9 65.2 46.2 56.8 64.4 21.0 84.0 75.4 70.0 71.0(+5.8) 60.9 42.0

Table 2: ZS-Zero Shot, ‡-Open-source models used for inference. †-SOTA models used for inference, in
our case they act as oracle models. The best numbers are highlighted in bold with a mint background. The
second-best numbers are underlined with a yellow background. Green numbers show the improvement compared
to previous published SOTA FineR method. Our results shown here are for k = 3 and m = 3.

Method Average
sACC cACC sIOU

Random CS + GPT-4o 69.4 58.7 42.4
Random CS + Gemini Flash 66.9 55.5 33.6
Random CS + Gemini Pro 69.3 58.0 40.1

Our CS + GPT-4o 70.3 63.5 44.4
Our CS + Gemini Flash 68.6 58.2 36.1
Our CS + Gemini Pro 71.0 60.9 42.0

Table 3: Our proposed NN candidate set
performs better than Random sampling.

Method Datasets
Birds-200 Cars-196 Dog-120 Flower-102 Pet-37

GPT-4o CS 76.4 OOM 74.02 51.43 83.84
Ours(GPT-4o) 78.7 63.5 75.5 52.3 84.7

Table 4: Our proposed NN candidate set per-
forms better while being more efficient when
compared to directly querying the MLLM to
generate k=3 candidates.

Ablation Studies: To evaluate the manifold hypothesis,
we compare our nearest-neighbor candidate sets against
randomly sampling labels from the label space to gener-
ate a candidate set, which we denote as Random CS. The
results presented in Table 3 indicate that nearest neigh-
bor candidate sets perform better over all metrics. We
also study the effect of querying the MLLM to directly
generate a candidate set of most relevant class labels as
opposed to a single class label. There are two main dis-
advantages with this approach – the label space becomes
prohibitively large, and we lose similarity information. As
shown in Table 4, our proposal for obtaining candidate
sets shows superior performance while avoiding Out-of-
Memory (OOM) issues that arise due to the larger label
space of the former method. In figure 2, we study the effect
of varying the number of unlabeled samples per class in
the training set. Our method shows good performance over
a wide range of shots, and outperforms FineR at all shots.

5 Conclusion

In this work we describe a pipeline to leverage MLLM knowledge to perform efficient fine-grained
recognition for domains where expert annotations are unavailable. We propose to obtain labels for
a small unlabeled support set from state-of-the-art MLLMs, which are used to fine-tune a CLIP
model that can perform efficient inference. We achieve performance close to that of directly querying
MLLMs for all test images, at a fraction of compute time and cost.
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