Why Does Surprisal From Smaller GPT-2 Models Provide Better Fit to
Human Reading Times?

Anonymous ACL submission

Abstract

This work presents an in-depth analysis of
an observation that contradicts the findings of
recent work in computational psycholinguis-
tics, namely that smaller GPT-2 models that
show higher test perplexity nonetheless gen-
erate surprisal estimates that are more predic-
tive of human reading times. Analysis of the
surprisal values shows that rare proper nouns,
which are typically tokenized into multiple sub-
word tokens, are systematically assigned lower
surprisal values by the larger GPT-2 models.
A comparison of residual errors from regres-
sion models fit to reading times reveals that re-
gression models with surprisal predictors from
smaller GPT-2 models have significantly lower
mean absolute errors on words that are tok-
enized into multiple tokens, while this trend
is not observed on words that are kept intact.
These results indicate that the ability of larger
GPT-2 models to predict internal pieces of rare
words more accurately makes their surprisal
estimates deviate from humanlike expectations
that manifest in self-paced reading times and
eye-gaze durations.

1 Introduction

Expectation-based theories of sentence process-
ing (Hale, 2001; Levy, 2008) posit that processing
difficulty is mainly driven by how predictable up-
coming linguistic material is given its context. In
support of this position, predictability quantified
through information-theoretical surprisal (Shannon,
1948) has been shown to strongly correlate with
behavioral and neural measures of processing diffi-
culty (Demberg and Keller, 2008; Smith and Levy,
2013; Hale et al., 2018; Shain et al., 2020).

In previous studies, language models (LMs),
which directly define a conditional probability dis-
tribution of a word given its context, have been
evaluated as surprisal-based cognitive models of
sentence processing. Surprisal estimates from sev-
eral well-established types of LMs, including n-
gram models, Simple Recurrent Networks (Elman,

1991), and Long Short-Term Memory networks
(LSTM; Hochreiter and Schmidhuber, 1997), have
been compared against behavioral measures of
processing difficulty (e.g. Smith and Levy, 2013;
Goodkind and Bicknell, 2018; Aurnhammer and
Frank, 2019). More recently, as Transformer-
based (Vaswani et al., 2017) models have domi-
nated many NLP tasks, both large pretrained and
smaller ‘trained-from-scratch’ Transformer-based
LMs have been evaluated as models of processing
difficulty (Wilcox et al., 2020; Hao et al., 2020;
Merkx and Frank, 2021; Schrimpf et al., 2021).

A consistent finding that emerged out of these
studies is that better language models are also bet-
ter models of comprehension difficulty, or in other
words, there is a negative correlation between lan-
guage model perplexity and fit to human read-
ing times. Goodkind and Bicknell (2018) com-
pared surprisal estimates from a set of n-gram and
LSTM LMs and observed a negative linear rela-
tionship between perplexity and regression model
fit. Wilcox et al. (2020) evaluated n-gram, LSTM,
Transformer, and RNNG (Dyer et al., 2016) models
and replicated the negative relationship, although
they note a more exponential relationship at certain
intervals.!

2 Background

Recently, however, it was observed that when pre-
trained GPT-2 models (Radford et al., 2019) are
used to generate surprisal estimates, surprisal from
GPT-2 Small, which has the least number of param-
eters, makes the biggest contribution to regression
model fit on self-paced reading times (Anonymous,
under review). Using self-paced reading times from
the Natural Stories Corpus (Futrell et al., 2021), the

! Although counterexamples to this trend have been noted,
they were based on comparisons of LMs and incremental
parsers that were trained on different data (Oh et al., 2021)
or evaluation on a language with different syntactic head-
directionality than English (Kuribayashi et al., 2021).
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Figure 1: Perplexity measures from each GPT-2 model,
and improvements in regression model log-likelihood
from including each surprisal estimate on Natural Sto-
ries self-paced reading data.

authors calculated the increase in log-likelihood
(ALL) to a baseline linear-mixed effects (LME)
model as a result of including a surprisal predic-
tor.” Their results in Figure 1 show a robust positive
correlation between language model perplexity and
predictive power of surprisal predictors from pre-
trained GPT-2 models of different sizes.? This ef-
fect was then replicated on the Dundee eye-tracking
corpus (Kennedy et al., 2003).

As the different variants of pretrained GPT-2
models share the primary architecture (i.e. autore-
gressive Transformers) and training data, this of-
fers an especially strong counterexample to recent
works that observe a negative relationship between
these two variables (Goodkind and Bicknell, 2018;
Hao et al., 2020; Wilcox et al., 2020).

3 Methods

The current work attempts to provide an explana-
tion for the positive correlation observed between
language model perplexity and fit to self-paced
reading times by reproducing these results and con-
ducting an error analysis with the regression mod-
els.*

The baseline regression model included predictors that
capture low-level cognitive processing, such as word length
measured in characters and index of word position within
each sentence. All predictors were centered and scaled prior
to model fitting, and the LME models included by-subject
random slopes for all fixed effects and random intercepts for
each word and subject-sentence interaction.

3The authors observe the same trend when unigram sur-
prisal is included in the baseline and spillover effects are con-
trolled for through the use of continuous-time deconvolutional
regression (CDR; Shain and Schuler, 2021).

*All code used in this work is available at: github.com/
xxx/yyy

3.1 Response Data

Following the results described in Section 2, we
evaluated surprisal predictors on self-paced read-
ing times from the Natural Stories Corpus (Futrell
et al., 2021), which contains data from 181 sub-
jects that read 10 naturalistic English stories con-
sisting of 10,245 tokens. The data were filtered
to exclude observations corresponding to sentence-
initial and sentence-final words, observations from
subjects who answered fewer than four compre-
hension questions correctly, and observations with
durations shorter than 100 ms or longer than 3000
ms. This resulted in a total of 770,102 observa-
tions, which were subsequently partitioned into an
exploratory set of 384,905 observations and a held-
out set of 385,197 observations.> All observations
were log-transformed prior to model fitting.

3.2 Predictors

The results in Section 2 used surprisal estimates
calculated from four different variants of pretrained
GPT-2 models® (Radford et al., 2019), which are
decoder-only autogressive Transformer models that
differ in their sizes:

* GPT2S: GPT-2 Small, which has 12 layers and
~124M parameters.

e GPT2M: GPT-2 Medium, which has 24 layers
and ~355M parameters.

e GPT2L: GPT-2 Large, which has 36 layers and
~774M parameters.

e GPT2XL: GPT-2 XL, which has 48 layers and
~1558M parameters.

Each story of the Natural Stories Corpus was
tokenized according GPT-2’s byte-pair encoding
(BPE; Sennrich et al., 2016) tokenizer and was pro-
vided to each pretrained GPT-2 model to calculate
surprisal estimates. In cases where a single word
wy was tokenized into multiple subword tokens,
negative log probabilities of subword tokens cor-
responding to w; were added together to calculate
S(wy) = —log P(wy [ wi.t-1).

3.3 Regression Modeling and Error Analysis

Subsequently, four LME models that contain the
baseline predictors (i.e. word length and word po-
sition) and each of the GPT-2 surprisal predictors

>The results in Figure 1 are from regression models fit on
the held-out set.

®The pretrained models are publicly available at https :
//github.com/openai/gpt-2.
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Figure 2: Histogram of word-level surprisal values on the held-out set of Natural Stories Corpus from different

pretrained GPT-2 models.

Sentence # | Word # Word | GPT2Ssurp | GPT2Msurp | GPT2Lsurp | GPT2XLsurp | # Subwords
382 6 Pflock, 16.9745 12.1140 6.2818 1.7086 4

362 13 Marcel, 11.7783 4.4075 0.4812 0.4383 2

1 19 jennies 13.1263 9.1347 4.6793 2.6570 3

379 26 Mogul, 11.1371 2.9520 1.0758 1.1000 3

451 26 coprolalia, 21.8774 14.2319 10.2438 11.8560 4

141 24 dollar 8.9853 1.0388 1.5773 0.1183 1

446 11 | throat-clearing, 14.7768 9.8318 8.6016 6.3010 5

388 21 Provinces, 12.6217 9.6031 9.3428 4.3365 4

382 53 Agustin 7.8970 6.4648 1.7403 0.1384 3

362 9 Stanton 8.6183 6.3176 4.4433 0.9583 1

Table 1: Top 10 words with the biggest surprisal value differences between the GPT2S and GPT2XL models, and
their corresponding surprisal values from the GPT2M and GPT2L models.

were fit to the held-out set of self-paced reading
times using 1me4 (Bates et al., 2015). After the
models were fitted, the predictions for all data
points (y) were generated in order to calculate the
residual errors (y — ¢) from each regression model.
Additionally, surprisal values from the different
pretrained GPT-2 models were analyzed in order
to identify where they make the most divergent
predictions.

4 Results

The histogram of surprisal values in Figure 2 shows
that as the model size becomes larger, surprisal val-
ues of more words tend to be concentrated in the
lowermost bin. This indicates that the larger pre-
trained models are indeed better language models
in terms of next-word prediction, and is also consis-
tent with the trend of perplexity measures reported
in Figure 1. However, this may also be the reason
that the surprisal estimates from the larger GPT-
2 models lead to worse fit on self-paced reading
times; since more data points are assigned near-
zero surprisal, the regression model may not be
able to accurately predict potentially high reading
times at those points.

In order to identify the words that are assigned
relatively low surprisal values by the larger models
but relatively high surprisal values by the smaller

models, the words were sorted according to the
difference between the surprisal values from the
GPT2S and GPT2XL models, which have the most
divergent profiles. Table 1 presents the surprisal
values for the top 10 words that show the biggest
difference between the GPT2S and GPT2XL mod-
els. As can be seen, most of these words demon-
strate a systematic decrease in their surprisal values
as the model size increases, which indicates that
these are the words that are partially responsible for
the trend observed in Figure 2. Additionally, most
of these words are rare proper nouns, and were
therefore tokenized into multiple subword tokens
by the GPT-2 models. Given these two observa-
tions, it was hypothesized that the better regression
model fit observed for the smaller GPT-2 models
is mainly driven by more accurate predictions of
reading times for such multi-token words.

To test this hypothesis, the data points in the held-
out set of Natural Stories Corpus were separated
according to whether each word remained intact or
was tokenized into multiple subword tokens by the
GPT-2 model. This resulted in a single-token par-
tition of 337,752 data points, and a multiple-token
partition of 47,445 data points. Subsequently, the
absolute errors (Jy — g|) from the four regression
models were compared on each set. The above
hypothesis would be supported if the absolute er-
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Figure 3: Mean absolute errors from each regression model on data points consisting of single-token words (left)
and multiple-token words (right) from the Natural Stories Corpus. Statistical significance of the difference between
means was determined by a paired permutation test at the event level (*: p < 0.05, ***: p < 0.001). Note that the

figures share the scale of the y-axis.

rors were similar across regression models on the
single-token partition, but not on the multiple-token
partition.

The results in Figure 3 show that for all four
regression models, the mean absolute errors are
higher on words with multiple tokens, which indi-
cates that all GPT-2 models tend to generate sur-
prisal estimates that do not align well with self-
paced reading times on these words. More impor-
tantly, on the multiple-token partition, mean ab-
solute errors are lower for the regression models
with surprisal estimates from the smaller GPT-2
models, which is consistent with the trend in ALL
observed in Figure 1. Pairwise permutation tests
with mean absolute errors between “neighboring’
models show that the difference between GPT2S
and GPT2M models, as well as that between the
GPT2L and GPT2XL models is statistically signif-
icant. In contrast, this trend is not attested in the
mean absolute errors on the single-token partition,
where none of the difference in mean absolute er-
rors between neighboring models are statistically
significant. Taken together, these results indicate
that the better fit to human reading times achieved
by surprisal estimates from smaller GPT-2 models
achieve is partly driven by their characteristic of as-
signing high surprisal values to multi-token words.
In other words, the extra parameters of larger mod-
els may be improving transitions between subword
units in a way that is beyond human ability.

B

5 Conclusion

This paper presents an in-depth analysis of an ob-
servation that contradicts the findings of recent

work in computational psycholinguistics, namely
that smaller pretrained GPT-2 models that perform
worse in terms of next-word prediction (i.e. higher
perplexity) nonetheless generate surprisal estimates
that are more predictive of human reading times
(i.e. higher contribution to regression model fit).

Analysis of the surprisal values from each of the
GPT-2 models showed that as model size increases,
more words are assigned near-zero surprisal, which
confirms the ability of larger models to predict up-
coming words more accurately. In order to ex-
amine whether this capability of larger models are
responsible for the unexpected trend in fit to human
reading times, words that show the biggest differ-
ence in surprisal values between the smallest and
largest GPT-2 models were identified. This analy-
sis revealed that rare proper nouns or words with
punctuation marks, which are typically tokenized
into multiple subword tokens, are systematically
assigned lower surprisal values by the larger GPT-2
models. A subsequent comparison of residual er-
rors from the regression models on reading times
of words that are tokenized (i.e. multiple-token)
showed that the regression models with surprisal
estimates from smaller GPT-2 models have signifi-
cantly lower mean absolute errors, while this trend
was not observed on reading times of words that
are kept intact (i.e. single-token).

These results indicate that the ability of larger
GPT-2 models to predict internal pieces of rare
words more accurately makes their surprisal esti-
mates deviate from humanlike expectations that
manifest in self-paced reading times.



6 Ethical Considerations

Experiments presented in this work used datasets
from previously published research (Futrell et al.,
2021), in which the procedures for data collection
and validation are outlined.

References

Christoph Aurnhammer and Stefan L. Frank. 2019.
Comparing gated and simple recurrent neural net-
work architectures as models of human sentence pro-
cessing. In Proceedings of the 41st Annual Meeting
of the Cognitive Science Society, pages 112—118.

Douglas Bates, Martin Méchler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects models
using lme4. Journal of Statistical Software, 67(1):1—
48.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193-210.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199-2009.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical structure.
Machine Learning, 7:195-225.

Richard Futrell, Edward Gibson, Harry J. Tily, Idan
Blank, Anastasia Vishnevetsky, Steven Piantadosi,
and Evelina Fedorenko. 2021. The Natural Stories
corpus: A reading-time corpus of English texts con-
taining rare syntactic constructions. Language Re-
sources and Evaluation, 55:63-77.

Adam Goodkind and Klinton Bicknell. 2018. Predic-
tive power of word surprisal for reading times is a
linear function of language model quality. In Pro-
ceedings of the 8th Workshop on Cognitive Modeling
and Computational Linguistics, pages 10—18.

John Hale. 2001. A probabilistic Earley parser as a psy-
cholinguistic model. In Proceedings of the Second
Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
Technologies, pages 1-8.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan Brennan. 2018. Finding syntax in human
encephalography with beam search. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 2727-2736.

Yiding Hao, Simon Mendelsohn, Rachel Sterneck,
Randi Martinez, and Robert Frank. 2020. Probabilis-
tic predictions of people perusing: Evaluating metrics
of language model performance for psycholinguistic

modeling. In Proceedings of the 10th Workshop on
Cognitive Modeling and Computational Linguistics,
pages 75-86.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735-
1780.

Alan Kennedy, Robin Hill, and Joél Pynte. 2003. The
Dundee Corpus. In Proceedings of the 12th Euro-
pean conference on eye movement.

Tatsuki Kuribayashi, Yohei Oseki, Takumi Ito, Ryo
Yoshida, Masayuki Asahara, and Kentaro Inui. 2021.
Lower perplexity is not always human-like. In Pro-
ceedings of the Joint Conference of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing, pages 5203-5217.

Roger Levy. 2008. Expectation-based syntactic compre-
hension. Cognition, 106(3):1126-1177.

Danny Merkx and Stefan L. Frank. 2021. Human sen-
tence processing: Recurrence or attention? In Pro-
ceedings of the Workshop on Cognitive Modeling
and Computational Linguistics, pages 12-22, Online.
Association for Computational Linguistics.

Byung-Doh Oh, Christian Clark, and William Schuler.
2021. Surprisal estimators for human reading times
need character models. In Proceedings of the Joint
Conference of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, pages 3746-3757.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Technical Report.

Martin Schrimpf, Idan Blank, Greta Tuckute, Carina
Kauf, Eghbal A. Hosseini, Nancy Kanwisher, Joshua
Tenenbaum, and Evelina Fedorenko. 2021. The neu-
ral architecture of language: Integrative modeling
converges on predictive processing. bioRXiv.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1715-1725.

Cory Shain, Idan Asher Blank, Marten van Schijn-
del, William Schuler, and Evelina Fedorenko. 2020.
fMRI reveals language-specific predictive coding dur-
ing naturalistic sentence comprehension. Neuropsy-
chologia, 138.

Cory Shain and William Schuler. 2021. Continuous-
Time Deconvolutional Regression for Psycholinguis-
tic Modeling. Cognition, 215.

Claude Elwood Shannon. 1948. A mathematical theory
of communication. Bell System Technical Journal,
27:379-423.


https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008
https://doi.org/10.1016/j.cognition.2008.07.008
https://www.aclweb.org/anthology/N16-1024
https://www.aclweb.org/anthology/N16-1024
https://www.aclweb.org/anthology/N16-1024
https://doi.org/10.1007/s10579-020-09503-7
https://doi.org/10.1007/s10579-020-09503-7
https://doi.org/10.1007/s10579-020-09503-7
https://doi.org/10.1007/s10579-020-09503-7
https://doi.org/10.1007/s10579-020-09503-7
https://www.aclweb.org/anthology/W18-0102/
https://www.aclweb.org/anthology/W18-0102/
https://www.aclweb.org/anthology/W18-0102/
https://www.aclweb.org/anthology/W18-0102/
https://www.aclweb.org/anthology/W18-0102/
https://www.aclweb.org/anthology/N01-1021/
https://www.aclweb.org/anthology/N01-1021/
https://www.aclweb.org/anthology/N01-1021/
https://www.aclweb.org/anthology/P18-1254
https://www.aclweb.org/anthology/P18-1254
https://www.aclweb.org/anthology/P18-1254
https://www.aclweb.org/anthology/2020.cmcl-1.10
https://www.aclweb.org/anthology/2020.cmcl-1.10
https://www.aclweb.org/anthology/2020.cmcl-1.10
https://www.aclweb.org/anthology/2020.cmcl-1.10
https://www.aclweb.org/anthology/2020.cmcl-1.10
https://www.aclweb.org/anthology/2020.cmcl-1.10
https://www.aclweb.org/anthology/2020.cmcl-1.10
https://aclanthology.org/2021.acl-long.405
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://doi.org/10.18653/v1/2021.cmcl-1.2
https://aclanthology.org/2021.acl-long.290
https://aclanthology.org/2021.acl-long.290
https://aclanthology.org/2021.acl-long.290
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1101/2020.06.26.174482
https://doi.org/10.1101/2020.06.26.174482
https://doi.org/10.1101/2020.06.26.174482
https://doi.org/10.1101/2020.06.26.174482
https://doi.org/10.1101/2020.06.26.174482
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2019.107307
https://doi.org/10.1016/j.cognition.2021.104735
https://doi.org/10.1016/j.cognition.2021.104735
https://doi.org/10.1016/j.cognition.2021.104735
https://doi.org/10.1016/j.cognition.2021.104735
https://doi.org/10.1016/j.cognition.2021.104735
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Nathaniel J. Smith and Roger Levy. 2013. The effect
of word predictability on reading time is logarithmic.
Cognition, 128:302-319.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu, Peng
Qian, and Roger P. Levy. 2020. On the predictive
power of neural language models for human real-
time comprehension behavior. In Proceedings of
the 42nd Annual Meeting of the Cognitive Science
Society, pages 1707-1713.


https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/10.1016/j.cognition.2013.02.013
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://cognitivesciencesociety.org/cogsci20/papers/0375
https://cognitivesciencesociety.org/cogsci20/papers/0375
https://cognitivesciencesociety.org/cogsci20/papers/0375
https://cognitivesciencesociety.org/cogsci20/papers/0375
https://cognitivesciencesociety.org/cogsci20/papers/0375

