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Abstract
This work presents an in-depth analysis of001
an observation that contradicts the findings of002
recent work in computational psycholinguis-003
tics, namely that smaller GPT-2 models that004
show higher test perplexity nonetheless gen-005
erate surprisal estimates that are more predic-006
tive of human reading times. Analysis of the007
surprisal values shows that rare proper nouns,008
which are typically tokenized into multiple sub-009
word tokens, are systematically assigned lower010
surprisal values by the larger GPT-2 models.011
A comparison of residual errors from regres-012
sion models fit to reading times reveals that re-013
gression models with surprisal predictors from014
smaller GPT-2 models have significantly lower015
mean absolute errors on words that are tok-016
enized into multiple tokens, while this trend017
is not observed on words that are kept intact.018
These results indicate that the ability of larger019
GPT-2 models to predict internal pieces of rare020
words more accurately makes their surprisal021
estimates deviate from humanlike expectations022
that manifest in self-paced reading times and023
eye-gaze durations.024

1 Introduction025

Expectation-based theories of sentence process-026

ing (Hale, 2001; Levy, 2008) posit that processing027

difficulty is mainly driven by how predictable up-028

coming linguistic material is given its context. In029

support of this position, predictability quantified030

through information-theoretical surprisal (Shannon,031

1948) has been shown to strongly correlate with032

behavioral and neural measures of processing diffi-033

culty (Demberg and Keller, 2008; Smith and Levy,034

2013; Hale et al., 2018; Shain et al., 2020).035

In previous studies, language models (LMs),036

which directly define a conditional probability dis-037

tribution of a word given its context, have been038

evaluated as surprisal-based cognitive models of039

sentence processing. Surprisal estimates from sev-040

eral well-established types of LMs, including n-041

gram models, Simple Recurrent Networks (Elman,042

1991), and Long Short-Term Memory networks 043

(LSTM; Hochreiter and Schmidhuber, 1997), have 044

been compared against behavioral measures of 045

processing difficulty (e.g. Smith and Levy, 2013; 046

Goodkind and Bicknell, 2018; Aurnhammer and 047

Frank, 2019). More recently, as Transformer- 048

based (Vaswani et al., 2017) models have domi- 049

nated many NLP tasks, both large pretrained and 050

smaller ‘trained-from-scratch’ Transformer-based 051

LMs have been evaluated as models of processing 052

difficulty (Wilcox et al., 2020; Hao et al., 2020; 053

Merkx and Frank, 2021; Schrimpf et al., 2021). 054

A consistent finding that emerged out of these 055

studies is that better language models are also bet- 056

ter models of comprehension difficulty, or in other 057

words, there is a negative correlation between lan- 058

guage model perplexity and fit to human read- 059

ing times. Goodkind and Bicknell (2018) com- 060

pared surprisal estimates from a set of n-gram and 061

LSTM LMs and observed a negative linear rela- 062

tionship between perplexity and regression model 063

fit. Wilcox et al. (2020) evaluated n-gram, LSTM, 064

Transformer, and RNNG (Dyer et al., 2016) models 065

and replicated the negative relationship, although 066

they note a more exponential relationship at certain 067

intervals.1 068

2 Background 069

Recently, however, it was observed that when pre- 070

trained GPT-2 models (Radford et al., 2019) are 071

used to generate surprisal estimates, surprisal from 072

GPT-2 Small, which has the least number of param- 073

eters, makes the biggest contribution to regression 074

model fit on self-paced reading times (Anonymous, 075

under review). Using self-paced reading times from 076

the Natural Stories Corpus (Futrell et al., 2021), the 077

1Although counterexamples to this trend have been noted,
they were based on comparisons of LMs and incremental
parsers that were trained on different data (Oh et al., 2021)
or evaluation on a language with different syntactic head-
directionality than English (Kuribayashi et al., 2021).
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Figure 1: Perplexity measures from each GPT-2 model,
and improvements in regression model log-likelihood
from including each surprisal estimate on Natural Sto-
ries self-paced reading data.

authors calculated the increase in log-likelihood078

(∆LL) to a baseline linear-mixed effects (LME)079

model as a result of including a surprisal predic-080

tor.2 Their results in Figure 1 show a robust positive081

correlation between language model perplexity and082

predictive power of surprisal predictors from pre-083

trained GPT-2 models of different sizes.3 This ef-084

fect was then replicated on the Dundee eye-tracking085

corpus (Kennedy et al., 2003).086

As the different variants of pretrained GPT-2087

models share the primary architecture (i.e. autore-088

gressive Transformers) and training data, this of-089

fers an especially strong counterexample to recent090

works that observe a negative relationship between091

these two variables (Goodkind and Bicknell, 2018;092

Hao et al., 2020; Wilcox et al., 2020).093

3 Methods094

The current work attempts to provide an explana-095

tion for the positive correlation observed between096

language model perplexity and fit to self-paced097

reading times by reproducing these results and con-098

ducting an error analysis with the regression mod-099

els.4100

2The baseline regression model included predictors that
capture low-level cognitive processing, such as word length
measured in characters and index of word position within
each sentence. All predictors were centered and scaled prior
to model fitting, and the LME models included by-subject
random slopes for all fixed effects and random intercepts for
each word and subject-sentence interaction.

3The authors observe the same trend when unigram sur-
prisal is included in the baseline and spillover effects are con-
trolled for through the use of continuous-time deconvolutional
regression (CDR; Shain and Schuler, 2021).

4All code used in this work is available at: github.com/
xxx/yyy

3.1 Response Data 101

Following the results described in Section 2, we 102

evaluated surprisal predictors on self-paced read- 103

ing times from the Natural Stories Corpus (Futrell 104

et al., 2021), which contains data from 181 sub- 105

jects that read 10 naturalistic English stories con- 106

sisting of 10,245 tokens. The data were filtered 107

to exclude observations corresponding to sentence- 108

initial and sentence-final words, observations from 109

subjects who answered fewer than four compre- 110

hension questions correctly, and observations with 111

durations shorter than 100 ms or longer than 3000 112

ms. This resulted in a total of 770,102 observa- 113

tions, which were subsequently partitioned into an 114

exploratory set of 384,905 observations and a held- 115

out set of 385,197 observations.5 All observations 116

were log-transformed prior to model fitting. 117

3.2 Predictors 118

The results in Section 2 used surprisal estimates 119

calculated from four different variants of pretrained 120

GPT-2 models6 (Radford et al., 2019), which are 121

decoder-only autogressive Transformer models that 122

differ in their sizes: 123

• GPT2S: GPT-2 Small, which has 12 layers and 124

∼124M parameters. 125

• GPT2M: GPT-2 Medium, which has 24 layers 126

and ∼355M parameters. 127

• GPT2L: GPT-2 Large, which has 36 layers and 128

∼774M parameters. 129

• GPT2XL: GPT-2 XL, which has 48 layers and 130

∼1558M parameters. 131

Each story of the Natural Stories Corpus was 132

tokenized according GPT-2’s byte-pair encoding 133

(BPE; Sennrich et al., 2016) tokenizer and was pro- 134

vided to each pretrained GPT-2 model to calculate 135

surprisal estimates. In cases where a single word 136

wt was tokenized into multiple subword tokens, 137

negative log probabilities of subword tokens cor- 138

responding to wt were added together to calculate 139

S(wt) = − logP(wt | w1..t−1). 140

3.3 Regression Modeling and Error Analysis 141

Subsequently, four LME models that contain the 142

baseline predictors (i.e. word length and word po- 143

sition) and each of the GPT-2 surprisal predictors 144

5The results in Figure 1 are from regression models fit on
the held-out set.

6The pretrained models are publicly available at https:
//github.com/openai/gpt-2.
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Figure 2: Histogram of word-level surprisal values on the held-out set of Natural Stories Corpus from different
pretrained GPT-2 models.

Sentence # Word # Word GPT2Ssurp GPT2Msurp GPT2Lsurp GPT2XLsurp # Subwords
382 6 Pflock, 16.9745 12.1140 6.2818 1.7086 4
362 13 Marcel, 11.7783 4.4075 0.4812 0.4383 2

1 19 jennies 13.1263 9.1347 4.6793 2.6570 3
379 26 Mogul, 11.1371 2.9520 1.0758 1.1000 3
451 26 coprolalia, 21.8774 14.2319 10.2438 11.8560 4
141 24 dollar 8.9853 1.0388 1.5773 0.1183 1
446 11 throat-clearing, 14.7768 9.8318 8.6016 6.3010 5
388 21 Provinces, 12.6217 9.6031 9.3428 4.3365 4
382 53 Agustin 7.8970 6.4648 1.7403 0.1384 3
362 9 Stanton 8.6183 6.3176 4.4433 0.9583 1

Table 1: Top 10 words with the biggest surprisal value differences between the GPT2S and GPT2XL models, and
their corresponding surprisal values from the GPT2M and GPT2L models.

were fit to the held-out set of self-paced reading145

times using lme4 (Bates et al., 2015). After the146

models were fitted, the predictions for all data147

points (ŷ) were generated in order to calculate the148

residual errors (y − ŷ) from each regression model.149

Additionally, surprisal values from the different150

pretrained GPT-2 models were analyzed in order151

to identify where they make the most divergent152

predictions.153

4 Results154

The histogram of surprisal values in Figure 2 shows155

that as the model size becomes larger, surprisal val-156

ues of more words tend to be concentrated in the157

lowermost bin. This indicates that the larger pre-158

trained models are indeed better language models159

in terms of next-word prediction, and is also consis-160

tent with the trend of perplexity measures reported161

in Figure 1. However, this may also be the reason162

that the surprisal estimates from the larger GPT-163

2 models lead to worse fit on self-paced reading164

times; since more data points are assigned near-165

zero surprisal, the regression model may not be166

able to accurately predict potentially high reading167

times at those points.168

In order to identify the words that are assigned169

relatively low surprisal values by the larger models170

but relatively high surprisal values by the smaller171

models, the words were sorted according to the 172

difference between the surprisal values from the 173

GPT2S and GPT2XL models, which have the most 174

divergent profiles. Table 1 presents the surprisal 175

values for the top 10 words that show the biggest 176

difference between the GPT2S and GPT2XL mod- 177

els. As can be seen, most of these words demon- 178

strate a systematic decrease in their surprisal values 179

as the model size increases, which indicates that 180

these are the words that are partially responsible for 181

the trend observed in Figure 2. Additionally, most 182

of these words are rare proper nouns, and were 183

therefore tokenized into multiple subword tokens 184

by the GPT-2 models. Given these two observa- 185

tions, it was hypothesized that the better regression 186

model fit observed for the smaller GPT-2 models 187

is mainly driven by more accurate predictions of 188

reading times for such multi-token words. 189

To test this hypothesis, the data points in the held- 190

out set of Natural Stories Corpus were separated 191

according to whether each word remained intact or 192

was tokenized into multiple subword tokens by the 193

GPT-2 model. This resulted in a single-token par- 194

tition of 337,752 data points, and a multiple-token 195

partition of 47,445 data points. Subsequently, the 196

absolute errors (|y − ŷ|) from the four regression 197

models were compared on each set. The above 198

hypothesis would be supported if the absolute er- 199
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Figure 3: Mean absolute errors from each regression model on data points consisting of single-token words (left)
and multiple-token words (right) from the Natural Stories Corpus. Statistical significance of the difference between
means was determined by a paired permutation test at the event level (*: p < 0.05, ***: p < 0.001). Note that the
figures share the scale of the y-axis.

rors were similar across regression models on the200

single-token partition, but not on the multiple-token201

partition.202

The results in Figure 3 show that for all four203

regression models, the mean absolute errors are204

higher on words with multiple tokens, which indi-205

cates that all GPT-2 models tend to generate sur-206

prisal estimates that do not align well with self-207

paced reading times on these words. More impor-208

tantly, on the multiple-token partition, mean ab-209

solute errors are lower for the regression models210

with surprisal estimates from the smaller GPT-2211

models, which is consistent with the trend in ∆LL212

observed in Figure 1. Pairwise permutation tests213

with mean absolute errors between “neighboring”214

models show that the difference between GPT2S215

and GPT2M models, as well as that between the216

GPT2L and GPT2XL models is statistically signif-217

icant. In contrast, this trend is not attested in the218

mean absolute errors on the single-token partition,219

where none of the difference in mean absolute er-220

rors between neighboring models are statistically221

significant. Taken together, these results indicate222

that the better fit to human reading times achieved223

by surprisal estimates from smaller GPT-2 models224

achieve is partly driven by their characteristic of as-225

signing high surprisal values to multi-token words.226

In other words, the extra parameters of larger mod-227

els may be improving transitions between subword228

units in a way that is beyond human ability.229

5 Conclusion230

This paper presents an in-depth analysis of an ob-231

servation that contradicts the findings of recent232

work in computational psycholinguistics, namely 233

that smaller pretrained GPT-2 models that perform 234

worse in terms of next-word prediction (i.e. higher 235

perplexity) nonetheless generate surprisal estimates 236

that are more predictive of human reading times 237

(i.e. higher contribution to regression model fit). 238

Analysis of the surprisal values from each of the 239

GPT-2 models showed that as model size increases, 240

more words are assigned near-zero surprisal, which 241

confirms the ability of larger models to predict up- 242

coming words more accurately. In order to ex- 243

amine whether this capability of larger models are 244

responsible for the unexpected trend in fit to human 245

reading times, words that show the biggest differ- 246

ence in surprisal values between the smallest and 247

largest GPT-2 models were identified. This analy- 248

sis revealed that rare proper nouns or words with 249

punctuation marks, which are typically tokenized 250

into multiple subword tokens, are systematically 251

assigned lower surprisal values by the larger GPT-2 252

models. A subsequent comparison of residual er- 253

rors from the regression models on reading times 254

of words that are tokenized (i.e. multiple-token) 255

showed that the regression models with surprisal 256

estimates from smaller GPT-2 models have signifi- 257

cantly lower mean absolute errors, while this trend 258

was not observed on reading times of words that 259

are kept intact (i.e. single-token). 260

These results indicate that the ability of larger 261

GPT-2 models to predict internal pieces of rare 262

words more accurately makes their surprisal esti- 263

mates deviate from humanlike expectations that 264

manifest in self-paced reading times. 265
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6 Ethical Considerations266

Experiments presented in this work used datasets267

from previously published research (Futrell et al.,268

2021), in which the procedures for data collection269

and validation are outlined.270
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