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Figure 1: Given a single portrait image, our approach produces an animatable 3D Gaussian head
that can be driven with any speech audio clip to generate lifelike, free-viewpoint talking face videos
in real time. It adapts the powerful motion latent space of VASA-1 [[I]] to 3D, and leverages the
high realism of VASA-1 in 2D video generation to train the 3D head model. (Note: all the portrait
images in this document are virtual, non-existing identities generated by [2 3]]. See our supplemental
material for generated video samples with audio.)

Abstract

We propose VASA-3D, an audio-driven, single-shot 3D head avatar generator. This
research tackles two major challenges: capturing the subtle expression details
present in real human faces, and reconstructing an intricate 3D head avatar from a
single portrait image. To accurately model expression details, VASA-3D leverages
the motion latent of VASA-1 [II], a method that yields exceptional realism and
vividness in 2D talking heads. A critical element of our work is translating this
motion latent to 3D, which is accomplished by devising a 3D head model that is
conditioned on the motion latent. Customization of this model to a single image is
achieved through an optimization framework that employs numerous video frames
of the reference head synthesized from the input image. The optimization takes
various training losses robust to artifacts and limited pose coverage in the generated
training data. Our experiment shows that VASA-3D produces realistic 3D talking
heads that cannot be achieved by prior art, and it supports the online generation
of 512x512 free-viewpoint videos at up to 75 FPS, facilitating more immersive
engagements with lifelike 3D avatars.
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1 Introduction

Advances in generating 3D head avatars are revolutionizing digital interaction, effectively bridging
the gap between physical presence and virtual engagement. Vivid representations of human faces
serve to enhance various applications, ranging from virtual reality and gaming to remote education
and online meetings. By conveying realistic facial expressions and movements, 3D head avatars can
foster a deeper sense of connection within virtual environments, making interactions more personal
and engaging, and significantly improving user experience and immersion.

Most recent research on 3D head avatars utilize parametric head representations derived from 3D
scans [4} 5 16l [70 8L |9, (10, [114 112} [13}, [14} [15) 16} (17} 18} [19, 20]. The model’s shape and motion
are personalized to image or video data of a reference face, and then the avatar animation is driven
by an audio or video track of what the avatar will say. Despite the impressive developments to
date, significant challenges still remain. One major issue with current methods is that their output
often lacks the nuanced motion and subtle expressions of real human faces, resulting in less visually
compelling facial dynamics. Additionally, a vast majority of existing methods [4, 21} 5,16, [7, [10, |11}
1201130122} 16417, 123, [18]] require video or multiview data of the reference face for avatar modeling,
limiting their utility.

In this paper, we present VASA-3D, an audio-driven 3D head avatar generator that transforms a single
portrait image into a lifelike 3D talking head, synchronized with any speech audio input. The head
avatar is modeled with 3D Gaussian splatting [24, [17], which ensures multiview consistency and
facilitates real-time audio-driven animation and free-view rendering. Notably, the model captures
and conveys dynamic expression details with a degree of realism that markedly exceeds current
state-of-the-art techniques.

We observe that the expression terms of parametric head representations used for 3D head avatars,
such as 3DMM (25, 26] and FLAME [27], are modeled on 3D scans of just a few hundred subjects. To
model more diverse and detailed facial dynamics at minimal acquisition cost, VASA-3D instead takes
advantage of 2D head videos, which are abundant online. Specifically, it employs the motion latent of
VASA-1 [1]], which has been trained on data from 9.5K subjects, to capture rich facial dynamics. This
motion latent, though learned on 2D data, encodes implicit 3D structure, and a key contribution of
our work is in translating it to a 3D avatar. We accomplish this by first mapping it to the parameters
of a FLAME head model, on which 3D Gaussians are bound as done in [[17]. Although FLAME’s
expression parameters are modeled on just hundreds of 4D face captures, VASA-3D addresses this
limitation by next predicting dense, freeform Gaussian deformations that are conditioned on the
motion latent, thereby enabling the generation of more expressive 3D dynamic heads.

Our latent motion controlled Gaussian avatar offers great potential for 3D talking head synthesis, but
customizing it to just a single portrait image poses a challenging problem. Existing methods that
personalize a head avatar representation using a single image [8} [14} [15} [19} 20, 28] encode facial
expression via a parametric head model, thus limiting expressiveness. Our solution is to utilize a
pretrained portrait video generation model, namely VASA-1 [1]], to transform the reference image
into a collection of frames with varied facial expressions and head poses, and then fit the avatar to
these frames. As there exist limitations with this synthetic data, as well as overfitting issues due
to dense deformation, we have developed an optimization framework with various training losses
designed to robustly train the model despite these problems.

VASA-3D represents a significant step forward in 3D head avatar synthesis, capitalizing on 2D head
videos to enrich its model of facial dynamics and allowing customization of this advanced model
using only a single portrait image. The effectiveness and realism of VASA-3D is validated through
various experiments, where it demonstrates clear superiority over recent techniques. By creating
lifelike avatars that accurately reflect human expressions and facial motions, this approach paves the
way for more immersive and engaging virtual experiences.

2 Related Work

3D Face and Head Representations. A common representation for 3D head avatars is parametric
mesh-based models such as 3DMM [25]] and FLAME [27]]. These models are built on a collection of
3D head scans, from which the principal components of shape with respect to identity and expression
are used as bases for modeling head and face geometry. Though compact and efficient, these



parametric models provide low-fidelity mesh representations and limited detail for facial expressions,
whose bases are derived from scanned data of only hundreds of subjects.

An alternative approach based on neural radiance fields (NeRFs) [29] does not explicitly represent
geometry but instead stores the radiance field of a head in a neural network. With these radiance
values, head appearance at novel views can be synthesized by volumetric rendering. This approach
has led to many works that can generate highly photorealistic head avatars [4, 9, [7, [13]]. However,
NeRF-based methods often require multiview images or a video of the reference head, thus restricting
their usage. Moreover, rendering speeds for NeRF-based models typically do not reach the levels
needed for real-time applications.

Real-time performance with high rendering quality has been achieved through representations based
on 3D Gaussians [[17, [18| 120} 23| [30], whose positions, orientations, and densities are optimized
for the reference head. By accounting for the visibility of each Gaussian and rendering only those
that can be seen, real-time performance is attainable [24]. Rigging 3D Gaussians to a parametric
head model allows them to be dynamically controlled through parameter manipulation. Our work
utilizes this representation but controls face and head motion using VASA-1 motion latents, for which
residuals to these Gaussians are incorporated to precisely model the subtle expression details that
these latents capture.

3D Head Reconstruction. 3D head avatars can be reconstructed from a reference head using
multi-view correspondences [[17,[18]]. For greater practical convenience, much attention has focused
on one-shot methods that require only a single head image. These methods either rely on a parametric
head model as a strong prior [8}20] or predict a volumetric [9] or tri-plane [14} [1519]] representation
for NeRF rendering. In this work, we propose to leverage the considerable recent advance in 2D
talking face generation [1]] to synthesize close approximations of additional views of the input face,
providing further data for training.

A collection of frames synthesized in our method may resemble monocular video input, which is
used in several works for 3D head avatar reconstruction [4}, |5} 16} [7, (10} [11} {12} 13} [16]]. However, our
training data differs significantly from monocular video in two respects. One is that a broad range of
head poses and facial expressions can be synthesized with our approach, much beyond than what
can reasonably be captured in a video of a reference head. The other is that the images generated by
VASA-1 [1]] lack temporal texture consistency, which creates problems when using common training
losses based on pixel-wise comparisons. We overcome this issue through judicious selection of losses
that are robust to such artifacts.

Head Avatar Animation. Head avatars are typically modeled in a way that they can be driven using
parameters of parametric models like 3DMM and FLAME [4} |5, 6| [7, 8}, [0, [10} [11} [12} [13} 14, [15}
164 117,18} 119} 20]. Their reliance on parametric models for animation encoding and control limits
the expressiveness of faces. In contrast, our method drives animation using VASA-1 motion latents,
which provide a richer expression representation learned from an abundance of 2D head videos.
Though the 3D Gaussian splats that represent head shape in our work are rigged to a FLAME model,
we incorporate residuals conditioned on the motion latents, giving expression control to these latents.

3 Method

Our VASA-3D framework, illustrated in Fig. [2] is built on two main ideas: adapting the VASA-
1 motion latent to 3D, and leveraging the high realism of VASA-1 [1] in 2D talking head video
generation to facilitate single-shot customization of the 3D head model. We train VASA-3D models
with carefully-designed losses that enhance visual quality while avoiding issues that may arise from
the synthesized videos.

3.1 VASA-3D Model

3D Gaussian Representation. Our VASA-3D model is based on 3D Gaussians [24] equipped with
Gaussian deformation fields driven by the VASA-1 motion latent. The 3D head is represented as a
set of 3D Gaussians G = {g; = (u;, 7, 8i, ¢i, ;) 1Y, each with position p, rotation 7, scale s,
color ¢, and opacity «.. To ease learning of Gaussian parameters and deformation fields, we make use
of priors from existing 3D head parametric models. Specifically, we use 3D Gaussians bound to a
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Figure 2: Overview of VASA-3D. Given a single portrait image, we use the VASA-1 model to
generate a collection of synthetic talking face videos as well as their corresponding motion latents,
which are used to train a VASA-3D model. The driving sources for these videos can be in-the-wild
audios and/or face videos. Our VASA-3D model is represented by deformable 3D Gaussians attached
to a FLAME mesh. Two deformation fields are applied to the Gaussians, one based on the FLAME
mesh and another modulated by VASA motion latents. After training, a VASA-3D model can be
driven with VASA motion latents generated from audios or videos in real time.

FLAME model [31]], a representation introduced in GaussianAvatars [17]. Unlike in [[17] and other
previous works, animations will be driven by the VASA-1 latent.

We decompose the deformation into two parts: a Base Deformation, and another deformation we call
VAS Deformation. The former is driven by the FLAME parametric model to change the geometric
properties of the Gaussians including position, rotation, and scale. The latter derives the fine-grained
geometric and color variations, which is crucial for expressing the motion nuances captured in
VASA-1 and improving the rendering quality.

Base Deformation. Given a motion latent x = [z9", zP°*¢] produced by the VASA-1 diffusion
model, we first map them to FLAME parameters using two MLPs. The first MLP M€ converts the
facial dynamics code z%™ to the expression-related FLAME parameters e°“? = (1), V¢, §7*")
which includes the expression PCA coefficients, eye pose, and jaw pose, respectively. The second
MLP M? uses z°*¢ to predict the FLAME pose parameters e = (0™°°* 99'°**! t) including neck
rotation, global rotation, and global translation. These two mappings can be written as:

Eezp (_Me(zdyn)’ (1)
ePose «— MP(zP%°). 2)

Both M€ and MP have three fully connected layers, with 256 hidden units per layer followed by
a ReLU activation function. Additionally, a shape coefficient £°"P¢ is jointly optimized during
training and fixed during inference.

Given these parameters, the FLAME mesh will be rigged accordingly, which drives the changes of
(p;,13,8;) for the Gaussians g; attached to the mesh triangles. Additional details of this process can
be found in [17].

VAS Deformation. We further learn dense Gaussian deformation fields for our 3D head model,
modulated by VASA-1 motion latents. Two MLPs are introduced to predict the deformations of
Gaussians in the face and neck region, respectively. The first MLP D¢ takes Gaussians g; in FLAME’s
facial region {2 ¢, as well as the VASA-1 facial dynamics latent zW" ag input and predicts the full
transformation Ag; = (Ap,;, Ar;, As;, Ac;, Aa;). We also feed the FLAME expression parameters
€*P to the MLP so that it is aware of the current base expression. The second MLP is responsible
for the FLAME neck region ... It takes the Gaussians, VASA pose zP°*¢ and FLAME pose
parameters €P°°¢ as input to predict the residuals. The VAS deformations can be expressed as:

Agicq,u.. ¢ DO(gi 2", e%P), A3
AngQneck +— DP (gj7 Zposea Epose)' (4)

These two MLPs share the same architecture as M and MP except for the different input and
output dimensions. For all input Gaussian positions u, we apply sinusoidal positional encoding with
L =41[29].



Animation and Rendering. Once trained, VASA-3D models can be animated using VASA-1 motion
latents. The driving sources can be either audios or videos. For audio input, we use VASA-1’s
diffusion transformer to generate motion latents. For videos, we use VASA-1 motion encoders for
latent code extraction. The animation frames are efficiently rendered with Gaussian Splatting and the
whole animation and rendering pipeline can run in real time on a commodity GPU.

3.2 Synthetic Training Data Generation

We leverage VASA-1 to generate video frames with a diverse set of poses and expressions from the
given single image. To achieve this, one can either use real speech audios and/or face videos for data
generation. For example, in most of our experiments, we randomly sample up to 10 hours of video
clips from the VoxCeleb2 dataset [32] to render the training data. We extract the VASA-1 motion
latent for each frame and use the VASA-1 decoder to drive the portrait image and synthesize the
corresponding frames. The paired motion latent and video frame data will be used for VASA-3D
model training, which we present next.

3.3 Robustified Model Training

We train our models in an end-to-end manner where all the trainable modules, including Gaussian
parameters and the MLPs for deformation, are trained together from scratch.

Challenges. Our synthesized training data and the dense free-form deformation in our 3DGS-based
head model give rise to several challenges for training.

 Unlike real videos, inconsistency of temporal texture and facial shape exists among the
synthesized frames.

» Large viewing angles are often missing from the training data, leading to difficulties in shape
reconstruction.

* The inclusion of residuals for the Gaussians can lead to overfitting to the training video
frames.

We apply the following losses to train the model effectively without succumbing to these issues.

Reconstruction Losses. We use a combination of the structural similarity index measure (SSIM)
and the L; color difference as the photometric loss between the generated image and the ground truth
image:

Lrecon = )\ssimLssim + (1 - )\ssim)Ll- (5)

Perceptual Losses. As temporal texture inconsistency can reduce the efficacy of the photometric loss,
we rely on perception-level losses that measure visual quality but are robust to temporal inconsistency
among the training frames. Specifically, we apply the Learned Perceptual Image Patch Similarity
(LPIPS) loss [33]] with a pretrained VGG network [34]]. To further improve realism, we add multi-
scale patch discriminators and apply an adversarial loss for training. We employ three discriminators
with different input image scales and trained them together with our model. The perceptual loss
functions can be written as:

Lperc = )\lpipsLlpips + )\adeadv- (6)

SDS Loss. Since the synthesized video data generally covers a limited range of poses, we apply the
SDS loss [35] to minimize visual artifacts in side views and to enlarge the range of valid viewing
angles. Specifically, we render our model from random viewing angles for which we apply the SDS
loss Lygs. Random views are uniformly sampled from azimuth angles in the range [—180°, 180°]
and elevation angles in the range [—22.5°, 22.5°]. We use StableDiffusion v2.1 [36] as the diffusion
model in our SDS loss with classifier-free guidance factor 10.0 and gradient scale 0.001. The text
prompt is ‘human portrait, realistic photography, by DSLR camera’.

Though the dense VAS deformations help in capturing detailed expressions and improving image
quality, they also require careful design of regularization to avoid overfitting to each frame’s training
data. In light of this, we compute L,.ccon, Lper and Lgqs for the rendered images of the Gaussians
both after base deformation and after VAS deformation, denoted as G’ and G”, respectively. This
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Figure 3: Effects of dataset size and train- o ] i
ing iterations Table 1: Quantitative results of ablation studies

approach aims for G to effectively capture facial features shared across frames to the extent possible
through multi-frame consistency, while G” focuses on modeling the residual facial details of different
frames.

Render Consistency Loss. Although the SDS loss helps to eliminate artifacts in profile regions,
we found that it also tends to smooth out the details across all regions in our case. This issue is
pronounced for G” because the Gaussian residuals are learned for each frame. Such flexibility
makes G" susceptible to the side effect of the SDS loss, especially for regions not well captured
by the current view (hence less constrained by the ground-truth reference image). In contrast, G’
are less prone to this issue, as these Gaussians are optimized to jointly fit the multi-frame data with
different poses and thus are less affected by L.g4s. Therefore, we design a loss to regularize G with
G’. Specifically, for each training iteration we render an additional pair of images with G’ and G”
respectively, under a new view angle significantly different from the current training view. We apply
a render consistency 1088 Leonsist between these two images I'(G") and I'(G") as

Leonsist = LPIPS(I'(Q”), stop_grad([’(g'))), @)
where the stop-gradient operator prevents G’ from being negatively affected.

In practice, the new view is randomly sampled with the azimuth angle in the range [—35°, —55°] or
[35°, 55°] and elevation angle in the range [—15°, 15°]. Of the two azimuth ranges, we select the one
that is farther away from the view of the training frame.

Sharpening Loss. To further increase the sharpness of the rendered results, we optionally apply
a contrast-adaptive-sharpening (CAS) filter [37]] to the model’s rendered images and use them to
further train the model. Specifically, we apply the CAS filter to the rendered image and then apply
the LPIPS loss between the sharpened image and the original image. The CAS loss L. is applied at
the end of the training process as a lightweight finetuning step.

The overall loss function is a combination of the aforementioned losses:
L = Legim + L1 + Llpips + Lagu+
Lsds + Lconsist + Lcas + Lothersv

where the loss weights are omitted for brevity, and L,;p.,s stands for other loss functions introduced
in [[17]] such as the Gaussian position and scale losses (see [17]). More details about our losses and
their implementation can be found in the supplementary material.

®)

4 Experiments

4.1 Analysis and Ablation Study

We conduct experiments to analyze our method as well as the design choices. In the following
experiments, we use ten portraits, including five males and five females, generated by StyleGAN?2 [2]
to train our models. We train the models using 4 NVIDIA A100 40G GPUs and a batch size of 4. A
512x512 resolution is used for both the training data and VASA-3D rendering throughout this paper.

Inference Speed. Given an audio clip as input, the animation and 512 x 512 video frame rendering
of our VASA-3D model can run at 75fps with a preceding latency of only 65ms, evaluated on a single
NVIDIA RTX 4090 GPU. A real-time demo is provided in the supplementary videos.
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Figure 4: Left: VAS deformation not only improves image quality (see also Table[I)) but also captures
facial nuances subtle yet critical for expressing emotions. Right: The SDS loss eliminates artifacts in
profile regions while the render consistency loss enhances the details smoothed out by the SDS loss.
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Figure 5: The CAS loss improves the overall rendering sharpness.
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4.1.1 Dataset Size and Training Time

We first analyze the influence of dataset size (i.e., length of training videos synthesized by VASA-1)
and training time (in iterations) on result quality. For each image, we use VASA-1 to render eight
training datasets of different sizes, i.e., Smin, 10min, 20min, 30min, 1h, 2h, 5h, 10h, using VASA-1
latents extracted from random video clips in VoxCeleb2 [32]]. We evaluate the models at varying
training iteration numbers (up to 400K) on our test set, which are VASA-1 generated videos of 3min
for each image.

Figure 3| shows how the average PSNR scores across the ten portraits on the test set improves as the
dataset size and training iterations increase. It is observed that the improvements almost plateau after
the dataset size reaches 2 hours and after the number of iterations exceeds 200K. Therefore, we set
the total number of iterations to 200K by default in the following experiments. We also trained our
model with 20K iterations and compare it against other baselines in some experiments below. Since
the training data size does not affect training time, we simply set it to 10 hours. For each portrait, a
10-hour dataset can be rendered in less than 1 hour on 4 NVIDIA A100 40G GPUs. Training with
20K/200K iterations takes about 1.8/18 hours for each model.

|



Figure 6: Example frames from the generation results of VASA-3D. The first row shows the frontal
view and the second row presents side views of the same frames.

FID] Sct  Sp,  IDSimt

VASA-1 524 8.142 69237 0.8154
VASA-3D 745 8.121 69300 0.7874

Table 2: Audio-driven generation comparison with VASA-1, the results of which represent our upper-
bound performance as our training data is generated by it. VASA-3D has only a subtle performance
gap to VASA-1, yet providing true-3D, freeview-renderable talking heads not achieved by VASA-1.

Some examples of our results generated by the default setting are presented in Fig[6] Our method
is shown to generate high-quality 3D head renderings with accurate audio-lip sync, vivid facial
expressions, and lively head motions. Video results are provided in the supplementary materials,
where readers can more fully examine the quality of VASA-3D generation.

4.1.2 Effect of VAS Deformation

We further train different variants of our method with the same training and test setup, and the
quantitative results are presented in Table[T} where the evaluation metrics include PSNR, L1 error,
SSIM, LPIPS, and lip-audio synchronization score. For the lip-sync score, we use SyncNet [38] to
assess the alignment confidence score S¢ and feature distance Sp.

Table|I| shows the effect of our VAS Deformation, compared to a basic setting with Base Deformation
only. All the image quality and lip-sync metrics are significantly improved, demonstrating the
importance of the VASA-latent-driven Gaussian deformation. Some visual comparisons are presented
in Fig.[d] The image quality is clearly improved by VAS deformation. More importantly, the facial
expressions including subtle facial details follow the ground-truth reference frame more closely,
displaying the expressive talking features with nuanced facial details that are modeled by VASA-1.

4.1.3 Effects of Different Losses

Fig. @] exhibits improvements with the SDS loss and render consistency loss. Due to the limited pose
coverage of our training data, artifacts can be clearly observed for the results without SDS loss under
side views rendered at 45° azimuth angles. The SDS loss provides additional regularization to the
model and eliminates the artifacts in side views. However, it also tends to smooth out details. Adding
the render consistency loss improves the results by enhancing the rendering details. Fig.[5]shows
results from training with the CAS loss, where the images are further sharpened.

Table [T] shows numerical results with different losses. The full method without the CAS loss (i.e.,
the fourth row) yields the best image quality in terms of the PSNR, L1 and SSIM metrics, whereas
the method with the CAS loss has the best perceptual score measured by LPIPS due to the enhanced
image sharpness. The lip-sync scores remain stable with different loss functions incorporated.

4.2 Audio-Driven Generation and Comparisons

In this experiment, we construct our training datasets by collecting five random audio clips from the
web (two males and three females), each with a total length of 25 minuteﬂ For each audio clip, we

2Our model can use either video frames or audios for training. Here we use audios since some compared
methods require continuous videos and cannot utilize the 10-hour dataset in Sec. @containing short video clips.



Sct Spd ID SimtT  US - Video Qualityt US - Overall Preference?

ER-NeRF 5921 8.7788  0.7732 1.82 1.08%
GeneFace 5922 9.6066  0.7857 1.73 0.72%
MimicTalk 5270 10.9368  0.7748 223 3.58%
TalkingGaussian 6.701 8.1061  0.7971 2.38 0.72%

VASA-3D 8.121 6.9300 0.7874 4.29 93.91%
VASA-3D (20k iter)  7.980  7.0020 - - -

Table 3: Comparison with audio-driven 3D talking head methods that are trained on videos. Note that
all methods except ours do not generate head pose. “US" denotes User Study (see text for details).
VASA-3D (20k iter) denotes our model trained with only 1/10 of default iteration number.

apply VASA-1 to drive a StyleGAN?2 portrait image to generate the synthetic video data. We only use
the first 20-minutes to train the models, and the remaining 5-minutes are used as the test set.

Comparison with VASA-1. We compare our method to VASA-1, our training data generator, to
check the quality difference of the generated talking videos. Table [2] presents the frame FID [39],
LipSync [38] confidence score S¢ and feature distance Sp, and the facial identity similarity between
test video frames and driving portrait images, calculated with ArcFace [40]. The performance gap
between VASA-3D and VASA-1 is small.

Comparison with Previous 3D Talking Head Avatar Methods. To our knowledge, no existing
method deals with the same task as ours — i.e., single photo to expressive, fully-animatable 3D head
avatar driven by audio — making the comparison difficult. Most audio-driven 3D talking avatars are
trained on long videos, and they typically do not generate full head dynamics such as head pose.

Still, to facilitate comparison with state-of-the-art techniques for reference purposes, we consider
the following methods: ER-NERF [41], GeneFace [42], MimicTalk [[16], and TalkingGaussian [23]].
We employ the same video data as in our VASA-3D to train these methods and use the audios from
the test set to generate videos. Table [3]shows the evaluation results of different methods. Our model
surpasses the other methods on the LipSync metrics by a wide margin. Its identity similarity score is
marginally lower than TalkingGaussian [23]] and better than others. We further conduct user studies to
evaluate the rendered video quality and the overall realism of the audio-driven results. 15 participants
were invited to assess: 1) the visual quality of the rendered talking head videos (audio muted), with
ratings from 1 to 5, and 2) the user preference of the results from the five compared methods, judged
by overall realism. Our visual quality rating was significantly higher than the other methods and the
users chose the VASA-3D as the best one for 93.91% of the presented cases.

More comparisons. We further compare our method with related works on video-driven 3D talking
head animation (i.e., the face reenactment task). Note that face reenactment is not a focus our work;
the goal here is to further compare VASA-3D’s rendered video quality as well as its expressiveness
on facial expression against prior art. Details of this experiment can be found in the suppl. material.

4.3 Generation with Additional Control Signal

Inheriting the capabilities of VASA-1, our VASA-3D can take additional control signals besides
an audio clip, such as eye gaze direction, head distance, and emotion offset. Fig.[/|as well as our
supplementary video present typical results with emotion offset control, where the generated 3D
talking heads closely adhere to different emotion offsets and exhibit emotive talking styles.

4.4 Artistic Image Experiments
We also tested our method on artistic-style portrait images, with some examples shown in Fig. [T]and

Fig.[8] Our method can effectively handle such artistic images and produce convincing 3D videos.

5 Conclusion

VASA-3D offers unparalleled realism for audio-driven 3D head avatars by presenting a way to
leverage the extensive expression data present in online 2D head videos. With a meticulously
designed architecture and training scheme, our model can be easily customized using only a single
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Figure 7: Audio-driven generation results with additional control signal of emotion offset. The results
are generated with the same audio clip. See the accompanying video for animated results with audio.
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Figure 8: Results on artistic-style images. See our videos for animated results with audio.

portrait image. We believe our approach paves the way for more immersive and engaging virtual
experiences with 3D head avatars.

Limitations and Future Work. Our method still has several limitations. Limited by the viewing
angles of the synthetic training videos, it does not model the back of heads. This issue could
potentially be resolved through 3D inpainting, since the back of a head is mostly rigid. Similar to
VASA-1, our method does not handle dynamic elements such as accessories. Extending VASA-3D to
include the upper body is another interesting direction we will explore in future.

6 Societal Impacts and Responsible AI Considerations

Our research aims to support positive applications of virtual Al avatars and is not intended for
creating misleading or deceptive content. However, like other related techniques, VASA-3D could
potentially be misused in generating the likeness of a real person. Throughout the development of
VASA-3D, responsible Al considerations were factored into all stages. To safeguard against such
harm, we are training face forgery detection models that incorporate our models’ outputs as part of the
training data. Though VASA-3D produces visually realistic results, we have found that they are easily
distinguishable from authentic videos by these models and improve the models’ generalizability.

While recognizing the potential for misuse, it is important to acknowledge the substantial positive
impact that our research technique could eventually have. We are currently examining potential
benefits, such as its application in an Al coworker and Al tutor, which can enhance latent intelligence
accessibility for knowledge workers and learners. These applications highlight the significance of
this research and other related investigations. We are committed to developing Al responsibly, with
the goal of advancing human well-being.

10



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

[8

—_—

[9

—

(10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

Sicheng Xu, Guojun Chen, Yu-Xiao Guo, Jiaolong Yang, Chong Li, Zhenyu Zang, Yizhong Zhang, Xin
Tong, and Baining Guo. Vasa-1: Lifelike audio-driven talking faces generated in real time. arXiv preprint
arXiv:2404.10667, 2024.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing and
improving the image quality of StyleGAN. In Proc. CVPR, 2020.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. https://cdn. openai.
com/papers/dall-e-3.pdf, 2(3):8, 2023.

Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias NieBner. Dynamic neural radiance fields for
monocular 4d facial avatar reconstruction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8649-8658, 2021.

Philip-William Grassal, Malte Prinzler, Titus Leistner, Carsten Rother, Matthias NieBner, and Justus Thies.
Neural head avatars from monocular rgb videos. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 18653-18664, 2022.

Yufeng Zheng, Victoria Fernandez Abrevaya, Marcel C Biihler, Xu Chen, Michael J Black, and Otmar
Hilliges. Im avatar: Implicit morphable head avatars from videos. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 13545-13555, 2022.

Xuan Gao, Chenglai Zhong, Jun Xiang, Yang Hong, Yudong Guo, and Juyong Zhang. Reconstructing
personalized semantic facial nerf models from monocular video. ACM Transactions on Graphics (TOG),
41(6):1-12, 2022.

Taras Khakhulin, Vanessa Sklyarova, Victor Lempitsky, and Egor Zakharov. Realistic one-shot mesh-based
head avatars. In ECCV, 2022.

Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juyong Zhang. Headnerf: A real-time nerf-based
parametric head model. In CVPR, 2022.

Yufeng Zheng, Wang Yifan, Gordon Wetzstein, Michael J Black, and Otmar Hilliges. Pointavatar:
Deformable point-based head avatars from videos. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 21057-21067, 2023.

Wojciech Zielonka, Timo Bolkart, and Justus Thies. Instant volumetric head avatars. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 4574-4584, 2023.

Yuelang Xu, Lizhen Wang, Xiaochen Zhao, Hongwen Zhang, and Yebin Liu. Avatarmav: Fast 3d
head avatar reconstruction using motion-aware neural voxels. In ACM SIGGRAPH 2023 Conference
Proceedings, pages 1-10, 2023.

Xiaochen Zhao, Lizhen Wang, Jingxiang Sun, Hongwen Zhang, Jinli Suo, and Yebin Liu. Havatar: High-
fidelity head avatar via facial model conditioned neural radiance field. ACM Transactions on Graphics,
43(1):1-16, 2023.

Weichuang Li, Longhao Zhang, Dong Wang, Bin Zhao, Mulin Chen Zhigang Wang, Bang Zhang, Zhongjian
Wang, Liefeng Bo, and Xuelong Li. One-shot high-fidelity talking-head synthesis with deformable neural
radiance field. In CVPR, pages 17969-17978, 2023.

Xueting Li, Shalini De Mello, Sifei Liu, Koki Nagano, Umar Igbal, and Jan Kautz. Generalizable one-shot
neural head avatar. In NeurIPS, 2023.

Zhenhui Ye, Tianyun Zhong, Yi Ren, Ziyue Jiang, Jiawei Huang, Rongjie Huang, Jinglin Liu, Jinzheng He,
Chen Zhang, Zehan Wang, et al. Mimictalk: Mimicking a personalized and expressive 3d talking face in
minutes. arXiv preprint arXiv:2410.06734, 2024.

Shenhan Qian, Tobias Kirschstein, Liam Schoneveld, Davide Davoli, Simon Giebenhain, and Matthias
NieBner. Gaussianavatars: Photorealistic head avatars with rigged 3d gaussians. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20299-20309, 2024.
Yuelang Xu, Bengwang Chen, Zhe Li, Hongwen Zhang, Lizhen Wang, Zerong Zheng, and Yebin Liu.
Gaussian head avatar: Ultra high-fidelity head avatar via dynamic gaussians. In Proc. CVPR, 2024.

11



(19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

[37]

(38]

[39]

Zhenhui Ye, Tianyun Zhong, Yi Ren, Jiaqi Yang, Weichuang Li, Jiawei Huang, Ziyue Jiang, Jinzheng He,
Rongjie Huang, Jinglin Liu, et al. Real3d-portrait: One-shot realistic 3d talking portrait synthesis. arXiv
preprint arXiv:2401.08503, 2024.

Xuangeng Chu and Tatsuya Harada. Generalizable and animatable gaussian head avatar. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024.

Yudong Guo, Keyu Chen, Sen Liang, Yong-Jin Liu, Hujun Bao, and Juyong Zhang. Ad-nerf: Audio driven
neural radiance fields for talking head synthesis. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 5784-5794, 2021.

Jiahe Li, Jiawei Zhang, Xiao Bai, Jun Zhou, and Lin Gu. Efficient region-aware neural radiance fields
for high-fidelity talking portrait synthesis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7568-7578, 2023.

Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, and Lin Gu. Talkinggaussian: Structure-
persistent 3d talking head synthesis via gaussian splatting. arXiv preprint arXiv:2404.15264, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Trans. Graph., 42(4):139-1, 2023.

V. Blanz and T. Vetter. A morphable model for the synthesis of 3d faces. In ACM SIGGRAPH, pages
187-194, 1999.

B. Amberg, R. Knothe, and T. Vetter. Expression invariant 3d face recognition with a morphable model. In
International Conference on Automatic Face and Gesture Recognition, 2008.

Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier Romero. Learning a model of facial shape
and expression from 4d scans. ACM Trans. Graph., 36(6):194—1, 2017.

Xuangeng Chu, Yu Li, Ailing Zeng, Tianyu Yang, Lijian Lin, Yunfei Liu, and Tatsuya Harada. GPAvatar:
Generalizable and precise head avatar from image(s). In The Twelfth International Conference on Learning
Representations, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren
Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99-106, 2021.

Liangxiao Hu, Hongwen Zhang, Yuxiang Zhang, Boyao Zhou, Boning Liu, Shengping Zhang, and Ligiang
Nie. Gaussianavatar: Towards realistic human avatar modeling from a single video via animatable 3d
gaussians. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
634-644, 2024.

Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and Javier Romero. Learning a model of facial shape
and expression from 4D scans. ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 36(6):194:1—
194:17, 2017.

Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. Voxceleb2: Deep speaker recognition. In
Interspeech 2018. ISCA, September 2018.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In International Conference on Learning Representations, 2015.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv preprint arXiv:2209.14988, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10684—10695, June 2022.

AMD. Fidelityfx contrast adaptive sharpening, 2019.

J. S. Chung and A. Zisserman. Out of time: automated lip sync in the wild. In Workshop on Multi-view
Lip-reading, ACCV, 2016.

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. |https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.3.0.

12


https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

[40]

(41]

[42]

[43]

[44]

[45]

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss
for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4690-4699, 2019.

Jiahe Li, Jiawei Zhang, Xiao Bai, Jun Zhou, and Lin Gu. Efficient region-aware neural radiance fields
for high-fidelity talking portrait synthesis. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 7568-7578, October 2023.

Zhenhui Ye, Ziyue Jiang, Yi Ren, Jinglin Liu, Jinzheng He, and Zhou Zhao. Geneface: Generalized and
high-fidelity audio-driven 3d talking face synthesis. arXiv preprint arXiv:2301.13430, 2023.

Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei Tang, Li Zhang, Ziwei Liu, and Chen Change Loy.
CelebV-HQ: A large-scale video facial attributes dataset. In ECCV, 2022.

Phong Tran, Egor Zakharov, Long-Nhat Ho, Anh Tuan Tran, Liwen Hu, and Hao Li. Voodoo 3d: Volumetric
portrait disentanglement for one-shot 3d head reenactment. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024.

Yu Deng, Duomin Wang, and Baoyuan Wang. Portrait4d-v2: Pseudo multi-view data creates better 4d
head synthesizer. arXiv preprint arXiv:2403.13570, 2024.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Yes, the claims match the paper’s contributions and scope. See Section|[I]
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our approach in the appendix included in the
supplementary material.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper has provided the necessary information. Section [3] presents the
details of our training data construction, the network architecture, and all the training losses.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes] for data and partial code

Justification: We can share our training data since they are synthesized videos, and part of
the code for reproduction and comparison. However, due to responsible Al considerations,
we are not able to release our full code to prevent potential misuse such as deepfake for
fraud. See our discussion in the paper.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We included the experimental setting and details in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our method was evaluated on datasets with sufficient data samples and the
results are statistically meaningful; see Section [ for details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We reported the compute resources in Section ]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research presented in the paper adheres to all aspects of the NeurIPS Code
of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the positive and negative societal impacts in supplementary.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: Yes, we have described safeguards; see the appendix for discussions.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited the paper for the model/dataset we used in our paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We have no new assets to release.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: See the supplementary document for our user study details including screen-
shots.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

19



* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This research does not involve LLMs in any aspects.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Training Details

For the SDS loss L4, we apply it every 10 iterations due to its high computation cost. We apply
Lqs with time step ¢ in a normalized range of ¢,,;, = 0.02 to t,,4, = 0.98, with ¢,,,,, decaying by
0.98 every 2,000 iterations. The CAS loss L, is applied after 200K iterations, and the model is
fine-tuned for an additional 20K iterations with L., and other losses.

In all our experiments, the loss weights are set as Aggim, = 0.1, Aipips = 1.0, Agqy = 0.001,
Asds = 1.0, Aeonsist = 0.01, and A.qs = 10.0. These weights are empirically chosen without careful
tuning.

As mentioned in Sec. [f.T]of the main paper, our models are trained for 200K iterations by default,
excluding the CAS loss finetuning iterations. Gaussian densification and pruning start at the 10K
iterations, with intervals of 2K iterations. We stop this process after 100K iterations or when the total
number of Gaussians exceeds 200,000.

B More Experimental Results

Comparison with 3D Talking Head Avatar Methods. Sec of the main paper compared our
method against some 3D talking head avatar models, with numerical results provided including user
studies. Fig[A] presents some examples. Our method is shown to generate high-quality 3D head
renderings with accurate audio-lip sync, vivid facial expressions, and lively head motions, surpassing
the capabilities of existing 3D talking head avatar methods.

Fig. [B]|shows the screenshot of our user study interface. To assess the visual quality of the rendered
videos, we asked the participants to assign satisfaction scores from 1 to 5. Videos were presented
one at a time, with the play order of different methods randomized for each test case. We asked the
participants to provide their own judgment of satisfaction when watching a talking avatar on screen.
Note that individual satisfaction levels may vary; however, the averaged scores provide a fair basis
for comparison as each participant rated results from all methods. To evaluate user preferences for
overall realism, we display the results of all compared methods side by side and ask the participants
to select the one that looks the most realistic to them. Method names remained anonymous and their
orders are randomly shuffled for each test case.

Comparison with 3D Face Reenactment Methods. As mentioned in Sec we further compare
our method with related works on video-driven 3D talking head animation, i.e., the face reenactment
task. Note that face reenactment is not the focus of our work; the goal here is to further check our
video quality and its expressiveness on facial expression.

Specifically, we collect 26 portraits, each with 1-minute high-quality talking videos, from the
CelebVHQ [43]] dataset. For each portrait, we randomly selected one frame from the video and use
the VASA-1 decoder to render 10 hours of training frames from it, with VASA-1 latents extracted
from random VoxCeleb2 video clips. With the collected 1-minute real talking videos as test sets,
we compared our model with the following video-driven 3D head avatar methods: GAGAuvatar [20],
GPAvatar [28]], Real3DPortrait [[19], Voodoo3D [44] and Portrait4D-v2 [45]].

Table[A]shows the averaged results of these methods with different metrics. Our model outperforms
all the other methods under all the metrics.

PSNRT PSNRp.t L1/ SSIMt LPIPS, Sct  Spl

GAGAvatar 25.74 30.53 0.0257 0.8695 0.0829 5502 8.693
GPAvatar 2491 29.41 0.0288 0.8583  0.1016  4.785 9.256
Real3DPortrait 23.78 28.04 0.0338 0.8481 0.1091 4971 9.179
Voodoo3D 23.43 28.39 0.0343 0.8380  0.1209  4.307 9.500
Portrait4D-v2  23.19 27.55 0.0356 0.8325 0.0946 5.823 8.530
VASA-3D 26.21 31.11 0.0255 0.8741  0.0760  6.453 7.996
GT - - - - - 6.673  7.802
VASA-1 2593 31.01 0.0261 0.8544 0.0809 6.302 8.061

Table A: Comparison with video-driven 3D face reenactment methods.
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Figure A: Visual examples of audio-driven 3D talking head generation. Note: all methods except
ours do not produce head pose, so we apply the pose sequences in training data for them. Best viewed
with zoom; see our supplementary video for comprehensive comparisons.
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noonos
Figure B: The user study interface for result comparison with existing audio-driven 3D talking head
avatar methods. Left: To assess the visual quality of the rendered videos, we asked the participants
to assign satisfaction scores from 1 to 5. Videos were presented one at a time, with the play order
of different methods randomized for each test case. We asked the participants to provide their own
judgment of satisfaction when watching a talking avatar on screen. Note that individual satisfaction
levels may vary; however, the averaged scores provide a fair basis for comparison as each participant
rated results from all methods.. Right: To evaluate user preferences for overall realism, we display
the results of all compared methods side by side and ask the participants to select the one that looks
the most realistic to them. Method names remained anonymous and their orders are randomly shuffled
for each test case.
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