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Abstract

In this study, we take a closer look at how Wino-
grad schema challenges can be used to evaluate
common sense reasoning in LLMs. Specifi-
cally, we evaluate generative models of differ-
ent sizes on the popular WinoGrande bench-
mark. We release WinoWhat, a new corpus, in
which each instance of the WinoGrande valida-
tion set is paraphrased. Additionally, we eval-
uate the performance on the challenge across
five common sense knowledge categories, giv-
ing more fine-grained insights on what types
of knowledge are more challenging for LLMs.
Surprisingly, all models perform significantly
worse on WinoWhat, implying that LLM rea-
soning capabilities are overestimated on Wino-
Grande. To verify whether this is an effect
of benchmark memorization, we match bench-
mark instances to LLM training data and create
two test-suites. We observe that memorization
has a minimal effect on model performance on
WinoGrande.

1 Introduction

While including common sense knowledge in NLP-
systems has been a longstanding goal, evaluat-
ing this proves to be a non-trivial task. From
early on, research used coreference resolution tasks
to measure world knowledge and reasoning abil-
ities in machine learning systems. In 2011, the
Winograd Schema Challenge was developed, a
small test set of 273 instances in which a pronoun
has to be disambiguated given two possible an-
tecedents in a short text (Levesque et al., 2012).
Where early models failed, transformer-based mod-
els quickly achieved remarkable performance on
this test. However, researchers objected that this
does not prove that models have or use common
sense; rather, they could rely on superficial patterns
and dataset artifacts (Kocijan et al., 2023). There-
fore, a large adversarial benchmark was created:
WinoGrande (Sakaguchi et al., 2021). Here, the

Figure 1: Illustration of the workflow in this study. We
evaluate LLMs on WinoGrande, and on its paraphrased
variant. We further compare performance per common
sense knowledge category, and check for benchmark
memorization.

challenge is to decide which of two options is the
correct one in a fill-in-the-blank token ‘_’. This
benchmark is frequently used in combination with
other benchmarks to evaluate the performance of
new LLMs on common sense reasoning.

In this study, we evaluate various open-source
model families – Gemma 2 (Team et al., 2024),
LlaMA 2 (Touvron et al., 2023b), and OPT (Zhang
et al., 2022) – on WinoGrande. An overview of
the workflow in this study can be found in Figure
1. We present a new parallel corpus of the Wino-
Grande validation set: WinoWhat, in which we
paraphrase each sentence so the ‘_’ token is at the
end of the sentence. This transformation makes the
task more natural for decoder-only methods and
at the same time allows to test whether the perfor-
mance of LLMs on WinoGrande is robust against
paraphrasing (RQ1).
While existing works mainly evaluate models on
the benchmark as a whole, we define common
sense knowledge categories that are crucial to dis-
ambiguate the sentence, and evaluate models on
each category separately. This allows us to inves-
tigate our second research question (RQ2): What
types of common sense knowledge are more chal-
lenging for LLMs? Such an analysis provides
insights into the more fine-grained strengths and
weaknesses of ML systems on common sense rea-
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soning tasks. Instead of creating new benchmarks
to focus on one category of common sense knowl-
edge, we suggest using one task setup, which al-
lows us to compare results on different categories
without added noise (e.g., different answer formats,
different dataset artifacts, etc.).
To verify to what extent data leakage plays a role
in LLMs’ performance on WinoGrande, we check
how many instances of the validation set are in-
cluded in the pre-training data of LLMs. Further,
we create two test-suites; one from which we know
that it has been included in LLM pre-training data
(i.e., the Winograd Schema Challenge), and one
from which we can assume that it has not been
seen (i.e., the WinoGrande test set). Comparably
to RQ1, we paraphrase each. This answers RQ3:
What is the role of data memorization in the perfor-
mance of LLMs on coreference resolution tasks?
The rest of the paper is structured as follows: in
Section 2, we summarize relevant literature about
disambiguation tasks, common sense categoriza-
tion, and benchmark memorization. In Section 3,
we present in more detail the data, models, evalu-
ation metrics, and the creation of WinoWhat. Fur-
ther, in Section 4, we present the results of our
experiments, and the final Section 5 concludes our
research, giving an overview of the findings and
suggestions for further research.

2 Related Work

2.1 Coreference resolution and common sense

reasoning

Incorporating common sense knowledge into ma-
chine learning methods has been a goal since its
very beginning (e.g., McCarthy, 1959). However,
given the increasing black-box nature of LLMs,
it is hard to evaluate whether models have/use
common sense knowledge. From early on, sen-
tence disambiguation tasks have been suggested
to measure the ability of models to employ com-
mon sense knowledge: the assumption being that
syntax alone is not enough for the model, and com-
mon sense knowledge is needed to determine for
instance which noun a pronoun refers to (Brown-
ing and LeCun, 2023). An important concept here
is bridging, for which the model needs to make
inferences about relationships between entities in
the world that are not explicitly mentioned in the
text (Kobayashi and Ng, 2020; Hou et al., 2018).
Since sentence disambiguation and coreference res-
olution tasks are presented as a proxy to evaluate

common sense knowledge, over the years different
approaches have been suggested to teach models
common sense in order to improve performance
on these tasks. In the early 2000s, most corefer-
ence resolvers did not include external knowledge
sources, relying instead on morpho-syntactic fea-
tures. The development of large-scale knowledge
bases, which were used as features in a baseline
resolver, improved results (Rahman and Ng, 2011).
Then, with the advent of larger models and more
training data, transformer models also relied on ex-
ternal knowledge bases which are generally stored
in triplets (Liu et al., 2023).

2.2 The Winograd Schema Challenge

A popular coreference task is the Winograd Schema
Challenge (WSC) (Levesque et al., 2012). Based
on the work of Winograd (1972), the challenge uses
‘schemas’ – pairs of twin sentences whose intended
meaning can be flipped by changing one word (the
‘special word’) – to probe ML-methods’ ability to
reason over natural language1. The schemas have
three criteria: (1) simple to solve for humans; (2)
not solvable by selectional restrictions (i.e., no sta-
tistical advantage for one option); (3) google-proof.
Over time, newer versions of the challenge were
released, which were made in the same format.
These datasets are either created by human annota-
tions, or generated by LLMs. For instance, Zahraei
and Emami (2024) use Tree-of-Experts to gener-
ate new WSC instances, presenting 3,026 LLM-
generated sentences. Similarly, Sun and Emami
(2024) present EvoGrad, a hybrid method to gen-
erate new adversarial WSC instances that feature
minor alterations and rewordings using human an-
notations, ChatGPT, and WordNet. Since WSC
and related benchmarks are in English, the chal-
lenge was also translated in other languages such
as German, Russian, French, Portuguese, and Man-
darin Chinese (Emelin and Sennrich, 2021; Amsili
and Seminck, 2017; Melo et al., 2019; Bernard and
Han, 2020). The task has also been reformulated
to evaluate implicit biases in LLMs, with resulting
benchmarks such as WinoGender and WinoBias
(Rudinger et al., 2018; Zhao et al., 2018).
By 2019, large pre-trained transformer models
were reported to achieve over 90% accuracy on
WSC (Kocijan et al., 2023). Whereas the initial
hypothesis was that systems would need common
sense to solve the WSC, there is no proof that this

1A classic example is ‘The trophy didn’t fit in the brown
suitcase because it’s too [small/big].’



is the case. Indeed, LLMs can rely on superficial
pattern recognition and data memorization to solve
the task, leading to the conclusion that these results
are not indicative of common sense acquisition
(Sakaguchi et al., 2021). Furthermore, questions
are raised about the quality and implicit biases of
WSC, such as lax evaluation, annotation artifacts,
and knowledge leakage from training data (Kocijan
et al., 2023; Elazar et al., 2021). Trichelair et al.
(2018a) also show that the ‘google-proof’ condi-
tion, that stipulates that it should not be solvable
via statistics learned from large corpora associating
one option to other components in the sentence, is
not true for all instances in WSC. In an effort to ad-
dress these limitations, adversarial variants of the
WSC are presented. For instance, Han et al. (2024)
adapt the options so that they are more associated
with the wrong answer, and Trichelair et al. (2018b)
switch the position of the options in the texts where
possible. Both report a decrease in model perfor-
mance. Abdou et al. (2020) show that models are
not robust against linguistic perturbations such as
changes in tense, gender, or synonym substitution
in WSC sentences. Additionally, the WinoGrande
benchmark is introduced (Sakaguchi et al., 2021).
This benchmark is of a much larger scale (44K in-
stances compared to the 273 in WSC), and employs
an algorithm to reduce biases that machines can
exploit to solve the task.

2.3 Common sense knowledge categorization

To the best of our knowledge, research on Wino-
Grande discusses model results holistically (on the
entire test or validation set), but we suggest con-
necting this to common sense knowledge catego-
rization as an effective error analysis of the task.
By measuring the performance per category, we
can isolate reasoning deficiencies that are obscured
by aggregated metrics. There has been much ef-
fort on defining semantic categories to structure
knowledge for NLP. Schank (1972) describes four
main categories in their conceptual dependency
theory: objects, actions, location, and time. Jack-
endoff (1992) suggests common primitives such
as entity, property, number, location, state, event,
and activity. Other work only uses two high-level
categories, such as social and physical (Sap et al.,
2020). Yet others define semantic categories within
one common sense category; for instance, Wang
et al. (2021) include feelings and characteristics,
interaction, and norms as sub-categories of social
common sense. Additionally, different common

sense categories are sometimes evaluated by spe-
cific independent benchmarks (e.g., spatial (Xu
et al., 2017; Liu et al., 2022), temporal (Zhou et al.,
2019; Aroca-Ouellette et al., 2021; Hosokawa et al.,
2024; Qin et al., 2021), numerical (Lin et al., 2020),
physical (Bisk et al., 2020; Storks et al., 2021), so-
cial (Sap et al., 2019), etc.). This can be problem-
atic when comparing one model’s ability to reason
over various common sense categories, since each
benchmark can have a different answer format (i.e.,
multiple choice, binary choice, open-ended) and
structure. Other benchmarks that are more gen-
eral, do not provide common sense categorizations.
Therefore, we annotate the WinoGrande bench-
mark (a general-purpose benchmark) with which
common sense knowledge is relevant when making
the decision (i.e., what knowledge is needed when
making the bridging inference). In a similar ef-
fort, Zhang et al. (2020) proposed 6 common sense
categories to evaluate performance on the WSC:
property, object, eventuality, spatial, quantity, and
others.

2.4 Benchmark memorization and

contamination

Xu et al. (2024) define benchmark data contamina-
tion (BDC) as LLM exposure to benchmark data
during training, leading to inflated evaluation re-
sults. They outline contamination severities rang-
ing from exposure to meta information about the
benchmark or the task, to the benchmark data itself
with labels. One main detection technique is n-
gram overlap counting, as used by GPT-3 (Brown
et al., 2020) (13-gram) and GPT-4 (Achiam et al.,
2023) (40-gram). However, it requires full pre-
training data access and can miss rephrasing (Yang
et al., 2023). Additionally, Wang et al. (2025)
find that factual or lexical tasks are particularly
susceptible to memorization, while Carlini et al.
(2023) demonstrate that memorization increases
with model size, data frequency, and sufficient con-
text.
Since 2012, many WSC sentences have appeared
in web text used to train LLMs (Elazar et al., 2021).
RedPajama (Weber et al., 2024) contains 58.2% of
WSC instances, while other datasets like The Pile
(Gao et al., 2020a) contain around 30% (Elazar
et al., 2024). Such contamination inflates accuracy
scores: Emami et al. (2020) show significant accu-
racy drops when contamination is minimized.
In contrast, WinoGrande’s creators mitigated con-
tamination by keeping the test labels private. Re-



garding the validation set, only 1.1% of this set
appears online or in CommonCrawl between De-
cember 2020 and October 2023 (Li et al., 2024),
and the authors of GPT-4 self-report approximately
0.9% contamination in a sample of 1,000 instances
(Achiam et al., 2023). Elazar et al. (2024) demon-
strate that large pretraining corpora for LLMs did
likely not encounter the WinoGrande test set, but
they do not examine contamination of the valida-
tion set in these pretraining corpora. Thus, the
precise effect of the contamination of the Wino-
Grande validation set is unknown, but for other
benchmark data, it was previously shown that the
effect of even minimal contamination can be under-
estimated (Singh et al., 2024).

3 Methodology

3.1 Data

In this study, we apply models on the WinoGrande
benchmark, which was originally presented in 2019
as an adversarial dataset to the Winograd Schema
Challenge (WSC) (Sakaguchi et al., 2021). Con-
trary to WSC, in which the sentence includes a
pronoun that must be disambiguated given two can-
didate antecedents, the WinoGrande benchmark
evolved to a fill-in-the-blank token (‘_’) problem
(see Figure 2). Additionally, every instance does
not necessarily have a twin sentence. The original
paper reports human accuracy of 94%, and model
accuracy of 79.1%, which is considerably lower
than on WSC (over 90%). The labels of the test
set are not publicly available, which has led to re-
search reporting on the validation set (see e.g., Li
et al. (2021); Sun and Emami (2024); Elazar et al.
(2021)). For that reason, we will also report on
the validation set. This split consists of 1,267 in-
stances, with a balanced label distribution. The
WinoGrande benchmark is also frequently used to
evaluate new LLMs2. Recent evaluations include
Gemma 2 27B at 83.7% (Team et al., 2024), LlaMA
2 (zero-shot) models ranging from 69.2% (7B) to
80.2% (70B) (Touvron et al., 2023b), GPT-4 (few-
shot) achieving 87.5% (Achiam et al., 2023), and
Pythia 12B (five-shot) scoring 66.6% (Biderman
et al., 2023).

2It is unclear whether they report on the validation or test
set. We assume these models use prompting techniques instead
of partial evaluation (infra), but the reports are unclear on that
aspect.

3.2 Models

We focus on recent open-source Large Language
Models. Since model size is a known factor in
model performance, we select model families that
have different sizes available. Specifically, we se-
lect Gemma 2 (2B, 9B, and 27B) (Team et al.,
2024); LlaMA 2 (7B, 13B, and 70B) (Touvron
et al., 2023b), and OPT (1.3B, 6.7B, 13B, and 66B)
(Zhang et al., 2022) to evaluate the effect of para-
phrasing WinoGrande, and for the evaluation per
common sense category. Further, to evaluate bench-
mark memorization, we include two other models
because their pre-training data is publicly avail-
able, contrary to the previously mentioned models:
Pythia (1B, 1.8B, 6.9B, and 12B) (Biderman et al.,
2023) and LlaMA 1 (7B, 13B, 30B, and 65B) (Tou-
vron et al., 2023a).
To evaluate model performance, we use partial eval-
uation, which calculates the summed log-likelihood
for the tokens after each option in the text, selecting
the one with the highest score (Trinh and Le, 2018).
We choose this metric for three reasons:
1. It is the evaluation metric used in the Lan-
guage Model Evaluation Harness (Gao et al., 2024),
which is the base of the Huggingface Open-LLM
Leaderboard3;
2. Preliminary experiments show that it works bet-
ter than prompting, and Trinh and Le (2018) show
that it works better than full evaluation;
3. It is easily generalizable to different open-source
models.

3.3 Paraphrased corpus

To test the robustness of model performance on
WinoGrande, we create WinoWhat: a parallel cor-
pus in which we paraphrase the sentences. We
follow the fill-in-the-blank convention of Wino-
Grande because of the naturalness of generation
in autoregressive models and known LLM biases
for multiple-choice answering (such as in WSC)
(Balepur et al., 2024; Cho et al., 2025). Our corpus
solves the main limitation of the partial evaluation
metric: it relies on the plausibility of the subse-
quent sequence, rather than directly measuring a
model’s intrinsic token preference. This can con-
flate the model’s understanding of the antecedent
with grammatical or natural continuations. In con-
trast, in our paraphrased corpus, we position the
target token at the end of the sequence, ensuring

3WinoGrande was included in the V1 of the leader-
board: https://huggingface.co/docs/leaderboards/
en/open_llm_leaderboard/archive

https://huggingface.co/docs/leaderboards/en/open_llm_leaderboard/archive
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that the decision is based solely on the provided
context. This allows for a more transparent evalu-
ation of the model’s ability to capture coreference
and fill-in-the-blank cues. Contrary to the original
partial evaluation that measures the summed log-
likelihood on the tokens following the ‘_’ token,
our method calculates it on the tokens of the op-
tions. An example is given in Figure 2.
We prompt 5 SOTA LLMs (i.e., GPT-4o (Hurst

et al., 2024), OpenAI o1-preview (Jaech et al.,
2024), Gemini 2.0 Flash Thinking Experimental
(DeepMind, 2024), Deepseek R1 (Guo et al., 2025),
and LlaMA 3.2 90B Vision (Meta, 2024)) to gen-
erate a paraphrased sentence given an input sen-
tence, in which the ‘_’ token is at the end of the
sentence. The generated options were manually
checked, and the best option was selected for each
sentence. However, in many cases (n = 433), man-
ual adjustments were still needed. The prompt for
this task, and the distribution of which model’s out-
put is used, can be found in Appendix A. In this
stage, we also evaluate the validity of the sentences
in the WinoGrande validation set. We notice that
not all instances meet the requirements of WSC
(e.g., not ‘google-proof’, grammatical errors, etc.),
which we remove in our paraphrased dataset. In
total, we find 82 such cases.4

Further, three of the authors annotate a sample
of 100 paraphrased instances based on the follow-
ing criteria: (1) Is the new sentence grammatical?;
(2) Is the fill-in-the-blank token at the end of the
sentence?
85% of the texts are rated by all annotators as ac-
ceptable, 97% by at least two annotators. Given
that the annotations are highly skewed (the ma-
jority of the ratings is ‘acceptable’), we calculated
Gwet’s AC1 for the inter-annotator agreement: 0.88
indicates a high agreement (Gwet, 2001).

3.4 Common sense knowledge categorization

We categorized the coreference resolution instances
according to the common sense knowledge type
that is necessary to make the bridging inference.
This categorization can function as data for an error
analysis to detect what knowledge types are easier
or harder for LLMs to solve. Similarly to Zhang
et al. (2020), we select categories that have a broad
coverage and are clearly distinguished from each

4There are an additional 22 instances for which one anno-
tator was not convinced of the quality. These instances were
left out in the experiments, but for completeness are added in
the released dataset.

other. We examine which categories are identified
in existing benchmarks that evaluate common sense
reasoning in NLP5, which leads to five categories:
physical, social, numerical, temporal, and spatial6.
We use LLMs to categorize the validation set.
To identify the relevant common sense type, we
prompt GPT-4o-mini to generate reasoning steps to
solve the task. We then provide the input text and
the generated reasoning steps to GPT-4o, which
assigns one or more common sense categories to
each instance. The prompts for these tasks are
available in Appendix B. Annotation reliability is
assessed by one author manually labeling 100 in-
stances and comparing them with GPT-4o’s labels,
yielding a Kappa score of 0.64, which is a substan-
tial agreement7 (Cohen, 1960). Across all samples
and labels, the annotator and GPT-4o agree in 83%
of the cases. When applying our method on the
entire validation set, we note a class imbalance;
the physical and social categories are considerably
larger than the other three, see Figure 3.

4 Results

4.1 Paraphrased corpus

We report on the models’ performance on
WinoWhat. This allows us to compare the per-
formance on the original texts to the paraphrased
texts. If models truly generalize on the Winograd
schemas, the performance should remain consis-
tent; after all, the same information is conveyed, in
the same task setup, only paraphrased. Addition-
ally, we report on the performance per common
sense category presented in Section 2.3. In Table 1
and Table 2, subcolumn ‘orig’ refers to the original
texts in WinoGrande, ‘transf’ to the paraphrased
texts.
Considering the result on the WinoGrande vali-
dation set, we see that larger models generally
perform better than their smaller variants, with
LLaMA 2 70B performing the best. The error anal-
ysis comparing the performance of the same model
across common sense categories shows that there
is no one category that is impossible to be learned
by a model, but there are fluctuations. Interestingly,
we see that the category with the best results varies

5e.g., see https://cs.nyu.edu/~davise/Benchmarks/
Text.html

6Originally, we included causal as label, but removed this
category: all instances in WinoGrande had this label, which
was also noted by Zhang et al. (2020).

7The kappa scores per category: physical 0.63; social 0.68;
numerical 0.58; temporal 0.72; spatial 0.59.
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Figure 2: An illustration of the paraphrasing and evaluation method. The option that is filled in the ‘_’-token is
in red. In the original example, the summed log-likelihood is calculated on the tokens after the option. In the
paraphrased example, the option is at the end of the sentence, and the summed log-likelihood is calculated on the
tokens inside the option.

LlaMA 2 Gemma 2

7B 13B 70B 2B 9B 27B
orig transf orig transf orig transf orig transf orig transf orig transf

TOTAL 0.69 0.58 0.72 0.62 0.78 0.70 0.68 0.59 0.74 0.68 0.66 0.56
Physical 0.71 0.61 0.73 0.63 0.77 0.73 0.71 0.60 0.74 0.68 0.74 0.59
Social 0.68 0.56 0.72 0.61 0.79 0.68 0.68 0.57 0.73 0.67 0.60 0.54
Numerical 0.69 0.53 0.70 0.61 0.79 0.69 0.63 0.62 0.75 0.62 0.69 0.51
Spatial 0.71 0.61 0.76 0.65 0.75 0.70 0.70 0.61 0.78 0.69 0.78 0.62
Temporal 0.76 0.67 0.70 0.69 0.79 0.74 0.65 0.62 0.74 0.71 0.67 0.54

Table 1: LlaMA 2 and Gemma 2 results on WinoGrande validation. The ‘orig’ columns report the results on the
original instances, the ‘transf’ columns on the paraphrased instances.

OPT 1.3B OPT 6.7B OPT 13B OPT 66B
orig transf orig transf orig transf orig transf

TOTAL 0.60 0.53 0.66 0.54 0.65 0.56 0.69 0.58
Physical 0.62 0.57 0.72 0.57 0.67 0.60 0.73 0.61
Social 0.59 0.50 0.63 0.50 0.65 0.52 0.66 0.55
Numerical 0.57 0.49 0.62 0.58 0.63 0.54 0.68 0.57
Spatial 0.56 0.61 0.65 0.61 0.63 0.61 0.67 0.61
Temporal 0.50 0.55 0.57 0.58 0.61 0.53 0.66 0.57

Table 2: OPT results on WinoGrande validation. The ‘orig’ columns report the results on the original instances, the
‘transf’ columns on the paraphrased instances.

across model families: for LlaMA 2, there is no cat-
egory that is consistently easier, while for Gemma
2 spatial is best, and for OPT physical. Temporal
is consistently the worst category for OPT.
However, when comparing the original to the para-
phrased task, we conclude that all models perform
worse on the paraphrased corpus, and there is no
common sense category that is robust against this
transformation.

Our results challenge the assumption that LLMs
apply reasoning when solving the WinoGrande
task, suggesting they instead rely on dataset ar-
tifacts and/or memorization. While Sakaguchi et al.
(2021) implemented an algorithm to automatically
reduce machine-exploitable bias in their corpus,
our results demonstrate that this might not be effec-
tive anymore in the LLM era.
We publicly release WinoWhat, consisting of the



Figure 3: Data distribution across common sense cate-
gories on the WinoGrande validation set.

original WinoGrande validation set with the para-
phrased counterparts and common sense catego-
rizations8.

4.2 Memorization

Given the surprising drop in performance compar-
ing WinoGrande to WinoWhat, we investigate fur-
ther what could cause this. While Elazar et al.
(2024) show that the test set of WinoGrande has
probably not been seen by LLMs, this is not tested
for the validation set. This is problematic, because
research often reports on this split because of the
absence of the test labels. Therefore, it is crucial to
verify how many instances of the WinoGrande val-
idation set have been included in datasets used to
pre-train LLMs. Specifically, we count how many
instances appear entirely in the pre-training cor-
pora.
Since the pre-training data for Gemma 2, LlaMA
2, and OPT models remains either undisclosed or
inaccessible, we examine two LLMs with publicly
available pre-training data: LlaMA 1 and Pythia,
whose results are presented in Table 4. These
models were trained on RedPajama v1 (Computer,
2023) and The Pile’s training set (Gao et al., 2020b)
respectively.9

While we found that The Pile contains no contami-
nated instances, an interesting pattern emerges: as
model size of Pythia increases, the performance
gap between WinoGrande and WinoWhat widens,
with WinoWhat accuracy remaining stable while
WinoGrande scores improve (see column ‘WG val’

8The full dataset is available on Zenodo (Gevers and
De Marez, 2025).

9Details about our method to check memorization can be
found in Appendix C.

in Table 4).
An analysis of RedPajama v1 reveals 22 contami-
nated instances (1.7% of the dataset), each appear-
ing once and sourced from academic papers. To
investigate potential memorization effects, we con-
duct a one-sided Mann-Whitney U test between per-
formance on contaminated and non-contaminated
instances across LlaMA 1 models (7B, 13B, 30B,
and 65B). The results (see Table 6 in Appendix
C), with p-values ranging from 0.054 to 0.267,
show no significant evidence that LLaMA 1 models
give preferential treatment to previously seen Wino-
Grande instances. However, similarly to Pythia,
LlaMA 1 displays a consistent accuracy gap be-
tween WinoGrande and WinoWhat. Since this pat-
tern is observed in all other models as well (Table 1
and Table 2), it suggests that factors beyond simple
memorization may be driving these performance
differences.
To verify the role of contamination in later and
more modern models with unknown pre-training
data, we create two test-suites. Specifically, we
take a sample (n = 100) from the WSC dataset
(of which we can assume that a substantial part has
been memorized by LLMs (Elazar et al., 2024)),
and paraphrase those; and we take a sample (n =
100) from the test set of WinoGrande (of which
we can assume that it has not been memorized by
LLMs due to its private labels), which we label
manually and paraphrase as well.10 We hypothe-
size that LLMs perform well on datasets that are
polluted, but less so on unseen datasets. Therefore,
we expect models to perform well on WSC, but
below par on WSC paraphrased and WinoGrande
test (both original and paraphrased). We summa-
rize the results in Table 3. As expected, all mod-
els perform best on the original WSC benchmark.
Paraphrasing almost always causes a drop in perfor-
mance, regardless of the original source. The dif-
ference is biggest for the WSC benchmark, which
is in line with our hypothesis given the pollution
by this benchmark in LLMs’ training data. We
still see a drop in performance for the WinoGrande
test set, which is not included in the LLM training
data, when comparing the original sentences to the
paraphrased ones. Together with our findings on
Pythia and LLaMA 1, this indicates that there are
other factors causing models to struggle with the
paraphrased benchmark. We hypothesize that our

10To respect the private nature of the WinoGrande test set,
we do not release our annotations of this subset.



Model WG val WG test WSC
orig transf orig transf orig transf

LlaMA 2 7B 0.69 0.58 0.74 0.54 0.86 0.54
LlaMA 2 13B 0.72 0.62 0.73 0.65 0.83 0.63
LlaMA 2 70B 0.78 0.70 0.79 0.70 0.88 0.66
Gemma 2 2B 0.68 0.59 0.73 0.61 0.83 0.64
Gemma 2 9B 0.74 0.68 0.73 0.64 0.86 0.58
Gemma 2 27B 0.66 0.56 0.58 0.57 0.76 0.51
OPT 1.3B 0.60 0.53 0.58 0.50 0.72 0.54
OPT 6.7B 0.66 0.54 0.52 0.56 0.82 0.56
OPT 13B 0.65 0.56 0.68 0.56 0.81 0.56
OPT 66B 0.69 0.58 0.71 0.52 0.82 0.58

Table 3: Accuracy results on WinoGrande (WG) valida-
tion, test and WSC for LlaMA 2, Gemma 2 and OPT.

Model WG val WG test WSC
orig transf orig transf orig transf

LlaMA 1 7B 0.70 0.58 0.74 0.59 0.85 0.61
LlaMA 1 13B 0.72 0.60 0.75 0.64 0.88 0.66
LlaMA 1 30B 0.76 0.64 0.74 0.62 0.92 0.62
LlaMA 1 65B 0.77 0.67 0.79 0.69 0.91 0.68
Pythia 1B 0.54 0.53 0.57 0.54 0.71 0.50
Pythia 2.8B 0.60 0.52 0.59 0.53 0.76 0.55
Pythia 6.9B 0.61 0.52 0.58 0.56 0.77 0.52
Pythia 12B 0.63 0.52 0.61 0.60 0.79 0.49

Table 4: Accuracy results on WinoGrande (WG) valida-
tion, test and WSC for LlaMA 1 and Pythia.

evaluation metric better captures the model’s per-
formance on coreference resolution compared to
the original partial evaluation (see Figure 2), which
could explain the drop in performance. Addition-
ally, for larger and recent models, even though
benchmark instances might not appear directly in
the pre-training data, this does not exclude the pos-
sibility that it has been used during RLHF or in-
struction tuning, thereby compromising the validity
of their performance on WinoGrande.

5 Conclusion

In this study, we take a closer look at how
Winograd schema challenges can be used to
evaluate common sense reasoning in LLMs. For
this purpose, we focus on WinoGrande, a large
adversarial benchmark created in 2019, frequently
used to evaluate common sense in new LLMs.
We select different generative model families,
comparing models of the same family of different
sizes. Specifically, we focus on Gemma 2, LlaMA
2, and OPT. To evaluate the models, we employ the
partial evaluation metric. To address the limitations
of the partial evaluation metric as outlined in
Section 3.3, we create a parallel corpus to the
WinoGrande validation set in which we paraphrase
each text so the fill-in-the-blank token is at the end
of the sentence (RQ1). In addition, we propose
a new method to inspect performance on various
common sense knowledge categories within the
same task (RQ2). We select five categories:
physical, social, numerical, spatial, and temporal.
This approach can offer an in-depth error analysis,
that sheds light on what types of knowledge are
more challenging for LLMs. We publicly release

WinoWhat, the parallel corpus to the WinoGrande
validation set including the paraphrased sentences
and the common sense categorization. Our results
show that while models perform well on the
original WinoGrande validation set, they all
perform worse on the paraphrased corpus, and all
common sense categories are affected negatively.
This questions the assumption that models apply
reasoning, leaving the possibility for dataset
artifacts or benchmark memorization.
To verify how much data memorization has
an effect on the models’ performance on the
WinoGrande validation set (RQ3), we test whether
instances that occur in pre-training data score
significantly higher than instances that don’t. We
observe that the memorization of the validation
set is minimal. Interestingly, we see that most
contaminated instances come from academic
publications citing examples from the benchmark.
This again calls attention to the scraping methods
to create large-scale pre-training data. Because
the pre-training data of later models is unknown,
we create two small (n = 100) test-suites: one
of which has been shown to be included in LLM
training sets (i.e., the WSC benchmark) and one
that is not seen by LLMs (i.e., the WinoGrande
test set). We find that all models perform best
on the WSC dataset, and paraphrasing causes a
drop in performance. Since this is also the case for
the WinoGrande test set, we conclude that there
are other factors beside memorization that cause
models to fail on the paraphrased task. Similarly
to conclusions about the original Winograd
Schema Challenge, this implies that we are again
overestimating LLMs reasoning capabilities when



using WinoGrande. Our new paraphrased corpus
can be used to verify model generalization on the
WinoGrande validation set.
In further research, we plan to inspect the infor-
mation that is used by models to solve the task
per common sense category using mechanistic
interpretability: do models use similar information
for each category? Do they rely on spurious
correlations, and if so, which ones? Mechanistic
interpretability could help us identify a causal
connection between the direct and the indirect
object, giving insights on why models fail. Since
data memorization does not seem to cause the
drop in performance comparing the original to
the paraphrased instances, we suggest to identify
dataset artifacts that could be at the root of this.
For instance, as previously done on WSC, do
linguistic perturbations affect model performance?
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Limitations

While, to the best of our knowledge, this is the first
time the WinoGrande validation set has been an-
notated for common sense knowledge categories,
this approach has possible shortcomings. First,
the agreement between a human annotator and
the labeling by GPT-4o shows a substantial agree-
ment, but there will be cases with incorrect labeling.
Therefore, we talk about aggregated results across
categories in this study, since we’re interested in
trends, but for even more fine-grained interpreta-
tions this categorization should possibly be cor-
rected manually.
Further, as is unfortunately still a trend in NLP-
research, this dataset is in English, excluding lower-
resource languages. Further research could trans-
late our benchmark to other languages.
During the process of paraphrasing the original in-
stances, we applied a strict quality check, which
excluded 82 instances from the original dataset.
While we believe this improves the quality of the
resulted paraphrased dataset, this means we cannot
make a perfectly aligned comparison to the original

dataset.
Since we wanted to mitigate shortcomings of the
partial evaluation metric, we paraphrased Wino-
Grande so the fill-in-the-blank token appears at
the end of the sentence. However, the constraint
of putting this token at the end of the sentence
caused a higher number of cleft-constructions in the
corpus. A high inter-annotator agreement shows
that the created paraphrases are grammatically cor-
rect and qualitative, but in some cases the para-
phrased output is less natural than the original.
However, even though there might be an ‘unnatural-
ness’ about some of the paraphrased instances, this
does not change the task (i.e., finding the correct
antecedent), and a robust model should be able to
overcome these superficial variations.
We argue that this setup is more natural for decoder-
only models, and allows the partial evaluation met-
ric to better capture model performance on coref-
erence resolution tasks rather than measuring nat-
ural continuations of the sentence. However, by
adapting the evaluation method so it calculates the
summed log-likelihoods on the tokens in the op-
tion rather than on the tokens after the option, this
obscures whether the difference in performance
is a result of the paraphrasing, or of the evalua-
tion method. To verify this, we aim to construct
a third level, in which we paraphrase without the
constraint of putting the ‘_’-token at the end of
the sentence, allowing us to use the original partial
evaluation method. This would indicate whether
the drop in performance is caused by the paraphras-
ing itself, or by the evaluation metric. This would
also alleviate the problem that some paraphrased
sentences in WinoWhat are slightly less natural-
sounding than the original ones.
Finally, our method of finding data contamination
in pre-training data was on the data level only, not
taking into account the semantic or information
level (Xu et al., 2024). Methods such as ours rely-
ing on string matching methods might miss certain
instances, such as rephrasings (Xu et al., 2024).
Furthermore, such methods are only possible when
access to pre-training corpora is public (Yang et al.,
2023).

References

Mostafa Abdou, Vinit Ravishankar, Maria Barrett,
Yonatan Belinkov, Desmond Elliott, and Anders Sø-
gaard. 2020. The sensitivity of language models
and humans to Winograd schema perturbations. In

https://doi.org/10.18653/v1/2020.acl-main.679
https://doi.org/10.18653/v1/2020.acl-main.679


Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7590–
7604, Online. Association for Computational Lin-
guistics.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Pascal Amsili and Olga Seminck. 2017. A Google-proof
collection of French Winograd schemas. In Proceed-
ings of the 2nd Workshop on Coreference Resolution
Beyond OntoNotes (CORBON 2017), pages 24–29,
Valencia, Spain. Association for Computational Lin-
guistics.

Stéphane Aroca-Ouellette, Cory Paik, Alessandro Ron-
cone, and Katharina Kann. 2021. Prost: Physical
reasoning of objects through space and time. arXiv
preprint arXiv:2106.03634.

Nishant Balepur, Abhilasha Ravichander, and Rachel
Rudinger. 2024. Artifacts or abduction: How do
LLMs answer multiple-choice questions without the
question? Preprint, arXiv:2402.12483.

Timothée Bernard and Ting Han. 2020. Mandarino-
grad: A Chinese collection of Winograd schemas.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 21–26, Marseille,
France. European Language Resources Association.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34(05):7432–7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jacob Browning and Yann LeCun. 2023. Language,
common sense, and the winograd schema challenge.
Artificial Intelligence, 325:104031.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023. Quantifying memorization across neural lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations.

Gyeongje Cho, Yeonkyoung So, and Jaejin Lee. 2025.
ANPMI: Assessing the true comprehension capabili-
ties of LLMs for multiple choice questions. Preprint,
arXiv:2502.18798.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Together Computer. 2023. Redpajama: An open source
recipe to reproduce llama training dataset.

Google DeepMind. 2024. Gemini 2.0 flash thinking.
2024.

Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson,
Abhilasha Ravichander, Dustin Schwenk, Alane Suhr,
Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini,
Sameer Singh, Hannaneh Hajishirzi, Noah A. Smith,
and Jesse Dodge. 2024. What’s in my big data? In
The Twelfth International Conference on Learning
Representations.

Yanai Elazar, Hongming Zhang, Yoav Goldberg, and
Dan Roth. 2021. Back to square one: Artifact
detection, training and commonsense disentangle-
ment in the winograd schema. arXiv preprint
arXiv:2104.08161.

Ali Emami, Kaheer Suleman, Adam Trischler, and
Jackie Chi Kit Cheung. 2020. An analysis of dataset
overlap on Winograd-style tasks. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 5855–5865, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Denis Emelin and Rico Sennrich. 2021. Wino-x: Mul-
tilingual winograd schemas for commonsense rea-
soning and coreference resolution. In 2021 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 8517–8532. Association for Com-
putational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020a. The pile: An
800gb dataset of diverse text for language modeling.
Preprint, arXiv:2101.00027.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020b.
The Pile: An 800GB dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,

https://doi.org/10.18653/v1/W17-1504
https://doi.org/10.18653/v1/W17-1504
https://arxiv.org/abs/2402.12483
https://arxiv.org/abs/2402.12483
https://arxiv.org/abs/2402.12483
https://aclanthology.org/2020.lrec-1.3/
https://aclanthology.org/2020.lrec-1.3/
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1016/j.artint.2023.104031
https://doi.org/10.1016/j.artint.2023.104031
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://arxiv.org/abs/2502.18798
https://arxiv.org/abs/2502.18798
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://deepmind.google/technologies/gemini/flash-thinking/
https://openreview.net/forum?id=RvfPnOkPV4
https://doi.org/10.18653/v1/2020.coling-main.515
https://doi.org/10.18653/v1/2020.coling-main.515
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027


Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Ine Gevers and Victor De Marez. 2025. Winowhat: A
parallel corpus of paraphrased winogrande sentences
with common sense categorization.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Kilem Gwet. 2001. Handbook of inter-rater reliability:
How to estimate the level of agreement between two
or multiple raters. Gaithersburg, MD: STATAXIS
Publishing Company.

Kaiqiao Han, Tianqing Fang, Zhaowei Wang, Yangqiu
Song, and Mark Steedman. 2024. Concept-reversed
winograd schema challenge: Evaluating and improv-
ing robust reasoning in large language models via
abstraction. arXiv preprint arXiv:2410.12040.

Taishi Hosokawa, Adam Jatowt, and Kazunari
Sugiyama. 2024. Temporal validity reassessment:
commonsense reasoning about information obsolete-
ness. Discover Computing, 27(1):4.

Yufang Hou, Katja Markert, and Michael Strube. 2018.
Unrestricted bridging resolution. Computational Lin-
guistics, 44(2):237–284.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Ray S Jackendoff. 1992. Semantic structures, vol-
ume 18. MIT press.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Hideo Kobayashi and Vincent Ng. 2020. Bridging res-
olution: A survey of the state of the art. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 3708–3721.

Vid Kocijan, Ernest Davis, Thomas Lukasiewicz, Gary
Marcus, and Leora Morgenstern. 2023. The defeat
of the winograd schema challenge. Artificial Intelli-
gence, 325:103971.

Hector J Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. KR,
2012:13th.

Xiang Lorraine Li, Adhiguna Kuncoro, Jordan Hoff-
mann, Cyprien de Masson d’Autume, Phil Blunsom,
and Aida Nematzadeh. 2021. A systematic investiga-
tion of commonsense knowledge in large language
models. arXiv preprint arXiv:2111.00607.

Yucheng Li, Yunhao Guo, Frank Guerin, and Chenghua
Lin. 2024. An open-source data contamination report
for large language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 528–541, Miami, Florida, USA. Association
for Computational Linguistics.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and
Xiang Ren. 2020. Birds have four legs?! nu-
mersense: Probing numerical commonsense knowl-
edge of pre-trained language models. arXiv preprint
arXiv:2005.00683.

Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin
Choi, and Hannaneh Hajishirzi. 2024. Infini-gram:
Scaling unbounded n-gram language models to a tril-
lion tokens. arXiv preprint arXiv:2401.17377.

Ruicheng Liu, Rui Mao, Anh Tuan Luu, and Erik Cam-
bria. 2023. A brief survey on recent advances in
coreference resolution. Artificial Intelligence Review,
56(12):14439–14481.

Xiao Liu, Da Yin, Yansong Feng, and Dongyan Zhao.
2022. Things not written in text: Exploring spatial
commonsense from visual signals. arXiv preprint
arXiv:2203.08075.

John McCarthy. 1959. Programs with common sense.

Gabriela Melo, Vinicius Imaizumi, and Fábio Cozman.
2019. Winograd schemas in portuguese. In Anais
do XVI Encontro Nacional de Inteligência Artificial
e Computacional, pages 787–798, Porto Alegre, RS,
Brasil. SBC.

Meta. 2024. Meta llama3.2. https://www.llama.
com/.

Lianhui Qin, Aditya Gupta, Shyam Upadhyay, Luheng
He, Yejin Choi, and Manaal Faruqui. 2021. Timedial:
Temporal commonsense reasoning in dialog. arXiv
preprint arXiv:2106.04571.

Altaf Rahman and Vincent Ng. 2011. Coreference reso-
lution with world knowledge. In Proceedings of the
49th annual meeting of the association for compu-
tational linguistics: human language technologies,
pages 814–824.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in
coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14, New Orleans, Louisiana. Association for
Computational Linguistics.

https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.15517664
https://doi.org/10.5281/zenodo.15517664
https://doi.org/10.5281/zenodo.15517664
https://doi.org/10.18653/v1/2024.findings-emnlp.30
https://doi.org/10.18653/v1/2024.findings-emnlp.30
https://doi.org/10.5753/eniac.2019.9334
https://www.llama.com/
https://www.llama.com/
https://doi.org/10.18653/v1/N18-2002
https://doi.org/10.18653/v1/N18-2002


Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Maarten Sap, Vered Shwartz, Antoine Bosselut, Yejin
Choi, and Dan Roth. 2020. Commonsense reason-
ing for natural language processing. In Proceedings
of the 58th annual meeting of the association for
computational linguistics: Tutorial abstracts, pages
27–33.

Roger C. Schank. 1972. Conceptual dependency: A
theory of natural language understanding. Cognitive
Psychology, 3(4):552–631.

Aaditya K. Singh, Muhammed Yusuf Kocyigit, Andrew
Poulton, David Esiobu, Maria Lomeli, Gergely Szil-
vasy, and Dieuwke Hupkes. 2024. Evaluation data
contamination in llms: how do we measure it and
(when) does it matter? Preprint, arXiv:2411.03923.

Shane Storks, Qiaozi Gao, Yichi Zhang, and Joyce Chai.
2021. Tiered reasoning for intuitive physics: To-
ward verifiable commonsense language understand-
ing. arXiv preprint arXiv:2109.04947.

Jing Han Sun and Ali Emami. 2024. EvoGrad: A dy-
namic take on the Winograd schema challenge with
human adversaries. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 6701–6716, Torino, Italia.
ELRA and ICCL.

Gemma Team, Morgane Riviere, Shreya Pathak,
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-
raju, Léonard Hussenot, Thomas Mesnard, Bobak
Shahriari, Alexandre Ramé, et al. 2024. Gemma 2:
Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Paul Trichelair, Ali Emami, Jackie Chi Kit Cheung,
Adam Trischler, Kaheer Suleman, and Fernando Diaz.
2018a. On the evaluation of common-sense reason-
ing in natural language understanding. arXiv preprint
arXiv:1811.01778, 20180.

Paul Trichelair, Ali Emami, Adam Trischler, Kaheer
Suleman, and Jackie Chi Kit Cheung. 2018b. How
reasonable are common-sense reasoning tasks: A
case-study on the winograd schema challenge and
swag. arXiv preprint arXiv:1811.01778.

Trieu H Trinh and Quoc V Le. 2018. A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.

Gengyu Wang, Xiaochen Hou, Diyi Yang, Kathleen
McKeown, and Jing Huang. 2021. Semantic cat-
egorization of social knowledge for commonsense
question answering. In Proceedings of the Second
Workshop on Simple and Efficient Natural Language
Processing, pages 79–85, Virtual. Association for
Computational Linguistics.

Xinyi Wang, Antonis Antoniades, Yanai Elazar, Al-
fonso Amayuelas, Alon Albalak, Kexun Zhang, and
William Yang Wang. 2025. Generalization v.s. mem-
orization: Tracing language models’ capabilities back
to pretraining data. In The Thirteenth International
Conference on Learning Representations.

Maurice Weber, Dan Fu, Quentin Anthony, Yonatan
Oren, Shane Adams, Anton Alexandrov, Xiaozhong
Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams,
Ben Athiwaratkun, Rahul Chalamala, Kezhen Chen,
Max Ryabinin, Tri Dao, Percy S Liang, Christopher
Ré, Irina Rish, and Ce Zhang. 2024. Redpajama:
an open dataset for training large language models.
In Advances in Neural Information Processing Sys-
tems, volume 37, pages 116462–116492. Curran As-
sociates, Inc.

Terry Winograd. 1972. Understanding natural language.
Cognitive psychology, 3(1):1–191.

Cheng Xu, Shuhao Guan, Derek Greene, and M. Tahar
Kechadi. 2024. Benchmark data contamination
of large language models: A survey. CoRR,
abs/2406.04244.

Frank F Xu, Bill Yuchen Lin, and Kenny Q Zhu. 2017.
Automatic extraction of commonsense locatednear
knowledge. arXiv preprint arXiv:1711.04204.

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E.
Gonzalez, and Ion Stoica. 2023. Rethinking bench-
mark and contamination for language models with
rephrased samples. CoRR, abs/2311.04850.

Pardis Sadat Zahraei and Ali Emami. 2024. WSC+:
Enhancing the Winograd schema challenge using
tree-of-experts. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1650–1671, St. Julian’s, Malta. Association
for Computational Linguistics.

Hongming Zhang, Xinran Zhao, and Yangqiu Song.
2020. WinoWhy: A deep diagnosis of essential
commonsense knowledge for answering Winograd
schema challenge. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

https://doi.org/10.1016/0010-0285(72)90022-9
https://doi.org/10.1016/0010-0285(72)90022-9
https://arxiv.org/abs/2411.03923
https://arxiv.org/abs/2411.03923
https://arxiv.org/abs/2411.03923
https://aclanthology.org/2024.lrec-main.592/
https://aclanthology.org/2024.lrec-main.592/
https://aclanthology.org/2024.lrec-main.592/
https://doi.org/10.18653/v1/2021.sustainlp-1.10
https://doi.org/10.18653/v1/2021.sustainlp-1.10
https://doi.org/10.18653/v1/2021.sustainlp-1.10
https://openreview.net/forum?id=IQxBDLmVpT
https://openreview.net/forum?id=IQxBDLmVpT
https://openreview.net/forum?id=IQxBDLmVpT
https://proceedings.neurips.cc/paper_files/paper/2024/file/d34497330b1fd6530f7afd86d0df9f76-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/d34497330b1fd6530f7afd86d0df9f76-Paper-Datasets_and_Benchmarks_Track.pdf
https://doi.org/10.48550/arXiv.2406.04244
https://doi.org/10.48550/arXiv.2406.04244
https://doi.org/10.48550/arXiv.2311.04850
https://doi.org/10.48550/arXiv.2311.04850
https://doi.org/10.48550/arXiv.2311.04850
https://aclanthology.org/2024.eacl-long.99/
https://aclanthology.org/2024.eacl-long.99/
https://aclanthology.org/2024.eacl-long.99/
https://doi.org/10.18653/v1/2020.acl-main.508
https://doi.org/10.18653/v1/2020.acl-main.508
https://doi.org/10.18653/v1/2020.acl-main.508


Linguistics, pages 5736–5745, Online. Association
for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 15–20, New
Orleans, Louisiana. Association for Computational
Linguistics.

Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth.
2019. " going on a vacation" takes longer than"
going for a walk": A study of temporal commonsense
understanding. arXiv preprint arXiv:1909.03065.

https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003

