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Abstract
Although Recommender Systems (RS) have been
well-developed for various fields of applications,
they often suffer from a crisis of platform credi-
bility with respect to RS confidence and fairness,
which may drive users away, threatening the plat-
form’s long-term success. In recent years, some
works have tried to solve these issues; however,
they lack strong statistical guarantees. Therefore,
there is an urgent need to solve both issues with
a unifying framework with robust statistical guar-
antees. In this paper, we propose a novel and reli-
able framework called Equitable and Statistically
Unbiased Recommendation (ENSUR)) to dynam-
ically generate prediction sets for users across var-
ious groups, which are guaranteed 1) to include
ground-truth items with user-predefined high con-
fidence/probability (e.g., 90%); 2) to ensure user
fairness across different groups; 3) to have mini-
mum efficient average prediction set sizes. We fur-
ther design an efficient algorithm named Guaran-
teed User Fairness Algorithm (GUFA) to optimize
the proposed method and derive upper bounds of
risk and fairness metrics to speed up optimization
process. Moreover, we provide rigorous theoreti-
cal analysis concerning risk and fairness control
and minimum set size. Extensive experiments val-
idate the effectiveness of the proposed framework,
which aligns with our theoretical analysis.

1. Introduction
Recommender Systems (RS) (Aggarwal, 2016; Fan et al.,
2022; Sharma et al., 2024) are a type of information filtering
system designed to provide suggestions to users based on
their preferences. While much effort goes into improving
accuracy of these recommendation models, less attention
has been paid to model confidence, affecting users’ trust in
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the platform’s credibility. In recent years, few recommen-
dation approaches (Naghiaei et al., 2022; KWEON et al.,
2024) are developed for model confidence. However, these
methods are heuristic modeling without statistical guaran-
tee. Meanwhile, fairness is another critical issue that may
harm user experience and undermine platform reliability.
Some fairness-based recommendation models have been
developed in recent years (Li et al., 2023; Han et al., 2024).
While these papers alleviate fairness issues in recommenda-
tion systems, they are typically empirically validated with-
out statistical guarantees for both performance and fairness.

As a result, we are motivated to develop a complete and
statistically guaranteed recommendation framework that
considers both model confidence and fairness issues as a
whole in this paper. Our overall goal is to construct set pre-
dictors that can generate minimum prediction set for each
user while guaranteeing model confidence and ensuring user
fairness among different groups. Thus, objectives of our
framework are threefold: (1) to construct prediction sets
that cover true item with high user pre-defined probability,
say 90% (i.e., confidence level); (2) to guarantee user fair-
ness across different groups; and (3) to guarantee minimum
average set size while ensuring (1) and (2).

Inspired by Risk-Controlling Prediction Sets (RCPS) (Bates
et al., 2021b) - a powerful statistical tool, we propose a
reliable and fair framework called Equitable and Statisti-
cally Unbiased Recommendation (ENSUR)) to achieve the
above-mentioned objectives. However, RCPS in its natural
form, is designed only to ensure coverage guarantees. As a
result, it does not address our key objectives, specifically: 1)
how to guarantee fairness among different user groups defi-
nitions in a statistical way? 2) how to improve the efficiency
of constructing prediction sets when the search range is so
large? 3) how to produce recommendation sets with mini-
mum size? 4) how to theoretically guarantee the constructed
prediction sets meet the risk control and fairness definition
as well as minimum set size? To address these gaps, we first
define an estimator called fairness metric, which is required
to meet the Fairness-Controlling Prediction Sets (FCPS) de-
fined in a similar way as that of risk control. We then build
our objective function by minimizing average prediction set
while making it meet both RCPS and FCPS constraints for
all users across different groups. Subsequently, we derive
upper bounds for both the risk and fairness to accelerate
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Figure 1. The proposed ENSUR Framework. Red check marks indicate the true relevant items.

optimization process for prediction set construction. Lastly,
we provide theoretical analysis to prove effectiveness of set
predictors with respect to RCPS and FCPS, and minimum
set size. The proposed framework is depicted in Figure 1.

Our contributions are summarized as follows:

• Firstly, we formulate the recommendation problem
from statistically guaranteed perspectives in terms of
risk control guarantee and fairness control guarantee,
and propose a reliable and fair recommendation frame-
work, i.e., Equitable and Statistically Unbiased Rec-
ommendation (ENSUR)), which is able to construct
minimum prediction set while ensuring the risk control
and fairness guarantee for all users in different groups.

• Secondly, we design an efficient optimization algo-
rithm, i.e., Greedy User Fairness Algorithm (GUFA)
to optimize the objective function of ENSUR. To ac-
celerate the optimization process, we derive the upper
bounds for both the defined expected risk and fairness
metric via concentration inequalities in Theorem 4.1
and Theorem 4.2 and then make them approach their
respective thresholds in a greedy way.

• Next, we establish rigorous theoretical guarantees for
the proposed framework ENSUR. We prove that the
constructed prediction set can achieve risk control and
fairness guarantees in Theorem 5.1 while achieving
minimal set sizes in Theorem 5.2, which theoretically
verifies the effectiveness of ENSUR.

• Finally, we conduct comprehensive experiments on
top of five commonly used recommendation models
and various datasets across multiple domains and fair-
ness definitions, demonstrating the empirical efficiency
and effectiveness of the proposed ENSUR, which also
aligns with our theoretical analysis.

2. Related Works
2.1. Recommendation

Recommender systems (RS) (Ko et al., 2022; Lu et al., 2015)
help users make decisions via personalized content in dif-
ferent fields of application, such as e-commerce (Schafer

The code and implementation details are available at
https://github.com/kalpiree/ENSUR

et al., 1999), media streaming (Chang et al., 2017), social
networks (He et al., 2024) etc. Credibility and fairness are
two crucial factors in ensuring the satisfaction of customers
and the long-term success of these systems. Traditional rec-
ommendation models primarily focused on accuracy (Ado-
mavicius & Tuzhilin, 2005; Ricci et al., 2010), however,
aligning with broader trends in machine learning (Huang
et al., 2021; Liu et al., 2019; Zou & Liu, 2023), there is a
growing appreciation that model confidence, the reliability
of a recommendation, is equally important. However, most
of these methods are heuristic modeling without statisti-
cal guarantees (Naghiaei et al., 2022). Meanwhile, some
fairness-based recommendation models have been devel-
oped in recent years, which usually focus on a particular
fairness issue in specific fields of application. Fairness in
RS can be viewed from diverse perspectives (Li et al., 2023).
One such perspective is Individual fairness and Group fair-
ness. Individual fairness requires that similar individuals
receive comparable treatment. However, defining this simi-
larity is challenging due to disagreements over task-specific
similarity metrics (Dwork et al., 2011). Group fairness, on
the other hand, ensures that protected groups receive treat-
ment comparable to that of advantaged groups or the general
population (Pedreschi et al., 2009), thus ensuring equitable
treatment across predefined groups. It can be further clas-
sified from the user side or item/platform side. Focusing
on User-Side group Fairness, it can be defined based on
sensitive features like age, gender, race, etc. (Yao & Huang,
2017) utilized gender to distinguish between advantaged
and disadvantaged user groups and measured prediction dis-
crepancies. Another approach utilizes differentiating groups
based on user interactions as defined by (Li et al., 2021a)
and (Abdollahpouri et al., 2019). To ensure fairness, exist-
ing works apply several techniques such as regularization
and constrained optimization (Li et al., 2021a; Islam et al.,
2021). Some other approaches use Reinforcement Learn-
ing by formulating the problem as a Constrained Markov
Decision Process (Ge et al., 2021; 2022). To evaluate the
fairness, (Yao & Huang, 2017) introduced four group met-
rics to evaluate collaborative filtering recommender models.
(Fu et al., 2020) employed the Group Recommendation Un-
fairness (GRU) metric to assess disparities across these user
groups. Rahmani et al. (2022) depicted this approach bal-
ances fairness with utility under certain conditions. Unlike
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the more robust statistical frameworks utilized in general
machine learning works (Gong et al., 2023b;a; 2021), these
fairness methods do not have a notion of statistical guaran-
tees. Addressing that gap is focus of our work.

2.2. Risk-Controlling Prediction Sets

We develop uncertainty quantification for the model con-
fidence and fairness based on Risk-Controlling Prediction
Sets (RCPS) (Bates et al., 2021b). RCPS is a general frame-
work, not a specific algorithm, for producing predictive sets
that satisfy the risk control in Definition 1. Different con-
texts require different designs of risk or other estimators to
achieve best performance. For example, in the context of
medical diagnosis, if set S(X) represents plausible diag-
noses based on patient features X and R(S) is expected risk
of loss from missing true diagnoses, then RCPS ensures this
risk to remain below α with confidence 1− δ. This enables
doctors to automatically screen for many diseases (e.g., via
a blood sample) and refer the patient to relevant specialists.
We will apply framework of RCPS to the designed risk and
fairness in the context of recommendation.
Definition 1 (Risk-controlling prediction sets (RCPS) (Bates
et al., 2021b)). Let S be a random function taking values
in space of functions X → Y ′ (e.g., a functional estimator
trained on data). We say that S is a (α, δ)−RCPS if, with
probability at least 1− δ, we haveR(S) ≤ α.

3. The Proposed Framework
In this section, we formulate the objective functions that
our framework, i.e., Equitable and Statistically Unbiased
Recommendation (ENSUR)), aims to achieve. Firstly, we
introduce the notations used in the paper. Consider n items,
denoted as i = [i]nj=1, where each item ij is an element of
the item space I . Similarly, we have m users, represented by
u = [u]mk=1, where each user uk belongs to the user space U .
For brevity, we use u and i for user and item, respectively.
The group information G of each user u is known, and
following (Li et al., 2021b), we partition users into two
groups, G1 and G2, such that G1 ∩G2 = ∅ and G1 ∪G2 =
U to ensure exclusivity. Here, G1 and G2 represent the
advantaged and disadvantaged groups, respectively.

The recommendation is conducted via relevance model m :
U × I → [0, 1], which maps a user u and an item i to an
estimate score m(u, i), and items with the highest scores are
usually the most relevant recommendations. However, there
is no theoretical guarantee to ensure the confidence of the
model’s output, and so the reliability of the recommended
items remains uncertain. In the following, we will follow
the framework of Risk-Controlling Prediction Sets (RCPS)
Bates et al. (2021a) to solve this gap. We define our set
predictor to be ϕ : u → i′, where i′ ⊆ I is a set-valued
output guided by parameter λ. This lambda takes values in

a closed set Λ ⊂ R such that ϕ(.) is nested i.e.,

λ1 < λ2 =⇒ ϕλ2(u) ⊂ ϕλ1(u). (1)

Considering the recommendation setting with implicit feed-
back (Hu et al., 2008; Zhu et al., 2024), we define the loss
function between the relevant item itrue of user u and the
prediction set ϕλ(u) to be 0-1 loss as follows:

L(itrue, ϕλ(u)) =

{
1 if itrue /∈ ϕλ

0 if itrue ∈ ϕλ.
(2)

Using (Bates et al., 2021b), the loss function L(itrue, ϕλ(u))
is assumed to also satisfy the following property:

ϕλ1
(u) ⊂ ϕλ2

(u) =⇒ L(itrue, ϕλ1
(u)) ≥ L(itrue, ϕλ2

(u)).
(3)

Based on the above loss function, we define the expected
risk of not including a ground-truth item in the prediction
set for all users as follows:

R(λG) = E(L(itrue, ϕλG
(u))). (4)

Subsequently, we require defined risk to meet risk-
controlling prediction sets (RCPS), which ensures the proba-
bility of risk lower than user-specified threshold α is no less
than user-defined confidence level 1− δ, namely, reliability
of recommendation. This can be formulated as follows:

Pr(R(λG) ≤ α)) ≥ 1− δ. (5)

Meanwhile, fairness among users in the advantaged groups
and the disadvantaged groups is another challenge that needs
to be tackled. Notably, in recommendation settings, “ad-
vantaged” or “disadvantaged” can stem from various fac-
tors—such as demographics, engagement patterns, or other
domain-specific attributes. Thus, we define a fairness metric
∆F (·) via the difference between the normally used recom-
mendation metric (such as hit rate (HR) and DCG) of the
advantaged group G1 and the disadvantaged group G2, to
evaluate user fairness as follows:

∆F (λG1
, λG2

) :=

∣∣∣∣∣ 1

|G1|
∑
u∈G1

M(ϕλG1
(u))−

1

|G2|
∑
u∈G2

M(ϕλG2
(u))

∣∣∣∣∣ . (6)

Here, M(·) denotes generalized function representing rec-
ommendation metric (such as HR or DCG) that measures
performance of recommendation set ϕλG

(u) for any user u.

For example, when we use hit rate (HR) or DCG as the
recommendation metric, we can express them as:

HR(Gi) =
1

|Gi|
∑
u∈Gi

I(relevant item in ϕλGi
(u)),
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DCG(Gi) =
1

|Gi|
∑
u∈Gi

DCG.(ϕλGi
(u)),

Thus, the fairness metrics can be expressed as:

∆HR = |HR(G1)− HR(G2)| ,
∆DCG = |DCG(G1)− DCG(G2)| .

This design makes our proposed framework more flexible
by accommodating different types of RS metrics and diverse
user-group definitions.

Similarly, we require the defined fairness metric to meet
the fairness-controlling prediction sets (FCPS), that is, the
probability of the fairness metric lower than a user-specified
threshold η is no less than user-pre-defined confidence level
1 − δ̂, namely, the reliability of fairness. The detailed for-
mulation can be expressed as follows:

Pr(∆F (λG1 , λG2) ≤ η) ≥ 1− δ̂. (7)

Moreover, we hope constructed prediction sets to be as small
as possible while they meet the risk-controlling guarantee as
well as the fairness-controlling guarantee. This is because a
smaller but more relevant set not only reduces uncertainty
in recommendations (Coscrato & Bridge, 2023) but also
enhances user satisfaction and eases cognitive load (Chen
et al., 2022), ultimately improving the usability and effec-
tiveness of the RS. Therefore, our goal is to find the optimal
(λG1

, λG2
) that minimizes the average size of the recom-

mendation sets, satisfying the risk (coverage) and fairness
guarantees for all users in groups G1 and G2. The objective
function can be formulated as follows:

argmin
(λG1

,λG2
)

∑
G∈{G1,G2}

1

|G|
∑
u∈G

|ϕλG
(u)|

s.t. Pr(R(λG) ≤ α)) ≥ 1− δ for all G ∈ {G1, G2},

Pr(∆F (λG1 , λG2) ≤ η) ≥ 1− δ̂.
(8)

Here, α and η are the user pre-specified risk and fairness
thresholds, say 10%; 1−δ and 1− δ̂ are the user pre-defined
confidence level for the risk and fairness, say 90%.

4. The Optimization Algorithm
To optimize the objective function in Equation (8), we need
to ensure the risk and fairness metric in the constraints are
below decision-makers’ pre-defined value α and η respec-
tively, and finally obtain the optimal prediction set with
minimum size. It is not efficient to directly apply the greedy
algorithm as the range of risk and fairness values that ap-
proach the threshold α and η by adjusting the (λG1

, λG2
) is

very large. If we can derive the upper bounds of both risk
and fairness metric and take values at their corresponding

upper bounds R+
G(λG, δ) and ∆F+(λG1

, λG2
, δ̂) respec-

tively, then it will become more efficient to approach the
threshold α and η by adjusting the (λG1 , λG2). Following
the upper bound strategy to accelerate the optimization pro-
cedures in (Bates et al., 2021b), we have the optimized risk
constraint as follows:

Pr(R(λG) ≤ R+(λG, δ)) ≥ 1− δ

and R+
G(λG, δ) ≤ α, for all G ∈ {G1, G2}.

(9)

Similarly, the optimized fairness metric constraint can be
reformulated as follows:

Pr(∆F (λG1
, λG2

) ≤ ∆F+(λG1
, λG2

, δ̂)) ≥ 1− δ̂

and ∆F+(λG1
, λG2

, δ̂) ≤ η.
(10)

Consequently, we can choose λ̂ as the largest value of λ such
that the entire confidence region to the left of λ falls below
the target risk level α and η, and the set size will achieve
the minimum value. The optimized objective function can
be formulated as follows:

(λ̂G1
, λ̂G2

) = sup

{
λG1

, λG2
∈ [0, 1] :

R+(λG, δ) ≤ α, ∆F+(λG1 , λG2 , δ̂) ≤ η

}
.

(11)
To optimize the above objective function and output the
optimal solution for (λ̂G1

, λ̂G2
) that dominate the validity

of set predictor, we design a novel greedy-strategy-based
algorithm called Greedy User Fairness Algorithm (GUFA).
The complete procedures of the optimization algorithm are
summarized in Algorithm 1.

However, it still remains unknown that what the upper
bounds of risk and fairness metric look like. In the fol-
lowing part, we will derive the upper bounds in Theorem 4.1
and Theorem 4.2 respectively.

Theorem 4.1 ( Upper Bound for Risk). Assume loss func-
tion L(itrue, ϕλG

(u)) follows a Bernoulli distribution, then
upper bound for the risk R(λG) can be found as follows:

R+(λG, δ) = sup
{
R̂(λG) : BinomCDF(nR̂(λG), n, α) ≤ δ

}
(12)

where n is the number of samples; G ∈ {G1, G2}; R̂(λG)
denotes the empirical risk of R(λG), which can be calcu-
lated as follows:

R̂(λG) =
1

|G|
∑
u∈G

L(itrue, ϕλG
(u)). (13)

Here, |G| denotes the number of users in group G.

Proof. Proof can be found in Appendix B.1.
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Algorithm 1 Guaranteed User Fairness Algorithm (GUFA)

1: Initialization:
2: Initialize control parameters for two groups λG1 , λG2

3: Initialize user pre-specified parameters α, η, δ,
δ̂,∆1,∆2

4: Define Loss as in Equation (2)
5: Define Fairness metric as in Equation (6)
6: Adjustment Loop:
7: for users in each group G ∈ {G1, G2} do
8: Calculate R+

G(λG, δ) such that Pr(R(λG) ≤
R+

G(λG, δ)) ≥ 1− δ
9: Compute ∆F (λG1

, λG2
) and calculate

∆F+(λG1 , λG2 , δ̂) such that Pr(∆F (λG1 , λG2) ≤
∆F+(λG1 , λG2 , δ̂)) ≥ 1− δ

10: if R+
G(λG, δ) > α OR ∆F+(λG1

, λG2
, δ̂) > η

then
11: Update λG1

← λG1
−∆1, λG2

← λG2
−∆2

12: end if
13: end for
14: λ̂G1

, λ̂G2
← λG1

, λG2
▷ Get the optimal λG1

, λG2

15: Construct Prediction Sets:
16: for each user u in group G do
17: ϕλ̂G

(u)← {i | m(u, i) ≥ λ̂G}
18: end for
19: Output: the optimal solution λ̂G1 , λ̂G2 and prediction

sets ϕλ̂G1
(u) and ϕλ̂G2

(u) for all users in different
groups.

Theorem 4.2 (Upper Bound for Fairness Metric). The upper
bound for fairness metric ∆F (λG1

, λG2
) can be derived by

applying Bernstein inequality (Maurer & Pontil, 2009) as
follows:

∆F+(λG1
, λG2

, δ̂) =

∆F (λG1
, λG2

)+

√√√√2σ2
F log

(
2
δ̂

)
+ 2

3 log
(

2
δ̂

)
n1 + n2

.

(14)

where n1 and n2 denote the number of samples for group
G1 and G2; σ2

F denotes the variance associated with the
fairness metric ∆HR or ∆DCG. The detailed formulation of
the variance can be referred to in Appendix A.1.

Proof. Proof can be found in Appendix B.2.

Recommendation After obtaining optimal (λ̂G1
, λ̂G2

)
from Algorithm 1, we can recommend new items for users.
For example, when user u comes, we first decide on group
G that they belong to and then utilize corresponding λ̂G to
calculate their prediction set via step 17.

5. Theoretical Analysis
In this section, we provide theoretical analysis on the risk
and fairness control guarantee in Theorem 5.1, as well as
the minimum set size guarantee in Theorem 5.2.

Theorem 5.1 (Risk and Fairness Control Guarantee). For
all group G ∈ {G1, G2} and δ ∈ (0, 1), with probability of
at least 1− δ for risk threshold α, and with probability of
at least 1− δ̂ for fairness threshold η, we have:

Pr(R(λ̂G) ≤ α) ≥ 1− δ

∧ Pr(∆F (λ̂G1 , λ̂G2) ≤ η) ≥ 1− δ̂.
(15)

Proof. Proof can be found in Appendix B.3.

Remark. In Theorem 5.1, we prove that the optimal
λ̂G1

, λ̂G2
obtained from Algorithm 1 are indeed able to

control the expected risk to below the decision makers’
defined values of α with confidence 1− δ, and control the
fairness metric ∆F to below the decision makers’ defined
values of η with confidence 1− δ̂. This theoretically validate
the recommendation reliability and fairness of the proposed
ENSUR framework.

Theorem 5.2 (Minimum Set Size Guarantee). Let (ϕλ∗
G1

,
ϕλ∗

G2
) be any set predictor and let (ϕλ̂G1

, ϕλ̂G2
) be the

optimal predictor obtained from Algorithm 1 such that
R(λ∗

G) ≤ R(λ̂G) and ∆F (λ∗
G1

, λ∗
G2

) ≤ ∆F (λ̂G1 , λ̂G2).
Then for each G ∈ {G1, G2}, we have:

E
[
|ϕλ̂G

(u)|
]
≤ E

[
|ϕλ∗

G
(u)|

]
. (16)

where |ϕλ̂G
(u)| denotes the predicted set size for any user

u in group G.

Proof. Proof can be found in Appendix B.4.

Remark. In Theorem 5.2, we prove that set predictor
learned by our algorithm can output the minimal prediction
set size for any user u in group G, which theoretically vali-
date the effectiveness of the proposed ENSUR framework.

To sum up, set predictors constructed by Algorithm 1 can
modify any black-box recommendation models to output
prediction sets for new customers that are strictly guaranteed
to satisfy the risk control as defined in Equation (5) and the
fairness control defined in Equation (7) while ensuring the
minimum prediction sets in Equation (8).

6. Experiments
In this section, we conduct experiments to validate the effec-
tiveness of the proposed framework (ENSUR). We design
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experiments to 1) validate whether the framework can pro-
vide desired coverage guarantee in terms of risk, better
performance in terms of average set size, and improved
fairness in terms of Hit Rate Difference (Hit Rate Diff.)
and DCG Difference (DCG Diff.) across various datasets
with sensitive attributes; 2) analyze how the parameters (
i.e. α, δ, η and δ̂) influence the performance; 3) analyze
the time-efficiency of ENSUR compared to other fairness
baselines.

6.1. Datasets and Base Models

We conduct experiments on four datasets with specific sen-
sitive user attributes: (1) AmazonOffice dataset (eCom-
merce) (McAuley et al., 2015) grouped by item interac-
tions; (2) Last.fm dataset (music streaming) (Cantador et al.,
2011) grouped by region (developed and other countries;
(3) MovieLens dataset (movie ratings) (Harper & Konstan,
2015) grouped by gender; and (4) Book-Crossing dataset
(book ratings) (Ziegler et al., 2005) grouped by age. We
implement the proposed framework on five base recommen-
dation models: DeepFM (Guo et al., 2017), GMF (Koren
et al., 2009), MLP (Zhang et al., 2019), NeuMF (He et al.,
2017), and LightGCN (He et al., 2020). Additionally, we
compare our framework ENSUR with four fairness base-
lines: 1) NFCF (Islam et al., 2021) 2) MFCF (Islam et al.,
2021) 3) GMF-UFR (Li et al., 2021a) 4) NCF-UFR (Li et al.,
2021a). The implementation details and the details of all the
datasets, base models, and fairness baselines can be found
in Appendices C and D.

6.2. Experimental Results

6.2.1. RESULTS W.R.T PERFORMANCE AND FAIRNESS

We compare the performance and fairness of the ENSUR
framework with five base recommendation models and four
fairness baselines. We set the predefined risk threshold
α = 0.20, fairness threshold η = 0.20 via manual valida-
tion. The error rates δ = 0.1 and δ̂ = 0.1 are representatively
set following (Bates et al., 2021b). The coverage guarantee
is measured in terms of risk; performance is measured using
average set size, and fairness is compared using disparity in
these metrics between user groups (Difference in Hit Rate
and Difference in DCG). The results for the AmazonOffice
dataset (grouped by interactions) are provided in Table 1
whereas results for MovieLens dataset (grouped by gender),
Last.fM dataset (grouped by region), and Book-Crossing
dataset (grouped by age) are provided in Tables 3 to 5 re-
spectively in Appendix E.
The results, presented in Table 1 lead us to the following
key observations:

• The ENSUR framework ensures that all base models
generate prediction sets that satisfy both risk control

Table 1. Performances and fairness comparisons with base mod-
els and fairness baselines on AmazonOffice Dataset grouped by
the Interactions in terms of risk, average set size, and Hit Rate
Diff/DCG Diff, respectively. Bold indicates best result, underline
indicates the second best and † marks threshold exceeded cases.
Method Group Risk ↓ Average Set Size ↓ Hit Rate DCG Hit Rate Diff ↓ DCG Diff ↓

DeepFM 1 0.121
34

0.879 0.418 0.155 0.17
2 0.277 † 0.723 0.248

DeepFM + ENSUR 1 0.192 0.808 0.401 0.081 0.103
2 0.111 0.889 0.298

GMF 1 0.149
30

0.851 0.439 0.212 † 0.225 †
2 0.361 † 0.639 0.214

GMF + ENSUR 1 0.197 0.803 0.428 0.08 0.168
2 0.117 0.883 0.26

LightGCN 1 0.077
33

0.923 0.477 0.126 0.238 †
2 0.203 † 0.797 0.239

LightGCN + ENSUR 1 0.087 0.913 0.474 0.087 0.198
2 0 1 0.276

MLP 1 0.162
26

0.838 0.409 0.219† 0.19
2 0.38 † 0.62 0.219

MLP + ENSUR 1 0.197 0.803 0.397 0.013 0.14
2 0.184 0.816 0.257

NeuMF 1 0.155
28

0.845 0.414 0.225 † 0.185
2 0.379 † 0.621 0.229

NeuMF + ENSUR 1 0.182 0.818 0.406 0.017 0.143
2 0.199 0.801 0.263

Other Fairness Baselines

NFCF 1 0.196 28 0.804 0.391 0.115 0.134
2 0.261† 0.689 0.257

MFCF 1 0.175 30 0.825 0.402 0.128 0.154
2 0.303 † 0.697 0.248

NeuMF-UFR 1 0.193 28 0.807 0.396 0.153 0.127
2 0.346 † 0.654 0.269

GMF-UFR 1 0.205 † 30 0.795 0.395 0.133 0.157
2 0.368 † 0.662 0.238

and fairness guarantees across all datasets.
• The ENSUR-enhanced models always meet risk below

defined thresholds. For base models, the minimum risk
threshold criteria is frequently not met. For example,
in the AmazonOffice Dataset, we notice, as depicted
by †, that risk thresholds are not met for at least one
group, i.e., the disadvantaged group across all the base
models. In fairness baselines, we observe criteria are
not met for both the groups in most cases across all
datasets, which may be because of their emphasis on
trading off performance for accuracy.

• We also observe that the ENSUR-enhanced models
can get the best results in average set size on all the
datasets, but the best model varies among different
datasets. For example, MLP + ENSUR achieves the
best recommendations in terms of average set size on
the AmazonOffice dataset. Similar trends are observed
for MovieLens, Last.fM and Book-Crossing datasets
as depicted in Tables 3 to 5 in Appendix E.

• All ENSUR-enhanced models meet the fairness thresh-
old for both the Hit Rate Diff and DCG Diff across all
datasets. However, the best-performing models vary
by dataset. For example, MLP + ENSUR achieves the
best fairness on the AmazonOffice dataset under the
Hit Rate Diff while DeepFM + ENSUR outperforms
all the other models in terms of DCG Diff. Tables 3
to 5 in Appendix E depict similar trends for remaining
datasets. In addition, the base models do not always
achieve the fairness metrics and exceed the fairness
threshold marked by †. Meanwhile, the fairness base-
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line models do achieve fairness metrics after sacrificing
their accuracy, but they are still inferior to the ENSUR-
enhanced models.

• Overall, the ENSUR framework effectively ensures
both recommendation performance and fairness while
guaranteeing risk control, providing valuable insights
for real-world applications. We further discuss the
generalizability of grouping strategies and practical ap-
plicability in Appendix F and Appendix G respectively.

6.2.2. PARAMETER ANALYSIS

We further analyze influence of pre-defined risk-related pa-
rameters α and δ and fairness-related parameters η and δ̂ on
the prediction sets generated by ENSUR framework.

Effect of Risk Control Parameters α and δ on Prediction
Set Sizes : We first evaluate the impact of error rate α
varying from 0.10 to 0.50 (in increments of 0.05) on average
prediction set sizes under fixed risk confidence thresholds
δ = 0.05, 0.10, 0.15 using AmazonOffice dataset, grouped
by interactions in Figure 2. It can be easily observed that as
α increases, the average set size across all models decreases.
The decreasing trend demonstrates the framework’s ability
to generate valid prediction sets that adapt to the error rate
α. Similar trends can be observed on remaining datasets,
see Figures 6 to 8 in Appendix E.2.

We further evaluate effect of varying risk confidence δ from
0.10 to 0.50 (in increments of 0.05) on average prediction
set sizes under fixed risk thresholds (α = 0.15, 0.20, 0.25)
using Book-Crossing dataset, grouped by age (see Figure 3).
In general, all the models show a decreasing trend which
validates effectiveness of the proposed framework. Interest-
ingly, prediction set sizes do not seem to fluctuate much for
smaller values of δ, while a decreasing trend occurs with
increasing δ. This is because relaxing confidence of risk
constraints makes our predictions less conservative, thereby
reducing the number of items included in prediction set.
Similar phenomenon can be obtained on the other datasets,
see Figures 9 to 11 in Appendix E.2.

Effect of Fairness Control Parameters η and δ̂ on Pre-
diction Set Sizes : We analyze how varying η, measured
by the Hit Rate Diff. and DCG Diff. from 0.10 to 0.50 (in
increments of 0.05) on the average prediction set sizes un-
der fixed fairness confidence (δ̂ = 0.15, 0.20, 0.25) affects
average prediction set sizes, measured on the MovieLens
dataset grouped by gender (Figure 4). With increasing η, the
prediction set size decreases, validating model’s capacity to
have smaller prediction sets for less strict η condition. The
prediction set sizes usually stabilize after an initial decrease
as η rises, suggesting that the framework’s fairness sensi-
tivity to η diminishes beyond a certain point. This offers
guidance on selecting appropriate fairness thresholds while
maintaining usability. Similar results can be observed on

the other datasets, see Figures 12 to 14 in Appendix E.2.

Finally, we examine trends on average prediction set sizes
by varying fairness confidence δ̂ from 0.10 to 0.50 (in in-
crements of 0.05) under fixed fairness thresholds (η =
0.15, 0.20, 0.25) measured on Last.fm dataset grouped by
region (Figure 5). We notice that as value of δ̂ increases, for
a given fairness threshold, model becomes less conservative,
and hence prediction set size decreases. This phenomenon
further validates effectiveness of our framework in balanc-
ing between producing tight average prediction set size and
ensuring fairness. Similarly, results for other datasets can
be found in Figures 15 to 17 in Appendix E.2.

Overall, this parameter analysis guides real-world applica-
tions in balancing performance and fairness with confidence
guarantees.

6.2.3. TIME EFFICIENCY COMPARISON

We analyze the computational cost (training time) of the
ENSUR framework in comparison with other fairness base-
lines. Specifically, for in-processing fairness baselines such
as NFCF and MFCF, we consider the fine-tuning step to
calculate the training time. For post-processinng fairness
baselines such as NeuMF-UFR and GMF-UFR, we take the
re-reranking step as the training time. For proposed ENSUR
framework, we take the calibration step as the training time.
We measure the time of ENSUR, averaged on top of all the
base models. Our experiments are conducted via 10-fold
cross validation to ensure statistical reliability. The results
are presented in Table 2.

From the results, we can observe that our proposed frame-
work ENSUR is significantly more time-efficient than
other fairness baselines, which indicates scalability of our
method. This is because in-processing methods like NFCF
and MFCF involves model refitting which substantially in-
creases the computational cost. By contrast, ENSUR oper-
ates independently of the training phase, eliminating this
overhead. Additionally, ENSUR is substantially faster than
NeuMF-UFR and GMF-UFR, other post-processing meth-
ods, because these models involve solving a constrained and
complex optimization problem, whereas ENSUR employs a
simple yet effective greedy-based algorithm.

Table 2. Training time (minutes) comparison of our framework
ENSUR with four fairness baselines.

Dataset MFCF NFCF GMF-UFR NeuMF-UFR ENSUR(Ours)

AmazonOffice 45 50 25 22 8

MovieLens 75 90 49 45 12

Last.fm 50 58 35 30 8

Book-Crossing 110 135 68 65 15

7
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(a) δ = 0.05 (b) δ = 0.10 (c) δ = 0.15

Figure 2. Analysis of base models after applying the ENSUR framework in terms of average set size with varying α =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on AmazonOffice dataset grouped by Interactions under different δ.

(a) α = 0.15 (b) α = 0.20 (c) α = 0.25

Figure 3. Analysis of base models after applying the ENSUR framework in terms of average set size with varying δ =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Book-Crossing dataset grouped by Age under different α.

(a) δ̂ = 0.15 (b) δ̂ = 0.20 (c) δ̂ = 0.25

Figure 4. Analysis of base models after applying the ENSUR framework in terms of average set size with varying η =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on MovieLens dataset grouped by Gender under different δ̂.

(a) η = 0.15 (b) η = 0.20 (c) η = 0.25

Figure 5. Analysis of base models after applying the ENSUR framework in terms of average set size with varying δ̂ =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Last.fm dataset grouped by Region under different η.
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7. Conclusion
This paper investigates two principle issues that affect the
credibility of RS with respect to confidence and fairness.
We integrate the two factors into a unified framework called
Equitable and Statistically Unbiased Recommendation (EN-
SUR)), which dynamically outputs prediction sets that are
guaranteed to have the risk and fairness below a threshold
with pre-specified high confidence, such as 90%, while re-
taining the minimum average size. We conduct theoretical
analysis and empirical studies, which are consistent in vali-
dating the effectiveness. It is noteworthy that the efficiency
of optimizing the ENSUR also depends on the tightness of
the derived upper bounds for our risk and fairness, thus, we
leave the question whether there exists tighter upper bounds
for the future work. Moreover, the proposed framework can
work on top of any recommendation model by taking them
as black-box, which offers a robust foundation for advanc-
ing fairness and reliability in RS, paving the way for future
research and development in this field.
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Appendix

A. Assumptions
Assumption A.1. In theorem 4.2, we assume that the groups
G1 and G2 are mutually independent and that hit rates or
DCG scores are independently distributed within each group.
Under these assumptions, the variances for the fairness met-
rics are calculated as follows:

σ2
hit =

p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
,

σ2
DCG =

s21
n1

+
s22
n2

,

where p̂1 and p̂2 are the observed hit rates, and s21 and s22
are the sample variances of DCG scores for groups G1 and
G2, respectively.

This assumption ensures that the application of Bernstein’s
inequality is valid, allowing us to derive the Upper Confi-
dence Bound (UCB) for fairness metrics as shown in 14.

Assumption A.2. Throughout the Theorem 5.1, we make
a mild assumption on λmin, i.e., the minimum value the
parameter λ can take, as follows:

Pr(RG(λ
min
G ) ≤ α) ≥ 1−δ∧Pr(∆F (λmin

G1
, λmin

G2
) ≤ η) ≥ 1−δ

where λmin
G is the group-specific minimum value of the pa-

rameter for risk control, and λmin
G1

and λmin
G2

are the minimum
values for fairness control across the groups.

This assumption depicts the belief that we can control any
user-defined risk α and fairness ϵ by taking valid λ values
in a closed set Λ ⊆ R2 ∪ {±∞}.

B. Proofs
B.1. Proof of Theorem 4.1

Proof. We focus on finding some R̂+
G such that out of n

samples, R̂G yields atmost k = nR̂G successes (where
success is defined as observing a risk) with a significance
level of atleast 1− δ. The CDF of the binomial distribution
is given by:

P (Binom(n, p) ≤ k) =

k∑
i=0

(
n

i

)
pi(1− p)n−i.

Let us assume we know R̂+
G and we seek R̂G such that:

P (Binom(n, R̂+
G) ≤ nR̂G) ≥ 1− δ.

Replacing R̂+
G with the user-defined risk value α, the equa-

tion becomes:

P (Binom(n, α) ≤ nR̂G) ≥ 1− δ
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or
P (Binom(n, α) ≤ nR̂G) ≤ δ

which can be reformulated as:

BinomCDF(nR̂G, n, α) ≤ δ.

To solve for R̂G, we find the root of this equation which is
also the UCB at α: i.e.,

BinomCDF(nR̂G, n, α)− δ = 0

Formally,

R̂+
G = sup

{
R̂G : BinomCDF(nR̂G, n, α) ≤ δ

}
Hence Proved.

B.2. Proof of Theorem 4.2

Proof. Bernstein’s inequality for a sum of independent ran-
dom variables Xi with mean µ, variance σ2, and bounded
by U states:

P

(∣∣∣∣∣ 1n
n∑

i=1

(Xi − µ)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−

1
2nt

2

σ2 + 1
3Ut

)
,

(17)
where n is the number of observations, Xi is the i-th random
variable, t is the deviation threshold, σ2 is the variance of
Xi, and U is the upper bound on the range of Xi.

Analogously, we consider, with some decision-maker con-
fidence value δ̂, that the empirical fairness metric differs
from the true fairness metric by the threshold t. This can be
mathematically represented as:

δ̂ = 2 exp

(
−

1
2nt

2

σ2
F + 1

3Ut

)
,

which rearranges to:

log

(
2

δ̂

)
=

1
2nt

2

σ2
F + 1

3Ut
,

solving for t gives:

t =

√√√√2σ2
F log

(
2
δ̂

)
+ 2

3U log
(

2
δ̂

)
n

.

Assuming U = 1 conservatively and n = n1 + n2, we
obtain the UCB as:

∆F+(λG1 , λG2 , δ̂) = ∆F (λG1 , λG2)

+

√
2σ2

F log(
2
δ̂
) + 2

3 log(
2
δ̂
)

n1 + n2
.

Hence Proved.

B.3. Proof of Theorem 5.1

Proof. Let λ∗
G be the highest parameter value for each group

G ∈ {G1, G2} such that the expected risk of not including
truly relevant items and the fairness metric is less than α
and η respectively, i.e.,

λ∗
G = max{λG ∈ [λmin,G, λmax,G] :

RG(λG) ≤ α ∧∆FG(λG1
, λG2

) ≤ η}
(18)

Assume for a parameter value λ̂G, we have RG(λ̂G) > α

or ∆F (λ̂G1
, λ̂G2

) > α.

Then by the definition of λ∗
G, we have,

RG(λ
∗
G) ≤ α ∧∆F (λ∗

G1
, λ∗

G2
) ≤ η

which implies,

RG(λ
∗
G) ≤ α < RG(λ̂G)∨

∆F (λ∗
G1

, λ∗
G2

) ≤ η < ∆F (λ̂G1
, λ̂G2

)

Using Equation (3), we have:

λ̂G > λ∗
G

Since λ̂G and λ∗
G are within the range of real numbers,

consider some ξ > 0 such that

(λ∗
G + ξ) ≥ λ̂G,

Utilizing the definition of λ∗
G and λ̂G in Equation 18, we

get,

R+
G(λ

∗
G + ξ, δ) ≤ α < RG(λ

∗
G + ξ)

∨∆F+(λ∗
G1

, λ∗
G2

+ ξ, δ) ≤ η < ∆F (λ∗
G1

, λ∗
G2

+ ξ)
(19)

According to the principles of Upper Confidence Bound
(UCB), i.e., eq. 11, the events R+

G(λ
∗
G + ξ, δ) ≤ α or

∆F+(λ∗
G1

, λ∗
G2

+ ξ, δ̂) ≤ η can only occur with probabil-
ities not exceeding δ and δ̂ respectively. Specifically, the
UCB ensures that the probability of observing RG(λ̂G) > α

is bounded by δ, or the probability of ∆F (λ̂G1
, λ̂G2

) > η

is bounded by δ̂.

Therefore, with complementary probability condition, under
Assumption 1 and the defined ranges of δ and δ̂, we can
conclude with confidence that:

Pr(RG(λ̂G) ≤ α) ≥ 1− δ ∧

Pr(∆F (λ̂G1
, λ̂G2

) ≤ η) ≥ 1− δ̂.
(20)

This validates the assertions of Theorem 3, thereby formally
proving the theorem.
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B.4. Proof of Theorem 5.2

Proof. Since RG(ϕλ∗,G) ≤ RG(ϕλ̂G
) and

∆F (ϕλG1
,λ∗

G2
) ≤ ∆F (ϕ ˆλG1

,λG2
), this relationship

is expressed through the sum of relevance scores m(u, i)
over the items in the respective prediction sets for users:∑

u∈G

∑
i∈ϕλ∗

G
(u)

m(u, i) ≥
∑
u∈G

∑
i∈ϕλ̂G

(u)

m(u, i),

indicating that the accumulated scores of included items in
ϕλ∗

G
are greater.

This is equivalent to:∑
u∈G

∑
i∈ϕλ∗

G
(u)\ϕλ̂G

(u)

m(u, i) ≥
∑
u∈G

∑
i∈ϕλ̂G

(u)\ϕλ∗
G
(u)

m(u, i).

For some items i ∈ ϕλ∗
G
(u) \ ϕλ̂G

(u), m(u, i) < λ̂G, and
for all items i ∈ ϕλ̂G

(u) \ϕλ∗
G
(u), m(u, i) ≥ λ̂G, based on

Algorithm 1.

This condition is satisfied if:

|ϕλ∗
G
(u)| ≥ |ϕλ̂G

(u)|.

Thus, the expected size of the set using ϕλ̂G
is optimized to

be minimal, i.e.,

E
[
|ϕλ̂G

(u)|
]
≤ E

[
|ϕλ∗

G
(u)|

]
, (21)

thereby proving the theorem.

C. Implementation Details
All base recommender models are trained for 20 epochs
with a batch size of 256, a learning rate of 0.001, the Adam
optimizer, and Binary Cross Entropy Loss (BCELoss). For
the NFCF and MFCF models, we modified the original code
to generalize grouping logic for diverse criteria (e.g., inter-
action count, age, gender, and geography) and adapted the
debiasing process to compute bias directions dynamically
for various groups. To ensure consistency, we reused the
score files generated by our base models for the GMF-UFR
and NeuMF-UFR models. In order to enhance the repro-
ducibility of the results, we utilized MIP (Santos & Toffolo,
2020), a free light-weight Python library for modeling and
optimization, instead of Gurobi (Gurobi Optimization, LLC,
2024) optimization solver, a commercially licensed soft-
ware. For fair and sound comparisons with the base models
and fairness baselines, instead of using arbitrary top-k pre-
dictions, we utilized the average optimal prediction set size
returned by the ENSUR framework on top of the given base
recommendation model.

D. Detailed Experimenation Details
D.1. Datasets and Grouping Methods

In the main paper, we introduced four user grouping strate-
gies to evaluate the fairness and performance of our frame-
work: (1) grouping based on interaction count with items,
(2) grouping based on user age, (3) grouping based on user
gender, and (4) grouping based on geographic categoriza-
tion into developed and other countries. These strategies
were applied to the AmazonOffice, Book-Crossing, Movie-
Lens, and Last.fm datasets, respectively. Below, we provide
further details on the grouping methodology:

• Grouping by interaction count: Following Li et al.
(2021a), users were initially evenly split into two
groups, with 50% assigned to each group. The groups
were then dynamically adjusted to ensure that the min-
imum interaction count in the advantaged group ex-
ceeded the maximum count in the disadvantaged group
by at least one.

• Grouping by age: Users were divided into two age
groups: younger users (≤ 60 years) and older users
(> 60 years).

• Grouping by gender: Users were grouped into bi-
nary categories based on identified gender (male and
female).

• Geographic categorization: Users were categorized
based on their country of origin into developed (e.g.,
USA, UK, Europe, Japan etc.) and other countries.

Furthermore, we conducted an additional grouping exper-
iment on the Last.fm dataset. We extended the interaction
count-based grouping to incorporate interactions with popu-
lar items, following Abdollahpouri et al. (2019). The results
of this experiment are provided in Appendix F.

D.2. Sampling and Data Splitting

We followed the following sampling and splitting method:

• Negative sampling: Following Ma et al. (2024), we
selected 50 non-interacted items per user through neg-
ative sampling for training, validation, and testing.

• Data splitting: We employed the Leave-One-Out
(LOO) strategy (He et al., 2017; Han et al., 2023) to
partition the dataset into training, calibration, and test-
ing sets. Specifically, for each user, one interaction was
isolated for calibration and testing, while the remaining
interactions were used for training.

• Multiple trials: To account for variability in sampling
and splitting, we repeated the experiments over 20 inde-
pendent trials. For each trial, random negative samples
were drawn for training, validation, and testing. The
results were averaged across all the trials.
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D.3. Model Configurations and Fairness Baselines

To evaluate the effectiveness of our framework, we imple-
mented it on top of the five base recommender models spec-
ified in the main paper. Here, we provide specific architec-
tural and training details of the models used:

Base Recommendation Models

• DeepFM: Combines 8 latent factors with deep layers
of [50, 25, 10] and ReLU activation.

• GMF: Utilizes an embedding size of 8 for capturing
linear interactions between user and item embeddings.

• MLP: Employs layers of [64, 32, 16] with ReLU acti-
vation for modeling non-linear interactions.

• NeuMF: Integrates GMF and MLP with a GMF em-
bedding size of 8 and MLP layers of [64, 32, 16], using
ReLU activation.

• LightGCN: Configured with an embedding size of 8
and 3 graph convolution layers.

To validate our framework further, we compared it with four
fairness baseline approaches. The baselines are based on
the most commonly adopted methods in fairness literature
i.e. in-processing and post-processing methods (Li et al.,
2023) :

Fairness Baselines

• NFCF and MFCF(In-processing) (Islam et al.,
2021): The authors utilize a pre-training and fine-
tuning approach to induce user-sided group fairness.
Initially, the user embeddings are learned from non-
sensitive interactions, followed by a de-biasing step to
mitigate the embedding bias. Finally, the models are
fine-tuned on sensitive item recommendations with a
fairness penalty to reduce systemic bias in predictions.

• Neumf-UFR AND GMF-UFR (Post-processing) (Li
et al., 2021a): This post-hoc re-ranking approach uti-
lizes an integer programming solver to balance fairness
and utility disparity between advantaged and disad-
vantaged user groups. The method optimizes prefer-
ence scores while enforcing a fairness constraint, en-
suring that recommendation quality differences (e.g.,
DCG@10, F1@10) between groups remain below a
specified threshold.

E. Additional Experiments
E.1. Remaining Experiments -Continued

Tables 3 to 5 extend the analysis provided in the main paper.
These tables support the key findings: the ENSUR frame-
work consistently achieves both risk control (α = 0.20) and
fairness (η = 0.20) thresholds across all datasets, outper-
forming base models and fairness baselines.

These results reaffirm the main paper’s observations regard-
ing ENSUR’s ability to balance fairness and performance
while adapting effectively across diverse datasets.

Table 3. Performances and fairness comparisons with base models
and fairness baselines on the MovieLens Dataset grouped by the
gender in terms of risk, average set size, and Hit Rate Diff/DCG
Diff, respectively. Bold indicates the best result, underline indi-
cates the second best and † marks threshold exceeded cases.
Method Group Risk ↓ Average Set Size ↓ Hit Rate DCG Hit Rate Diff ↓ DCG Diff ↓

DeepFM 1 0.2
9

0.8 0.503 0.017 0.022
2 0.183 0.817 0.525

DeepFM + ENSUR 1 0.188 0.812 0.504 0.002 0.018
2 0.187 0.813 0.522

GMF 1 0.147
9

0.853 0.538 0.051 0.019
2 0.198 0.802 0.519

GMF + ENSUR 1 0.155 0.845 0.526 0.043 0.008
2 0.198 0.802 0.517

LightGCN 1 0.212 †
19

0.788 0.432 0.077 0.043
2 0.289 † 0.711 0.389

LightGCN + ENSUR 1 0.128 0.873 0.47 0.001 0.031
2 0.128 0.872 0.44

MLP 1 0.173
7

0.827 0.553 0.016 0.007
2 0.158 0.842 0.56

MLP + ENSUR 1 0.151 0.849 0.557 0.014 0.004
2 0.165 0.835 0.553

NeuMF 1 0.199
8

0.802 0.542 0.002 0.015
2 0.198 0.802 0.557

NeuMF + ENSUR 1 0.149 0.851 0.556 0.05 0.005
2 0.199 0.801 0.551

Other Fairness Baselines

NFCF 1 0.198 8 0.802 0.539 0.01 0.01
2 0.205 † 0.795 0.549

MFCF 1 0.243 † 9 0.757 0.552 0.002 0.009
2 0.242 † 0.758 0.561

NeuMF-UFR 1 0.216 † 8 0.784 0.528 0.034 0.021
2 0.182 0.818 0.549

GMF-UFR 1 0.215 † 9 0.785 0.527 0.03 0.022
2 0.185 0.815 0.549

Table 4. Performances and fairness comparisons with base models
and fairness baselines on the Last.fM Dataset grouped by the Re-
gion in terms of risk, average set size, and Hit Rate Diff/DCG Diff,
respectively. Bold indicates the best result, underline indicates the
second best and † marks threshold exceeded cases.
Method Group Risk ↓ Average Set Size ↓ Hit Rate DCG Hit Rate Diff ↓ DCG Diff ↓

DeepFM 1 0.171
29

0.829 0.363 0.108 0.111
2 0.279† 0.721 0.252

DeepFM + ENSUR 1 0.181 0.819 0.358 0.016 0.016
2 0.197 0.803 0.342

GMF 1 0.186
45

0.814 0.268 0.107 0.071
2 0.293† 0.707 0.197

GMF + ENSUR 1 0.156 0.844 0.273 0.019 0.023
2 0.175 0.825 0.25

LightGCN 1 0.217†
25

0.783 0.382 0.026 0.013
2 0.243† 0.757 0.369

LightGCN + ENSUR 1 0.164 0.836 0.392 0.03 0.02
2 0.194 0.806 0.39

MLP 1 0.221†
32

0.779 0.328 0.019 0.013
2 0.24† 0.76 0.315

MLP + ENSUR 1 0.197 0.803 0.331 0.007 0.008
2 0.19 0.81 0.323

NeuMF 1 0.201 †
30

0.799 0.323 0.068 0.021
2 0.269 † 0.731 0.302

NeuMF + ENSUR 1 0.187 0.813 0.330 0.011 0.004
2 0.198 0.802 0.326

Other Fairness Baselines

NFCF 1 0.248 † 30 0.752 0.344 0.024 0.049
2 0.272† 0.728 0.295

MFCF 1 0.231 † 45 0.769 0.269 0.066 0.051
2 0.297† 0.703 0.218

NeuMF-UFR 1 0.213 † 30 0.787 0.306 0.045 0.019
2 0.258 † 0.742 0.287

GMF-UFR 1 0.211 † 45 0.789 0.245 0.067 0.048
2 0.278 † 0.722 0.197
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Table 5. Performances and fairness comparisons with base models
and fairness baselines on the Book-Crossing Dataset grouped by
the Age in terms of risk, average set size, and Hit Rate Diff/DCG
Diff, respectively. Bold indicates the best result, underline indi-
cates the second best and † marks threshold exceeded cases.
Method Group Risk ↓ Average Set Size ↓ Hit Rate DCG Hit Rate Diff ↓ DCG Diff ↓

DeepFM 1 0.123
39

0.873 0.291 0.302† 0.115
2 0.429† 0.571 0.176

DeepFM + ENSUR 1 0.188 0.812 0.251 0.003 0.02
2 0.191 0.809 0.231

GMF 1 0.187
35

0.813 0.277 0.129 0.115
2 0.316† 0.684 0.162

GMF + ENSUR 1 0.185 0.815 0.268 0.116 0.05
2 0.199 0.801 0.232

LightGCN 1 0.154
34

0.846 0.189 0.217† 0.031
2 0.371 † 0.629 0.158

LightGCN + ENSUR 1 0.18 0.82 0.186 0.019 0.025
2 0.199 0.801 0.161

MLP 1 0.124
36

0.876 0.225 0.192 0.093
2 0.316† 0.684 0.132

MLP + ENSUR 1 0.167 0.833 0.194 0.029 0.019
2 0.196 0.804 0.175

NeuMF 1 0.145
39

0.855 0.253 0.214† 0.107
2 0.359† 0.641 0.146

NeuMF + ENSUR 1 0.187 0.813 0.227 0.004 0.036
2 0.191 0.809 0.204

Other Fairness Baselines

NFCF 1 0.216 † 39 0.784 0.264 0.095 0.08
2 0.311† 0.689 0.184

MFCF 1 0.248 † 35 0.752 0.252 0.087 0.074
2 0.335† 0.665 0.178

NeuMF-UFR 1 0.183 39 0.817 0.236 0.143 0.041
2 0.326 † 0.674 0.195

GMF-UFR 1 0.195 † 35 0.805 0.265 0.118 0.097
2 0.313 † 0.687 0.168

E.2. Parameters Analysis -Continued

Effect of Risk Control Parameters α and δ on Prediction
Set Sizes.

Figures 6 to 8 illustrate the trends in the average predic-
tion set size as α varies from 0.10 to 0.50 (in increments of
0.05), while keeping the risk confidence thresholds fixed at
δ = 0.05, 0.10, 0.15, using the Book-Crossing, MovieLens,
and Last.fm datasets respectively. Similarly, Figures 9 to 11
present the trends in the average prediction set size as δ
varies from 0.10 to 0.50 (in increments of 0.05), while keep-
ing the confidence thresholds fixed at α = 0.15, 0.20, 0.25,
using the AmazonOffice, MovieLens, and Last.fm datasets
respectively.

The observed trends in Figures 6 to 8 (variation in α) and
Figures 9 to 11 (variation in δ) are consistent with the ob-
servations reported in Figure 2 (AmazonOffice dataset) and
Figure 3 (Book-Crossing dataset) in the main paper. These
results reinforce the consistency of our framework’s behav-
ior across different datasets and grouping methods.

Effect of Fairness Control Parameters η and δ̂ on Predic-
tion Set Sizes Figures 12 to 14 illustrate how the average
prediction set size changes as η varies from 0.10 to 0.50 (in
increments of 0.05), while holding the fairness confidence
thresholds fixed at δ̂ = 0.15, 0.20, 0.25. These results are
based on the AmazonOffice dataset, Book-Crossing and
Book-Crossing datasets respectively.

In contrast, Figures 15 to 17 display the trends in prediction

set size as δ̂ ranges from 0.10 to 0.50 (in increments of 0.05),
with fixed thresholds of η = 0.15, 0.20, 0.25. These find-
ings are based on AmazonOffice, MovieLens and Last.fm
datasets respectively.

These results further validate variations in η and δ̂ exhibit
consistent patterns, emphasizing our framework’s ability
to adapt prediction set sizes effectively based on fairness
constraints.

F. Generalizablity of Grouping Methods
We validate if ENSUR is adaptable to practitioners’ de-
mands for customized user groups based on specific biases
or fairness concerns relevant to their context. Specifically,
we test our framework using different grouping techniques
on a single dataset i.e. Last.fm by grouping users based on
item interactions and grouping by both item interactions and
interactions with popular items on the Last.fm dataset. The
results could be found in Table 6 and Table 7. The results
demonstrate that the ENSUR framework can dynamically
generate prediction sets for users grouped by any condition.
This is particularly useful in real-world scenarios, where
different applications may have different definitions of fair-
ness. By allowing any grouping method, the framework
can support dynamic fairness criteria that can evolve with
changing societal norms or organizational policies, thereby
allowing practitioners to define user groups based on the
specific biases or fairness concerns relevant to their context.

G. Practical Applicability of the Framework
We now analyze the practical applicability of our framework.
In real-world recommendation systems, prediction sets are
often fixed to a specific size k and applied uniformly across
all users. This fixed size is typically determined heuristi-
cally or through trial and error, aiming to maximize the
likelihood of including items that users may interact with
while prioritizing and ranking items by relevance. However,
this heuristic approach has several limitations:

• Fixed-size sets can lead to cognitive overload for users
when the size is too large or fail to meet individual user
needs when the size is too small.

• They do not account for disparities in user engagement
or group fairness, potentially disadvantaging certain
user groups.

• Recommending unnecessary items results in resource
inefficiencies for platforms.

Our framework addresses these challenges by dynamically
determining the minimum prediction set size for each user,
satisfying fairness and performance guarantees with statisti-
cal confidence (e.g., 95%). This complements the existing
recommender systems as we can employ an appropriate ag-
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(a) δ = 0.05 (b) δ = 0.10 (c) δ = 0.15

Figure 6. Analysis of base models after applying the ENSUR framework in terms of average set size with varying α =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Last.fm dataset grouped by Region under different δ.

(a) δ = 0.05 (b) δ = 0.10 (c) δ = 0.15

Figure 7. Analysis of base models after applying the ENSUR framework in terms of average set size with varying α =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Book-Crossing dataset grouped by Age under different δ.

(a) δ = 0.05 (b) δ = 0.10 (c) δ = 0.15

Figure 8. Analysis of base models after applying the ENSUR framework in terms of average set size with varying α =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on MovieLens dataset grouped by Gender under different δ.

gregation method (for example, mean) to compute global k.
This global k, obtained with the theoretical guarantees, can
then be applied to recommend unseen items to users, ensur-
ing that fairness and performance guarantees hold across
the system.

For example, in e-commerce platforms such as Amazon, in-
stead of heuristically fixing k = 10 for all users, our frame-
work identifies an optimal k (e.g., k = 7) that balances
fairness and accuracy, reducing unnecessary recommenda-
tions and enhancing user satisfaction while optimizing plat-
form resources. Similarly, in streaming services like Netflix,

dynamically adjusting k in cold-start scenarios ensures con-
cise and personalized recommendations, preventing user
overwhelm and aligning with platform resource constraints.

Additionally, the calculated k can serve as a benchmark to
fine-tune recommendation models, enabling iterative im-
provements that enhance fairness and accuracy across di-
verse user groups. By tailoring prediction set sizes dynami-
cally, our framework provides a practical, scalable solution
for modern recommendation systems.

.
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(a) α = 0.15 (b) α = 0.20 (c) α = 0.25

Figure 9. Analysis of base models after applying the ENSUR framework in terms of average set size with varying δ =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on AmazonOffice dataset grouped by Interactions under different α.

(a) α = 0.15 (b) α = 0.20 (c) α = 0.25

Figure 10. Analysis of base models after applying the ENSUR framework in terms of average set size with varying δ =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Last.fm dataset grouped by Region under different α.

(a) α = 0.15 (b) α = 0.20 (c) α = 0.25

Figure 11. Analysis of base models after applying the ENSUR framework in terms of average set size with varying δ =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on MovieLens dataset grouped by Gender under different α.

(a) δ̂ = 0.15 (b) δ̂ = 0.20 (c) δ̂ = 0.25

Figure 12. Analysis of base models after applying the ENSUR framework in terms of average set size with varying η =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on AmazonOffice dataset grouped by Interactions under different δ̂.
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(a) δ̂ = 0.15 (b) δ̂ = 0.20 (c) δ̂ = 0.25

Figure 13. Analysis of base models after applying the ENSUR framework in terms of average set size with varying η =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Book-Crossing dataset grouped by Age under different δ̂.

(a) δ̂ = 0.15 (b) δ̂ = 0.20 (c) δ̂ = 0.25

Figure 14. Analysis of base models after applying the ENSUR framework in terms of average set size with varying η =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Last.fM dataset grouped by Region under different δ̂.

(a) η = 0.15 (b) η = 0.20 (c) η = 0.25

Figure 15. Analysis of base models after applying the ENSUR framework in terms of average set size with varying δ̂ =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on AmazonOffice dataset grouped by Interactions under different η.

(a) η = 0.15 (b) η = 0.20 (c) η = 0.25

Figure 16. Analysis of base models after applying the ENSUR framework in terms of average set size with varying δ̂ =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on Book-Crossing dataset grouped by Age under different η.
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(a) η = 0.15 (b) η = 0.20 (c) η = 0.25

Figure 17. Analysis of base models after applying the ENSUR framework in terms of average set size with varying δ̂ =
{0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50} on MovieLens dataset grouped by Gender under different η.
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Table 6. Performance and fairness comparisons with base models
and fairness baselines on the Last.fM Dataset grouped by the
Item Interactions in terms of risk, average set size, and Hit Rate
Diff/DCG Diff, respectively. Bold indicates the best result, un-
derline indicates the second best and † marks threshold exceeded
cases.

Method Group Risk↓ Average Set Size ↓ Hit Rate DCG Hit Rate Diff↓ DCG Diff↓
Grouped by number of interactions

DeepFM 1 0.183

16

0.817 0.494 0.073 0.035
2 0.255 0.745 0.458

DeepFM + ENSUR 1 0.177 0.823 0.494 0.013 0.022
2 0.19 0.81 0.472

GMF 1 0.163

13

0.837 0.567 0.08 0.066
2 0.243 † 0.757 0.501

GMF + ENSUR 1 0.183 0.817 0.56 0.001 0.045
2 0.183 0.817 0.515

LightGCN 1 0.179

12

0.821 0.547 0.18 0.089
2 0.359† 0.641 0.458

LightGCN + ENSUR 1 0.201 0.799 0.492 0.003 0.066
2 0.198 0.802 0.426

MLP 1 0.192

15

0.808 0.44 0.077 0.076
2 0.269 † 0.731 0.364

MLP + ENSUR 1 0.151 0.849 0.448 0.041 0.067
2 0.192 0.808 0.38

NeuMF 1 0.151

16

0.849 0.58 0.087 0.081
2 0.238 † 0.762 0.499

NeuMF + ENSUR 1 0.142 0.858 0.581 0.027 0.067
2 0.169 0.831 0.513

Other Fairness Baselines

NFCF 1 0.248 † 16 0.822 0.569 0.039 0.053
2 0.272† 0.783 0.516

MFCF 1 0.231 † 13 0.815 0.529 0.042 0.021
2 0.297† 0.773 0.508

NeuMF-UFR 1 0.213 † 16 0.827 0.546 0.045 0.031
2 0.258 † 0.782 0.515

GMF-UFR 1 0.211 † 13 0.819 0.536 0.047 0.029
2 0.278 † 0.772 0.517

Table 7. Performance, and fairness comparisons with base models
and fairness baselines on the Last.fM Dataset grouped by the
Item Interactions & Interaction with Popular Items in terms
of risk, average set size, and Hit Rate Diff/DCG Diff, respectively.
Bold indicates the best result, underline indicates the second best
and † marks threshold exceeded cases.

Method Group Risk↓ Average Set Size ↓ Hit Rate DCG Hit Rate Diff↓ DCG Diff↓
Grouped by number of total interactions & popular items interactions

DeepFM 1 0.078

30

0.922 0.56 0.22† 0.226 †
2 0.298† 0.702 0.334

DeepFM + ENSUR 1 0.162 0.838 0.54 0.162 0.151
2 0 1 0.389

GMF 1 0.063

30

0.937 0.603 0.112 0.231
2 0.176 0.824 0.372

GMF + ENSUR 1 0.163 0.837 0.578 0.163 0.174
2 0 1 0.405

LightGCN 1 0.076

31

0.924 0.627 0.119 0.24†
2 0.195 0.805 0.387

LightGCN + ENSUR 1 0.126 0.874 0.585 0.03 0.106
2 0.156 0.844 0.479

MLP 1 0.057

31

0.943 0.522 0.152 0.239 †
2 0.209† 0.791 0.283

MLP + ENSUR 1 0.143 0.857 0.5 0.143 0.179
2 0 1 0.322

NeuMF 1 0.07

29

0.93 0.661 0.147 0.263 †
2 0.217 † 0.783 0.398

NeuMF + ENSUR 1 0.154 0.846 0.64 0.154 0.198
2 0 1 0.442

Other Fairness Baselines

NFCF 1 0.115 29 0.885 0.629 0.08 0.208†
2 0.195 0.805 0.421

MFCF 1 0.137 30 0.863 0.549 0.109 0.151
2 0.243† 0.757 0.44

NeuMF-UFR 1 0.111 29 0.889 0.588 0.077 0.166
2 0.188 0.812 0.428

GMF-UFR 1 0.121 30 0.879 0.566 0.057 0.198
2 0.178 0.822 0.368
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