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ABSTRACT

Cancer genomes possess diverse mutational patterns across multiple profiles, in-
cluding single base substitutions (SBS), small insertions and deletions (ID), copy
number variations (CN), and structural variants (SV). These profiles provide dis-
tinct, yet complementary perspectives to understanding a tumor’s genomic land-
scape, which is essential for optimal patient care. Learning unified representa-
tions across this complex mutational landscape can reveal deeper insights into
cancer biology, therapeutic interventions, and patient stratification. We present
MutEmbed, a self-supervised framework that uses attention mechanisms to weigh
and integrate information across mutational profiles, capturing their latent bio-
logical interdependencies. We use SBS, ID, CN, and SV calls for samples from
the Pan-cancer Analysis of Whole Genomes (PCAWG) dataset (n = 2748). Using
MutEmbed, we derive embeddings for each sample and demonstrate their biologi-
cal relevance by analyzing cancer-type specific clustering patterns and enrichment
patterns with DNA damage and repair pathway activities.

1 INTRODUCTION

Genomic instability (GI) is a well-established hallmark of cancer driven by the accumulation of
genetic alterations, including single base substitutions (SBS), small insertions and deletions (ID),
copy number variations (CN), and structural variants (SV). Patterns in these mutational profiles can
inform underlying mechanisms of GI and reveal key insights into tumor evolution, DNA repair de-
ficiencies, and potential therapeutic vulnerabilities. When analyzed collectively, the relationships
within and between these profiles could reveal synergistic patterns that may be overlooked in single
profile analyses (Everall et al.| [2023)). This approach provides a more comprehensive understand-
ing of tumor heterogeneity, which can inform treatment strategies and ultimately improve patient
outcomes. Computational methods, including machine learning and deep learning, are increasingly
being studied to extract meaningful features from complex biological data and uncover insights into
tumor biology and precision oncology. |Anaya et al.| (2023)) showed an attention-based model that
analyzed somatic mutations considering their local context using weakly supervised learning, and
achieved superior performance in downstream tasks such as classification of tumor type and predic-
tion of microsatellite status using the derived features. However, they only consider single domain
contexts (for example, they show using SBS features) rather than integrating multiple sources of
information.

We build on this idea by extending attention mechanisms across multiple mutational profiles with
MutEmbed, a self-supervised framework that learns unified cancer sample representations. Our
approach projects each mutation profile, or modality (SBS96, ID83, CN48, and SV32 - corre-
sponding to the number of features for each mutation profile), into a shared embedding space
where cross-modal attention enables information sharing between different mutation types. Through
a reconstruction-based training objective, the model learns to preserve and integrate information
across all profiles into a compressed latent representation, allowing biological relationships between
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mutation types to naturally emerge without requiring explicit context cues or labels. These learned
representations can capture meaningful patterns about the samples’ tumor biology, enabling down-
stream applications such as cancer type prediction and pathway analysis.

Table 1: Comparison of classification performance (F1 score) across primary cancer types (top) and
subtypes (bottom). Only cancer types with more than 50 samples were included.

Bone Breast CNS Colorectal Esophagus Kidney Liver Lung Lymph Myeloid Ovary Pancreas Prostate Skin Stomach

MutEmbed 047  0.64  0.79 0.74 0.63 0.87 093 073 0.92 0.70 0.71 0.67 0.80 0.97 0.30
SBS96 027 024 058 0.57 0.64 0.67 091 073 0.78 0.69 0.59 0.39 0.50 0.87 0.25
1D83 0.14 034 062 0.47 0.42 0.85 084 0.74 0.54 0.34 0.44 0.40 0.61 0.75 0.19
CN48 002 0.14 029 0.17 0.29 0.42 043 0.18 0.46 0.39 0.37 0.39 0.54 0.08 0.04
SV32 008 0.2 031 0.11 0.28 0.24 021  0.11 0.26 0.35 0.32 0.13 0.48 0.20 0.09
Adenocarcinoma BNHL CLL Endocrine HCC MPN Medullo Melanoma Pilocytic astrocytoma RCC SCC
MutEmbed 0.84 082 082 0.67 093 072 0.76 0.95 0.64 091  0.62
SBS96 0.63 0.74 055 0.44 092 0.83 0.36 0.88 0.39 0.73  0.50
1D83 0.56 040 050 0.34 0.80 034 0.55 0.72 0.37 0.88 043
CN48 0.31 025 052 0.50 045  0.54 0.37 0.17 0.55 026 0.23
SV32 0.35 0.18 023 0.15 033 033 0.12 0.22 0.59 029 0.26
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Figure 1: A MutEmbed architecture. B t-SNE visualisation of MutEmbed embeddings, labelled
by cancer type. C Cohen’s d effect size measuring similarity of samples within their cancer types
in comparison to samples outside their cancer types. Statistical significance was assessed using an
unpaired two-tailed t-test comparing within-cancer similarity scores versus between-cancer similar-
ity scores. Significance levels are based on Bonferroni-adjusted p-values (***: p < 0.001, **: p <
0.01, *: p < 0.05), with an adjusted significance threshold of 0.002 to account for the 22 cancer types
tested. D Classification performance on canonical DNA damage response and repair pathways.
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2 METHODS

We define the MutEmbed network to integrate heterogeneous feature matrices M; € R™*% where
n is the number of samples and d; represents the dimensionality of the ¢-th feature space. The model
processes k different feature matrices through a projection layer P : R% — R® that maps each
input space to a common embedding dimension e. The projected features are stacked column-wise
to form a sequence of feature representations for each sample X = [x1; zo; ...; 73] € R"XFxe,

We omit positional encodings, as the order of feature matrices is not relevant across samples and
represents distinct mutational profiles rather than sequential data. The stacked features are processed
through [ layers of attention mechanisms. The final representation is compressed into a latent space
z € R% through mean pooling across the feature dimension followed by linear projection. Decoders
reconstruct the original feature spaces through separate linear transformations. The model is trained
to minimize the mean squared reconstruction error £ = Y || M; — M]||? across all feature spaces.

3 RESULTS

Latent Space Organization of Mutational Profiles After training MutEmbed, we analyzed the
64-dimensional latent representations using t-SNE visualization (Figure [1| A), which revealed dis-
tinct clustering patterns by cancer type. We validated clustering by using Cohen’s d to measure the
effect size on intra- and inter-cancer cosine similarities and running t-tests with Bonferroni correc-
tion to assess significance (Figure [1| B). Strong clustering (Cohen d’s > 0.8) — especially in skin,
lung, liver, kidney, and esophageal cancers that have distinct mutational signatures (for example,
known exogenous exposures like UV light for skin cancer and tobacco smoking for lung cancer
map to specific and distinct signatures (Alexandrov et al.l [2013)) — suggests our embeddings cap-
ture cancer-type-specific mutation patterns. Conversely, weaker clustering in cancer types such as
CNS, bone, and stomach cancers may reflect similarities in tumor heterogeneity, aberrant mutational
processes, or active biological pathways across cancer types.

Cancer Classification Performance We used the embeddings for multivariate prediction of pri-
mary cancer type and subtype, which is particularly useful when determining the tumor of origin
for metastatic cancers is difficult (Pavlidis & Pentheroudakis| |[2012). The test F1 scores (Table [I])
for strongly clustered cancer types — skin (0.97), liver (0.93), and lymph (0.92) — corroborate these
groupings. Similarly, high F1 scores (> 0.8) for several subtypes indicate that the embeddings cap-
ture not only tissue of origin but also underlying molecular mechanisms. For instance, the strong
performance in distinguishing Chronic lymphocytic leukemia (CLL) and B-cell non-Hodgkin lym-
phoma (BNHL), both lymphoid cancers, suggests that despite their shared lineage, they have distinct
molecular evolution paths, which the embeddings successfully differentiate. Notably, our approach
significantly outperformed classifiers trained on individual mutation profiles alone, highlighting the
advantage of integrating cross-modality data. Furthermore, while the results in Table [T are after us-
ing weighted loss to correct class imbalance, MutEmbed shows equally superior performance with-
out any correction (Appendix [A.2), indicating that the embeddings alone are sufficiently distinct to
separate classes, unlike other features.

Biological Pathway Analysis To assess whether the learned embeddings encode information re-
lated to pathway-level biology, we attempted to predict dominant pathway activity states. As a
proxy for pathway activity, we applied Gene Set Variation Analysis (GSVA) to RNA-seq expres-
sion profiles for a subset of the PCAWG samples to compute enrichment scores for a selected set
of canonical DNA damage response and repair pathways from the KEGG database on a per-sample
basis. GSVA generates normalized, sample-specific enrichment scores that reflect the relative ex-
pression of pathway genes. For this preliminary analysis, we simplified the pathway labelling by
selecting, for each sample, the pathway with the largest absolute GSVA enrichment score. This
captures the pathway showing the strongest deviation in expression (either up or down regulation)
without distinguishing directionality. Figure [I|D shows the performance from the individual mu-
tation profiles and the learnt embeddings. Unlike with previous downstream tasks, the MutEmbed
embeddings do not perform as well compared to the individual profiles, only having higher predic-
tive power for Base Excision Repair and Mismatch repair. This reflects the complexity of such an
analysis from a technical perspective, as the relationship between mutation patterns and pathway
activity is not biologically direct. Additionally, this approach would likely benefit from incorporat-
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ing the directionality of pathway regulation, as well as more sophisticated labelling strategies, given
that multiple pathways may be relevant for a single sample. Moreover, because the embeddings
are trained to learn a general representation of mutation profiles, they may not explicitly priori-
tize pathway-specific features, but instead capture broader, context-dependent patterns - as was also
observed in the cancer type classification task.

4 CONCLUSION

We showed that MutEmbed effectively integrates diverse mutational profiles into a shared repre-
sentation and captures meaningful cancer-type-specific patterns without explicit biological labels.
These embeddings may be used for relevant downstream prediction tasks, and could also be analyzed
further from a biological perspective to understand tumor heterogeneity better. In future work, we
aim to refine our embeddings by integrating additional genomic and transcriptomic modalities, in-
corporating pathway-aware training objectives, and applying more sophisticated phenotype-labeling
strategies. We also plan to validate the utility of these embeddings across a wider range of pathway
analyses, cancer phenotypes, and clinical outcomes.
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A APPENDIX

A.1 METHODS - ADDITIONAL DETAILS

A.1.1 DATA ACQUISITION AND PRE-PROCESSING

We used 2748 samples from the Pan-cancer Analysis of Whole Genomes (PCAWG) dataset (Camp-
bell et al.l 2020), which is available via the Legacy International Cancer Genome Consortium
(ICGC) 25K server. For each whole genome sequencing (WGS) sample, we downloaded SBS96
(from single base substitutions) and ID83 (from small insertions and deletions) matrices from the
ICGC portal, and used SigProfilerMatrixGenerator’s CNVMatrixGenerator and SVMatrixGenerator
scripts to generate the CN48 and SV32 mutational profiles (Bergstrom et al.| 2019). All four mu-
tational profiles for each WGS sample were independently frequency standardized and normalized
prior to training MutEmbed.

A.1.2 MUTEMBED MODEL ARCHITECTURE AND IMPLEMENTATION

MutEmbed was trained on the complete set of PCAWG samples, optimizing embeddings by mini-
mizing the reconstruction loss for each mutational profile. Within the model, for each WGS sample,
we calculate cross-profile attention to dynamically share information across modalities and learn
correlation patterns.

Q=2Wqy, K=2ZWg, V=2IWy (1)
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KT

A = softmax <Q> 2)
VE

where Z is the stacked projected profiles, W, Wi, Wy € RE*E are learnable projection matrices,

and A represents the attention scores.

After L attention layers, the latent representation is computed as:

H = ReLU(Wp, - mean(Z’,dim = 1)) 3)

where W, € RF*64 projects to a lower-dimensional latent space.

We used Adam optimizer with a learning rate of 0.0006, batch size of 32 and 500 epochs. For this
experiment, we set the hidden dimension to be 265, latent dimension to be 64, and used only one
layer of attention.

A.1.3 CLASSIFICATION TASKS IMPLEMENTATION

For the multi-class classification tasks, we trained a simple MLP consisting of 2 linear layers (hidden
dimension = 128) and a ReLU layer. Only cancer types with more than 50 samples across the dataset
were used. Weighted cross entropy loss was used to correct for class imbalance. We used a 60/20/20
train/val/test split and ran 10 trials for each experiment (MutEmbed embeddings, SBS96, ID83,
CN48 and SV32) across the same initially randomized seeds over 50 epochs with early stopping.
We used a batch size of 32, learning rate of 0.001 with Adam optimizer.

A.1.4 GENE SET VARIATION ANALYSIS DETAILS

We obtained normalized RNAseq gene expression data (35608 genes) for a subset (n = 1214) of the
PCAWG samples from the University of California Santa Cruz XENA portal (Goldman et al.,[2020).
We filtered genes based on their status in the Consensus CDS project, retaining only those that were
public or updated under active review. This resulted in a final set of 17640 genes. We applied
Gene Set Variation Analysis (GSVA) (Hanzelmann et al.l 2013) to our gene expression matrix to
derive sample-level pathway enrichment scores for selected KEGG pathways. Using the GSVA R
package with default parameters, gene expression measurements (rows: genes, columns: samples)
were non-parametrically transformed to calculate an enrichment score for each pathway in each
sample. These GSVA scores were then used for downstream clustering and comparative analyses.
To identify relevant pathways, we queried the Molecular Signatures Database (MSigDB) (Liberzon
et al.,[2011) using the following terms: KEGG AND ((DNA AND Damage) OR (DNA AND Repair)
OR (Homologous AND Recombination)). From the results, we selected five key pathways: cell
cycle, homologous recombination, mismatch repair, base excision repair, and nucleotide excision
repair. Associations obtained for each dimension were filtered based on a g-value threshold (< 0.05)
for the normalized enrichment score (NES).

A.2 RESULTS - ADDITIONAL DETAILS

Table 2: Comparison of classification performance (F1 score) without weighted loss across primary
cancer types (top) and subtypes (bottom).

Bone Breast CNS Colorectal Esophagus Kidney Liver Lung Lymph Myeloid Ovary Pancreas Prostate Skin Stomach

MutEmbed  0.41 0.70 0.80 0.78 0.64 0.89 094 0.77 0.93 0.70 0.71 0.75 0.80 0.96 0.32
SBS96 0.00 0.46 0.67 0.51 0.66 0.60 090 0.73 0.80 0.55 0.31 0.45 0.52 0.86 0.10
1D83 0.01 0.40 0.63 0.52 0.29 0.83 0.83  0.69 0.60 0.24 0.41 0.47 0.61 0.76 0.03
CN48 0.00 0.27 0.51 0.00 0.12 0.29 0.45 0.02 0.46 0.42 0.33 0.43 0.58 0.00 0.00
SV32 0.00 0.20 0.36 0.00 0.17 0.17 0.36  0.00 0.22 0.24 0.32 0.26 0.48 0.08 0.00
Adenocarcinoma BNHL CLL Endocrine HCC MPN Medullo Melanoma Pilocytic astrocytoma RCC SCC
MutEmbed 0.90 089 0.84 0.74 092 0.70 0.81 0.99 0.58 0.93  0.68
SBS96 0.80 061 022 0.10 0.87 0.84 0.17 0.90 0.02 072  0.25
1D83 0.79 0.03 043 0.13 0.78  0.15 0.68 0.75 0.37 091 0.21
CN48 0.71 0.00 021 0.64 036 0.19 0.26 0.00 0.46 0.12  0.00
SV32 0.69 0.00 025 0.11 020 0.09 0.00 0.61 0.19 0.00  0.00
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