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Abstract
Block coordinate descent is a powerful algorith-
mic template suitable for big data optimization.
This template admits a lot of variants including
block gradient descent (BGD), which performs
gradient descent on a selected block of variables,
while keeping other variables fixed. For a very
long time, the stepsize for each block has tacitly
been set to one divided by the block-wise Lips-
chitz smoothness constant, imitating the vanilla
stepsize rule for gradient descent (GD). However,
such a choice for BGD has not yet been able to the-
oretically justify its empirical superiority over GD,
as existing convergence rates for BGD have worse
constants than GD in the deterministic cases.

To discover such theoretical justification, we set
up a simple environment where we consider BGD
applied to least-squares with two blocks of vari-
ables. Assuming the data matrix corresponding
to each block is orthogonal, we find optimal step-
sizes of BGD in closed form, which provably lead
to asymptotic convergence rates twice as fast as
GD with Polyak’s momentum; this means, under
that orthogonality assumption, one can accelerate
BGD by just tuning stepsizes and without adding
any momentum. An application that satisfies this
assumption is generalized alternating projection
between two subspaces, and applying our step-
sizes to it improves the prior convergence rate
that was once claimed, slightly inaccurately, to be
optimal. The main proof idea is to minimize, in
stepsize variables, the spectral radius of a matrix
that controls convergence rates.
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1. Introduction
Block coordinate descent refers to a family of algorithms
selecting and updating one block of variables at a time. In
the span of more than six decades since its early appear-
ance (Hildreth, 1957), many variants of block coordinate
descent have been proposed, analyzed, and recently tested
on big data scenarios (Nesterov, 2012; Xu & Yin, 2013;
Wright, 2015; Shi et al., 2016; Lin et al., 2023). Despite
the abundance of these exciting developments, one might
ponder when one should prefer block coordinate descent to
vanilla gradient descent (GD). Intuitively, block coordinate
descent might be advantageous if the optimization variables
admit a natural partition into blocks, which is the case in
many applications (Peng & Vidal, 2023); or if the variable
dimension is too high to fit the memory, in which case one is
forced to optimize in a block-wise manner (Nesterov, 2012);
or if the given optimization problem is coordinate-friendly
(Peng et al., 2016), meaning that minimizing over one block
of coordinates while fixing others is computationally easy.

Developing convergence theory to support the above intu-
ition, however, is challenging. For example, consider block
gradient descent (BGD), a method that runs GD at every
iteration on a selected block of variables. Nesterov was
concerned that, if selecting blocks in a greedy fashion (e.g.,
using the famous Gauss–Southwell rule), then, following
standard reasoning, one obtains a bound on convergence
rates that might have a worse constant than that of GD
(Nesterov, 2012). This concern led him to a BGD variant
that randomly selects blocks, whose convergence rate is
proved to be better than GD. While theoretically appealing
and having attracted a sequence of follow-up works, such
a randomized variant ensures convergence only in expec-
tation; this is perhaps why it is empirically slower1 for the
least-squares problem than cyclic BGD, a BGD variant that
selects blocks in a cyclic fashion, see Tables 3.1 & 3.2 of
Beck & Tetruashvili (2013). We focus on the cyclic rule,
and for short, we write BGD for cyclic BGD in the sequel.

In the deterministic setting, the BGD versus GD dilemma
persists: BGD is empirically faster, but its current bound on

1It is also shown that this randomized variant is in many cases
empirically slower than the greedy version (Nutini et al., 2015).
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(deterministic) convergence rates has, in general, a worse
constant than GD; see Remark 3.3 of Beck & Tetruashvili
(2013). Furthermore, this bittersweet dilemma manifests
itself again if one extends, in a direct way, BGD and GD
into their proximal versions (e.g., compare Theorems 10.15
and 11.18 of Beck (2017)), or into their accelerated versions
(e.g., compare Theorem 4.2 of Beck & Tetruashvili (2013)
and Theorem 2.2.2 of Nesterov (2018a)).

How does one even reconcile these? It is now the case that
there is some sub-optimality in the existing analysis of BGD
methods, but it might also be the case that, after decades of
development, making improvements is difficult.

Our approach to making progress features a return to the
very basic setting, where we minimize the arguably simplest,
very well-studied objective, least-squares,

min
x∈Rn

F (x), F (x) :=
1

2
· ∥Ax− y∥22. (1)

Here we assume the m × n matrix A is of full column
rank n (necessarily, m ≥ n). Instead of with multiple, we
consider BGD with only two blocks. Specifically, we write
x := [x1;x2], A := [A1 A2], and write F and (1) into

min
x1∈Rn1 ,x2∈Rn2

1

2
· ∥A1x1 +A2x2 − y∥22. (2)

We run GD on each block in an alternating fashion with
constant stepsizes γ1 and γ2 to minimize the least-squares
objective F and search for the global minimizer x∗:

x+
1 = x1 − γ1 · ∇x1

F (x)

= x1 − γ1 ·A⊤
1 (A1x1 +A2x2 − y),

x+
2 = x2 − γ2 · ∇x2F ([x+

1 ;x2])

= x2 − γ2 ·A⊤
2 (A1x

+
1 +A2x2 − y).

(BGD)

We denote by x+ := [x+
1 ;x

+
2 ] and x := [x1;x2] the two

consecutive iterates of BGD. It is clear that the conver-
gence (rate) of BGD depends on stepsizes γ1, γ2 and that
the fastest convergence of BGD is attained only if we set the
stepsizes to be “optimal”. Let the word “optimal” be vague
for the moment, and we report the following result:

Theorem 1 (Informal). Suppose Assumption 1 below holds.
Run GD with Polyak’s momentum (i.e., the heavy ball
method) and BGD, respectively, with their “optimal” step-
sizes. BGD is twice as fast as the heavy ball method (HB).

Assumption 1. A⊤
1 A1 and A⊤

2 A2 are identity matrices,
and A⊤

2 A1 ̸= 0.

The rest of the paper is organized as follows. In Section 2
we establish notations and quantify optimal stepsizes. In
Section 3 we elaborate on Assumption 1 and argue that As-
sumption 1 is valid and reasonable. In Section 4 we present

optimal stepsizes for BGD in comparison to the heavy ball
method, from which Theorem 1 follows. In Section 5 we
make connections to prior works, and in particular in Sec-
tion 5.5 we connect BGD to alternating projection. Then, in
Section 6, we apply our results to the problem of alternat-
ing projection, resulting in improvements over prior works.
In Section 7, we perform basic experiments to verify our
theory, and in Section 8 we conclude the paper.

2. Quantifying Optimality
In Section 2.1 we review gradient descent (GD) and the
heavy ball method (HB), and clarify what “optimal” step-
sizes mean for them. In Section 2.2 we characterize optimal
stepsizes for BGD and state Theorem 1 formally.

2.1. Gradient Descent and Heavy Ball: A Review

Recall that vanilla gradient descent applied to least-squares
(1) comes with a stepsize γ > 0 and updates x via

x+ = x− γ · ∇F (x) = x− γ ·A⊤(Ax− y). (GD)

The two consecutive iterates x+ and x of GD satisfy

x+ − x∗ = (I − γA⊤A) · (x− x∗),

so the rate of convergence to x∗ is dictated by the spectrum
of I−γA⊤A. Thus we wish to find a stepsize γ to minimize
the spectral radius ρ(I − γA⊤A), where ρ(·) denotes the
maximum magnitude of eigenvalues of a matrix. Explicitly:

ρGD(γ) := ρ(I − γA⊤A) = max
i=1,...,n

|λi(I − γA⊤A)|.

Here we used λi(·) to mean the i-th largest eigenvalue of
a matrix. A folklore fact in optimization is that ρGD(γ) is
minimized at γ = γ∗ := 2

λ1(A⊤A)+λn(A⊤A)
, that is

ρ∗GD := ρGD(γ
∗) = min

γ>0
ρGD(γ)

=
λ1(A

⊤A)− λn(A
⊤A)

λ1(A⊤A) + λn(A⊤A)
.

We say γ∗ is the optimal (constant) stepsize of GD applied
to least-squares as it minimizes the spectral radius ρGD(γ).

In a similar style we review the heavy ball method (Polyak,
1964). This method calculates the current iterate x++ using
two previous points x+ and x, that is

x++ = x+ − α · ∇F (x+) + β · (x+ − x), (HB)

where ∇F (x+) is the gradient at x+, i.e., ∇F (x+) =
A⊤(Ax+ − y). Compare this with GD. Note that HB has
two parameters: stepsize α > 0 and momentum coefficient
β ≥ 0. It is known that the iterates of HB satisfy[

x+ − x∗

x++ − x∗

]
= N(α, β) ·

[
x− x∗

x+ − x∗

]
,where

N(α, β) :=

[
0 I

−βI (1 + β)I − αA⊤A

]
.
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Similarly, we call a stepsize (α, β) optimal if it minimizes
ρ
(
N(α, β)

)
=: ρHB(α, β). Let ρ∗HB be the minimum of

min
α>0,β≥0

ρHB(α, β),

attained at (α∗, β∗). One can then prove (Polyak, 1964):

ρ∗HB =

√
λ1(A⊤A)−

√
λn(A⊤A)√

λ1(A⊤A) +
√
λn(A⊤A)

,

α∗ =

(
2√

λ1(A⊤A) +
√

λn(A⊤A)

)2

,

β∗ =

(√
λ1(A⊤A)−

√
λn(A⊤A)√

λ1(A⊤A) +
√

λn(A⊤A)

)2

.

2.2. Block Gradient Descent

The phrase “optimal stepsizes” of BGD bears a similar
meaning to that of HB. To concretize this, we first rewrite
the updates of BGD (let I be the n× n identity matrix):

Lemma 1. The iterates of BGD satisfy x+ − x∗ =
M(γ1, γ2) · (x− x∗), with M(γ1, γ2) defined as(

I −
[

0 0

γ2A
⊤
2 A1 γ2A

⊤
2 A2

] )(
I −

[
γ1A

⊤
1 A1 γ1A

⊤
1 A2

0 0

])
.

We call (γ1, γ2) optimal if it minimizes ρ
(
M(γ1, γ2)

)
=:

ρBGD(γ1, γ2). Our contribution consists of, under Assump-
tion 1, discovering stepsizes γ∗

1 , γ
∗
2 that satisfy

ρBGD(γ
∗
1 , γ

∗
2) = min

γ1>0,γ2>0
ρBGD(γ1, γ2). (3)

With ρ∗BGD := ρBGD(γ
∗
1 , γ

∗
2 ), we restate Theorem 1 below:

Theorem 1. Assumption 1 implies ρ∗BGD ≤ (ρ∗HB)
2.

Vaguely put, a smaller spectral radius implies faster conver-
gence. And the comparison is fair: All stepsizes are chosen
to be optimal, minimizing their respective spectral radii; and
all methods, namely BGD, GD, and HB, have comparable
costs at each iteration. Moreover, ρ∗BGD ≤ (ρ∗HB)

2 implies
that, with optimal stepsizes, BGD is asymptotically at least
twice as fast as HB. Finally, we emphasize it is the presence
of Assumption 1 that remains to be interrogated.

3. On Assumption 1
In Section 3.1 We argue Assumption 1 is reasonable, as it
relates BGD to (generalized) alternating projection between
two linear subspaces in such a way that our results under
Assumption 1 directly applies and improves existing bounds
of Fält & Giselsson (2017) on convergence rates of general-
ized alternating projection. Then, in Section 3.2, we argue
Assumption 1 is also essential as it makes analysis possible.

3.1. Justifying Assumption 1

Here we discuss why Assumption 1 is reasonable. Note
that it requires the orthogonality of Aj (j = 1, 2), that
is A⊤

j Aj = Ij , where Ij is the nj × nj identity matrix.
First of all, one can always realize this assumption by or-
thogonalizing A1,A2 respectively (even though it entails
some computational costs). Secondly, and more importantly,
this block-wise orthogonality assumption bridges BGD and
the classic method of alternating projection between two
subspaces. To see this, let us consider the following lemma:

Lemma 2. The iterates x+,x of BGD satisfy A(x+ −
x∗) = T (γ1, γ2)A(x− x∗), with T (γ1, γ2) defined as

T (γ1, γ2) :=
(
I − γ2A2A

⊤
2

) (
I − γ1A1A

⊤
1

)
.

Lemma 2 implies BGD can be viewed as an algorithm that
operates on the iterates z+ := A(x+−x∗) and z := A(x−
x∗). Since A is assumed to be full column rank, updating
z+ is equivalent to updating x+. If Assumption 1 holds,
then I −AjA

⊤
j (j = 1, 2) is an orthogonal projection, the

update z+ = T (1, 1)z is precisely the vanilla alternating
projection method between two subspaces (von Neumann,
1951), and the update z+ = T (γ1, γ2)z can be viewed as
generalized alternating projection (Fält & Giselsson, 2017).

With the above reasoning, we can intuitively conclude that
studying the convergence of BGD under Assumption 1
would also yield convergence guarantees for generalized
alternating projection. A more detailed treatment from the
perspective of alternating projection can be found in Sec-
tion 5.5, where we rectify the slightly misleading claim of
Fält & Giselsson (2017) that their bound was optimal.

Finally, Assumption 1 requires A⊤
2 A1 ̸= 0; this is to

sidestep the trivial case where BGD, GD, and HB all con-
verge to x∗ in just 1 iteration with appropriate stepsizes
under the block-wise orthogonality assumption.

3.2. The Technical Role of Assumption 1

Note that M(γ1, γ2) has a sophisticated expression, and so
Assumption 1 plays the role of simplifying, at least making
analyzing (3) possible. In particular, Assumption 1 immedi-
ately simplifies the expression of M(γ1, γ2):

Lemma 3. Define C := A⊤
2 A1. Recall the definition of

M(γ1, γ2) in Lemma 1. Assumption 1 implies

M(γ1, γ2) =

[
(1− γ1)I1 −γ1C

⊤

−γ2(1− γ1)C (1− γ2)I2 + γ1γ2CC⊤

]
.

We note that Assumption 1 does not clean all obstacles, as
M(γ1, γ2) in Lemma 3 is still complicated, e.g., it depends
on γ1, γ2 quadratically; to compare, the corresponding ma-
trix N(α, β) of HB has a linear dependency on α, β.
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After a simplification through Assumption 1, M(γ1, γ2)
still maintains an interesting structure that will ultimately fa-
cilitate our understanding of BGD. For example, M(γ1, γ2)
depends on C, and C is precisely the matrix that encodes
the information about the relationship between the two
blocks of variables x1 and x2. It is by leveraging the spec-
trum of C, and therefore of M(γ1, γ2), that we will be able
to show BGD enjoys faster convergence than its competitors
GD and HB. To get prepared for the competition, we use
Assumption 1 and express the minimum spectral radii ρ∗HB
and ρ∗GD in terms of the spectrum of C:

Lemma 4. Recall A = [A1,A2] ∈ Rm×(n1+n2), A
is full rank, and C = A⊤

2 A1 ∈ Rn2×n1 . Suppose
rank(C) = r and Assumption 1 holds. Then λ1(CC⊤) ̸=
1 and the maximum and minimum eigenvalues of A⊤A are
1+
√

λ1(CC⊤) and 1−
√
λ1(CC⊤), respectively. Hence,

the minimum spectral radii of GD and HB are given as

ρ∗GD =
√

λ1(CC⊤), ρ∗HB =
1−

√
1− λ1(CC⊤)√
λ1(CC⊤)

. (4)

Example 1. With Lemma 4 and Assumption 1, we have

ρ
(
M(1, 1)

)
= λ1(CC⊤) <

√
λ1(CC⊤) = ρ∗GD,

meaning BEM converges asymptotically faster than GD.

Is it possible that γ1 = γ2 = 1 actually minimizes
ρ
(
M(γ1, γ2)

)
? After all, BEM already ensures the largest

possible decrease of the objective for the present block,
while all other stepsizes guarantee less! If that were true,
then ρ

(
M(1, 1)

)
would not necessarily be smaller than ρ∗HB,

let alone our promise ρ∗BGD ≤ (ρ∗HB)
2. The sole hope is that

other stepsizes, though sub-optimal for the moment, might
be more beneficial in the long run—and if so, we simply
need to work harder to find them.

4. Optimal Stepsizes and Spectral Radius
The inequality ρ∗BGD ≤ (ρ∗HB)

2 and hence Theorem 1 are
proved under Assumption 1 by deriving a closed-form ex-
pression of the minimum value ρ∗BGD of (3) and the corre-
sponding stepsizes. The derivation is summarized below:

Theorem 2. Recall ρ∗BGD = ρBGD(γ
∗
1 , γ

∗
2) in (3) and C :=

A⊤
2 A1. Assumption 1 implies the following.

• If C has full rank (i.e., rank(C) = min{n1, n2}), then

ρ∗BGD =

√
1− λr(CC⊤)−

√
1− λ1(CC⊤)√

1− λr(CC⊤) +
√
1− λ1(CC⊤)

. (5)

• If C is rank-deficient, then

ρ∗BGD =
1−

√
1− λ1(CC⊤)

1 +
√
1− λ1(CC⊤)

. (6)

and the corresponding stepsizes (γ∗
1 , γ

∗
2 ) are given as

γ∗
1 = γ∗

2 =
2

1 +
√

1− λ1(CC⊤)
. (7)

Remark 1. If r = 1, then we have λ1(CC⊤) = λr(CC⊤)
and Theorem 2 suggests the minimum spectral radius is
0. When C has full rank, the minimizers of ρ

(
M(γ1, γ2)

)
have complicated forms, so we do not show them here; they
can be found in the proof of Appendix C.1.
Remark 2. The full rank case exhibits a smaller minimum
spectral radius than the rank-deficient case, and the mini-
mum spectral radius in the rank-deficient case is precisely
(ρ∗HB)

2, where ρ∗HB is defined in (4). Explicitly, we have

(5) =

√
1− λr(CC⊤)−

√
1− λ1(CC⊤)√

1− λr(CC⊤) +
√
1− λ1(CC⊤)

≤ 1−
√
1− λ1(CC⊤)

1 +
√

1− λ1(CC⊤)
= (6) = (ρ∗HB)

2.

This consolidates Theorem 1, and implies, under Assump-
tion 1, BGD is eventually twice as fast as HB.
Remark 3. Interestingly, the optimal stepsizes (γ∗

1 , γ
∗
2 ) de-

rived in (7) are the same as the optimal stepsize α∗ of HB.
Indeed, with Assumption 1 and Lemma 4, we have

γ∗
1 = γ∗

2 =
2

1 +
√
1− λ1(CC⊤)

=

(
2√

λ1(A⊤A) +
√
λn(A⊤A)

)2

= α∗.

This offers some intuition as to why BGD is twice as fast
under Assumption 1: BGD and HB take the same stepsize,
but BGD takes two descent steps—with partial gradients
and without momentum—in a single iteration, entailing a
cost barely comparable to one descent step of HB.

5. Related Work
5.1. BGD Versus GD and HB

Theorem 1 shows that BGD can be faster than the heavy ball
method (HB), and the latter has thus far been one of the theo-
retically fastest variants of accelerated GD for least-squares.
Interestingly, though, BGD has no momentum at all! In
hindsight, our justification is that BGD is a two-step method
in the sense of Polyak (1987): It has two stepsizes γ1, γ2,
comparable to the stepsize and momentum coefficient in HB,
so, similarly to HB, choosing the stepsizes γ1, γ2 in an “opti-
mal” way results in acceleration. While several methods that
accelerate without momentum exist (e.g., Young’s method
(Young, 1953), GD with cyclic stepsizes, see Section 5.2),
our approach is unique in the sense that it achieves accelera-
tion by operating on partial gradients without momentum
in a cyclic, block-wise manner.
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5.2. BGD Versus GD with Cyclic Stepsizes

There has been some recent interest in using GD with step-
sizes selected in a cyclic fashion from a sequence of M
positive numbers (Smith, 2017; Oymak, 2021; Goujaud
et al., 2022; Grimmer, 2023); see also fractal stepsizes of
Agarwal et al. (2021) and silver stepsizes of Altschuler &
Parrilo (2023a;b). While Grimmer (2023) and Altschuler &
Parrilo (2023a;b) considered GD in the more general setting
of (strongly-)convex smooth optimization, more relevant to
ours is the work of Oymak (2021); Goujaud et al. (2022).
Oymak (2021) analyzed GD with cyclic stepsizes in the
least-squares context and Goujaud et al. (2022) analyzed
HB with cyclic stepsizes. Both Oymak (2021) and Gou-
jaud et al. (2022) assume the spectrum of A⊤A is clustered
into two or more disjoint intervals; this is different from
Assumption 1, so the results of Oymak (2021); Goujaud
et al. (2022) are not directly comparable to ours. It should
be noted that the use of cyclic stepsizes is inherent in BGD.
In fact, BGD not only cycles between stepsizes, but also
between blocks. One more difference is this: BGD cycles
more frequently, meaning that it leverages two stepsizes in
a single iteration with a cost comparable to one GD step,
while GD with cyclic stepsizes needs M iterations to make
full use of M stepsizes.

5.3. BGD Versus Lower Bounds

As shown in Assumption 2.1.4 & Theorem 2.1.13 of Nes-
terov (2018b), for constants L > µ > 0, there is a µ-
strongly convex and L-smooth function F (x), globally min-
imized at x∗, so that the iterates xt of any first-order method
created from linear combinations of any initialization x0

and previous gradient evaluations ∇F (x0), . . . ,∇F (xt−1)
satisfy the lower bound

∥xt−x∗∥2 ≥
(√κ− 1√

κ+ 1

)t
·∥x0−x∗∥2, κ := L/µ. (8)

See also Theorem 3.1 of Sun & Ye (2021), which proves
a similar lower bound for the multi-block version of BGD
with block sizes 1 and canonical stepsizes 1/L applied to
least-squares. While HB asymptotically attains lower bound
(8), our Theorem 1 suggests that, under Assumption 1, the
iterates xt of BGD with optimal stepsizes would satisfy

∥xt − x∗∥2 ≤
(√κ− 1√

κ+ 1

)2t
· ∥x0 − x∗∥2

asymptotically (as t → ∞). Is this a contradiction or does
that mean BGD breaches lower bound (8)? The answer
is no and the reason is two-fold. First, BGD is not a first-
order method in the precise sense of Assumption 2.1.4 of
Nesterov (2018b), e.g., its new iterates do not arise as linear
combinations of previous ones or their gradients. Second,
the objective function we optimize is least-squares with

Assumption 1, which does not necessarily belong to the
class of worst-case functions in Theorem 2.1.13 of Nesterov
(2018b) or in Theorem 3.1 of Sun & Ye (2021). One more
subtlety is that the lower bound of Sun & Ye (2021) is
derived for canonical, rather than optimal, stepsizes.

5.4. BGD Versus Block Exact Minimization

Under Assumption 1, one verifies BGD with stepsizes γ1 =
1, γ2 = 1 is equivalent2 to block exact minimization (BEM),

x+
1 ∈ argmin

x1∈Rn1

F ([x1;x2]),

x+
2 ∈ argmin

x2∈Rn2

F ([x+
1 ;x2]),

(BEM)

where F is the least-squares objective in (2), so BGD under
Assumption 1 generalizes BEM by allowing for different
stepsizes. While BEM ensures the largest possible decrease
of F when updating either x+

1 or x+
2 , we have seen the

optimal stepsizes of BGD are not as simple as γ1 = 1, γ2 =
1; BGD can do better than BEM under Assumption 1.

5.5. BGD and Generalized Alternating Projection

As shown in Lemma 2, BGD is highly related to alternating
projection between two subspaces, to which our results, say
Theorem 2, apply. Hence, in this subsection, we review
existing theoretical results on alternating projection and
its variants, and then later in Section 6 we show how our
Theorem 2 applies and improves prior work.

Given two linear subspaces H1,H2 of Rm of dimension
m−n1,m−n2 respectively, we are interested in projecting
some point z(0) ∈ Rm onto the intersection H1 ∩ H2. To
avoid trivial cases, we assume H1 does not contain H2 (and
vice versa), and none of the two subspaces is {0}.

We consider iterative algorithms of the form

z(t+1) = Tz(t), (9)

where T ∈ Rm×m is some matrix that transforms the cur-
rent iterate z(t) into the next, z(t+1). The choice of T
typically depends on the two subspaces H1,H2. We next
review several algorithms that differ in how T is chosen and
that converge at different rates (see Table 1 for a summary).

5.5.1. PROJECT VERSUS REFLECT

Let us first review two classic methods to project a point
onto H1∩H2: alternating projection and Douglas-Rachford.

Alternating Projection. Let PH1
,PH2

be matrices rep-
resenting orthogonal projections onto H1,H2 respectively.

2Under Assumption 1, the Lipschitz smoothness constant L1

(or L2) of (2) in variable x1 (or x2) is 1, so stepsizes (γ1, γ2) =
(1, 1) also correspond to the commonly used choice (1/L1, 1/L2).
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The alternating projection algorithm sets T to be

T := PH2
PH1

. (AP)

It follows immediately that for every t we have

∥z(t) − PH1∩H2
z(0)∥2 ≤ ∥T k − PH1∩H2

∥2 · ∥z(0)∥2.

As Kayalar & Weinert (1988) reviewed, Von Neumann estab-
lished that AP converges to PH1∩H2z

(0) in the early 1930s
and his result was not in print until almost two decades after;
see, e.g., Theorem 13.7 of von Neumann (1951). Around
the same time, Aronszajn (1950) showed T of AP satisfies

∥T k − PH1∩H2
∥2 ≤ cos2k−1 θ1, (10)

where θ1 ∈ [0, π/2] is defined to be the minimum nonzero
principal angle between H1 and H2, also widely known
as the Friedrichs angle (Friedrichs, 1937).3 While Deutsch
(1984); Franchetti & Light (1986) announced bounds that
are looser than (10), Theorem 2 of Kayalar & Weinert (1988)
proved that (10) always holds with equality, which implies
this linear rate cos2 θ1 is actually optimal for AP.

Douglas-Rachford. Another classic iterative scheme pro-
posed (implicitly) by Douglas & Rachford (1956) is this:

T := PH2
(2PH1

− I) + I − PH1

=
1

2
I +

1

2
(2PH2

− I)(2PH1
− I).

(DR)

In words, DR consists of applying in cascade two reflections,
2PH1

−I and then 2PH2
−I , to the current iterate z(t) and

then taking an average. Hesse et al. (2014) showed in their
Theorem IV.6 that DR converges linearly without providing
any explicit rate, while Bauschke et al. (2014) later made
the rate precise: Their Theorem 4.3 proves T of DR satisfies

∥PH1T
k−PH1∩H2∥2 = ∥PH2T

k−PH1∩H2∥2 = cosk θ1.

We can then say that DR converges linearly with rate cos θ1
and this is optimal for DR. Note though that since cos2 θ1 ≤
cos θ1, DR is provably slower than AP.

5.5.2. FOUR GENERALIZED METHODS

With two positive numbers γ1, γ2 and the m ×m identity
matrix I , define the relaxed projections P γ1

H1
and P γ2

H2
as

P γ1

H1
:= (1− γ1)I + γ1PH1

,

P γ2

H2
:= (1− γ2)I + γ1PH2

.
(11)

3Alternating projection is also related to a popular line of re-
search called continual learning (Peng et al., 2023; Elenter et al.,
2023; Cai & Diakonikolas, 2024). There, convergence results simi-
lar to (10) can be found; see, e.g., Theorem 8 of Evron et al. (2022).
Our stepsizes and theory can be applied there to improve the rate
cos2(θ1) in Theorem 8 of Evron et al. (2022) to sin(θr)−sin(θ1)

sin(θr)+sin(θ1)
.

Here, θr and θ1 denote the largest and nonzero smallest principal
angles between H1 and H2, respectively. See also Table 1.

Note that P 1
H1

represents the projection PH1
and P 2

H1
the

reflection, so P γ1

H1
generalizes the operators in AP and DR.

For clarity, we will always write P γ1

H1
to mean definitions in

(11) and it never means the matrix PH1
raised to the power

of γ1; if ever needed, we will write (PH1
)γ1 for the latter.

With the relaxed projections P γ1

H1
and P γ2

H2
, we can now

proceed to review methods that generalize AP and DR.

Relaxed Alternating Projection. For some γ ∈ (0, 1], the
method we review now has the iterates z(t+1) = T (γ)z(t),
where T (γ) is a matrix function of γ, defined as

T (γ) := (1− γ)I + γPH2PH1 . (RAP)

Clearly, T (1) corresponds to AP. How to choose γ to obtain
a faster rate than AP? The optimal choice of γ would be 1 if
PH2PH1 were symmetric, while it is precisely the asymme-
try of PH2

PH1
that brings difficulty. Bauschke et al. (2016)

showed in their Theorem 3.6 that the choice γ = 2
1+sin2(θ1)

is optimal, with which RAP converges asymptotically at a
linear rate 1−sin2(θ1)

1+sin2(θ1)
faster than AP.

Partial Relaxed Alternating Projection. The method we
present now relaxes AP partially by setting

T (γ1) := PH2
P γ1

H1
. (PRAP)

Theorem 3.7 of Bauschke et al. (2016) proves the optimal
choice of γ1 for PRAP is 2

sin2(θr)+sin2(θ1)
, giving the asymp-

totic linear rate sin2(θr)−sin2(θ1)
sin2(θr)+sin2(θ1)

. Moreover, one verifies this
rate is faster than or the same as those of AP, DR, and RAP.

Generalized Douglas-Rachford. In their Section 1.4, De-
manet & Zhang (2016) considered the following operator
T (γ) with iterate update zk+1 = T (γ)zk:

T (γ) = (1− γ)I + γ

(
1

2
I +

1

2
P 2

H2
P 2

H1

)
. (GDR)

GDR can be viewed as taking a convex combination of I
and the operator of DR, similarly to RAP and AP. However,
choosing γ ∈ [0, 1] for GDR does not improve the rate:
Theorem 3.10 of Bauschke et al. (2016) shows γ = 1 is
optimal for GDR, giving the same linear rate cos(θ1) as DR.

Generalized Alternating Projection. The generalized al-
ternating projection algorithm is with the operator

T (γ, γ1, γ2) = (1− γ)I + γP γ2

H2
P γ1

H1
. (GAP)

where γ is assumed to lie in (0, 1]. If γ and γ2 were taken
to be 1, then GAP recovers PRAP. Fält & Giselsson (2017)
proposed the stepsizes γ = 1, γ1 = γ2 = 2

1+sin(θ1)
, with

which GAP converges asymptotically at linear rate 1−sin(θ1)
1+sin(θ1)

.
Moreover, Fält & Giselsson (2017) shows this choice of
stepsizes is optimal as long as the largest principal angle θr
between the two subspace H1,H2 is equal to π/2. Indeed,
if θr were equal to π/2, then the rate 1−sin(θ1)

1+sin(θ1)
of Fält &

Giselsson (2017) is the smallest among prior methods.

6



On Optimal Stepsizes of Block Gradient Descent for Least-Squares

Table 1: Comparison of GAP++ (Section 6) with existing rates. A smaller linear rate means better, and θr and θ1 denote
the largest and nonzero smallest principal angles between H1 and H2, respectively. We find novel stepsizes (GAP++) that
guarantee faster convergence. (The stepsizes γ∗

1 , γ
∗
2 of GAP++ are shown in Remark 12 of the appendix.)

Method Linear Rate Factor Stepsizes Asymptotic? Reference

AP cos2(θ1) N.A. No Theorem 2 (Kayalar & Weinert, 1988)

DR cos(θ1) N.A. No Theorem 4.3 (Bauschke et al., 2014)

RAP 1−sin2(θ1)

1+sin2(θ1)
γ = 2

1+sin2(θ1)
Yes Theorem 3.6 (Bauschke et al., 2016)

PRAP sin2(θr)−sin2(θ1)

sin2(θr)+sin2(θ1)
γ1 = 2

sin2(θr)+sin2(θ1)
Yes Theorem 3.7 (Bauschke et al., 2016)

GDR cos(θ1) γ = 1 No Theorem 3.10 (Bauschke et al., 2016)

GAP 1−sin(θ1)
1+sin(θ1)

γ = 1, γ1 = γ2 = 2
1+sin(θ1)

Yes Theorem 3, Remark 3 (Fält & Giselsson, 2017)

GAP++ sin(θr)−sin(θ1)
sin(θr)+sin(θ1)

γ = 1, γ1 = γ∗
1 , γ2 = γ∗

2 Yes This Paper, Corollary 1

5.5.3. THE GAP

In light of the review in Section 5.5.2, a major gap to be
bridged is as follows. The assumption θr = π/2 of Fält &
Giselsson (2017) on the largest principal angle θr is violated
with probability 1 by any two subspaces of fixed dimensions
randomly sampled from their respective Grassmannian man-
ifolds; this means their stepsizes are sub-optimal with prob-
ability 1. This sub-optimality manifests itself in comparison
to PRAP: The stepsizes of Fält & Giselsson (2017) do not
necessarily yield a smaller rate than PRAP of Bauschke
et al. (2016). More specifically, the rate sin2(θr)−sin2(θ1)

sin2(θr)+sin2(θ1)
of

PRAP could be larger or smaller than the rate 1−sin(θ1)
1+sin(θ1)

of
Fält & Giselsson (2017), depending on problem configura-
tions (e.g., the precise values of θr).

6. GAP++: Bridge the GAP
A major contribution of this section is closing the gap dis-
cussed in Section 5.5.3. This is achieved by invoking our
theoretical results developed so far. Specifically, with the
stepsizes that we propose, the (GAP) operator converges
asymptotically at rate sin(θr)−sin(θ1)

sin(θr)+sin(θ1)
. This rate is alway bet-

ter than if not the same as the rates of Bauschke et al. (2016)
and Fält & Giselsson (2017), for all possible choices of θ1
and θr. On the conceptual level, our result can be viewed as
a generalization of Fält & Giselsson (2017) which dispenses
with their assumption θr = π/2. Therefore we call the
proposed stepsizes GAP++.

In Section 6.1 we build preliminary notations. In Section 6.2
we provide stepsizes that achieve the fastest rate in Table 1.

6.1. Preliminaries

Matrix Representations. For j = 1, 2, let Aj ∈ Rm×nj be
an orthonormal basis matrix of the orthogonal complement
H⊥

j of Hj . Then we can write PHj := I −AjA
⊤
j and the

relaxed projections P γ2

H1
,P γ2

H1
in (11) as

P
γj

Hj
= I − γjAjA

⊤
j , j = 1, 2. (12)

Note that, here, we write the symbols A1, A2 without bold-
face to distinguish them from the notations A1,A2 of the
main paper. However, the choices of the same letter A,A
should remind the reader that they will eventually be con-
nected somehow.

The GAP operator can be expressed in terms of A1, A2:

T (γ, γ1, γ2) = (1−γ)I+γ(I−γ2A2A
⊤
2 )(I−γ1A1A

⊤
1 ).

We will set γ = 1 and analyze T (1, γ1, γ2) = (I −
γ2A2A

⊤
2 )(I − γ1A1A

⊤
1 ), as doing so is sufficient to de-

rive a faster rate than that of Fält & Giselsson (2017).

Principal Angles. We recall the following definition of
nonzero principal angles.

Definition 1. For subspaces H1,H2 of Rm, define r :=
min{dim(H1),dim(H2)}−dim(H1∩H2) and S1 := H1∩
(H1 ∩ H2)

⊥ and Z1 := H2 ∩ (H1 ∩ H2)
⊥. The nonzero

principal angles θ1, . . . , θr between H1 and H2 are then
defined recursively for i = 1, . . . , r such that

(si, zi) ∈ argmax
s∈Si,z∈Zi

∥s∥2=∥z∥2=1

s⊤z, θi = arccos(s⊤i zi), (13)

where Si := Si−1 ∩ span(si)
⊥, Zi := Zi−1 ∩ span(zi)

⊥.

It is not hard to show the principal angles θ1, . . . , θr between
H1 and H2 are indeed nonzero and satisfy θ1 ≤ · · · ≤ θr.
Moreover, these principal angles between H1,H2 corre-
spond exactly to nonzero principal angles between the or-
thogonal complements H⊥

1 and H⊥
2 ; see Property 2.1 of Zhu

& Knyazev (2013) or Theorem 2.7 of Knyazev & Argentati
(2007). More formally, we have the following statements:

Lemma 5. Recall that Aj ∈ Rm×nj is an orthonormal
basis matrix of the orthogonal complement H⊥

j of Hj (j =
1, 2), and that r := min{dim(H1),dim(H2)}−dim(H1∩

7
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H2). Define C := A⊤
2 A1. Then we have rank(C) = r.

Denote by σ1 ≥ · · · ≥ σr the r nonzero singular values of
C. Then σi = cos(θi) for every i = 1, . . . , r.

6.2. Asymptotic Convergence Rates

Here we give stepsize choices γ1, γ2 and the associ-
ated asymptotic convergence rates for the iterates z+ =
T (1, γ1, γ2)z, where we recall T (1, γ1, γ2) is defined as
T (1, γ1, γ2) = (I − γ2A2A

⊤
2 )(I − γ1A1A

⊤
1 ).

Write A := [A1 A2] ∈ Rm×(n1+n2) and assume A has
full column rank (necessarily, we assume m ≥ n1 + n2 =:
n). Let Q be an orthonormal basis matrix for H1 ∩ H2.
Then Q⊤Q is the identity matrix, and we have Q⊤A = 0.
Furthermore, we can write z as z = Ac1 +Qc2 and then

T (1, γ1, γ2)z = T (1, γ1, γ2)(Ac1 +Qc2)

= (I − γ2A2A
⊤
2 )(I − γ1A1A

⊤
1 )(Ac1 +Qc2)

= (I − γ2A2A
⊤
2 )(I − γ1A1A

⊤
1 )Ac1 +Qc2.

Since the columns of Q span H1 ∩ H2 and the goal is to
reach a point in H1 ∩H2, we could assume c2 = 0 without
loss of generality, and analyze the update equation

d := T (1, γ1, γ2)Ac1 = (I−γ2A2A
⊤
2 )(I−γ1A1A

⊤
1 )Ac1.

Moreover, since A has full column rank and Q⊤d =
Q⊤(I − γ2A2A

⊤
2 )(I − γ1A1A

⊤
1 )Ac1 = 0, the new it-

erate d always lies in the range space of A, meaning that we
can uniquely write d as d = Ac+1 for some c+1 . Then the
update equation that we need to analyze become

Ac+1 = (I − γ2A2A
⊤
2 )(I − γ1A1A

⊤
1 )Ac1 (14)

⇔ c+1 = (A⊤A)−1A⊤(I − γ2A2A
⊤
2 )(I − γ1A1A

⊤
1 )Ac1.

We need the following lemma to proceed.

Lemma 6. If A ∈ Rm×(n1+n2) has full column rank, then
the matrix (A⊤A)−1A⊤(I − γ2A2A

⊤
2 )(I − γ1A1A

⊤
1 )A is

equal to M(γ1, γ2), where M(γ1, γ2) is defined to be(
I −

[
0 0

γ2A
⊤
2 A1 γ2I2

])(
I −

[
γ1I1 γ1A

⊤
1 A2

0 0

])
.

With (14) and Lemma 6, we conclude that we need to ana-
lyze the convergence rate of the iterate update

c+1 = M(γ1, γ2)c1, (15)

where M(γ1, γ2) is defined in Lemma 6. Note that the
definition of M(γ1, γ2) here corresponds precisely to the
definition of M(γ1, γ2) in Lemma 1 if A1,A2 satisfy the
block-wise orthogonality assumption. Moreover, A1 and
A2 already satisfy this assumption, therefore we can now
make the following conclusion by invoking Theorem 2.

Corollary 1. Assume A has full column rank and the n2×n1

matrix C := A⊤
2 A1 is nonzero. The following hold.

• If C has full rank (i.e., rank(C) = min{n1, n2}), then

min
γ1>0,γ2>0

ρ
(
M(γ1, γ2)

)
=

sin(θr)− sin(θ1)

sin(θr) + sin(θ1)
.

• If C is rank-deficient, then

min
γ1>0,γ2>0

ρ
(
M(γ1, γ2)

)
=

1− sin(θ1)

1 + sin(θ1)
.

Note that for two generic subspaces H1,H2, with probabil-
ity 1 the following hold: The matricx A = [A1, A2] has
full column rank if n1 + n2 ≤ m; and A⊤

2 A1 has full rank.

7. Numerical Experiments
In this section, we perform a simple experiment in order
to validate our theory. The full MATLAB code for the
experiment can be found in Appendix F.1.

Setup. We generate the linear regression data A = [A1 A2]
and y randomly, via the function gen data (Appendix F),
such that Assumption 1 is fulfilled and the condition number
of A can be specified as an input of the function. We imple-
ment BGD with stepsizes in (7), and we implement GD and
HB with their optimal stepsizes. Note that Assumption 1
puts no restrictions on the spectrum of A, hence, even under
Assumption 1, the optimal stepsizes of GD and HB remain
to be the same as reviewed in Section 2.1.

Results. In Figure 1a, we plot under Assumption 1 the
numerical values of ρ∗GD, ρ

∗
HB, and ρ∗BGD. In Figures 1b

to 1d, we plot the distances ∥xt−x∗∥2 of the iterates {xt}t
of GD, HB, and BGD for different condition numbers κ :=
λ1(A

⊤A)
λn(A⊤A)

. Observe that the numerical convergence rates of
HB and BGD are following our theory and especially the
inequality ρ∗BGD ≤ (ρ∗HB)

2 (Remark 2).

Discussion. Can the proposed stepsizes for BGD be applied
to general least-squares problems where A = [A1 A2] do
not satisfy Assumption 1? As already indicated in Sec-
tion 3.1, the answer is affirmative, and the idea is that one
could always orthogonalize A1 and A2, respectively, e.g.,
via QR decomposition A1 = Q1R1 and A2 = Q2R2. In-
deed, one could then consider minimizing ∥[Q1 Q2]z−y∥2
in variable z via BGD with the proposed stepsizes as the
matrix [Q1 Q2] now satisfies Assumption 1. After such
minimization, we obtain minimizer z and just need to solve
the upper triangular systems zj = Rjxj for xj (j = 1, 2)
by efficient back substitution. But how does this algorithm
compare to HB applied directly to the data A,y? Note that
[Q1 Q2] is, in general, much better conditioned than A
and its block-wise orthogonality structure allows for faster
matrix-vector multiplications [Q1 Q2]

⊤[Q1 Q2]z (e.g., al-
ready we have Q⊤

1 Q1z1 = z1) than calculating A⊤Ax.
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Figure 1: Under Assumption 1, Figure 1a shows the numerical values of the minimum spectral radii, ρ∗GD, ρ
∗
HB, and ρ∗BGD,

and Figures 1b to 1d shows the errors of the three methods at every iteration t.

For these two reasons, we observe that combining block-
wise QR orthogonalization with BGD takes much fewer
iterations than HB to converge and uses less computation at
each iteration; and eventually this method runs faster than
HB when A is highly ill-conditioned (so that HB converges
slowly) and for medium problem sizes (so that block-wise
QR decompositions are affordable). The code and experi-
ments comparing the two approaches are in Appendix F.2.

8. Conclusion and Future Work
In this paper, we analyzed a basic algorithm, block gradi-
ent descent (BGD), applied to a basic setting, least-squares.
Under a block-wise orthogonality assumption, we discover
optimal stepsizes, with which BGD accelerates without any
momentum and is provably twice as fast as the heavy ball
method (HB). Moreover, our results apply to (generalized)
alternating projection; Doing so not only leads to improve-
ments over the bounds of Fält & Giselsson (2017), but also
allows us to revise their inaccurate claim that an optimal con-
vergence rate for (generalized) alternating projection was
discovered. Among many interesting questions that might
follow from our developments in this paper, we would like
to elaborate on the following three points:

• Does adding some momentum term to BGD give faster
rates? Goujaud et al. (2022) showed that GD with cyclic
stepsizes and HB momentum is faster than HB if the spec-

trum of A⊤A is clustered, so the answer might lie in com-
bining the contributions of Goujaud et al. (2022) and ours.

• Can we generalize our analysis from two blocks to multi-
ple blocks? If BGD with two blocks can run twice as fast as
HB, would it be natural—or bold—to guess that BGD with
n blocks can be n times faster? Moreover, in the case of n
blocks, our block-wise orthogonality assumption (Assump-
tion 1) would generalize to the less restrictive requirement
that the columns of A are normalized; concerns regarding
Assumption 1 would automatically disappear.

• To what extent can we dispense with Assumption 1? Re-
call that, without this assumption, we need to analyze the
spectral radius of the sophisticated matrix M(γ1, γ2) de-
fined in Lemma 1. While in this general case it is signifi-
cantly more challenging to find a closed-form solution to
the minimum spectral radius of M(γ1, γ2), it is perhaps
possible to compute a numerical or approximate solution to
(3), e.g., via semidefinite relaxation techniques. Pushing this
idea to its extreme constitutes an entirely different chapter,
and is therefore left as a future endeavor.

Impact Statement
This paper presents work intending to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Elementary Lemmas
Here we first give proofs to Lemmas 1 to 4:

Proof of Lemma 1. Note that the global minimizer x∗ of (2) satisfies the normal equation A⊤Ax∗ = A⊤y, which means
A⊤

1 Ax∗ = A⊤
1 y and A⊤

2 Ax∗ = A⊤
2 y, so we can write the first equation x+

1 = x1 − γ1 ·A⊤
1 A(x− x∗) of BGD as[

x+
1

x2

]
− x∗ =

(
I −

[
γ1A

⊤
1 A1 γ1A

⊤
1 A2

0 0

])
(x− x∗).

We finish by re-writing the second equation of BGD similarly and combining.

Proof of Lemma 2. Left multiplying the first equation of BGD by A1 and the second equation by A2 gives

A1x
+
1 = A1x1 − γ1 ·A1A

⊤
1 (A1x1 +A2x2 − y),

A2x
+
2 = A2x2 − γ2 ·A2A

⊤
2 (A1x

+
1 +A2x2 − y).

Substitute the expression of A1x
+
1 into the second, and sum them up, and we obtain

Ax+ = Ax− γ1A1A
⊤
1 (Ax− y)− γ2 ·A2A

⊤
2

(
A1x1 − γ1 ·A1A

⊤
1 (Ax− y) +A2x2 − y

)
= Ax− γ1A1A

⊤
1 (Ax− y)− γ2 ·A2A

⊤
2

(
Ax− y − γ1 ·A1A

⊤
1 (Ax− y)

)
= Ax− γ1A1A

⊤
1 (Ax− y)− γ2 ·A2A

⊤
2

(
I − γ1 ·A1A

⊤
1

)
(Ax− y).

As shown in the proof of Lemma 1 we have A⊤
1 Ax∗ = A⊤

1 y and A⊤
2 Ax∗ = A⊤

2 y. Subtracting Ax∗ the above equation
yields

A(x+ − x∗) = A(x− x∗)− γ1A1A
⊤
1 (Ax−Ax∗)− γ2 ·A2A

⊤
2

(
I − γ1 ·A1A

⊤
1

)
(Ax−Ax∗).

The proof is finished by simplifying the above equation.

Proof of Lemma 3. Under Assumption 1 and with C := A⊤
2 A1, we have

M(γ1, γ2) =

(
I −

[
0 0

γ2A
⊤
2 A1 γ2A

⊤
2 A2

])(
I −

[
γ1A

⊤
1 A1 γ1A

⊤
1 A2

0 0

])

=

(
I −

[
0 0

γ2C γ2I2

])(
I −

[
γ1I1 γ1C

⊤

0 0

])

= I −
[

0 0
γ2C γ2I2

]
−
[
γ1I1 γ1C

⊤

0 0

]
+

[
0 0

γ2C γ2I2

] [
γ1I1 γ1C

⊤

0 0

]
=

[
(1− γ1)I1 −γ1C

⊤

−γ2C (1− γ2)I2

]
+

[
0 0

γ1γ2C γ1γ2CC⊤

]
=

[
(1− γ1)I1 −γ1C

⊤

−γ2(1− γ1)C (1− γ2)I2 + γ1γ2CC⊤

]
,

and the proof is complete.

Proof of Lemma 4. By Assumption 1 we write A⊤A as

A⊤A =

[
I1 C⊤

C I2

]
= I +D, D :=

[
0 C⊤

C 0

]
.

We will first find the eigenvalues of the (n1 + n2) × (n1 + n2) matrix D. Since C has rank r, D has eigenvalue 0 of
geometric multiplicity n1 + n2 − 2r, and so the algebraic multiplicity of eigenvalue 0 is at least n1 + n2 − 2r. With a
variable λ ̸= 0 we now look at the characteristic polynomial det(λI −D). By Lemma 7 we have

det(λI −D) = det(λI1) · det
(
λI2 −

1

λ
CC⊤

)
.
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Therefore, det(λI −D) = 0 if and only if det
(
λ2I2 −CC⊤) = 0. Since λ ̸= 0, we have det

(
λ2I2 −CC⊤) = 0 if

and only if λ2 is a positive eigenvalue of CC⊤. Since CC⊤ has r such eigenvalues λ1(CC⊤), . . . , λr(CC⊤), we have
2r such choices for λ, namely ±

√
λ1(CC⊤), . . . ,±

√
λr(CC⊤). Eigenvalues of A⊤A are eigenvalues of D plus 1. We

finish by recalling Section 2 and simple calculation.

Lemmas 7 to 12 below are elementary, so their proofs are omitted.

Lemma 7 (Block Matrix Determinant). We have

det

[
Q1 Q2

Q3 Q4

]
= det(Q1) · det(Q4 −Q3Q

−1
1 Q2),

where Q1 and Q4 are square matrices with Q1 invertible.

Lemma 8. Let ξ1 ≥ ξ2 ≥ · · · ≥ ξr > 0. Then we have

min
γ>0

(
max

{
|1− γξ1|, . . . , |1− γξr|

})
=

{
ξ1−ξr
ξ1+ξr

r > 1;
1
ξ1

r = 1.

Here the minimum is attained at γ = 2
ξ1+ξr

if r > 1 or at γ = 1
ξ1

if r = 1.

Lemma 9. For functions fi : S → R (∀i = 1, . . . , r), we have

γ̂ ∈ argmin
γ∈S

fi(γ),∀i = 1, . . . , r ⇒ γ̂ ∈ argmin
γ∈S

(
max

i=1,...,r
fi(γ)

)
.

Lemma 10. With ϕ ∈ (0, 1), γ1 ∈ (0, 1), and γ̂2 := 4−2γ1

2−γ1ϕ
, the quadratic equation

z2 − (2− γ1 − γ̂2 + γ1γ̂2ϕ)z + (1− γ1)(1− γ̂2) = 0

in variable z has two real roots, z = γ1 − 1 and z = γ̂2 − 1 with γ̂2 − 1 > 1− γ1.

Lemma 11. For functions fi : S → R (∀i = 0, 1, . . . , r), if

γ̂ ∈ argmin
γ∈S

(
max{f0(γ), f1(γ)}

)
and fi(γ̂) ≤ max{f0(γ̂), f1(γ̂)} for every i = 1, . . . , r, then

γ̂ ∈ argmin
γ∈S

(
max

i=0,...,r
fi(γ)

)
.

Lemma 12. Consider the two (perhaps complex) roots z1 and z2 to the quadratic equation

z2 + bz + c = 0

in variable z with c ≥ 0 and b ∈ R. We have

|z1| ≤
√
c and |z2| ≤

√
c ⇔ |z1| = |z2| =

√
c ⇔ b2 − 4c ≤ 0.

B. Proof of The Main Result (Theorem 2)
B.1. A Spectrum Lemma

The first step towards solving (3) is to analyze the spectrum of M(γ1, γ2). We do so in the lemma below.

Lemma 13 (Spectrum of M(γ1, γ2)). Suppose Assumption 1 holds and C = A⊤
2 A1 ∈ Rn2×n1 has rank r. Then, besides

the eigenvalues 1− γ1 and 1− γ2 shown in Table 2, the remaining eigenvalues of M(γ1, γ2) are given as follows:

• (Case 1: γ1 = 1) The remaining r eigenvalues of M(γ1, γ2) are 1− γ2 + γ2λi(CC⊤), ∀i = 1, . . . , r;

• (Case 2: γ2 = 1) The remaining r eigenvalues of M(γ1, γ2) are 1− γ1 + γ1λi(CC⊤), ∀i = 1, . . . , r;
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Table 2: Algebraic multiplicities of eigenvalues 1− γ1 and 1− γ2 of M(γ1, γ2). The rank of C is denoted by r. The table
accompanies Lemma 13.

Eigenvalues

1− γ1 1− γ2

C
as

es γ1 = 1 n1 n2 − r

γ2 = 1 n1 − r n2

γ1 ̸= 1, γ2 ̸= 1 n1 − r n2 − r

• (Case 3: γ1 ̸= 1, γ2 ̸= 1) The remaining 2r eigenvalues of M(γ1, γ2) arise as the roots of the following quadratic
equation in variable z (∀i = 1, . . . , r):

z2 −
(
2− γ1 − γ2 + γ1γ2λi(CC⊤)

)
z + (1− γ1)(1− γ2) = 0. (16)

Remark 4. The proof of Lemma 13 is lengthy, and the difficulty lies in the fact that stepsizes γ1, γ2 could change the
eigenvalues of M(γ1, γ2) in a “discontinuous” way (cf. Table 2). And we need to handle all such discontinuities.
Remark 5. Lemma 13, in conjunction with Table 2, characterizes the spectrum of M(γ1, γ2) in different cases. Case 1
(γ1 = 1) and Case 2 (γ2 = 1) turn out to be symmetric, and they coincide if γ1 = γ2 = 1. In either case, the eigenvalues of
M(γ1, γ2) are given explicitly, in terms of γ1, γ2, λi(CC⊤). In Case 3 (γ1 ̸= 1, γ2 ̸= 1), we have 2r eigenvalues implicitly
defined by quadratic equations (16).

Proof of Lemma 13. Under Assumption 1, M(γ1, γ2) is of the form in Lemma 3. We approach the proof by considering
the three cases corresponding to Table 2 separately.

Case 1: γ1 = 1. In this case, 1− γ1 = 0 and M(γ1, γ2) is given as

M(1, γ2) =

[
0 −C⊤

0 (1− γ2)I2 + γ2CC⊤

]
.

The eigenvalues of (1− γ2)I2 + γ2CC⊤ give n2 eigenvalues to M(1, γ2); they are 1− γ2 and (1− γ2) + γ2λi(CC⊤),
i = 1, . . . , r. Note that 1−γ2 has geometric multiplicity n2−r matching the dimension of the nullspace of CC⊤. Finally, 0
is an eigenvalue of M(1, γ2) with geometric multiplicity n1. Since all n1+n2 eigenvalues are counted. the abovementioned
geometric multiplicity coincides with algebraic multiplicity. Similarly, in the rest of the proof, the eigenvalues will be
counted using either geometric or algebraic ways, but by finding all eigenvalues (counting geometric or algebraic multiplicity)
we will eventually reveal that in our case the geometric multiplicity turns out to coincide with algebraic multiplicity. Hence,
in what follows we will just write multiplicity for simplicity.

Case 2: γ2 = 1. In this case, 1− γ2 = 0 and M(γ1, γ2) is given as

M(γ1, 1) =

[
(1− γ1)I1 −γ1C

⊤

−(1− γ1)C γ1CC⊤

]
.

If γ1 = 1, by Case 1 we know that 0 = 1− γ1 = 1− γ2 is an eigenvalue of M(γ1, 1) with multiplicity n1 + n2 − r, and
the remaining r eigenvalues are given as λi(CC⊤), i = 1, . . . , r; Table 2 is correct. So in the remaining proof of Case 2 we
assume γ1 ̸= 1.

Case 2.1: Eigenvalue 1− γ1. Let us now test whether M(γ1, 1) has eigenvalue 1− γ1. With an (n1 + n2)-dimensional
vector v := [v1;v2] we have

M(γ1, 1)v = (1− γ1)v ⇔

{
(1− γ1)v1 − γ1C

⊤v2 = (1− γ1)v1

−(1− γ1)Cv1 + γ1CC⊤v2 = (1− γ1)v2

⇔

{
C⊤v2 = 0

Cv1 = −v2

14



On Optimal Stepsizes of Block Gradient Descent for Least-Squares

and this implies C⊤Cv1 = −C⊤v2 = 0. Hence v2 = Cv1 = 0. On the other hand, if Cv1 = v2 = 0 then the above is
satisfied. We now conclude that M(γ1, 1)v = (1− γ1)v if and only if Cv1 = v2 = 0. The nullspace of C is of dimension
n1 − r, so (1− γ1) is an eigenvalue of M(γ1, 1) of multiplicity n1 − r.

Case 2.2: Eigenvalue 0. Following a similar proof of Case 2.1, we have

M(γ1, 1)v = 0 ⇔

{
(1− γ1)v1 − γ1C

⊤v2 = 0

−(1− γ1)Cv1 + γ1CC⊤v2 = 0

⇔ (1− γ1)v1 − γ1C
⊤v2 = 0.

Since γ1 ̸= 1, for any v2 ∈ Rn2 we can set v1 to be γ1C⊤v2/(1−γ1) so that the equality M(γ1, 1)v = 0 holds. Therefore
0 is an eigenvalue of M(γ1, 1) of multiplicity n2.

Case 2.3: The Remaining r Eigenvalues. Consider the characteristic polynomial det
(
zI −M(γ1, 1)

)
in variable z, with

z ̸= 1− γ1 and z ̸= 0. Lemma 7 implies

det
(
zI −M(γ1, 1)

)
= det

(
zI1 − (1− γ1)I1

)
·det

(
zI2 − γ1CC⊤

− (1− γ1)C · 1

z − (1− γ1)
· γ1C⊤

)
.

With z ̸= 1− γ1 and z ̸= 0, the above implies

det
(
zI −M(γ1, 1)

)
= 0 ⇔ det

(
zI2 − (1− γ1)I2 − γ1CC⊤

)
= 0. (17)

We now see that for each i = 1, . . . , r, (1 − γ1) + γ1λi(CC⊤) is a solution to (17), and is therefore an eigenvalue of
M(γ1, 1).

Case 3: γ1 ̸= 1, γ2 ̸= 1. Suppose for the sake of contradiction that M(γ1, γ2)v = 0 for some v = [v1;v2] ∈ Rn1+n2 .
Then, using the formula of M(γ1, γ2) in Lemma 3 we can write{

(1− γ1)v1 − γ1C
⊤v2 = 0

−γ2(1− γ1)Cv1 + (1− γ2)v2 + γ1γ2CC⊤v2 = 0

⇔

{
(1− γ1)v1 − γ1C

⊤v2 = 0

−γ2(1− γ1)Cv1 + (1− γ2)v2 + γ2C(1− γ1)v1 = 0

⇔

{
(1− γ1)v1 + γ1C

⊤v2 = 0

(1− γ2)v2 = 0

and since γ1 ̸= 1 and γ2 ̸= 1, it is now clear that v1 = v2 = 0. So M(γ1, γ2) is full rank.

We will show there are 2r eigenvalues different than 1 − γ1 and 1 − γ2 and given by the roots of (16). Consider the
characteristic polynomial det

(
zI −M(γ1, γ2)

)
in variable z, with z ̸= 1− γ1, z ̸= 1− γ2, and z ̸= 0. By Lemma 7 we

have

det
(
zI −M(γ1, γ2)

)
= det

(
zI1 − (1− γ1)I1

)
·det

(
zI2 − (1− γ2)I2 − γ1γ2CC⊤

− γ2(1− γ1)C
1

z − (1− γ1)
· γ1C⊤

)
.

Simplifying the above equation yields

det
(
zI −M(γ1, γ2)

)
= 0 ⇔ det

((z − (1− γ2)
)
·
(
z − (1− γ1)

)
z

I2 − γ1γ2CC⊤
)
= 0.

The characteristic polynomial det(z′I2 − γ1γ2CC⊤) in variable z′ has r nonzero roots, namely
γ1γ2λ1(CC⊤), . . . , γ1γ2λr(CC⊤). Moreover, for each root z′, the equation(

z − (1− γ2)
)
·
(
z − (1− γ1)

)
z

= z′ ⇔ z2 −
(
2− γ1 − γ2 + z′

)
z + (1− γ1)(1− γ2) = 0
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always has two nonzero (potentially complex) solutions, and there are 2r such solutions in total; none of these solutions is
equal to 1− γ1 or 1− γ2. In particular, by construction, these 2r solutions must be eigenvalues of M(γ1, γ2).

It remains to show 1− γ1 and 1− γ2 are eigenvalues of M(γ1, γ2) with mulpliticity n1 − r and n2 − r, respectively; cf.
Table 2. We consider two cases, γ1 = γ2 and γ1 ̸= γ2.

Case 3.1: γ1 ̸= γ2. With some vector v := [v1;v2] ∈ Rn1+n2 we have

M(γ1, γ2)v = (1− γ1)v ⇔

{
−γ1C

⊤v2 = 0

−γ2(1− γ1)Cv1 + (γ1 − γ2)v2 + γ1γ2CC⊤v2 = 0

⇔

{
C⊤v2 = 0;

−γ2(1− γ1)Cv1 + (γ1 − γ2)v2 = 0.

Left multiplying the last equation by C⊤ yields γ2(1− γ1)C
⊤Cv1 = 0. Since γ1 ̸= 1 and γ2 > 0, we obtain Cv1 = 0.

Substituting it back gives (γ1 − γ2)v2 = 0, but γ1 ̸= γ2, so it must be that v2 = 0. Therefore, for M(γ1, γ2)v = (1− γ1)v
to hold, it is necessary that v2 = 0 and Cv1 = 0; one verifies this is also sufficient, and thus

M(γ1, γ2)v = (1− γ1)v ⇔ Cv1 = 0,v2 = 0.

Since the nullspace of C has dimension n1−r, so 1−γ1 is an eigenvalue of M(γ1, γ2) of multiplicity n1−r. Proving 1−γ2
is an eigenvalue of M(γ1, γ2) of multiplicity n2 − r follows a similar route, detailed next. With v := [v1;v2] ∈ Rn1+n2

we have

M(γ1, γ2)v = (1− γ2)v ⇔

{
−γ1C

⊤v2 = (γ1 − γ2)v1

−(1− γ1)Cv1 + γ1CC⊤v2 = 0

⇔

{
−γ1C

⊤v2 = (γ1 − γ2)v1

−(1− γ1)Cv1 −C · (γ1 − γ2)v1 = 0

⇔

{
γ1C

⊤v2 = (γ1 − γ2)v1;

(1− γ2)Cv1 = 0.

Since γ2 ̸= 1, the last equation implies Cv1 = 0. Left multiply the equality γ1C
⊤v2 = (γ1 − γ2)v1 by C and use

Cv1 = 0, and we obtain CC⊤v2 = 0, that is C⊤v2 = 0. Substitute this back and we get (γ1 − γ2)v1 = 0. But γ1 ̸= γ2,
so v1 = 0. Thus, M(γ1, γ2)v = (1− γ2)v implies v1 = 0 and C⊤v2 = 0, and one verifies that the converse is also true.
Therefore, 1− γ2 is an eigenvalue of M(γ1, γ2) with multiplicity n2 − r, that is the dimension of the nullspace of C⊤.

Case 3.2: γ1 = γ2. In this case, we consider the linear equations M(γ1, γ1)v = (1 − γ1)v in variable v := [v1;v2] ∈
Rn1+n2 . And we have

M(γ1, γ1)v = (1− γ1)v ⇔

{
C⊤v2 = 0

γ1(1− γ1)Cv1 + γ2
1CC⊤v2 = 0

⇔ C2v = 0, where C2 :=

[
C 0
0 C⊤

]
.

The nullspace of C2 is of dimension n1 + n2 − 2r, so 1− γ1 is an eigenvalue of M(γ1, γ2) of multiplicity n1 + n2 − 2r.
The proof is now complete.

Lemma 13 is important as it allows us to proceed for studying the spectral radius ρ
(
M(γ1, γ2)

)
. That is not to say analyzing

ρ
(
M(γ1, γ2)

)
is made into a trivial task. In fact, Table 2 already suggests an obstacle: If n1 = r and γ1 ̸= 1, then 1− γ1 is

not an eigenvalue of M(γ1, γ2) and should not be taken into account when studying ρ
(
M(γ1, γ2)

)
; similarly for 1− γ2. In

other words, this suggests we have to further break our analysis into subcases that classify the relations between the rank r
and block size n1 (or n2). Performing such analysis carefully is our main duty in Appendices B.2 and B.3.
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B.2. Simplified Cases

In this section we make some basic calculations of the spectral radius in simplified cases. The purpose is to build some
intuition and preliminary results for the sequel. The first easy case we consider is where γ1 = 1 or γ2 = 1. In this case,
Lemma 13 reveals the whole spectrum of M(γ1, γ2), so we can minimize ρ

(
M(γ1, γ2)

)
with relative ease:

Proposition 1. Recall C := A⊤
2 A1 and r := rank(C). Under Assumption 1, ρ

(
M(γ1, 1)

)
is minimized at γ1 =

2
2−λ1(CC⊤)

if r < n1, at γ1 = 2
2−λ1(CC⊤)−λr(CC⊤)

if r = n1 > 1, and its minimum values are given as

min
γ1>0

ρ
(
M(γ1, 1)

)
=


λ1(CC⊤)

2−λ1(CC⊤)
if r < n1;

λ1(CC⊤)−λr(CC⊤)
2−λ1(CC⊤)−λr(CC⊤)

if r = n1.

Remark 6. Similarly, we can solve minγ2>0 ρ
(
M(1, γ2)

)
.

Remark 7. If r = n1 = 1, then λ1(CC⊤) = λr(CC⊤), in which case the minimum of ρ
(
M(γ1, 1)

)
is 0.

Proof of Proposition 1. Lemma 13 implies

ρ
(
M(γ1, 1)

)
=

{
max

{
|1− γ1|,maxi=1,...,r

{
|1− γ1

(
1− λi(CC⊤)

)
|
}}

if r < n1;

maxi=1,...,r

{
|1− γ1

(
1− λi(CC⊤)

)
|
}

if r = n1.

The proof finishes with a basic and standard argument; see, e.g., Lemma 8.

Another easy case is where γ1 = γ2. In this case, we need to minimize ρ
(
M(γ1, γ2)

)
only in a single variable γ1:

Proposition 2. Define γ∗
1 := 2

1+
√

1−λ1(CC⊤)
. Under Assumption 1, we have γ∗

1 − 1 < ρ
(
M(1, 1)

)
and

min
γ1>0

ρ
(
M(γ1, γ1)

)
= ρ
(
M(γ∗

1 , γ
∗
1)
)
= γ∗

1 − 1. (18)

Remark 8. While in Proposition 1 the minima can vary with the rank r, the minimum of (18) is attained at γ∗
1 for any r.

Proof of Proposition 2. Under Assumption 1, γ∗
1 is real-valued, and with some calculation, one further verifies 0 <

γ∗
1 − 1 < λ1(CC⊤) = ρ

(
M(1, 1)

)
; the last equality is due to Example 1. We proceed in two steps. In Step 1 we prove

ρ
(
M(γ∗

1 , γ
∗
1)
)
= γ∗

1 − 1. In Step 2 we prove γ∗
1 − 1 = minγ1>0 ρ

(
M(γ1, γ1)

)
.

Step 1. First observe that for every i = 1, . . . , r we have(
2− 2γ∗

1 + (γ∗
1 )

2λi(CC⊤)
)2

− 4(γ∗
1 − 1)2 ≤ 0

⇔ (γ∗
1)

2λi(CC⊤) ·
(
4− 4γ∗

1 + (γ∗
1 )

2λi(CC⊤)
)
≤ 0

⇔ 4− 4γ∗
1 + (γ∗

1 )
2λi(CC⊤) ≤ 0.

But as one can verify, the definition of γ∗
1 implies γ∗

1 is the smaller root of the equation 4 − 4ξ + ξ2λ1(CC⊤) = 0 in
variable ξ, that is 4 − 4γ∗

1 + (γ∗
1 )

2λ1(CC⊤) = 0. As a consequence, for every i = 1, . . . , r, the roots of the quadratic
equation

z2 −
(
2− 2γ∗

1 + (γ∗
1)

2λi(CC⊤)
)
z + (γ∗

1 − 1)2 = 0

in variable z have magnitudes equal to γ∗
1 − 1. Invoking Lemma 13, we see that these roots are precisely 2r eigenvalues

M(γ∗
1 , γ

∗
1 ), while Lemma 13 further suggests that M(γ∗

1 , γ
∗
1) might have eigenvalue γ∗

1 − 1 with multiplicity n1 +n2 − 2r
(if n1 + n2 − 2r ̸= 0). We can now conclude Step 1 with ρ

(
M(γ∗

1 , γ
∗
1 )
)
= γ∗

1 − 1.

Step 2. To prove γ∗
1 − 1 = minγ1>0 ρ

(
M(γ1, γ1)

)
, we consider two cases.

Case 2.1: γ1 > γ∗
1 . In this case, γ1 > γ∗

1 > 1. Note that for every i = 1, . . . , r the equation (16) must has a root whose
magnitude is larger than or equal to

√
(1− γ1)(γ2 − 1) = γ1 − 1. Therefore ρ

(
M(γ1, γ1)

)
≥ γ1 − 1 > γ∗

1 − 1.
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Case 2.2: 0 < γ1 ≤ γ∗
1 . The choice of γ∗

1 indicates 4−4γ1+γ2
1λ1(CC⊤) ≥ 0. We then prove 2−2γ1+γ2

1λ1(CC⊤) ≥ 0:
This is true if γ1 ∈ (0, 1]; otherwise, if γ1 > 1, this is implied by 4− 4γ1 + γ2

1λ1(CC⊤) > 0. As a result, the quadratic
equation z2−

(
2−2γ1+γ2

1λ1(CC⊤)
)
z+(γ1−1)2 = 0 has two different non-negative real roots and they are eigenvalues

of M(γ1, γ1). The larger root, denoted by z(γ1), is given as

z(γ1) =
2− 2γ1 + γ2

1λ1(CC⊤) +

√(
2− 2γ1 + γ2

1λ1(CC⊤)
)2 − 4(γ1 − 1)2

2

=

(
γ1
√

λ1(CC⊤) +
√
4− 4γ1 + γ2

1λ1(CC⊤)
)2

4
.

We need to prove z(γ1) ≥ γ∗
1 − 1 for every γ1 ∈ (0, γ∗

1 ]. Since z(γ∗
1 ) = γ∗

1 − 1, it suffices to show that the function

f(ξ) = ξ
√
λ1(CC⊤) +

√
4− 4ξ + ξ2λ1(CC⊤)

is non-increasing in [0, γ∗
1 ], i.e., its derivative is non-positive. Noting that, with ξ ∈ [0, γ∗

1 ] we have 2 − ξλ1(CC⊤) ≥
2− γ∗

1λ1(CC⊤) ≥ 0. We can then verify

f ′(ξ) ≤ 0 ⇔
√
λ1(CC⊤) +

ξλ1(CC⊤)− 2√
4− 4ξ + ξ2λ1(CC⊤)

≤ 0

⇔ λ1(CC⊤) ·
(
4− 4ξ + ξ2λ1(CC⊤)

)
≤
(
2− ξλ1(CC⊤)

)2
⇔ λ1(CC⊤) ≤ 1.

We have thus completed the proof.

From Propositions 1 and 2, we see that, under Assumption 1, stepsizes better than γ1 = γ2 = 1 do exist, suggesting that it is
possible for BGD to converge faster than BEM.

Note that the minima in Propositions 1 and 2 are both attained at some stepsize larger than 1, behind which the intuition
is as follows. Suppose Assumption 1 holds, then the maximum eigenvalue of CC⊤ is smaller than or equal to 1. If

furthermore γ1 = 1, then M(γ1, γ2) can be written as M(1, γ2) =

[
0 −C⊤

0 (1− γ2)I2 + γ2CC⊤

]
. If γ2 were restricted to

lie in (0, 1], then there would be no doubt that the convex combination (1− γ2)I2 + γ2CC⊤ would be minimized at γ2 = 1
under Assumption 1. However, inspect that setting γ2 to be appropriately larger than 1 would actually further reduce the
magnitudes of (1− γ2)I2 + γ2CC⊤ and therefore of its eigenvalues. Optimal stepsizes that we show in Appendix B.3 are
in fact all larger than 1.

B.3. General Cases

The limitation of Propositions 1 and 2 is that, there, we search stepsizes on two rays, namely {(γ1, 1) : γ1 > 0} and
{(γ1, γ1) : γ1 > 0}, while a better choice might lie on the quadrant {(γ1, γ2) : γ1 > 0, γ2 > 0} yet on neither of the two
rays. To address this point, we divide the quadrant into four regions, S00, S01, S10, S11 as shown in Figure 2, and we search
for stepsizes that leading to smaller spectral radii over each region. Combining yields a solution to (3).

To proceed, we develop a technical lemma, shown below, which will be used as a common sub-routine to prove our main
results in Appendices B.3.1 and B.3.2.
Lemma 14. Fix ϕ ∈ (0, 1). Consider the following quadratic equation in variable z and its discriminant:

z2 − (2− γ1 − γ2 + γ1γ2ϕ)z + (1− γ1)(1− γ2) = 0,

∆(γ1, γ2) := (2− γ1 − γ2 + γ1γ2ϕ)
2 (19)

− 4(1− γ1)(1− γ2).

Assume ∆(γ1, γ2) ≥ 0. Then {
2
√

∆(γ1, γ2) · |γ1ϕ− 1| ≤
∣∣∂∆(γ1,γ2)

∂γ2

∣∣ if γ1 ≥ 1;

2
√

∆(γ1, γ2) · |γ1ϕ− 1| ≥
∣∣∂∆(γ1,γ2)

∂γ2

∣∣ if γ1 ∈ (0, 1).
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γ1

γ2

1 ∞

1

∞

0

S00

S01

S10

S11

S00 := (0, 1]× (0, 1]

S01 := (0, 1]× [1,∞)

S10 := [1,∞)× (0, 1]

S11 := [1,∞)× [1,∞)

Figure 2: We divide the quadrant {(γ1, γ2) : γ1 > 0, γ2 > 0} of all possible stepsizes into 4 regions, S00, S01, S10, and S11.
We minimize the spectral radius ρ

(
M(γ1, γ2)

)
over each region separately, which will give a solution to (3).

Remark 9. In words, Lemma 14 analyzes a single quadratic equation (19) which is of the form (16), highlighting some
properties useful for analyzing the eigenvalues as roots of (16) in the sequel.

Proof of Lemma 14. We only write down the proof for the case γ1 ≥ 1; the case for γ1 ∈ (0, 1) is similar. First note that

2
√

∆(γ1, γ2) · |γ1ϕ− 1| ≤
∣∣∂∆(γ1, γ2)

∂γ2

∣∣⇔ 4∆(γ1, γ2) · (γ1ϕ− 1)2 ≤
(∂∆(γ1, γ2)

∂γ2

)2
.

Canceling a common additive term yields the following equivalent inequality:

−(γ1 − 1)(γ2 − 1)(γ1ϕ− 1)2 ≤ (γ1 − 1)2 − (2− γ1 − γ2 + γ1γ2ϕ)(γ1ϕ− 1)(γ1 − 1).

If γ1 = 1, we are done. If γ1 > 1, we can divide both sides of the above by γ1 − 1 to get an equivalent inequality:

− (γ2 − 1)(γ1ϕ− 1)2 ≤ (γ1 − 1)− (2− γ1 − γ2 + γ1γ2ϕ)(γ1ϕ− 1)

⇔ (γ1ϕ− 1) ·
(
(2− γ1 − γ2 + γ1γ2ϕ)− (γ2 − 1)(γ1ϕ− 1)

)
≤ (γ1 − 1)

⇔ (γ1ϕ− 1) · (1− γ1 + γ1ϕ) ≤ (γ1 − 1)

⇔ γ2
1ϕ(ϕ− 1) ≤ 0.

But ϕ ∈ (0, 1), so γ2
1ϕ(ϕ− 1) ≤ 0, and we finished the proof.

B.3.1. OPTIMAL STEPSIZES ON S00 ∪ S01 ∪ S10

Let us first acquire a better understanding of how the roots of a single quadratic equation in (19) behave:

Lemma 15. Fix ϕ ∈ (0, 1). Consider the quadratic equation in (19) and let z1(γ1, γ2), z2(γ1, γ2) be its two roots. Define

f(γ1, γ2) := max
{
|z1(γ1, γ2)|, |z2(γ1, γ2)|

}
.

With S00, S01, S10 defined in Figure 2, the following hold:

• Part 1: S00. With γ1 ∈ (0, 1] fixed, γ2 7→ f(γ1, γ2) is non-increasing in (0, 1]. With γ2 ∈ (0, 1] fixed, γ1 7→ f(γ1, γ2) is
non-increasing in (0, 1]. Therefore

min
[γ1;γ2]∈S00

f(γ1, γ2) = f(1, 1).

• Part 2: S01 ∪ S10. With γ2 ∈ [1,∞) fixed, γ1 7→ f(γ1, γ2) is non-increasing in (0, 1]. With γ1 ∈ [1,∞) fixed,
γ2 7→ f(γ1, γ2) is non-increasing in (0, 1]. Hence we have

min
[γ1;γ2]∈S01

f(γ1, γ2) = min
γ2≥1

f(1, γ2),

min
[γ1;γ2]∈S10

f(γ1, γ2) = min
γ1≥1

f(γ1, 1).

Proof of Lemma 15. Recall ∆(γ1, γ2) := (2− γ1 − γ2 + γ1γ2ϕ)
2 − 4(1− γ1)(1− γ2) (Lemma 14). We present the proofs

below for Part 1 and Part 2, one after another.
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Part 1: S00. Assume γ1, γ2 ∈ (0, 1], and we derive the monotonicity of f . In this case we have 1− γ1 ≥ 0 and 1− γ2 ≥ 0,
and therefore we can write

∆(γ1, γ2) =

((√
1− γ1 −

√
1− γ2

)2
+ γ1γ2ϕ

)((√
1− γ1 +

√
1− γ2

)2
+ γ1γ2ϕ

)
,

which implies ∆(γ1, γ2) > 0. Furthermore, since 2− γ1 − γ2 + γ1γ2ϕ ≥ 0, we have

∂f(γ1, γ2)

∂γ1
=

−1 + γ2ϕ

2
+

1

4
√

∆(γ1, γ2)
· ∂∆(γ1, γ2)

∂γ1
.

Since γ2 ∈ (0, 1), applying Lemma 14 with γ1 and γ2 swapped yields 2
√

∆(γ1, γ2) · |γ1ϕ − 1| ≥
∣∣∂∆(γ1,γ2)

∂γ1

∣∣. Since

−1 + γ2ϕ ≤ 0, this further implies ∂f(γ1,γ2)
∂γ1

≤ 0. Similarly, using Lemma 14 we can show ∂f(γ1,γ2)
∂γ2

≤ 0. This proves Part
1.

Part 2: S01 ∪ S10. Since (1 − γ1)(1 − γ2) ≤ 0, the two roots of (19) are real-valued. It suffices to fix γ1 ∈ [1,∞) and
prove γ2 7→ f(γ1, γ2) is non-increasing in (0, 1]. To do so, we first calculate ∂∆(γ1,γ2)

∂γ2
and verify ∂∆(γ1,γ2)

∂γ2
≤ 0 for every

γ2 ∈ (0, 1]:

∂∆(γ1, γ2)

∂γ2
≤ 0 ⇔ 2(γ1ϕ− 1)2γ2 − 2(γ1ϕ+ 1− 2ϕ)γ1 ≤ 0

⇐ (γ1ϕ− 1)2 − (γ1ϕ+ 1− 2ϕ)γ1 ≤ 0

⇔ γ2
1ϕ(ϕ− 1) + 1− γ1 ≤ 0.

This indeed holds as ϕ ∈ (0, 1) and γ1 ≥ 1. Then, by definition we can write

∂f(γ1, γ2)

∂γ2
=


−1+γ1ϕ

2 + 1

4
√

∆(γ1,γ2)
· ∂∆(γ1,γ2)

∂γ2
if 2− γ1 − γ2 + γ1γ2ϕ > 0;

1−γ1ϕ
2 + 1

4
√

∆(γ1,γ2)
· ∂∆(γ1,γ2)

∂γ2
if 2− γ1 − γ2 + γ1γ2ϕ < 0;√

(γ1 − 1)(1− γ2) if 2− γ1 − γ2 + γ1γ2ϕ = 0.

Here, γ2 7→ (γ1 − 1)(1− γ2) is clearly a decreasing function. For the other two cases, we can also prove ∂f(γ1,γ2)
∂γ2

≤ 0 by

using Lemma 14 and the fact ∂∆(γ1,γ2)
∂γ2

≤ 0.

Having studied a single quadratic equation in Lemma 15, we can now analyze r such equations (16). Specifically, armed
with Lemmas 14 and 15, we reach the following result:

Theorem 3. Under Assumption 1, the following hold.

• (Part 1: S00) On S00, we have
min

[γ1;γ2]∈S00

ρ
(
M(γ1, γ2)

)
= ρ
(
M(1, 1)

)
.

• (Part 2: S01 ∪ S10) We have

min
[γ1;γ2]∈S01

ρ
(
M(γ1, γ2)

)
= min

γ2≥1
ρ
(
M(1, γ2)

)
,

min
[γ1;γ2]∈S10

ρ
(
M(γ1, γ2)

)
= min

γ1≥1
ρ
(
M(γ1, 1)

)
.

Remark 10. The situation on S00 is now clear (Part 1): The minimum spectral radius is attained at (1, 1). The situation on
S01 ∪ S10 is clearly only partially (Part 2), and it seems that one still needs to minimize over a single stepsize γ2 (resp. γ1)
to find the minimum spectral radius on S01 (resp. S10), with the other stepsize set to 1. This is in fact an easier task and has
been addressed already in Proposition 1.

Proof of Theorem 3. The proof of Theorem 3 relies on two technical lemmas, Lemmas 14 and 15.

Let zi1(γ1, γ2) and zi2(γ1, γ2) be the two roots of (16). Define

fi(γ1, γ2) := max
{
|zi1(γ1, γ2)|, |zi2(γ1, γ2)|

}
. (20)
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If r < min{n1, n2}, then, by Lemma 13, 1− γ1 and 1− γ2 are eigenvalues of M(γ1, γ2), and Lemmas 9 and 15 further
imply

min
[γ1;γ2]∈S00

ρ
(
M(γ1, γ2)

)
= min

[γ1;γ2]∈S00

(
max

{
1− γ1, 1− γ2,max

i,...,r
fi(γ1, γ2)

})
= ρ
(
M(1, 1)

)
.

The case where r = n1 or r = n2 is similar, and this finishes the proof of Part 1. Part 2 follows similarly from Lemma 9
and Part 2 of Lemma 15.

B.3.2. OPTIMAL STEPSIZES ON S11

Solving (3) on S11 is harder than on S00 ∪ S01 ∪ S10, as on S11 it is more challenging to quantify the change of the roots
(eigenvalues) defined in (16) with respect to stepsize γ1 or γ2. We tackle this challenge by further dividing our analysis into
two separate cases: C has full rank and C is rank-deficient.

The proofs for the two cases are much more sophisticated. Hence we only state the theorems below. The proofs are presented
separately in Appendix C.

The Full Rank Case. If C is full rank (i.e., r = min{n1, n2}), we have:

Theorem 4. Suppose r = min{n1, n2} and Assumption 1 holds. Let S11 be defined in Figure 2. Then the minimum value
min[γ1;γ2]∈S11

ρ
(
M(γ1, γ2)

)
is equal to √

1− λr(CC⊤)−
√
1− λ1(CC⊤)√

1− λr(CC⊤) +
√

1− λ1(CC⊤)
. (21)

Remark 11. If r = 1, then we have λ1(CC⊤) = λr(CC⊤) and Theorem 4 suggests the minimum spectral radius is 0,
coinciding with Proposition 1 and Remark 7.

The Rank-Deficient Case. It remains to address the case where C is rank-deficient (i.e., r < min{n1, n2}). We do this in
Theorem 5:

Theorem 5. Suppose r < min{n1, n2} and Assumption 1 holds. With S11 defined in Figure 2 and γ∗
1 defined in

Proposition 2, we have ρ
(
M(γ∗

1 , γ
∗
1)
)
= γ∗

1 − 1 and

min
[γ1;γ2]∈S11

ρ
(
M(γ1, γ2)

)
= γ∗

1 − 1

=
1−

√
1− λ1(CC⊤)

1 +
√
1− λ1(CC⊤)

.
(22)

There is a basic connection between (21) and (22): They would be identical if λr(CC⊤) were equal to 0. Despite this direct
connection, their proofs are very different.

C. Proofs of Theorems 4 and 5
C.1. Proof of Theorem 4

For the proof of Theorem 4, we need the following lemma.

Lemma 16. Assume s > 1 and ζ1 ≥ · · · ≥ ζs > 0. For i = 1, . . . , s, let zi1(α, β), zi2(α, β) be the two roots of the
following quadratic equation in variable z:

z2 − (β + 1− αζi)z + β = 0. (23)

Define gi(α, β) := max{|zi1(α, β)|, |zi2(α, β)|}. Then

min
α>0,β≥0

(
max

i=1,...,s
gi(α, β)

)
=

√
ζ1 −

√
ζs√

ζ1 +
√
ζs
,
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where the minimum is attained at

α =
( 2√

ζ1 +
√
ζs

)2
, β =

(√ζ1 −
√
ζs√

ζ1 +
√
ζs

)2
.

Proof of Lemma 16. By the definition of (23) we have

|zi1(α, β)| · |zi2(α, β)| = β.

Without loss of generality, we assume |zi1(α, β)| ≥ |zi2(α, β)| If zi1(α, β) and zi1(α, β) are two complex roots, then their
magnitudes are equal to

√
β. If they are real roots, then we must have |zi1(α, β)| ≥

√
β, where the equality is attained if and

only if the two real roots are equal. Therefore gi(α, β) ≥
√
β. As a consequence, for any β ≥ 0 the optimization problem

min
α>0

(
max

i=1,...,s
gi(α, β)

)
(24)

is lower bounded by
√
β. Clearly, the lower bound

√
β of (24) is attained at α if and only if α satisfies the following for all

i = 1, . . . , s:

(β + 1− αζi)
2 − 4β ≤ 0

⇔
(
β + 1− αζi + 2

√
β
)(
β + 1− αζi − 2

√
β
)
≤ 0

⇔
(
(
√
β + 1)2 − αζi

)(
(
√
β − 1)2 − αζi

)
≤ 0

⇔
∣∣1−√αζi

∣∣ ≤√β ≤ 1 +
√

αζi.

(25)

Next, for β to be as small as possible while satisfying (25), we need to choose α to be the global minimizer of

min
α>0

{
max

i=1,...,s

∣∣1−√αζi
∣∣} = min

α>0

{
max

{∣∣1−√αζ1
∣∣, ∣∣1−√αζs

∣∣}}.
A simple geometric argument shows that the minimum of the above problem is attained at α = 4

(
√
ζ1+

√
ζs)2

, with the

associated minimum value being
√
ζ1−

√
ζs√

ζ1+
√
ζs

. To summarize, with α∗ = 4
(
√
ζ1+

√
ζs)2

and β∗ = (
√
ζ1−

√
ζs)

2

(
√
ζ1+

√
ζs)2

, we have

maxi=1,...,s gi(α
∗, β∗) equal to

√
β∗.

To prove optimality, we need to show that for any α, β that satisfies
√
β <

∣∣1 −
√
αζi
∣∣ for some i, the corresponding

objective is larger than
√
β∗. To do so, it suffices to consider the following cases:

• If α > α∗, then |1−
√
αζs| < |1−

√
αζ1|. Assume

√
β < |1−

√
αζ1|. The equation z2 − (β + 1− αζ1)z + β = 0

has two real roots, and the larger one is

|β + 1− αζ1|+
√
(β + 1− αζ1)2 − 4β

2
.

The derivative of this root with respect to β is

±1

2
+

β − αζ1 − 1

2
√

(β + 1− αζ1)2 − 4β
,

which is negative regardless of the sign on 1/2 (use the assumption
√
β < |1−

√
αζi| to verify). Hence the root is

minimized when
√
β = |1−

√
αζ1|, at which point this root can be written as

(1−
√
αζ1)

2 + 1− αζ1
2

= |1−
√
αζ1|.

Since α > α∗, one verifies |1−
√
αζ1| is larger than |1−

√
α∗ζ1| =

√
β∗.

• The case α < α∗ can be proved similarly. Specifically, in this case we have |1 −
√
αζ1| < |1 −

√
αζs|, so we can

assume
√
β < |1−

√
αζs| and proceed with a similar argument.
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We are then ready to prove Theorem 4.

Proof of Theorem 4. We can easily verify from Lemma 13 that

ρ
(
M
( 1

1− λ1(CC⊤)
, 1
))

= 0 if r = n1 = 1;

ρ
(
M
(
1,

1

1− λ1(CC⊤)

))
= 0 if r = n2 = 1.

Next we assume r > 1. To proceed, we consider the function τ : S11 → R2 defined as

τ(γ1, γ2) := [γ1γ2; (γ1 − 1)(γ2 − 1)]. (26)

Then we can write the image τ(S11) as

τ(S11) :=
{
[γ1γ2; (γ1 − 1)(γ2 − 1)] ∈ R2 : [γ1; γ2] ∈ S11

}
.

Note that we have α > 0 and β ≥ 0 for every [α, β] ∈ τ(S11).

On the other hand, observe that (16) can be written as

z2 −
(
(γ1 − 1)(γ2 − 1) + 1− γ1γ2

(
1− λi(CC⊤)

))
z + (γ1 − 1)(γ2 − 1) = 0. (27)

By inspecting (23) of Lemma 16 and (27), we find we can invoke Lemma 16 with s = r and ζi = 1− λr+1−i(CC⊤) and
obtain

min
[γ1;γ2]∈S11

(
max

i=1,...,r
fi(γ1, γ2)

)
= min

[α,β]∈τ(S11)

(
max

i=1,...,r
gi(α, β)

)
≥ min

α>0,β≥0

(
max

i=1,...,r
gi(α, β)

)
= max

i=1,...,r
gi(α

∗, β∗)

=

√
1− λr(CC⊤)−

√
1− λ1(CC⊤)√

1− λr(CC⊤) +
√
1− λ1(CC⊤)

,

(28)

where the last two steps follow from Lemma 16 with α∗ and β∗ defined as

α∗ =
( 2√

ζ1 +
√
ζr

)2
=

(
2√

1− λr(CC⊤) +
√
1− λ1(CC⊤)

)2

,

β∗ =
(√ζ1 −

√
ζr√

ζ1 +
√
ζr

)2
=

(√
1− λr(CC⊤)−

√
1− λ1(CC⊤)√

1− λr(CC⊤) +
√
1− λ1(CC⊤)

)2

.

We will show [α∗;β∗] ∈ τ(S11), as this will prove the inequality in (28) is in fact an equality. Indeed, we can always solve
the equations

γ1γ2 = α∗, (γ1 − 1)(γ2 − 1) = β∗

for γ1 and γ2 and obtain two solutions [γ∗
1 ; γ

∗
2 ] ∈ S11 and [γ∗

2 ; γ
∗
1 ] ∈ S11 (as the reader could verify), where γ∗

1 and γ∗
2 are

defined as

γ∗
1 =

(√
(1 +

√
ζr)(1 +

√
ζ1) +

√
(1−

√
ζr)(1−

√
ζ1)√

ζ1 +
√
ζr

)2

,

γ∗
2 =

(√
(1 +

√
ζr)(1 +

√
ζ1)−

√
(1−

√
ζr)(1−

√
ζ1)√

ζ1 +
√
ζr

)2

.
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Of course (γ∗
1 − 1)(γ∗

2 − 1) = β∗ by construction, so we have proved

min
[γ1;γ2]∈S11

(
max

i=1,...,r
fi(γ1, γ2)

)
= max

i=1,...,r
fi(γ

∗
1 , γ

∗
2) = max

i=1,...,r
fi(γ

∗
2 , γ

∗
1 ) =

√
β∗.

We can now finish the proof by inspecting Lemma 13 and the values of γ∗
1 and γ∗

2 . Specifically, we have the following three
cases.

• If r = n1 = n2, then neither 1 − γ∗
1 nor 1 − γ∗

2 is an eigenvalue of M(γ∗
1 , γ2), therefore both [γ∗

1 ; γ
∗
2 ] and [γ∗

2 ; γ
∗
1 ]

minimize ρ
(
M(γ1, γ2

)
on S11.

• If r = n1 < n2, then M(γ∗
1 , γ

∗
2) has one extra eigenvalue 1− γ∗

2 . Since γ∗
1 ≥ γ∗

2 ≥ 1 and β∗ = (γ∗
1 − 1)(γ∗

2 − 1) ≥
(γ∗

2 − 1)2, we have

min
[γ1;γ2]∈S11

(
max

i=1,...,r
fi(γ1, γ2)

)
= max

i=1,...,r
fi(γ

∗
1 , γ

∗
2) =

√
β∗ ≥ γ∗

2 − 1,

and therefore ρ
(
M(γ1, γ2)

)
is minimized at [γ∗

1 ; γ
∗
2 ] on S11.

• If r = n2 < n1, similarly, ρ
(
M(γ1, γ2)

)
is minimized at [γ∗

2 ; γ
∗
1 ] on S11.

C.2. Proof of Theorem 5

Here we prove Theorem 5. This is achieved by extending Lemma 14 into an analysis of the monotonicity of the determinant
∆(γ1, γ2) in (19). We begin with stating and proving Lemmas 17 and 18.

Lemma 17. Let ϕ ∈ (0, 1) and γ1 ∈ [1, 2) be fixed with γ1ϕ ̸= 1. Consider

∆(γ2) = (2− γ1 − γ2 + γ1γ2ϕ)
2 − 4(γ1 − 1)(γ2 − 1).

Let ξ1 and ξ2 be the two roots of ∆(γ2) = 0 with |ξ1| ≤ |ξ2|. Then 1 ≤ ξ1. Moreover, we have:

• ∆′(γ2) ≤ 0 for every γ2 ∈ [1, γ1].

• If γ1 ∈ [1, 2
1+

√
1−ϕ

], then ∆(γ2) ≥ 0 for every γ2 ∈ [1, γ1].

• If γ1 ∈ [ 2
1+

√
1−ϕ

, 2), then ξ1 ≤ γ1 and

∆(γ2) ≥ 0, ∀γ2 ∈ [1, ξ1],

∆(γ2) ≤ 0, ∀γ2 ∈ [ξ1, γ1].

Proof. Since γ1ϕ ̸= 1, we know ∆(γ2) is a quadratic function in γ2, and we can simplify its expression and calculate its
derivative as follows:

∆(γ2) = (γ1ϕ− 1)2γ2
2 + 2(2− γ1)(γ1ϕ− 1)γ2 − 4(γ1 − 1)γ2 + (2− γ1)

2 + 4(γ1 − 1)

= (γ1ϕ− 1)2γ2
2 − 2(γ1ϕ+ 1− 2ϕ)γ1γ2 + γ2

1 ,

∆′(γ2) = 2(2− γ1 − γ2 + γ1γ2ϕ)(γ1ϕ− 1)− 4(γ1 − 1)

= 2(γ1ϕ− 1)2γ2 − 2(γ1ϕ+ 1− 2ϕ)γ1.

Since γ1ϕ ̸= 1, the minimum of ∆(γ2) is attained at γ∗
2 := (γ1ϕ+ 1− 2ϕ)γ1/(γ1ϕ− 1)2. Next we verify ∆(γ∗

2 ) ≤ 0 and
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γ1 ≤ γ∗
2 : We have

∆(γ∗
2 ) ≤ 0 ⇔ − (γ1ϕ+ 1− 2ϕ)2γ2

1

(γ1ϕ− 1)2
+ γ2

1 ≤ 0

⇔ (γ1ϕ− 1)2 ≤ (γ1ϕ+ 1− 2ϕ)2

⇔ (1− ϕ)(γ1ϕ− ϕ) ≥ 0

⇔ (1− ϕ)(γ1 − 1) ≥ 0,

γ1 ≤ γ∗
2 ⇔ γ1 ≤ (γ1ϕ+ 1− 2ϕ)γ1

(γ1ϕ− 1)2

⇔ (γ1ϕ− 1)2 ≤ (γ1ϕ+ 1− 2ϕ)

⇔ γ2
1ϕ− 3γ1 + 2 ≤ 0,

and (1− ϕ)(γ1 − 1) ≥ 0 because ϕ ∈ (0, 1) and γ1 ∈ [1, 2), while γ2
1ϕ− 3γ1 + 2 ≤ 0 holds because γ2

1ϕ− 3γ1 + 2 ≤
(γ1 − 1)(γ1 − 2) ≤ 0.

With the above calculations, we immediately obtain ∆′(γ2) ≤ 0 for every γ2 ∈ [1, γ1]. And with γ1 ≥ 1 and ∆(1) ≥ 0, we
see ξ1 is real-valued, ξ1 ≥ 1, and

γ1 ≤ ξ1 ⇔ ∆(γ1) ≥ 0

⇔ (γ1ϕ− 1)2γ2
1 − 2(γ1ϕ+ 1− 2ϕ)γ2

1 + γ2
1 ≥ 0

⇔ (γ1ϕ− 1)2 − 2(γ1ϕ+ 1− 2ϕ) + 1 ≥ 0

⇔ γ2
1ϕ− 4γ1 + 4 ≥ 0

⇔ (2− γ1)
2 ≥ γ2

1(1− ϕ)

⇔ 2− γ1 ≥ γ1
√
1− ϕ

⇔ γ1 ≤ 2

1 +
√
1− ϕ

.

We now draw the other two statements. If γ1 ∈ [1, 2
1+

√
1−ϕ

], then γ1 ≤ ξ1, and therefore ∆(γ2) ≥ 0 for every γ2 ∈ [1, γ1].
On the other hand, assume γ1 ∈ [ 2

1+
√
1−ϕ

, 2). Then ξ1 ≤ γ1 ≤ γ∗
2 and ∆(γ1) ≤ 0, so ∆(γ2) ≥ 0 for each γ2 ∈ [1, ξ1] and

∆(γ2) ≤ 0 for each γ2 ∈ [ξ1, γ1].

Lemma 18. Let ϕ ∈ (0, 1) and γ1 ∈ [1, 2) be fixed with γ1ϕ ̸= 1. Consider the following quadratic equation in variable z
and its discriminant ∆(γ2):

z2 − (2− γ1 − γ2 + γ1γ2ϕ)z + (γ1 − 1)(γ2 − 1) = 0,

∆(γ2) := (2− γ1 − γ2 + γ1γ2ϕ)
2 − 4(γ1 − 1)(γ2 − 1).

Let z1(γ2), z2(γ2) be the two roots of the above quadratic equation, and let ξ1, ξ2 be the two roots of ∆(γ2) = 0 with
|ξ1| ≤ |ξ2|. Then 1 ≤ ξ1. Moreover, with f(γ2) :=

{
|z1(γ2)|, |z2(γ2)|

}
, we have:

• If γ1 ∈ [1, 2
1+

√
1−ϕ

], then f(γ2) is non-increasing in [1, γ1].

• If γ1 ∈ [ 2
1+

√
1−ϕ

, 2), then ξ1 ≤ γ1, f(γ2) is non-increasing in [1, ξ1], and

f(γ2) =
√

(γ1 − 1)(γ2 − 1), ∀γ2 ∈ [ξ1, γ1].

Proof of Lemma 18. The case with γ2 ∈ [ξ1, γ1] follows directly from Lemma 17. It remains to consider the case γ2 ∈
[1,min{ξ1, γ1}], where by Lemma 17 we know ∆(γ2) ≥ 0 and z1(γ2), z2(γ2) are real-valued. Moreover, in this case we
have

f(γ2) =
|2− γ1 − γ2 + γ1γ2ϕ|+

√
∆(γ2)

2
,
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and therefore the derivative of f(γ2) is given as

f ′(γ2) =


−1+γ1ϕ

2 + ∆′(γ2)

4
√

∆(γ2)
2− γ1 − γ2 + γ1γ2ϕ ≥ 0;

1−γ1ϕ
2 + ∆′(γ2)

4
√

∆(γ2)
2− γ1 − γ2 + γ1γ2ϕ < 0.

Furthermore, since ∆′(γ2) ≤ 0 for every γ2 ∈ [1, γ1] (Lemma 17), to prove f(γ2) is non-increasing in γ2 ∈ [1,min{ξ1, γ1}]
it suffices to show

2
√

∆(γ2) · |γ1ϕ− 1| ≤ |∆′(γ2)|,

but by Lemma 14 this indeed holds. The proof is complete.

We are in a position to begin proving Theorem 5:

Proof of Theorem 5. We use the notations in the proof of Theorem 3, recalled here for convenience: zi1(γ1, γ2) and
zi2(γ1, γ2) denote the two roots of (16) and

fi(γ1, γ2) := max
{
|zi1(γ1, γ2)|, |zi2(γ1, γ2)|

}
.

Define ∆(γ1, γ2) to be the discriminant of (16), that is

∆(γ1, γ2) :=
(
2− γ1 − γ2 + γ1γ2λ1(CC⊤)

)2
− 4(γ1 − 1)(γ2 − 1).

In light of the symmetry in the spectrum of M(γ1, γ2) (Lemma 13), we will assume γ2 ≤ γ1 without loss of generality. We
proceed by considering two cases, γ1λ1(CC⊤) ̸= 1 and γ1λ1(CC⊤) = 1.

Case 1: γ1λ1(CC⊤) ̸= 1. For this case, we roughly follow the proof logic in Part 2 of Theorem 3 with non-trivial
modifications to handle the extra difficulty brought by optimization over S11. First observe ∆(γ1, γ2) is quadratic in γ2, and
solving ∆(γ1, γ2) = 0 for γ2 gives two roots, ξ1(γ1) and ξ2(γ1). Without loss of generality we assume |ξ1| ≤ |ξ2|. We fix
γ1 ∈ [1, 2) and proceed by addressing two sub-cases, γ1 ∈ [1, γ∗

1 ] and γ1 ∈ [γ∗
1 , 2).

Case 1.1: γ1 ∈ [1, γ∗
1 ]. In this case, Lemma 18 suggests that γ2 7→ f1(γ1, γ2) is non-increasing in [1, γ1]. Furthermore, we

have |z11(γ1, γ1)| · |z12(γ1, γ1)| = (γ1 − 1)2, and therefore

f1(γ1, γ1) ≥ γ1 − 1 = γ2 − 1,

from which it follows that γ1 is a global minimizer of

min
γ2∈[1,γ1]

(
max

{
γ2 − 1, f1(γ1, γ2)

})
. (29)

We next prove
fi(γ1, γ̂2) ≤ max

{
γ̂2 − 1, f1(γ1, γ̂2)

}
, ∀i = 1, . . . , r, (30)

where γ̂2 is a global minimizer of (29), that is γ̂2 = γ1. In other words, we will prove fi(γ1, γ1) ≤ γ1 − 1 for every
i = 1, . . . , r. Note that fi(γ1, γ1) is associated with the quadratic equation

z2 −
(
2− 2γ1 + γ2

1λi(CC⊤)
)
z + (γ1 − 1)2 = 0. (31)

If its two roots zi1(γ1, γ1) and zi2(γ1, γ1) are complex, then fi(γ1, γ1) =
√
(γ1 − 1)2 = γ1 − 1, so (30) holds. Then we

consider the case where (31) admits real-valued roots, which means(
2− 2γ1 + γ2

1λi(CC⊤)
)2 − 4(γ1 − 1)2 ≥ 0 ⇔ γ2

1λi(CC⊤) ·
(
4− 4γ1 + γ2

1λi(CC⊤)
)
≥ 0

⇔ 4− 4γ1 + γ2
1λi(CC⊤) ≥ 0

⇒ 2− 2γ1 + γ2
1λi(CC⊤) ≥ 0.
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Here the last step follows from the fact γ1 ≥ 1. But then 2− 2γ1 + γ2
1λi(CC⊤) ≤ 2− 2γ1 + γ2

1λ1(CC⊤), it must be the
case that fi(γ1, γ1) ≤ f1(γ1, γ1), and we have proved (30). As a result, we have obtained (see, e.g., Lemma 11)

γ1 ∈ argmin
γ2∈[1,γ1]

(
max

{
γ2 − 1, max

i=1,...,r
fi(γ1, γ2)

})
,

which, by the definition of ρ
(
M(γ1, γ2)

)
, leads to

min
γ1∈[1,γ∗

1 ]
γ2∈[1,γ1]

ρ
(
M(γ1, γ2)

)
= min

γ1∈[1,γ∗
1 ]
max

{
γ1 − 1, min

γ2∈[1,γ1]

(
max

{
γ2 − 1, max

i=1,...,r
fi(γ1, γ2)

})}
= min

γ1∈[1,γ∗
1 ]
max

{
γ1 − 1, max

i=1,...,r
fi(γ1, γ1)

}
= min

γ1∈[1,γ∗
1 ]
ρ
(
M(γ1, γ1)

)
.

We can now finish the proof for Case 1.1 by invoking Proposition 2.

Case 1.2: γ1 ∈ [γ∗
1 , 2). Similarly to Case 1.1, from Lemma 18, we obtain 1 ≤ ξ1(γ1) ≤ γ1 and γ2 7→ f1(γ1, γ2) is

non-increasing in [1, ξ1(γ1)]. In particular, we have ∆(γ1, ξ1(γ1)) = 0, which means z11
(
γ1, ξ1(γ1)

)
= z12

(
γ1, ξ1(γ1)

)
and therefore

f1
(
γ1, ξ1(γ1)

)
=
√
(γ1 − 1)

(
ξ1(γ1)− 1

)
≥ ξ1(γ1)− 1.

Lemma 18 implies ∆(γ1, γ2) ≤ 0 for every γ2 ∈ [ξ1(γ1), γ1], so f(γ1, γ2) =
√

(γ1 − 1)(γ2 − 1) . We can now conclude
ξ1(γ1) is a global minimizer of (29), and moreover, we have

min
γ1∈[γ∗

1 ,2)
γ2∈[1,γ1]

max
{
γ1 − 1, γ2 − 1, f1(γ1, γ2)

}
= min

γ1∈[γ∗
1 ,2)

max
{
γ1 − 1,

√
(γ1 − 1)

(
ξ1(γ1)− 1

)}
= γ∗

1 − 1,

where the last equality follows from the fact ξ(γ∗
1) ≤ γ∗

1 , proved in Lemma 18. We have thus obtained a lower bound of
ρ
(
M(γ1, γ2

)
, that is

ρ
(
M(γ∗

1 , γ
∗
1)
)
= γ∗

1 − 1

= min
γ1∈[γ∗

1 ,2),γ2∈[1,γ1]
max

{
γ1 − 1, γ2 − 1, f1(γ1, γ2)

}
≤ min

γ1∈[γ∗
1 ,2),γ2∈[1,γ1]

max
{
γ1 − 1, γ2 − 1, max

i=1,...,r
fi(γ1, γ2)

}
= min

γ1∈[γ∗
1 ,2),γ2∈[1,γ1]

ρ
(
M(γ1, γ2)

)
.

We need to prove the above inequality is actually an equality. To do so, we can show fi(γ
∗
1 , γ

∗
1 ) ≤ γ∗

1 − 1 for every
i = 1, . . . , r. Note that fi

(
γ∗
1 , γ

∗
1

)
is associated with the equation

z2 −
(
2− 2γ∗

1 + (γ∗
1)

2 · λi(CC⊤)
)
z + (γ∗

1 − 1)2 = 0,

but the definition of γ∗
1 implies 4− 4γ∗

1 + (γ∗
1)

2λ1(CC⊤) = 0 and therefore

4− 4γ∗
1 + (γ∗

1)
2λi(CC⊤) ≤ 0, ∀i = 1, . . . , r.

This means fi(γ∗
1 , γ

∗
1 ) = γ∗

1 − 1 for every i = 1, . . . , r. We finished Case 1.

Case 2: γ1λ1(CC⊤) = 1. We will show that the minimum of ρ
(
M(γ1, γ2)

)
in this case is larger than or equal to its

minimum γ∗
1 − 1 in Case 1, that is,

min
γ1λ1(CC⊤)=1,γ2∈[1,γ1]

ρ
(
M(γ1, γ2)

)
≥ γ∗

1 − 1. (32)
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We consider two subcases, γ1 ≥ 4/3 and γ1 < 4/3.

Case 2.1: γ1 ≥ 4/3. First, recall γ∗
1 = 2

1+
√

1−λ1(CC⊤)
and note that

γ1 ≥ 4

3
⇔ λ1(CC⊤) ≤ 3

4

⇔ 2
√
1− λ1(CC⊤) ≥ 1

⇔ 1 ≥ 2

(
1−

√
1− λ1(CC⊤)

)
⇔ 1

λ1(CC⊤)
≥ 2

1 +
√
1− λ1(CC⊤)

⇔ γ1 − 1 ≥ γ∗
1 − 1.

But we know from Lemma 13 that γ1 − 1 is an eigenvalue of M(γ1, γ2), therefore (32) holds.

Case 2.2: γ1 < 4/3. Note that 1 ≤ γ2 ≤ γ1 < 2, so we can write

γ1 <
4

3
⇒ 2− γ1 > 2(γ1 − 1)

⇒ (2− γ1)
2 > 4(γ1 − 1)2

⇒ (2− γ1)
2 > 4(γ1 − 1)(γ2 − 1).

This means the quadratic equation
z2 − (2− γ1)z + (γ1 − 1)(γ2 − 1) = 0

always has two different roots. Moreover, since γ1λ1(CC⊤) = 1, Lemma 13 implies these two roots are eigenvalues
of M(γ1, γ2), and this quadratic equation coincides with (16), whose roots were denoted previously by z11(γ1, γ2) and
z12(γ1, γ2). We can then write

f1(γ1, γ2) = max{z11(γ1, γ2), z12(γ1, γ2)}

=
2− γ1

2
+

√
(2− γ1)2 − 4(γ1 − 1)(γ2 − 1)

2
.

Therefore γ2 7→ f1(γ1, γ2) is decreasing in [1, γ1], and we have thus obtained

f(γ1, γ1) = min
γ2∈[1,γ1]

f1(γ1, γ2).

We finish the proof by observing

min
γ2∈[1,γ1]

ρ
(
M(γ1, γ2)

)
≥ max

{
γ1 − 1, f1(γ1, γ1)

}
≥ γ∗

1 − 1,

where the last ineequality follows from Proposition 2 with the special case r = 1.

D. Extra Discussions on Gauss–Seidel
The classic Gauss-Seidel method applied to normal equations A⊤Ax = A⊤y is precisely a BGD method applied to
(1) with n blocks, each of size 1, and block i is with stepsize 1/aii, where aii is the i-th diagonal entry of A⊤A. This
stepsize rule also corresponds to block exact minimization. Again, this choice of stepsizes is sub-optimal. To see this,
consider a simple case where A has only two columns a1 and a2 (n = 2). By Lemma 1, the iterates of BGD satisfy
x+ − x∗ = M(γ1, γ2) · (x− x∗) with M(γ1, γ2) defined as

M(γ1, γ2) :=

[
1− γ1a

⊤
1 a1 −γ1a

⊤
1 a2

−γ2(1− γ1a
⊤
1 a1)a

⊤
2 a1 γ1γ2(a

⊤
1 a2)

2 + 1− γ2a
⊤
2 a2

]
.
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The Gauss-Seidel method takes stepsizes γ1 = 1/(a⊤
1 a1), γ2 = 1/(a⊤

2 a2), and one verifies that

ρ

(
M
( 1

a⊤
1 a1

,
1

a⊤
2 a2

))
= (a⊤

1 a2)
2/
(
(a⊤

1 a1) · (a⊤
2 a2)

)
.

On the other hand, it follows from Remark 7 that the minimum spectral radius in this case is zero; indeed, with stepsizes
γ1 = 1

a⊤
1 a1

, γ2 =
a⊤

1 a1

(a⊤
1 a1)·(a⊤

2 a2)−(a⊤
1 a2)2

we have

M(γ1, γ2) =

[
0 −a⊤

1 a2/(a
⊤
1 a1)

0 0

]
,

whose eigenvalues are zero. Note that this reasoning only provides a counter-example showing the stepsize sub-optimality
of the Gauss-Seidel method, and we are none the wiser: Finding closed-form optimal stepsizes of BGD in its full generality
has remained non-trivial for n > 2.

E. Proof for Theorems Related to Generalized Alternating Projection
Proof of Lemma 5. It follows directly from Exercise 2.8 of Vidal et al. (2016), and either Property 2.1 of Zhu & Knyazev
(2013) or Theorem 2.7 of Knyazev & Argentati (2007).

Proof of Lemma 6. With C := A⊤
2 A1, we have

A⊤A =

[
I1 C⊤

C I2

]
,

A⊤
2 A =

[
C I2

]
,

A⊤
1 A =

[
I1 C⊤] .

we need to prove

A⊤(I − γ2A2A
⊤
2 )(I − γ1A1A

⊤
1 )A =

[
I1 C⊤

C I2

](
I −

[
0 0

γ2C γ2I2

])(
I −

[
γ1I1 γ1C

⊤

0 0

])
.

We do so by first simplifying the two terms separately. The left-hand side can be written as

A⊤(I − γ2A2A
⊤
2 )(I − γ1A1A

⊤
1 )A = A⊤A− γ2A

⊤A2A
⊤
2 A− γ1A

⊤A1A
⊤
1 A+ γ1γ2A

⊤A2CA⊤
1 A

=

[
I1 C⊤

C I2

]
− γ2

[
C⊤C C⊤

C I2

]
− γ1

[
I1 C⊤

C CC⊤

]
+ γ1γ2

[
C⊤

I2

]
C
[
I1 C⊤] ,

and the right-hand side can be written as[
I1 C⊤

C I2

]
− γ2

[
I1 C⊤

C I2

] [
0 0
C I2

]
− γ1

[
I1 C⊤

C I2

] [
I1 C⊤

0 0

]
+ γ1γ2

[
I1 C⊤

C I2

] [
0 0
C CC⊤

]
.

Then, by inspection, it suffices to prove the following three matrix equations:[
C⊤C C⊤

C I2

]
=

[
I1 C⊤

C I2

] [
0 0
C I2

]
,[

I1 C⊤

C CC⊤

]
=

[
I1 C⊤

C I2

] [
I1 C⊤

0 0

]
,[

C⊤

I2

]
C
[
I1 C⊤] = [I1 C⊤

C I2

] [
0 0
C CC⊤

]
.

These can be easily verified, therefore the proof is complete.
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Proof of Corollary 1. By Theorem 2 we have

min
γ1>0,γ2>0

ρ
(
M(γ1, γ2)

)
=


√

1−λr(CC⊤)−
√

1−λ1(CC⊤)√
1−λr(CC⊤)+

√
1−λ1(CC⊤)

r = min{n1, n2};
1−

√
1−λ1(CC⊤)

1+
√

1−λ1(CC⊤)
. r < min{n1, n2}.

By Lemma 5 we have
√

1− λr(CC⊤) = sin(θr) and
√
1− λ1(CC⊤) = sin(θ1). The proof is then complete.

Remark 12. Here we describe the corresponding stepsizes γ∗
1 , γ

∗
2 that attain the above minimum. This is derived from

Theorem 5 and the proof of Theorem 4.

• If r = min{n1, n2}, then we have

γ∗
1 =

(√
(1 + sin(θ1))(1 + sin(θr)) +

√
(1− sin(θ1))(1− sin(θr))

sin(θr) + sin(θ1)

)2

,

γ∗
2 =

(√
(1 + sin(θ1))(1 + sin(θr))−

√
(1− sin(θ1))(1− sin(θr))

sin(θr) + sin(θ1)

)2

,

or

γ∗
1 =

(√
(1 + sin(θ1))(1 + sin(θr))−

√
(1− sin(θ1))(1− sin(θr))

sin(θr) + sin(θ1)

)2

,

γ∗
2 =

(√
(1 + sin(θ1))(1 + sin(θr)) +

√
(1− sin(θ1))(1− sin(θr))

sin(θr) + sin(θ1)

)2

.

In other words, in this case there are two sets of optimal parameters and they are symmetric. These stepsizes would
coincide with the stepsize rule of Fält & Giselsson (2017) if θr were equal to π/2. As justified, for generic subspaces
we have θr = π/2 with probability 0.

• if r < min{n1, n2}, then

γ∗
1 = γ∗

2 =
2

1 + sin(θ1)
,

which coincides with the stepsize rule of Fält & Giselsson (2017); see Table 1.

F. Code
F.1. Experiments on Least-Squares With Assumption 1 (Figure 1)

clc; clear all; format longG

cond_num = 1e5;
n_iter = 5000;

num_trials = 1;
m = 1000;
n1 = 300;
n2 = 500;
n = n1 + n2;
noise_level = 0.01;

errorsBGD = zeros(num_trials, n_iter+1);
errorsGD = zeros(num_trials, n_iter+1);
errorsHB = zeros(num_trials, n_iter+1);

times_BGD = zeros(num_trials, 1);
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% stepsizes of methods
global gammaGD alphaHB betaHB gamma1 gamma2;

for t=1:num_trials
%% generate data
[A, y, x, lambdamaxCC, lambdaminCC] = gen_data(m, n1, n2, noise_level, cond_num);

%% calculae stepsizes
minC = sqrt(1-lambdamaxCC);
maxC = sqrt(1-lambdaminCC);

lambdamaxAA = 1 + sqrt(lambdamaxCC);
lambdaminAA = 1 - sqrt(lambdamaxCC);

lambdamaxAA/lambdaminAA

gammaGD = 2 / (lambdamaxAA + lambdaminAA);

alphaHB = 4 / ( sqrt(lambdamaxAA) + sqrt(lambdaminAA) )ˆ2;
betaHB = ( sqrt(lambdamaxAA) - sqrt(lambdaminAA) )ˆ2;
betaHB = betaHB / ( sqrt(lambdamaxAA) + sqrt(lambdaminAA) )ˆ2;

gamma1 = (1+maxC)*(1+minC) / (maxC + minC)ˆ2 ;
gamma2 = gamma1;

%% run algorithm
[BGD_x, BGD_iters, BGD_time] = BGD(A, y, n1, n2, n_iter);
errorsBGD(t,:) = vecnorm(BGD_iters - x, 2, 1);

[HB_x, HB_iters, HB_time] = HB(A, y, n_iter);
errorsHB(t,:) = vecnorm(HB_iters - x, 2, 1);

[GD_x, GD_iterates, GD_time] = GD(A, y, n_iter);
errorsGD(t,:) = vecnorm(GD_iterates - x, 2, 1);

end

mean_errorsBGD = mean(errorsBGD,1);
mean_errorsGD = mean(errorsGD,1);
mean_errorsHB = mean(errorsHB,1);

[mean_errorsBGD; mean_errorsHB; mean_errorsGD]

function [BGD_x, BGD_iters, BGD_time] = BGD(A, y, n1, n2, n_iter)
tic;

global gamma1 gamma2;

c1 = 1-gamma1; c2 = 1-gamma2;

A1 = A(:, 1:n1);
A2 = A(:, n1+1:end);

C = A2’*A1;
Ay = A’*y;

BGD_x = zeros(n1+n2,1);
BGD_iters = BGD_x;
for i=1:n_iter

BGD_x(1:n1) = c1*BGD_x(1:n1) - gamma1*(C’*BGD_x(n1+1:end) - Ay(1:n1));
BGD_x(n1+1:end) = c2*BGD_x(n1+1:end) - gamma2*(C*BGD_x(1:n1) - Ay(n1+1:end));
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BGD_iters = [BGD_iters BGD_x];
end
BGD_time = toc;

end

function [GD_x, GD_iterates, GD_time] = GD(A, y, n_iter)
tic;

global gammaGD;

[m,n] = size(A);

AA = A’*A;
Ay = A’*y;

GD_x = zeros(n,1);
GD_iterates = GD_x;
for i=1:n_iter

GD_x = GD_x - gammaGD * (AA*GD_x - Ay);

GD_iterates = [GD_iterates GD_x];
end

GD_time = toc;
end

function [HB_x, HB_iters, HB_times] = HB(A, y, n_iter)
tic;

global alphaHB betaHB;

[m,n] = size(A);

AA = A’*A;
Ay = A’*y;

HB_x = zeros(n,1); HB_x_old = HB_x;
HB_iters = HB_x;
HB_times = [];
for i=1:n_iter

HB_x_new = HB_x - alphaHB * (AA*HB_x - Ay) + betaHB*(HB_x - HB_x_old);

HB_x_old = HB_x; HB_x = HB_x_new;

HB_iters = [HB_iters HB_x];
HB_times = [HB_times toc];

end

end

function [A, y, x, lambdamaxCC, lambdaminCC]= gen_data(m, n1, n2, noise_level, cond_num)
% cond_num = ( 1+sqrt(lambdamaxC) ) / ( 1-sqrt(lambdamaxC) )

lambdamaxC = (cond_num - 1) / (cond_num + 1);

%% generate

[C, lambdamaxCC, lambdaminCC] = gen_mat_random_bounded_svs(n2, n1, lambdamaxC);

[U, ˜, ˜] = svd(randn(m-n2, n1), ’econ’);

scale = vecnorm(C, 2, 1);
U = U .* sqrt(1- scale.ˆ2);
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A1 = [C; U]; % by construction, A1 is orthogonal (A1’*A1 = identity)
A2 = [eye(n2,n2); zeros(m-n2, n2)];

[U1, ˜, ˜] = svd(randn(n1,n1)); A1 = A1 * U1;
[U2, ˜, ˜] = svd(randn(n2,n2)); A2 = A2 * U2;

A = [A1 A2];

x = randn(n1+n2, 1);

noise = randn(m,1); noise = noise / norm(noise);

y = A*x + noise_level* noise;

x = A \ y;
end

function [C, lambdamaxCC, lambdaminCC] = gen_mat_random_bounded_svs(n2, n1, L)
% generate a n2xn1 matrix C such that
% the maximum and minimum singlar value of C are U and L respectively
% the rest singular values are randomly chosen in [0,L2]

num = min(n2,n1) - 1;

svs = L*rand(num,1);

svs = sort([svs; L], ’descend’);

lambdamaxCC = max(svs)*max(svs);
lambdaminCC = min(svs)*min(svs);

C = diag(svs);

if n1 > n2
C = [C zeros(n2, n1-n2)];

elseif n1 < n2
C = [C; zeros(n2-n1, n1)];

end
end

F.2. Experiments on Least-Squares (Without Assumption 1)

Below is the code implementing the heavy ball method in comparison to our proposal, block-wise QR orthogonalization
followed by BGD with the optimal stepsizes. As analyzed in the main paper, the code makes the point that the proposed
method would converge faster than the heavy ball method under the current problem configuration. That being said, it
should also be noted that this is still slower than practical least-squares solvers, e.g., QR orthogonalization followed by back
substitution to solve an upper triangular system, randomized methods, (preconditioned) conjugate gradient methods, or the
MATLAB backslash solver.

clc; clear all; format longG

%% setup
cond_num = 1e5;
n_iter = 5000;

num_trials = 1;
m = 1000;
n1 = 300;
n2 = 500;
n = n1 + n2;
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noise_level = 0.01;

%% run experiments
errorsBGD = zeros(num_trials, n_iter+1);
errorsHB = zeros(num_trials, n_iter+1);

for t=1:num_trials
%% generate data
[A, y, x] = gen_data(m, n, cond_num, noise_level);
%% calculate stepsizes

%% run algorithm
[BGD_x, Q1, Q2, R1, R2, BGD_iters, qrtime, BGD_times] = BGD(A, y, n1, n2, n_iter);
% the LS solution [x1, x2] can be found by backward substitution using R1 and R2.

errorsBGD(t,:) = Q1 * BGD_iters(1:n1, :) + Q2 * BGD_iters(n1+1:end, :) - y
errorsBGD(t,:) = vecnorm(errorsBGD(t,:), 2, 1);

[HB_x, HB_iters, HB_times] = HB(A, y, n_iter);
% errorsHB(t,:) = vecnorm(HB_iters - x, 2, 1);
errorsHB(t,:) = vecnorm(A*HB_iters - y, 2, 1);

end

mean_errorsBGD = mean(errorsBGD,1);
mean_errorsHB = mean(errorsHB,1);

BGD_qrtimes = qrtime + BGD_times;

figure(1);
plot(BGD_times, ’LineWidth’, 2);
hold on;
plot(BGD_times + qrtime, ’LineWidth’, 2);

plot(HB_times, ’LineWidth’, 2);
legend("BGD", "BGD+Ortho", "HB")

set(gca, ’FontSize’, 18)

figure(2);
plot(mean_errorsBGD, ’LineWidth’, 2);
hold on;

plot(mean_errorsHB, ’LineWidth’, 2);
legend("BGD+Ortho", "HB")

set(gca, ’YScale’, ’log’)
set(gca, ’FontSize’, 18)

function [BGD_x, Q1, Q2, R1, R2, BGD_iters, qrtime, BGD_times] = BGD(A, y, n1, n2, n_iter)

tic; % orthogonalize
[Q1, R1] = qr(A(:, 1:n1), 0);
[Q2, R2] = qr(A(:, n1+1:end), 0);
qrtime = toc;

% calculate stepsizes. We don’t count the running times here.
C = Q2’*Q1;

s = svd(C, 0);

gamma1 = 2/(1 + sqrt(1-max(s)ˆ2)); gamma2 = gamma1;
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tic; % run the algorithm
c1 = 1-gamma1; c2 = 1-gamma2;

Qy = [Q1 Q2]’*y;

BGD_x = zeros(n1+n2,1);
BGD_iters = BGD_x;
BGD_times = [];
for i=1:n_iter

BGD_x(1:n1) = c1*BGD_x(1:n1) - gamma1*(C’*BGD_x(n1+1:end) - Qy(1:n1));
BGD_x(n1+1:end) = c2*BGD_x(n1+1:end) - gamma2*(C*BGD_x(1:n1) - Qy(n1+1:end));

BGD_iters = [BGD_iters BGD_x];
BGD_times = [BGD_times toc];

end
end

function [HB_x, HB_iters, HB_times] = HB(A, y, n_iter)
% calculate stepsizes for HB. We don’t count the running times here.
e = eig(A’*A);
lambdamaxAA = max(e);
lambdaminAA = min(e);

alphaHB = 4 / ( sqrt(lambdamaxAA) + sqrt(lambdaminAA) )ˆ2;
betaHB = ( sqrt(lambdamaxAA) - sqrt(lambdaminAA) )ˆ2;
betaHB = betaHB / ( sqrt(lambdamaxAA) + sqrt(lambdaminAA) )ˆ2;

tic; % run the algorithm
[m,n] = size(A);

AA = A’*A;
Ay = A’*y;

HB_x = zeros(n,1); HB_x_old = HB_x;
HB_iters = HB_x;
HB_times = [];
for i=1:n_iter

HB_x_new = HB_x - alphaHB * (AA*HB_x - Ay) + betaHB*(HB_x - HB_x_old);

HB_x_old = HB_x; HB_x = HB_x_new;

HB_iters = [HB_iters HB_x];
HB_times = [HB_times toc];

end

end

function [A, y, x] = gen_data(m, n, cond_num, noise_level)

A = randn(m,n);

cond_numA = sqrt(cond_num);

[U, ˜, V] = svd(A, ’econ’);
s = 1 + (cond_numA - 1).*rand(n-2,1);

s = sort([s; 1; cond_numA], ’descend’);

A = U * diag(s) * V’;
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x = randn(n,1);

noise = randn(m,1); noise = noise / norm(noise);

y = A*x + noise_level* noise; % just to make sure that the minimum loss is not zero

x = A \ y;
end
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