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Abstract

We study an abstract framework for interactive learning called interactive esti-
mation in which the goal is to estimate a target from its “similarity” to points
queried by the learner. We introduce a combinatorial measure called dissimilarity
dimension which is used to derive learnability bounds in our model. We present
a simple, general, and broadly-applicable algorithm, for which we obtain both
regret and PAC generalization bounds that are polynomial in the new dimension.
We show that our framework subsumes and thereby unifies two classic learning
models: statistical-query learning and structured bandits. We also delineate how the
dissimilarity dimension is related to well-known parameters for both frameworks,
in some cases yielding significantly improved analyses.

1 Introduction
We study a general interactive learning protocol called interactive estimation. In this model, the
learner repeatedly queries the environment with an element from a set of alternatives, and observes a
stochastic reward whose expectation is given by an arbitrary measure of the “similarity” between
the queried alternative and the unknown ground truth. Thus, in rough terms, the goal is to estimate a
target from its similarity to queried alternatives. By studying such a general abstraction of interactive
learning, we are able to reason about the properties of a very broad family of learning settings, and to
make connections across a variety of contexts.

Our results are based on a combinatorial complexity measure we introduce called the dissimilarity
dimension, which is used to derive learnability bounds in our model. Intuitively, this measure
corresponds to the length of the longest sequence of alternatives in which each one has a similar
suboptimal value of similarity to all its predecessors. We then use the measure to analyze the
performance of a simple, broadly-applicable class of algorithms which repeatedly make new queries
that best fit the preceding observations. We prove both regret bounds and PAC generalization bounds
that are all polynomial in the dissimilarity dimension.

We show that our learning framework subsumes two classic learning models that were seemingly
unrelated prior to this work:

First, our model subsumes the statistical query (SQ) model, introduced by Kearns [19] for designing
noise-tolerant learning algorithms. In the SQ model, the learner can sequentially ask certain queries of
an oracle, who responds with answers that are only approximately correct, with the goal of correctly
estimating a target. Despite its simplicity, it has been proven to be a powerful model. Indeed, a wide
range of algorithmic techniques in machine learning are implementable using SQ learning. Thus, it
has been proven useful, not only for designing noise-tolerant algorithms, but also for its connections
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to other noise models, and as an explanatory tool to prove hardness of many problems (see the survey
of Reyzin [23]). We show that our framework subsumes the SQ model, and furthermore that the
dissimilarity dimension generalizes well-known parameters that characterize SQ learnability.

Second, our model captures structured bandits, in which the learner repeatedly chooses actions which
yield stochastic rewards, with the goal of minimizing regret relative to the best action in hindsight.
Over more than a decade, the eluder dimension [24] has been a central technique for analyzing regret
for contextual bandits and reinforcement learning (RL) with function approximation [30, 22, 29, 10].
We will see that the dissimilarity dimension is upper-bounded by the eluder dimension, and that there
can in fact be a large gap between the two. This sometimes leads to an improved analysis when
relying on the proposed dissimilarity measure rather than the eluder dimension.

Because SQ and bandits are both subsumed by our framework, all the results mentioned above directly
apply to those settings as well, including the applicability of our general-purpose algorithms.

To summarize, our main contributions are as follows:

• Unified framework. We derive a general framework which captures various interactive
learning settings, including specifically SQ and bandits.

• Novel dimension, performance bounds. We introduce the dissimilarity dimension that
is used to derive learnability bounds in our model. We study a general, simple algorithm,
and give a novel analysis that results in both regret and PAC generalization bounds that are
polynomial in the new dimension. We also give lower bounds in the SQ and bandit settings.

• Improved analysis. We show instances in which the standard analysis of a certain class of
algorithms using the eluder dimension yields bounds that are arbitrarily large, but in which
an analysis using our dimension yields low regret bounds.

Related work. The interactive estimation model we consider in this work is defined with respect to
an evaluation function that can be thought of as an arbitrary measure of the “similarity” between the
queried alternative and the target. Previously, Balcan and Blum [3] developed a theory of similarity-
based learning that generalizes kernel methods, providing sufficient conditions for a similarity
function to be useful for learning. Chen et al. [8] review several approaches to classification based
on similarity between examples, including, for instance, kernels and nearest neighbors. Ben-David
et al. [5] studied a learning-by-distances model that resembles ours using a metric as a measure of
similarity. In comparison to these works, our model admits an arbitrary similarity measure for which
we derive a general dimension, algorithm, and bounds.

In the context of bandit and reinforcement learning, a parameter called the decision-estimation
coefficient (DEC) has recently been proposed by Foster et al. [15] to characterize learnability in
interactive decision making. Unlike DEC, our dimension is combinatorial in nature, and applies to
settings like SQ, which are not captured by DEC.

As discussed above, our model subsumes SQ and bandits, both of which have been extensively
studied (see the references above as well as various surveys [20, 23]).

2 Setting
In this paper, we study an interactive learning protocol called interactive estimation. In this protocol,
the learner is provided with a set Z of alternatives, and an evaluation function ρ : Z × Z → [−1, 1].
Intuitively, ρ can be viewed as a measure of “similarity,” though it need not be symmetric. There
is also a distinguished alternative z∗ ∈ Z called the target, fixed throughout the interaction, and
unknown to the learner. In each of a sequence of steps t = 1, . . . , T , the learner selects one alternative
zt ∈ Z and receives a stochastic reward rt ∈ [−1, 1] drawn independently, conditioned on zt, with
expectation satisfying E[rt | zt] = ρ(zt | z∗). Informally, by choosing alternatives and observing their
similarity to z∗, the learner aims to get close to the target. The special case when rt = ρ(zt | z∗),
that is, when rewards are deterministic functions of the queried alternatives, is referred to as the
deterministic setting.

We generally assume ρ(z∗ | z∗) ≥ ρ(z | z∗) for all z ∈ Z and denote this optimal value as
α∗ := ρ(z∗ | z∗). We will assume that the value of α∗ is known to the learner or that we are provided
with an alternate optimality level α ≤ α∗ such that the task is to identify z with ρ(z | z∗) ≥ α. At the
end of Section 3 we discuss how this assumption can be relaxed.
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We consider two alternative goals for a learner in this model: sublinear regret and PAC generalization.
A learner achieves sublinear regret relative to an optimality level α ≤ α∗ if Regret(T, α) = o(T ),
where

Regret(T, α) =
T∑

t=1

(
α− ρ(zt | z∗)

)
.

We say that a learner achieves PAC generalization if for any ϵ, δ > 0 and α ≤ α∗, with probability at
least 1− δ (over the randomness of the query responses and the learner’s own randomization), after
m(ϵ, δ, α) interactions in the protocol above, the learner outputs ẑ such that ρ(ẑ | z∗) ≥ α− ϵ. The
function m(ϵ, δ, α) is referred to as sample complexity. We recover standard notions of regret and
PAC generalization by setting α = α∗.

Example 1 (Point on a sphere). Let ∥·∥ denote the standard Euclidean norm in Rn and let Z =
Sn−1 = {z ∈ Rn : ∥z∥ = 1} be the unit sphere in Rn. The goal is to estimate an unknown point
z∗ ∈ Sn−1 based on rewards equal to the inner product between the queries and the target, that is,
rt = ρsphere(zt | z∗) := ⟨zt, z∗⟩.

We now introduce the two main examples corresponding to classic learning models that are subsumed
by the interactive estimation model.

Example 2 (Structured bandits). Let A be an action set, F a space of reward functions f : A →
[−1, 1], and f∗ ∈ F the target reward function. In step t, the learner chooses an action at ∈ A and
receives reward rt ∈ [−1, 1] with E[rt | at] = f∗(at). The goal is to maximize the sum of rewards.
Let a∗ = argmaxa∈A f

∗(a) be an optimal action. To represent bandits in our formalism, we let
Z = F ×A, z∗ = (f∗, a∗), and ρbandits

(
(f, a)

∣∣ (f∗, a∗)) = f∗(a).

The structured bandit problem has been extensively studied, and Example 2 captures its expressiveness
within our framework. For example, it recovers the possibly simplest case of K-armed bandits, by
considering A = {1, ...,K} and F = [0, 1]K . At each round, the learner chooses arm at ∈ A and
observes a reward rt which is drawn from a distribution with mean f∗(at). See Appendix D for a
more concrete example of K-armed bandits instantiated within our framework. In Section 5 we also
give concrete bounds for other example classes including linear bandits and GLM bandits.

We remark that although the protocol in which the learner submits pairs (f, a) in each round rather
than an action a, may seem more complicated than the standard bandits protocol, it is in fact equivalent
as the function f is ignored in the evaluation. Moreover, this formulation naturally captures any
algorithms for realizable bandits. Such algorithms often keep track of a version space (set of functions
f consistent with the data), and so at each point of interaction, there is an implicit ft that is associated
with at produced at that time. The above protocol simply makes the choice of ft explicit.

Example 3 (SQ learning). Given a domain X , the goal is to learn a binary classifier h∗ : X → {±1}
from some hypothesis class H ⊆ {±1}X , based on training examples (x, y) drawn from some distribu-
tionD such that y = h∗(x). In step t, the learner produces a hypothesis ht and observes the accuracy
of ht on a fresh finite sample. In this case, Z = H, the evaluation function is equal to the expected ac-
curacy ρSQ(h | h∗) = Ex∼D[h(x)h∗(x)], and the reward is the empirical accuracy on a fresh sample.

The SQ learning model considered in this work (Example 3) differs from the original model of Kearns
[19] because it is restricted, as in previous works [7, 13, 31], to so-called correlational queries (called
CSQs) and assumes stochastic responses, as opposed to allowing arbitrary queries and adversarial
responses. We discuss relationships between various SQ variants in Appendix B.

We finish this section by introducing a central concept of this paper, a new combinatorial complexity
measure called the dissimilarity dimension which, as we will see, allows us to derive learnability
bounds for the interactive estimation protocol.

Definition 1 (Dissimilarity dimension). For a set Z , scalars α ∈ R, ϵ > 0, and evaluation function
ρ : Z × Z → [−1, 1], the dissimilarity dimension dρ(Z, α, ϵ) is the largest integer d for which there
exist z1, . . . , zd ∈ Z with ρ(zi | zi) ≥ α, and a scalar c ≤ α− ϵ, such that for all i < j,∣∣∣ρ(zi | zj)− c

∣∣∣ ≤ ϵ√
d
.
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Figure 1: An illustration of the dissimilarity dimension dρ(Z, α, ϵ) = 4. The figure shows ρ
values on the [0, 1] interval for a sequence of elements z1, z2, z3, z4. The four green points
represent self-evaluation values ρ(zi | zi) for i = 1, . . . , 4; all are greater than or equal to α.
The six blue points represent values ρ(zi | zj) for i < j; all are within the distance ϵ/

√
d from

the value c ≤ α− ϵ.

Furthermore, denote the monotonic dissimilarity dimension as dρ(Z, α, ϵ) := maxϵ′≥ϵ dρ(Z, α, ϵ′).
1

Note that dρ(Z, α, ϵ) = 0 if there is no z such that ρ(z | z) ≥ α, and otherwise dρ(Z, α, ϵ) ≥ 1. In
particular, if α ≤ α∗ then dρ(Z, α, ϵ) ≥ 1.

In rough terms, this dimension corresponds to the longest sequence of points with α-large self-
evaluation, such that the evaluation ρ(zi | zj) of each point zi relative to every successive point zj is
“small” (significantly less than α), and also tightly clustered around some value c. Thus, each point
is similar to itself, but dissimilar from all successive points to about the same degree. The idea is
illustrated in Figure 1. The monotonic dissimilarity dimension is the tightest upper bound on the
dissimilarity dimension that is non-increasing in ϵ.

Various concrete examples where the dissimilarity dimension can be bounded are provided in
Section 5. For instance, using a general bound for linear bandits from Section 5, we can show that
for the task of finding a point on a sphere based on inner products (Example 1), the dimension
dρsphere(Z, α, ϵ) ≤ 4n+ 3, a bound that is independent of both α and ϵ.

3 Algorithms and upper bounds
In this section we analyze algorithms for the interactive estimation protocol, which we call interactive
estimation algorithms. We show that when an interactive estimation algorithm satisfies two properties,
large self-evaluations and decaying estimation error, then its regret can be bounded using the
dissimilarity dimension. We introduce a simple algorithm (Algorithm 1), which satisfies these
properties for many standard classes of alternatives. The first property requires that the algorithm only
select alternatives that would achieve the expected reward of at least α if they were the target:

Definition 2 (α-large self-evaluations). An interactive estimation algorithm has α-large self-
evaluations if at every time step t = 1, . . . , T , it selects a query zt such that zt ∈ Zα, where

Zα = {z ∈ Z : ρ(z | z) ≥ α}. (1)

Algorithm 1 satisfies this property, with the optimality level α provided as input. At the end of the
section, we discuss the case when α is not provided and α∗ is unknown. We derive an optimistic
version of Algorithm 1 that achieves α∗-large self-evaluations with high probability.

The second property states that the queries produced by the algorithm provide increasingly good
estimates of the expected rewards in the previous rounds (that is they are good estimators with the
benefit of hindsight), as quantified by the square loss.

Definition 3 (Decaying estimation error). An interactive estimation algorithm has decaying estima-
tion error if there exists CT,δ ≥ 0 growing sublinearly in T , that is, CT,δ = o(T ), such that with

1We remark that the term
√
d in Definition 1 can be generalized to any function g(d) and state our main

results in terms of g. However, for ease of presentation we pick g(d) =
√
d as it simplifies the comparison

between the dissimilarity dimension and eluder dimension (e.g. Thm. 11 and Prop. 12).
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Algorithm 1 Interactive Estimation via Least Squares

1: Input: set of alternatives Z , evaluation function ρ, optimality level α, number of steps T .
2: for t = 1, . . . , T do

3: Submit the query zt = argmin
z∈Zα

t−1∑
i=1

(
ρ(zi | z)− ri

)2

.

4: Observe reward rt.
5: end for

probability at least 1− δ the sequence of queries z1, . . . , zT produced by the algorithm satisfies

t−1∑
i=1

(
ρ(zi | zt)− ρ(zi | z∗)

)2

≤ CT,δ (2)

for all t ∈ {1, . . . , T} simultaneously.

Algorithm 1 optimizes an empirical version of Eq. (2), with the observed rewards ri in place of the
expectations ρ(zi | z∗). Thus, in the deterministic setting, with ri = ρ(zi | z∗), Algorithm 1 satisfies
this property with CT,δ = 0. It can also be shown that it satisfies this property when the set of
alternatives is finite:

Theorem 4. Assume that |Z| <∞. Then Algorithm 1 satisfies the decaying estimation error property
with CT,δ = O

(
ln(T |Z|/δ)

)
.

In the general case, when Z is infinite, we show that Algorithm 1 satisfies the decaying estimation
error property with CT,δ = O

(
log(TN/δ)

)
where N is a suitable covering number of Z (see

Corollary 18 in Appendix A.1). For example, for linear bandits, which is an instance of Example 2
in which the action set and function class correspond to a subset of the unit ball in Rn, we obtain
CT,δ = O

(
n log(1/ϵ) + log(T/δ)

)
.

In Appendix A.3, we discuss an approach in which we have access to an online regression oracle for
the least squares problem in step 3. We show that a suitably modified version of Algorithm 1 has
a decaying estimation error as long as the online regression oracle achieves a sublinear regret (but
without further dependence on a covering number).

To develop some intuition how Algorithm 1 works, we can again consider the K-armed bandit
problem (a special case of Example 2), and suppose that α = 0.75. In each step, the algorithm
picks a pair (ft, at), where ft ∈ [0, 1]K is the vector of mean reward estimates and at is the arm with
the largest mean estimate. The estimates ft(a), a = 1, . . . ,K, are formed by optimizing the least
squares error of the observed rewards, under the constraint that at least one of the mean estimates
must be above 0.75. As a result, the algorithm pulls the arm with the largest average reward as long
as that average is above 0.75 (arms that have not been pulled are assumed to have averages above
0.75). If all the averages are below 0.75 then the algorithm selects the arm a with the smallest value
na(0.75− µ̂a)

2, where na is how many times the arm has been pulled so far and µ̂a is its average
reward; it can be verified that this solves the least squares problem subject to the constraint that at
least one of the mean estimates is above 0.75.

We next state our main results: a regret bound and a PAC generalization guarantee. They are both
based on bounding how many “bad” queries any algorithm with large self-evaluations and decaying
estimation error can make. Concretely, we say that a query z ∈ Z is ϵ-bad if its suboptimalty gap is
greater than ϵ, that is, if

ρ(z | z∗) < α− ϵ.

The next lemma shows that the number of ϵ-bad queries is upper bounded polynomially in the
dissimilarity dimension.

Lemma 5 (Few bad queries). Let ϵ, δ > 0, and let d = dρ(Z, α, ϵ) <∞ for some set Z , evaluation
function ρ and α ≤ α∗. Let Alg be an interactive estimation algorithm with α-large self-evaluations
and a decaying estimation error with some CT,δ. Then, with probability at least 1− δ, the number
of ϵ-bad queries that Alg makes in T steps is at most 2d1.5 ln(4/ϵ) + 12d2.5CT,δ/ϵ

2. Consequently,
if CT,δ ≥ ln(2T ), then with probability at least 1 − δ, the number of ϵ-bad queries is at most
36d2.5CT,δ/ϵ

2, and if CT,δ = 0 then it is at most 2d1.5 ln(4/ϵ).
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Algorithm 2 PAC Interactive Estimation

1: Input: set of alternatives Z , evaluation function ρ, optimality level α,
base interactive estimation algorithm Alg, parameters T , n1, n2.

2: Run algorithm Alg with the provided Z, ρ, α, T .
3: Sample n1 indices t1, . . . , tn1

uniformly at random from {1, . . . , T}.
4: For each ℓ = 1, . . . , n1, submit query ztℓ for n2 times; denote the average response r̄tℓ .
5: Let ℓ̂ = argmaxℓ∈{1,...,n1} r̄tℓ .
6: Output ẑ = ztℓ̂ .

The above result is the core component of our main theorems. The proof is given in Appendix A.4;
here we sketch the main ideas. The goal is to show that the “bad” interval [−1, α − ϵ] cannot
contain too many queries made by Alg. The proof starts by partitioning this interval into disjoint
subintervals and then bounds the number of queries in each subinterval. It does so by constructing
a graph with nodes corresponding to queries, which are connected by an edge if they satisfy the
dimension conditions. The decaying errors that imply a certain minimum number of edges (as a
function of number of queries). On the other hand, the dissimilarity dimension bounds the size of the
largest clique, which implies an upper bound on the number of edges (using Turán’s Theorem [26],
a standard result from extremal graph theory). Combining the bounds yields an upper bound on
the number of queries in the subinterval. Summing across subintervals proves the lemma.

The following theorems use Lemma 5 to bound both the regret and PAC sample complexity. The
proofs are deferred to Appendices A.6 and A.7.

Theorem 6 (Regret). Let δ, T > 0, and let d = dρ(Z, α, 1/T ) for some set Z , evaluation function ρ
and α ≤ α∗. Let Alg be an interactive estimation algorithm with α-large self-evaluations and a
decaying estimation error with some CT,δ . If CT,δ ≥ ln(2T ) then with probability at least 1− δ, the
regret of Alg satisfies

Regret(T, α) ≤ 1 + 12d1.25
√
CT,δT .

In the deterministic setting, Regret(T, α) ≤ 1 + 12d1.5.

For an algorithm with a decaying estimation error, the term CT,δ is sublinear in T , implying a
sublinear regret in Theorem 6. For example, Algorithm 1 has a decaying estimation error with CT,δ

that scales logarithmically with T/δ for many standard function classes, and so the overall regret
scales as O(

√
T log T ) (see Corollary 18 in Appendix A.1).

To derive PAC generalization guarantees, we apply a variant of online-to-batch reduction to any
algorithm with large self-evaluations and a decaying estimation error. The resulting approach, shown
in Algorithm 2, satisfies the following guarantee (proved in Appendix A.7):

Theorem 7 (PAC generalization). Let ϵ, δ > 0, and let d = dρ(Z, α, ϵ) for some set Z , evaluation
function ρ and α ≤ α∗. Let Alg be an interactive estimation algorithm with α-large self-evaluations
and a decaying estimation error with CT,δ ≥ ln(2T ), and suppose that we run Algorithm 2 with Alg
as the base algorithm, T ≥ 64d2.5(CT,δ/2)/ϵ

2, n1 = ⌈log2(4/δ)⌉, and n2 = ⌈128 ln(8n1/δ)/ϵ2⌉.
Then, with probability at least 1− δ, the output ẑ ∈ Z satisfies

ρ(ẑ | z∗) ≥ α− ϵ,

and the overall number of issued queries is O
(d2.5(CT,δ/2)+ln2(1/δ)

ϵ2

)
.

In the deterministic setting, it suffices to run Alg with T > 2d1.5 ln(4/ϵ) and return ẑ = zt̂ where
t̂ = argmaxt∈{1,...,T} rt is the index of the largest observed reward. Then, with probability 1, we
obtain ρ(ẑ | z∗) ≥ α− ϵ and issue at most O(d1.5 ln(4/ϵ)) queries.

Unknown α∗ and optimism. Algorithms 1 and 2 achieve performance guarantees with respect to a
provided optimality level α ≤ α∗. When it is not easy to provide a non-trivial α (for example, when
α∗ is unknown and cannot be non-trivially bounded), Algorithm 3 uses the optimistic least squares
algorithmic template (see, e.g., [24]) to ensure α∗-large self-evaluations with high probability and
to achieve a sublinear Regret(T, α∗). Algorithm 3 takes as input a confidence radius parameter R
of the same order as the decaying estimation error parameter CT,δ for Algorithm 1. We can
then show that z∗ ∈ Zt with high probability for all t ∈ {1, . . . , T}. Therefore, zt must satisfy

6



Algorithm 3 Optimistic Interactive Estimation via Least Squares

1: Input: set of alternatives Z , evaluation function ρ, number of steps T , confidence-set radius R.
2: for t = 1, . . . , T do
3: Compute confidence set

ẑt = argmin
z∈Z

t−1∑
i=1

(
ρ(zi | z)− ri

)2

,

Zt =

{
z ∈ Z :

t−1∑
i=1

(
ρ(zi | z)− ρ(zi | ẑt)

)2

≤ R

}
.

4: Submit the query zt = argmaxz∈Zt
ρ(z | z).

5: Observe reward rt.
6: end for

ρ(zt |zt) ≥ ρ(z∗ |z∗) = α∗. In Appendix A.1 we show this modified version of the algorithm satisfies
the decaying estimation error property. This technique allows us to achieve a sublinear Regret(T, α∗)
without knowing α∗ beforehand. Similar to the case of fixed α, it is possible to derive a version
of Algorithm 3 that leverages an online regression oracle. (See Appendix A.3 for details.)

4 Statistical queries
In this section we consider the statistical query (SQ) model, as defined in Example 3. In particular,
we study the connection between our generalized framework and SQ learning, showing specifically
that the dissimilarity dimension can be used to recover generalization bounds based on a known
combinatorial parameter that characterizes SQ learning, called the strong SQ dimension. There are
several notions of such a dimension [12, 25]. Here we focus on the one due to Szörényi [25]:

Definition 4 (Strong SQ dimension, [25]). For a fixed distributionD over X , the strong SQ dimension
of a hypothesis class H ⊆ {±1}X with respect to some ϵ > 0, denoted dimSQ(H, ϵ), is the largest
number d for which there exist h1, . . . , hd ∈ H such that:

(a) |⟨hi, hj⟩| ≤ 1− ϵ for all 1 ≤ i < j ≤ d, and
(b) |⟨hi, hj⟩ − ⟨hi′ , hj′⟩| ≤ 1

d for all 1 ≤ i < j ≤ d, 1 ≤ i′ < j′ ≤ d,

where ⟨h, h′⟩ := Ex∼D[h(x)h′(x)].

The dissimilarity and strong SQ dimensions are closely related to one another in the sense of each
providing a kind of polynomial bound on the other, as stated in the next proposition (see Appendix B.1
for the proof).

Proposition 8. Let D be a fixed distribution over X , and let H ⊆ {±1}X be a hypotheses class. For
ϵ > 0, let dSQ(ϵ) = dimSQ(H, ϵ), and let dρ(ϵ) = dρSQ(H, 1, ϵ).
If dρ(ϵ) ≥ 2 then

min
{
dSQ(ϵ),

⌊
4ϵ2 (dSQ(ϵ))

2
⌋}

≤ dρ(ϵ) ≤ max
{
dSQ(ϵ/4), 4ϵ

2 (dSQ(ϵ/4) + 1)2
}
. (3)

Similarly, if dρ(4ϵ) ≥ 2 then

min

{
dρ(4ϵ),

⌊√
dρ(4ϵ)

8ϵ

⌋}
≤ dSQ(ϵ) ≤ max

{
dρ(ϵ),

√
dρ(ϵ) + 1

2ϵ

}
. (4)

We next give a lower bound based on the strong SQ dimension, which together with Proposition 8
will allow us to lower bound sample complexity of any interactive estimation algorithm in the SQ
setting in terms of the dissimilarity dimension.

Theorem 9 (SQ lower bound). Let ϵ > 0, and let H ⊆ {±1}X be a hypothesis class with strong
SQ dimension dSQ = dimSQ(H, 2ϵ) ≥ 11. Let Alg be any interactive estimation algorithm with the
property that for any target h∗ ∈ H, Alg outputs an ϵ-approximation to h∗ with probability at least
2/3 using at most m queries. Then m > 3

√
dSQ/12.
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The proof relies on a reduction to a lower bound of Szörényi [25]. However, the lower bound of
Szörényi [25] holds within an SQ model that differs from ours, in that it allows adversarial query
responses. Therefore, we first need to show how to obtain a learning algorithm Alg′ that can be
used with an adversarial oracle from an interactive estimation algorithm Alg that uses an unbiased
stochastic query oracle (as we assume in this work). To do this, we apply the reduction technique
developed by Feldman et al. [13]. (See Appendix B.2 for the full proof and additional details.)

Combining Theorem 9 and Proposition 8 yields a lower bound on the sample complexity of interactive
estimation in the SQ setting, for a sufficiently small ϵ, in terms of the dissimilarity dimension:

Corollary 10. Let ϵ > 0, and let H ⊆ {±1}X be a hypothesis class with strong SQ dimension
dimSQ(H, 2ϵ) ≥ 11. Let dρ(ϵ) = dρSQ(H, 1, ϵ). Assume ϵ ≤ 1/

(
2
√
dρ(ϵ)

)
. Let Alg be any

interactive estimation algorithm with the property that for any target h∗ ∈ H, Alg outputs an
ϵ-approximation to h∗ with probability at least 2/3 using at most m queries. Then m > 3

√
dρ(ϵ)/12.

5 Bandits
In this section we focus on the bandits setting described in Example 2. We study the relationship
between the dissimilarity dimension and the eluder dimension [24], a common combinatorial dimen-
sion for bounding regret of bandit algorithms. We show that eluder dimension can be used to upper
bound the dissimilarity dimension, and we also highlight the cases when dissimilarity dimension
leads to a tighter analysis.

Throughout this section we follow the setup introduced in Example 2. We consider an action
set A, a class F of reward functions f : A → [−1, 1], and a target reward function f∗ ∈ F . We
map this to our setting by considering the set of alternatives Z = F × A, evaluation function
ρbandits

(
(f, a)

∣∣ (f ′, a′)) = f ′(a) and the target (f∗, a∗), where a∗ = argmaxa∈A f
∗(a).

5.1 Comparison with eluder dimension
We start by describing the relationship between our dimension and the eluder dimension. Following
Russo and Van Roy [24], we define ϵ-dependence and ϵ-eluder dimension as follows:

Definition 5 (ϵ-dependence). An action a ∈ A is ϵ-dependent on actions {a1, . . . , an} ⊆ A with
respect to F if any pair of functions f, f ′ ∈ F satisfying

√∑n
i=1(f(ai)− f ′(ai))2 ≤ ϵ also satisfies

|f(a)− f ′(a)| ≤ ϵ. Furthermore, an action a is ϵ-independent of {a1, . . . , an} with respect to F if
it is not ϵ-dependent on {a1, . . . , an}.

Definition 6 (ϵ-eluder dimension). The ϵ-eluder dimension dimE(F , ϵ) is the length d of the longest
sequence of elements in A such that every element is ϵ-independent of its predecessors. Moreover,
the monotone eluder dimension is defined as dimE(F , ϵ) := maxϵ′≥ϵ dimE(F , ϵ′).
The next theorem shows that the dissimilarity dimension is upper bounded by the eluder dimension
(see Appendix C.1 for a proof):

Theorem 11. Let Z = F ×A, ρ = ρbandits, ϵ > 0, α ≤ α∗. Then dρ(Z, α, 3ϵ/2) ≤ 9 dimE(F , ϵ).
Nevertheless, as the next example shows, the eluder dimension can be arbitrarily large, while the
dissimilarity dimension remains constant. In this example, the action set is a circle in R2, that is,
A = C := {v ∈ R2 : ∥v∥ = 1}. We fix two open semicircles U0, U1 ⊆ C with positive x and y
coordinates, respectively, and for any N ∈ N and ϵ > 0, construct a function class FN,ϵ with all the
functions f : A → [−1, 1] obtained by the following process. First, pick one of the semicircles Uj

and any N points from Uj . On each of these points, f can equal either +ϵ or −ϵ. Everywhere else
in Uj , f equals zero, and everywhere outside Uj , it equals the linear function ⟨v,a⟩ parameterized
by some v ∈ C \ Uj . Thus, the functions are constructed to be “simple” (namely, linear) near
the optimal action v, but complex far from it. The eluder dimension is large to capture overall
complexity, whereas the dissimilarity dimension is small to capture the simplicity near the optimum.
(See Appendix C.5 for the formal construction of FN,ϵ and the proof of Proposition 12.)

Proposition 12. Let ϵ ∈ (0, 1/2), N ∈ N and consider the action set A = C. Then, there is
a function class FN,ϵ ⊆ [−1, 1]A, such that for ZN,ϵ := FN,ϵ × A, ρ = ρbandits, it holds that
dρ(ZN,ϵ, 1, ϵ) ≤ 16, but the eluder dimension is lower bounded as dimE(FN,ϵ, ϵ) ≥ N .

Thus, our regret bound based on the dissimilarity dimension implies that (optimistic) least squares
algorithms have a regret independent of N . The same analysis with the eluder dimension [24] yields
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a regret bound scaling polynomially with N . This shows that in the cases when the function classes
are simple near the optimum, but complex far from it, the dissimilarity dimension can better capture
the statistical complexity of bandit optimization than the eluder dimension.

5.2 Dissimilarity dimension bounds
We next derive dissimilarity dimension bounds for several standard bandit classes. Existing bounds
on eluder dimension can be used to immediately bound the dissimilarity dimension, but in several
cases we are able to obtain tighter bounds.

We first consider linear bandits. Let Bn = {v ∈ Rn : ∥v∥ ≤ 1} be the unit ball in Rn. Actions are
chosen from a set A ⊆ Bn; the reward function class is F lb = {fθ : θ ∈ Θ}, where Θ ⊆ Bn and
fθ(a) = ⟨θ,a⟩. The corresponding set of alternatives is denoted Z lb = F lb × A. In this case we
obtain the following bound (see Appendix C.2 for a proof):

Theorem 13 (Linear bandits). Let Z lb be as defined above, let ρ = ρbandits, and let ϵ > 0, α ≤ α∗.
Then dρ(Z lb, α, ϵ) ≤ 4n+ 3. Moreover, when α = 1, then dρ(Z lb, α, ϵ) ≤ 2n+ 1.

The proof proceeds by deriving an upper bound as well as a lower bound on the rank of the matrix M
with entries Mij = ρ(zi | zj) − c obtained from elements z1, . . . , zd that satisfy the dimension
condition for d = dρ(Z, α, ϵ) with a scalar c. The upper bound on the rank is n+ 1, and the lower
bound is d/4 (which can be tightened to d/2 when M is symmetric). The upper bound is obtained by
basic linear algebra and the lower bound from a standard result on ranks of perturbed identity matrices
[2, Lemma 2.2]. Combining these bounds then yields the claim of Theorem 13. Similar to existing
bounds on eluder dimension [24, Proposition 6], our bound in Theorem 13 is linear in n. However,
the eluder dimension bound has an additional dependence on 1/ϵ, while our bound does not.

Next, we consider generalized linear model (GLM) bandits. Similar to linear bandits, the action
set is A ⊆ Bn, but the function class includes a nonlinearity. Specifically, we are provided with a
function g : R → R that is differentiable and strictly increasing, and consider the function class
Fglm = {fθ : θ ∈ Θ} where Θ ⊆ Bn and fθ(a) = g(⟨θ,a⟩). Furthermore, we assume that there
are h, h > 0 such that for all a ∈ A, θ ∈ Θ, we have h ≤ g′(⟨θ,a⟩) ≤ h. Define r = h/h. We again
denote Zglm = Fglm ×A. Using an existing bound on the eluder dimension for GLM bandits ([24],
Proposition 7) and the fact that our dimension is bounded by the eluder dimension (Theorem 11), we
obtain the following bound (see Appendix C.3 for a proof):

Theorem 14 (GLM bandits). Let Zglm be as defined above, let ρ = ρbandits, and let ϵ > 0, α ≤ α∗.
Then dρ(Zglm, α, ϵ) ≤ O(nr2 log(h/ϵ)).

By considering a different proof technique, along the lines of Theorem 13, it might be possible to
tighten this bound. We leave this extension for future work.

Next, we consider a bandit setting that is similar to GLMs, but in this case the non-linearity is provided
by the non-differentiable rectified linear unit (ReLU) activation function relu(x) = max{x, 0}. We
consider the action set A = Bn, and the set of reward functions F relu consisting of all functions of
the form fθ,b(a) = relu(⟨θ,a⟩ − b) for some θ ∈ Bn and b ∈ [0, 1). The subset of F relu with a fixed
value of b is denoted F relu

b , and we consider the set of alternatives Zrelu
b = F relu

b × Bn.

Unlike the classes considered above, this setting can be shown to be challenging to learn in the
general case. Indeed, it turns out that eluder dimension (as well as a related measure called star
dimension) is growing at least exponentially with n [21, 10]. The same lower bound can be shown
for the dissimilarity dimension by a similar proof technique. The following theorem also provides an
exponential upper bound, showing that in certain regimes the exponential dependence is tight (see
Appendix C.4 for a proof):

Theorem 15 (ReLU bandits). Let Zrelu be as defined above, let ρ = ρbandits, and let ϵ, b > 0 such
that b ≤ 1− ϵ. Then dρ(Zrelu

b , 1− b, ϵ) = O
(
ϵ−n/2

)
, and dρ(Zrelu

1−ϵ, ϵ, ϵ) = Ω
(
ϵ−n/2

)
.

We note that previous work ([10], Theorem 5.1) has shown that for a function class of one-layer
neural networks with ReLU activations, obtaining sublinear regret requires T = Ω(ϵ−(n−2)).

6 Conclusion
In this paper, we have introduced a new model for interactive estimation and proposed a new
combinatorial dimension, called dissimilarity dimension, to study the hardness of learning in this
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model. In (stochastic, correlational) statistical query learning, our dimension is polynomially related
to the strong SQ dimension. In bandits, our dimension is upper bounded by the eluder dimension, and
there are examples where the dissimilarity dimension leads to much tighter regret bounds.

While this work provides an initial investigation of the dissimilarity dimension, many open questions
remain. For example, our regret bound for the general setting scales as d1.25. Is it possible to tighten
this to linear dependence, as is the case, for example, for eluder dimension? On the algorithmic
side, we currently require solving a least squares problem of size t in iteration t. Although we also
introduce an algorithm that leverages an online regression oracle (see Appendix A.3), the oracle-based
approach still requires solving a least squares problem (on the data smoothed by the oracle). Is it
possible to derive dissimilarity-dimension-based regret bounds directly for the predictions produced
by the oracle? Ultimately, we hope investigations of relationships between dissimilarity dimension
and related notions may help us understand the hardness of learning in interactive settings.
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A Missing proofs of Section 3
A.1 Analysis of Least Squares Algorithms (Algorithms 1 and 3)
Our analysis relies on the following variant of Freedman’s inequality [16] (see Agarwal et al. [1,
Lemma 9] and Beygelzimer et al. [6, Theorem 1]).

Lemma 16 (Simplified Freedman’s inequality). Let R > 0 and let X1, . . . , Xn be a sequence of real-
valued random variables, such that for all i ∈ [n] it holds thatXi ≤ R and E[Xi |X1, . . . , Xi−1] = 0.
For any δ ∈ (0, 1), and η ∈ (0, 1/R), with probability at least 1− δ,

n∑
i=1

Xi ≤ η

n∑
i=1

E[X2
i |X1, . . . , Xi−1] +

ln(1/δ)

η
. (5)

Next we define an ϵ-cover of a set Z , that will be used in the bound of Theorem 17.

Definition 7 (ϵ-cover). Let ψ be the pseudometric over the set Z defined, for any z1, z2 ∈ Z , as

ψ(z1, z2) = sup
z∈Z

∣∣∣ρ(z | z1)− ρ(z | z2)
∣∣∣. (6)

We say a set N ⊆ Z is an ϵ-cover of Z with respect to ψ if for every z ∈ Z there exists some z′ ∈ N
such that ψ(z, z′) ≤ ϵ. We denote by N (Z, ϵ) the minimum cardinality of any ϵ-cover of Z .

For example, in the case of linear bandits (see Section 5.2) when Z = Z lb and ρ = ρbandits, it can be
shown that N (Z lb, ϵ) is upper bounded by the ℓ2-covering number of the n-dimensional unit ball.
This is because for any z, z1, z2 ∈ Θ×A,∣∣ρ(z | z1)− ρ(z | z2)

∣∣ = ∣∣⟨θ1,a⟩ − ⟨θ2,a⟩
∣∣ ≤ ∥θ1 − θ2∥∥a∥ ≤ ∥θ1 − θ2∥.

The bound on N (Z lb, ϵ) now follows because the ℓ2-covering number of the unit ball with radius ϵ is
O
(
(3/ϵ)n

)
(see, for example, Lemma D.1 of Du et al. [11]).

We next show that Algorithm 1 satisfies the decaying estimation error property with CT,δ that scales
logarithmically with the covering number with respect to ψ.

Theorem 17 (LS guarantee). Consider the setting from Section 2, where the learner sequentially
issues the queries z1, . . . , zT and receives responses r1, . . . , rT . Assume there is β ≥ 0 such that∣∣rt − E[rt | zt]

∣∣ ≤ β for all t, and β′ ≥ 2β such that for all z, z′,
∣∣ρ(z | z′)− ρ(z | z∗)

∣∣ ≤ β′. Let Z̃
be a set of alternatives such that z∗ ∈ Z̃ and let ẑt be defined as the least squares optimizer,

ẑt = argmin
z∈Z̃

t−1∑
i=1

(
ρ(zi | z)− ri

)2

.

Then, for any sequence of queries z1, . . . , zT ∈ Z̃ (possibly equal to ẑ1, . . . , ẑT ), we have with
probability 1− δ, for all t ∈ [T ] simultaneously,

t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)

)2

≤ CT,δ, and

z∗ ∈
{
z ∈ Z̃ :

t−1∑
i=1

(
ρ(zi | z)− ρ(zi | ẑt)

)2

≤ CT,δ

}
,

where CT,δ = 16ββ′ ln
(
2TN (Z̃, β′/T )

/
δ
)
.

Proof. For i = 1, . . . , T , let hi = (z1, r1, . . . , zi−1, ri−1, zi) denote the history of interaction up to
the query zi, but excluding the response ri, and let ξi = ri − ρ(zi | z∗). In the interactive estimation
setting, we then have E[ξi | hi] = 0, and by the lemma assumption, E[ξ2i | hi] ≤ β2.

Since ẑt is the minimizer of the least squares loss up to time t, we have

t−1∑
i=1

(
ρ(zi | ẑt)− ri

)2

≤
t−1∑
i=1

(
ρ(zi | z∗)− ri

)2

,

12



which can be rewritten, substituting ri = ρ(zi | z∗) + ξi, as
t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)− ξi

)2

≤
t−1∑
i=1

ξ2i .

Therefore, by re-arranging terms, we get
t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)

)2

≤ 2

t−1∑
i=1

ξi

(
ρ(zi | ẑt)− ρ(zi | z∗)

)
. (7)

Set ϵ1 = β′/T , and let N be a minimal ϵ1-cover of Z̃ with respect to the pseudometric ψ (see Eq. 6).
Furthermore, let ẑϵt ∈ N be an element of this cover that is ϵ1-close to ẑt (with respect to ψ). Then,

t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)

)2

≤ 2

t−1∑
i=1

ξi

(
ρ(zi | ẑt)− ρ(zi | z∗)

)
= 2

t−1∑
i=1

ξi

(
ρ(zi | ẑt)− ρ(zi | ẑϵt )

+ ρ(zi | ẑϵt )− ρ(zi | z∗)
)

≤ 2tβϵ1 + 2

t−1∑
i=1

ξi

(
ρ(zi | ẑϵt )− ρ(zi | z∗)

)
, (8)

where the first inequality follows from Eq. (7), and the last inequality follows because |ξi| ≤ β and
ẑϵt is ϵ1-close to ẑt.

Now, for any z ∈ N and i ∈ [T ], define

Kz
i = ξi

(
ρ(zi | z)− ρ(zi | z∗)

)
.

Since E[ξi | hi] = 0, we have, for any fixed z ∈ N , E[Kz
i | hi] = 0. This means that for any fixed

z ∈ N , Kz
1 , . . . ,K

z
T is a martingale difference sequence. By the lemma assumptions, |Kz

i | ≤ ββ′.
Also,

E
[
(Kz

i )
2
∣∣ hi] ≤ β2E

[(
ρ(zi | z)− ρ(zi | z∗)

)2 ∣∣∣ hi] = β2
(
ρ(zi | z)− ρ(zi | z∗)

)2
. (9)

Thus, by Freedman’s inequality (Lemma 16) with η = 1/(4ββ′) and δ′ = δ
T |N | , we obtain that for

any fixed z ∈ N and t ∈ [T ], with probability at least 1− δ′,
t−1∑
i=1

ξi

(
ρ(zi | z)− ρ(zi | z∗)

)
≤ 1

4ββ′

t−1∑
i=1

β2
(
ρ(zi | z)− ρ(zi | z∗)

)
+ 4ββ′ ln

(
T |N |
δ

)

=
β

4β′

t−1∑
i=1

(
ρ(zi | z)− ρ(zi | z∗)

)2

+ 4ββ′ ln

(
T |N |
δ

)
. (10)

Taking a union bound over all z ∈ N and t ∈ [T ], we obtain that Eq. (10) holds with probability at
least 1− δ simultaneously for all z ∈ N and t ∈ [T ]. Henceforth, we assume that we are in the event
when Eq. (10) holds for all z ∈ N and t ∈ [T ].

Applying the bound of Eq. (10) with z = ẑϵt to the sum on the right-hand side of Eq. (8) then yields
t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)

)2

≤ 2tβϵ1 +
β

2β′

t−1∑
i=1

(
ρ(zi | ẑϵt )− ρ(zi | z∗)

)2

+ 8ββ′ ln

(
T |N |
δ

)
.

(11)

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, which holds for any a, b ∈ R, and the fact that ẑϵt and ẑt
are ϵ1-close, we obtain, for every i = 1, . . . , t− 1,(

ρ(zi | ẑϵt )− ρ(zi | z∗)
)2

=
([
ρ(zi | ẑϵt )− ρ(zi | ẑt)

]
+

[
ρ(zi | ẑt)− ρ(zi | z∗)

])2
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≤ 2ϵ21 + 2
(
ρ(zi | z∗)− ρ(zi | ẑt)

)2
.

Plugging this into the right-hand side of Eq. (11) yields
t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)

)2

≤ 2tβϵ1 +
β

β′ tϵ
2
1 +

β

β′

t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)

)2

+ 8ββ′ ln

(
T |N |
δ

)
≤ 2tβϵ1 +

tβϵ21
β′ +

1

2

t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)

)2

+ 8ββ′ ln

(
T |N |
δ

)
,

where the last inequality follows by the assumption that β′ ≥ 2β. Then, by re-arranging terms and
multiplying by 2, we get

t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)

)2

≤ 4tβϵ1 +
2tβϵ21
β′ + 16ββ′ ln

(
T |N |
δ

)
.

Recall that we set ϵ1 = β′/T , and N is a minimal ϵ1-cover of Z̃ , so |N | = N (Z̃, β′/T ). Plugging
these values in the previous equation, we thus obtain that with probability at least 1 − δ, for all
t ∈ [T ],

t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | z∗)

)2

≤ 4ββ′ +
2ββ′

T
+ 16ββ′ ln

(
TN (Z̃, β′/T )

δ

)

≤ 16ββ′ ln

(
2TN (Z̃, β′/T )

δ

)
, (12)

where the last inequality follows because 4 + 2/T ≤ 16 ln 2 for T ≥ 1. Finally, when Eq. (12) holds,
we also have

z∗ ∈
{
z ∈ Z̃ :

t−1∑
i=1

(
ρ(zi | z)− ρ(zi | ẑt)

)2

≤ 16ββ′ ln

(
2TN (Z̃, β′/T )

δ

)}
.

Considering Algorithm 1 and using Theorem 17 with Z̃ = Zα, zt = ẑt, β = 2 and β′ = 4 then
immediately yields the following corollary (α-large self-evaluations follow because ẑt ∈ Zα):

Corollary 18. Consider the setting from Section 2 with a set of alternatives Z and an evaluation
function ρ. Let α be an optimality level such that N (Zα, 4/T ) = eo(T ). Then Algorithm 1 has α-large
self-evaluations and satisfies the decaying error property with CT,δ = 128 ln

(
2TN (Zα, 4/T )

/
δ
)
.

Similarly, Theorem 17 also implies that Algorithm 3 satisfies the decaying error property as well as
α∗-large self-evaluations, although α∗ is not known:

Corollary 19. Consider the setting from Section 2 with a set of alternatives Z and an evaluation func-
tion ρ, and assume that N (Z, 4/T ) = eo(T ). Then Algorithm 3 with R = 128 ln

(
2TN (Z, 4/T )

/
δ
)

has α∗-large self-evaluations and satisfies the decaying error property with CT,δ = 4R =
512 ln

(
2TN (Z, 4/T )

/
δ
)
.

Proof. We apply Theorem 17 with Z̃ = Z , β = 2 and β′ = 4. Our choice of R in Algorithm 3
coincides with the value of CT,δ appearing in Theorem 17, and therefore the theorem implies that
z∗ ∈ Zt with probability at least 1 − δ for all t ∈ [T ]. In that case the queries zt issued by the
algorithm satisfy ρ(zt | zt) ≥ ρ(z∗ | z∗) = α∗ and thus the algorithm has α∗-large self-evaluations.

For the second part, the triangle inequality implies that with probability at least 1− δ for all t ∈ [T ],√√√√t−1∑
i=1

(
ρ(zi | z)− ρ(zi | zt)

)2

≤

√√√√t−1∑
i=1

(
ρ(zi | z)− ρ(zi | ẑt)

)2

+

√√√√t−1∑
i=1

(
ρ(zi | ẑt)− ρ(zi | zt)

)2

≤
√
R+

√
R,

where the bound on the first term on the right-hand side follows by Theorem 17 and the bound on the
second term by the fact that zt ∈ Zt.
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A.2 Proof of Theorem 4
The theorem follows immediately from Corollary 18, because N (Zα, ϵ) ≤ |Zα| ≤ |Z| <∞ for any
α and ϵ.

A.3 Online Regression Oracles
We assume access to an online regression oracle Reg, which solves a regression problem over
a function class Φ = {ϕz : z ∈ Z} indexed by z ∈ Z , where ϕz : Z → R is defined as
ϕz(z

′) = ρ(z′ | z) for all z′ ∈ Z; that is, functions ϕz evaluate ρ in its first argument.

The oracle operates in the following protocol: In each time step, the oracle receives an observation zt,
produces a prediction ρ̂t ∈ R, and finally receives a response rt and incurs square loss (ρ̂t − rt)

2.
We assume that for any T and sequence of observations and responses (even if generated adaptively),
the oracle satisfies the following regret bound:

T∑
t=1

(ρ̂t − rt)
2 − inf

z∈Z

T∑
t=1

(ρ(zt | z)− rt)
2 ≤ RegretReg(T ), (13)

where RegretReg(·) is a non-decreasing sublinear function (that typically also depends on various
properties of ρ, Z , and the range of responses rt). For many function classes, there are well-known
constructions of online regression oracles that satisfy Eq. (13) [9, 28, 18]. For example, if Φ is finite,
there are oracles with RegretReg(T ) = O(ln|Φ|) and for parametric classes, such as linear functions,
there are oracles with RegretReg(T ) = O(d log(T/d)). More examples can be found in Section 2.2
of Foster and Rakhlin [14].

Algorithm 4 Interactive Estimation via Least Squares

1: Input: online regression oracle Reg, optimality level α.
2: Initialize z1 to an arbitrary element of Zα.
3: for t = 1 . . .T do
4: Use Reg to predict ρ̂t given the observation zt.
5: Observe reward rt+1 and pass it to Reg.

6: Set zt+1 = argmin
z∈Zα

t∑
i=1

(
ρ(zi | z)− ρ̂i

)2

.

7: end for

We now analyze Algorithm 4 under the assumption of access to an online regression oracle. This
algorithm takes as input an online regression oracle Reg. Algorithm 4 can also be modified using the
optimistic least squares template of Russo and Van Roy [24] to handle the case when α∗ is unknown.
This is done by replacing step 6 of Algorithm 4 with the following two steps:

Zt+1 =
{
z ∈ Z :

t∑
i=1

(ρ(zi | z)− ρ̂i)
2 ≤ R

}
,

zt+1 = argmax
z∈Zt+1

ρ(z | z),

where R = 8RegretReg(T ) + 64βmax{β, β′} ln
(
T
δ

)
and β, β′ are defined as in Lemma 20. The

results of Lemma 20 justify the validity of these choices (using a similar reasoning as in Corollary 19)
and imply that Algorithm 4 satisfies the decaying estimation error property (Definition 3), provided
that the regression oracle Reg satisfies the regret bound of Eq. (13).

Lemma 20. Consider the setting defined in Section 2 with α ≤ α∗, and assume there are β, β′ ≥ 0
such that |rt − E[rt | zt]| ≤ β for all t and there is β′ ≥ 2β s.t. for all z ∈ Z and ρ̂ ∈ Γz ,∣∣ρ̂ − ρ(z | z∗)

∣∣ ≤ β′ where Γz ⊂ R is the space of plausible responses of Reg for input z. The
sequence of queries z1, . . . , zT as defined in Algorithm 4 satisfies with probability at least 1− δ for
all t ∈ [T ] simultaneously,

t∑
i=1

(ρ(zi | zt+1)− ρ(zi | z∗))2 ≤ CT,δ and z∗ ∈
{
z ∈ Zα :

t∑
i=1

(ρ(zi | z)− ρ̂i)
2 ≤ CT,δ

}
where CT,δ = 8RegretReg(T ) + 64βmax{β, β′} ln

(
T
δ

)
.
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Proof. Let ξi = ri − ρ(zi | z∗). Recall that E[ri | zi] = ρ(zi | z∗) and therefore, by assumption,
|ξi| ≤ β for all i. By definition, the online regression oracle satisfies

t∑
i=1

(ρ̂i − ri)
2 ≤ inf

z∈Z

t∑
i=1

(ρ(zi | z)− ri)
2 +RegretReg(t)

(i)

≤
t∑

i=1

(ρ(zi | z∗)− ri)
2 +RegretReg(t)

=

t∑
i=1

ξ2i +RegretReg(t). (14)

Inequality (i) holds because z∗ ∈ Z . Expanding the LHS,

t∑
i=1

(ρ̂i − ri)
2 =

t∑
i=1

[
(ρ̂i − ρ(zi | z∗))2 − 2ξi(ρ̂i − ρ(zi | z∗)) + ξ2i

]
.

Plugging this back into Eq. (14) and rearranging, we obtain
t∑

i=1

(ρ̂i − ρ(zi | z∗))2 ≤
t∑

i=1

2ξi(ρ̂i − ρ(zi | z∗)) + RegretReg(t). (15)

For any i ∈ [T ] we define:
Ki = ξi(ρ̂i − ρ(zi | z∗))

Observe that
E
[
Ki | {zℓ, ρ̂ℓ}iℓ=1

]
= 0.

Thus K1, . . . ,KT is a martingale difference sequence. Notice that |Ki| ≤ ββ′ and that

E
[
K2

i

∣∣ {zℓ, ρ̂ℓ}iℓ=1

]
≤ β2E

[(
ρ̂i − ρ(zi | z∗)

)2 ∣∣ {zℓ, ρ̂ℓ}iℓ=1

]
= β2

(
ρ̂i − ρ(zi | z∗)

)2
.

Then, by plugging this into Freedman’s inequality (Lemma 16) with η := 1
4 min(1/β2, 1/ββ′) and

δ′ := δ/T , we get that for any fixed t ∈ [T ], with probability at least 1− δ,

t∑
i=1

ξi
(
ρ̂i − ρ(zi | z∗)

)
≤ 1

4

t∑
i=1

(
ρ̂i − ρ(zi | z∗)

)2
+ 4βmax{β, β′} ln

(
T

δ

)
. (16)

Plugging Eq. (16) back into Eq. (15) and rearranging terms yields
t∑

i=1

(ρ̂i − ρ(zi | z∗))2 ≤ 2RegretReg(t) + 16βmax{β, β′} ln
(
T

δ

)
(17)

with probability at least 1− δ for all t ∈ [T ]. Thus we conclude that with probability at least 1− δ,
for all t ∈ [T ],

z∗ ∈
{
z ∈ Zα :

t∑
i=1

(ρ(zi | z)− ρ̂i)
2 ≤ CT,δ

}
.

By the triangle inequality,√√√√ t∑
i=1

(ρ(zi | z∗)− ρ(zi | zt+1))2 ≤

√√√√ t∑
i=1

(ρ(zi | z∗)− ρ̂i)2 +

√√√√ t∑
i=1

(ρ̂i − ρ(zi | zt+1))2.

Since by definition zt+1 = argminz∈Zα

∑t
i=1

(
ρ(zi | z)− ρ̂i

)2

, we have

t∑
i=1

(
ρ(zi | zt+1)− ρ̂i

)2

≤
t∑

i=1

(
ρ(zi | z∗)− ρ̂i

)2

.
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Substituting back into the triangle inequality above,√√√√ t∑
i=1

(ρ(zi | z∗)− ρ(zi | zt+1))2 ≤ 2

√√√√ t∑
i=1

(ρ(zi | z∗)− ρ̂i)2,

implying
t∑

i=1

(ρ(zi | z∗)− ρ(zi | zt+1))
2 ≤ 4

t∑
i=1

(ρ(zi | z∗)− ρ̂i)
2.

Plugging Eq. (17) on the right-hand side yields
t∑

i=1

(ρ(zi | z∗)− ρ(zi | zt+1))
2 ≤ 8RegretReg(t) + 64βmax{β, β′} ln

(
T

δ

)
.

The result follows by using the monotonicity of RegretReg(t).

A.4 Proof of Lemma 5
The proof uses Turán’s Theorem [26], a standard result from extremal graph theory that bounds the
number of edges of a graph that does not contain a clique of a given size:

Theorem 21 (Turán’s Theorem). Let G = (V,E) be an undirected graph without self-loops and
whose largest clique is of size at most d. Then

|E| ≤
(
1− 1

d

)
|V |2

2
.

We now turn to the proof of Lemma 5. First note that if ϵ ≥ 1 + α then no query is ϵ-bad, because
α − ϵ ≤ −1 ≤ ρ(z | z∗) for every z ∈ Z , and therefore the lemma holds. In the remainder of the
proof, we assume that 0 < ϵ < 1 + α.

Consider the queries z1, . . . , zT and their corresponding values relative to z∗, denoted as vt =
ρ(zt |z∗) for t ∈ [T ]. A query zt is ϵ-bad if its corresponding value vt is in the interval I = [−1, α−ϵ).
The proof proceeds by partitioning the interval I into subintervals and separately bounding the number
of values vt in each subinterval.

To define these subintervals, let q = 1 + 1√
d

, and consider the sequence of suboptimality gaps
ϵi = qi−1ϵ for i = 1, . . . , n+ 1, where

n =

⌈
logq

(
1 + α

ϵ

)⌉
.

The gaps ϵi form an increasing sequence ϵ, qϵ, q2ϵ, . . . such that the last element satisfies

ϵn+1 = qnϵ ≥
(
1 + α

ϵ

)
ϵ = 1 + α.

Using these gaps we define intervals Ii = [α− ϵi+1, α− ϵi) for i = 1, . . . , n. Since ϵn+1 ≥ 1 + α,
the union I1 ∪ · · · ∪ In = [α− ϵn+1, α− ϵ) covers the interval I . We bound the number of values vt
in each interval Ii.

Let Si be the set of query indices with values in Ii, that is Si =
{
t ∈ [T ] : ρ(zt | z∗) ∈ Ii

}
, let

mi = |Si|, and assume that mi ≥ 2 (the case mi ≤ 1 will be dealt with later). Furthermore, let
ci = α − (ϵi+1 + ϵi)/2 be the midpoint of the interval Ii. Since the width of the interval Ii is
ϵi+1 − ϵi = (q − 1)ϵi = ϵi/

√
d, we obtain∣∣ρ(zt | z∗)− ci

∣∣ ≤ ϵi

2
√
d

(18)

for all t ∈ Si.

Let di = dρ(Z, α, ϵi) be the (non-monotonic) dissimilarity dimension with respect to the subopti-
mality gap ϵi. Since α ≤ α∗ and ϵi ≥ ϵ, we have 1 ≤ di ≤ d. We construct an upper bound on mi,
exploiting the fact that di is the dissimilarity dimension with respect to ϵi.
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In the rest of the proof we refer to a pair of queries with indices s, t ∈ Si such that s < t as dissimilar
if ∣∣ρ(zs | zt)− ci

∣∣ ≤ ϵi√
di
.

This is exactly the property appearing in the definition of the dissimilarity dimension with respect
to ϵi, and so there cannot be more than di queries such that every pair is dissimilar (note that all the
queries zt satisfy ρ(zt | zt) ≥ α thanks to α-large self-evaluations).

The derivation of the bound on mi proceeds in several steps. First, we identify pairs of dissimilar
queries and construct a graph where each edge corresponds to a dissimilar pair. Second, we use
Turán’s Theorem (Theorem 21) to upper bound the number of such pairs, using the fact that the graph
cannot contain a clique of size greater than di. Finally, using the bound on the number of dissimilar
pairs, we bound mi.

To start, let t1 < t2 < . . . < tmi
be the query indices included in Si, and let k ∈ {2, . . . ,mi}.

Consider a uniform distribution over ℓ ∈ [k − 1]. Then by Markov’s inequality and the decaying
estimation error property, we obtain

1

k − 1

k−1∑
ℓ=1

1

[(
ρ(ztℓ | ztk)− ρ(ztℓ | z∗)

)2

≥ ϵ2i
4d

]
≤

[
1

k − 1

k−1∑
ℓ=1

(
ρ(ztℓ | ztk)− ρ(ztℓ | z∗)

)2
]
· 4d
ϵ2i

≤

[
1

k − 1

tk−1∑
s=1

(
ρ(zs | ztk)− ρ(zs | z∗)

)2
]
· 4d
ϵ2i

≤ CT,δ

k − 1
· 4d
ϵ2i
.

Multiplying by k − 1, we therefore obtain∣∣∣∣{s ∈ Si : s < tk and
∣∣∣ρ(zs | ztk)− ρ(zs | z∗)

∣∣∣ ≥ ϵi

2
√
d

}∣∣∣∣ ≤ 4dCT,δ

ϵ2i
,

and summing across all k ∈ {2, . . . ,mi} then yields∣∣∣∣{s, t ∈ Si : s < t and
∣∣∣ρ(zs | zt)− ρ(zs | z∗)

∣∣∣ ≥ ϵi

2
√
d

}∣∣∣∣ ≤ mi
4dCT,δ

ϵ2i
. (19)

We next construct an undirected graph without self-loops, Gi = (Vi, Ei). The vertex set of the graph
is Vi = Si. The edge set is defined to be

Ei =

{
{t, s} ⊆ Si : s < t and

∣∣∣ρ(zs | zt)− ρ(zs | z∗)
∣∣∣ < ϵi

2
√
d

}
.

By comparing with Eq. (19), we obtain

|Ei| ≥
mi(mi − 1)

2
−mi

4dCT,δ

ϵ2i
. (20)

Note that any pair of vertices s < t connected by an edge corresponds to a dissimilar pair of
queries: ∣∣ρ(zs | zt)− ci

∣∣ ≤ ∣∣ρ(zs | zt)− ρ(zs | z∗)
∣∣+ ∣∣ρ(zs | z∗)− ci

∣∣
<

ϵi

2
√
d
+

ϵi

2
√
d

≤ ϵi√
di
,

where the first inequality is the triangular inequality, the second inequality follows by combining the
definition of Ei and Eq. (18), and the final one is from the fact that di ≤ d. From the definition of the
dissimilarity coefficient, the largest clique in Gi is of size at most di. Using Turán’s Theorem, we
thus must have

|Ei| ≤
(
1− 1

di

)
· m

2
i

2
≤

(
1− 1

d

)
· m

2
i

2
.
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Combining with the lower bound on |Ei| from Eq. (20), we obtain

mi(mi − 1)

2
−mi

4dCT,δ

ϵ2i
≤

(
1− 1

d

)
· m

2
i

2
.

Dividing by mi, multiplying by 2d, and rearranging then yields

mi ≤ 2d

(
1

2
+

4dCT,δ

ϵ2i

)
= d+

8d2CT,δ

ϵ2i
.

We have originally assumed that mi ≥ 2, but the bound that we have just derived also holds when
mi ≤ 1 (because d ≥ 1).

To complete the proof it suffices to sum up the upper bounds on mi across i = 1, . . . , n:
n∑

i=1

mi =

n∑
i=1

[
d+

8d2CT,δ

ϵ2
·
(
1/q2

)i−1

]

≤ nd+
8d2CT,δ

ϵ2
· 1

1− (1/q2)
. (21)

To bound n, we use the fact that α ≤ 1, the inequality ln(1 + x) ≥ x
1+x (which holds for x ≥ 0),

and the fact that d ≥ 1:

n ≤ 1 + logq(2/ϵ)

= 1 +
ln(2/ϵ)

ln
(
1 + 1√

d

) ≤ 1 + [ln(2/ϵ)] ·
1 + 1√

d
1√
d

= 1 + (
√
d+ 1) ln(2/ϵ)

≤ 2 ln 2 + 2
√
d ln(2/ϵ) ≤ 2

√
d ln(4/ϵ).

Also,

1− 1

q2
= 1− 1

1 + 2√
d
+ 1

d

≥ 1− 1

1 + 2√
d

=

2√
d

1 + 2√
d

=
2√
d+ 2

≥ 2

3
√
d
.

Plugging these back in Eq. (21) yields
n∑

i=1

mi ≤ 2d1.5 ln(4/ϵ) +
12d2.5CT,δ

ϵ2
,

completing the proof of the main claim of the lemma.

The second claim holds vacuously when T = 0, so assume that T ≥ 1. If CT,δ ≥ ln(2T ), and using
the fact that (lnx) ≤ x and 2 ≤ 3 ln 2, we can write

2d1.5 ln(4/ϵ) = d1.5 ln(16/ϵ2) ≤ 16d1.5

ϵ2
≤ 24(ln 2)d1.5

ϵ2
≤ 24d2.5

ϵ2
· ln(2T ) ≤ 24d2.5CT,δ

ϵ2
,

which yields the first part of the second claim. The second part is immediate by plugging in CT,δ = 0
in the main claim.

A.5 Useful lemmas
In this subsection we prove two lemmas that will be needed for the proofs of the main results
(Theorems 6 and 7) in Appendices A.6 and A.7. They both rely on a standard technique of bounding
a sum by a definite integral:

Proposition 22. Let f : R → R be a non-increasing function and T ≥ 1. Then
T∑

t=1

f(t) ≤ f(1) +

∫ T

1

f(t)dt.

Proof. The proof is immediate by noting that f(t) ≤
∫ t

t−1
f(t)dt.

In the lemmas below we write R+ to denote [0,+∞).
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Lemma 23. Let q1, . . . , qT be a sequence in R+, and let κ : R+ → R+ be a non-increasing function
such that for all ϵ > 0,

T∑
t=1

1(qt ≥ ϵ) ≤ κ(ϵ)

ϵ2
.

Then, for any τ ≥ 0,
T∑

t=1

qt ≤ Tτ + 2
√
κ(τ)T .

Proof. First, since we are only concerned with bounding the sum
∑

t qt, we assume without loss of
generality that the sequence is in descending order, i.e., q1 ≥ · · · ≥ qT . Then, for any τ ≥ 0,

T∑
t=1

qt =

T∑
t=1

qt1(qt ≤ τ) +

T∑
t=1

qt1(qt > τ) ≤ Tτ +

T∑
t=1

qt1(qt > τ). (22)

Consider any k such that qk > τ . Since the sequence q1, . . . , qT is non-increasing, we have

k ≤
T∑

t=1

1(qt ≥ qk) ≤
κ(qk)

q2k
≤ κ(τ)

q2k
,

where the last inequality follows by the monotonicity of κ. This in turn implies that qk ≤
√

κ(τ)
k .

Therefore,

T∑
t=1

qt1(qt > τ) ≤
T∑

t=1

√
κ(τ)

t
. (23)

By Proposition 22,
T∑

t=1

1√
t
≤ 1 + 2

√
T − 2

√
1 < 2

√
T . (24)

Combining Eqs. (22), (23) and (24), we get

T∑
t=1

qt ≤ Tτ + 2
√
κ(τ)T .

which concludes the proof.

Lemma 24. Let a > 0, let q1, . . . , qT be a sequence of reals in [0, a], and let κ : R+ → R+ be a
non-increasing function such that for all ϵ ∈ (0, a],

T∑
t=1

1(qt ≥ ϵ) ≤ κ(ϵ) ln
(a
ϵ

)
.

Then, for any τ ≥ 0,
T∑

t=1

qt ≤ Tτ + a[1 + κ(τ)] exp

(
− 1

κ(τ)

)
.

Proof. We follow a similar proof strategy as in Lemma 23 and start by bounding the sum
∑

t qt. We
assume without loss of generality that the sequence is in descending order, i.e., q1 ≥ · · · ≥ qT . Then,
for any τ ≥ 0,

T∑
t=1

qt =

T∑
t=1

qt1(qt ≤ τ) +

T∑
t=1

qt1(qt > τ) ≤ Tτ +

T∑
t=1

qt1(qt > τ). (25)
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Consider any k such that qk > τ . Then

k ≤
T∑

t=1

1(qt ≥ qk) ≤ κ(qk) ln

(
a

qk

)
≤ κ(τ) ln

(
a

qk

)
,

where the last inequality follows by the monotonicity of κ and the fact that ln(a/qk) ≥ 0. This in
turn implies that qk ≤ a exp

(
− k

κ(τ)

)
. Therefore,

T∑
t=1

qt1(qt > τ) ≤
T∑

t=1

a exp

(
− t

κ(τ)

)
. (26)

By Proposition 22,

T∑
t=1

exp

(
− t

κ(τ)

)
≤ exp

(
− 1

κ(τ)

)
− κ(τ)

(
exp

(
− T

κ(τ)

)
− exp

(
− 1

κ(τ)

))
≤ [1 + κ(τ)] exp

(
− 1

κ(τ)

)
. (27)

Combining Eqs. (25), (26) and (27), we get

T∑
t=1

qt ≤ Tτ + a[1 + κ(τ)] exp

(
− 1

κ(τ)

)
,

which concludes the proof.

A.6 Proof of Theorem 6
Throughout the proof we use the shorthand dϵ = dρ(Z, α, ϵ), so d = d1/T . The proof proceeds by
applying Lemmas 23 and 24 to the bounds on the number of bad queries from Lemma 5. Specifically,
let qt = [α− ρ(zt | z∗)]+ denote the suboptimality of each query zt made by the algorithm. Then,
for any ϵ > 0, the number of ϵ-bad queries can be written as

∑T
t=1 1(qt ≥ ϵ).

First consider the case CT,δ ≥ ln(2T ). By Lemma 5, with probability at least 1 − δ, the number
of ϵ-bad queries is at most 36d2.5ϵ CT,δ/ϵ

2. Setting κ(ϵ) = 36d2.5ϵ CT,δ, we apply Lemma 23, with
τ = 1/T , to obtain that with probability at least 1− δ,

Regret(T, α) ≤
T∑

t=1

qt ≤ 1 + 12d1.25
√
CT,δT .

If CT,δ = 0, then by Lemma 5, the number of ϵ-bad queries is at most 2d1.5ϵ ln(4/ϵ). Setting a = 4
and κ(ϵ) = 2d1.5ϵ , we apply Lemma 24, with τ = 1/T , to obtain

Regret(T, α) ≤
T∑

t=1

qt ≤ 1 + 4(1 + 2d1.5) exp

(
− 1

2d1.5

)
≤ 1 + 12d1.5,

completing the proof.

A.7 Proof of Theorem 7
First, we consider the deterministic setting. By Lemma 5, at most 2d1.5 ln(4/ϵ) of queries issued by
Alg are ϵ-bad. Setting T > 2d1.5 ln(4/ϵ) implies that at least one query is not ϵ-bad. Thus, returning
ẑ for which the observed reward is the largest guarantees that ρ(ẑ | z∗) ≥ α− ϵ, as needed.

Next, we prove the result for the case CT,δ ≥ ln(2T ). By Lemma 5, with probability at least 1− δ/2,
there are at most 16

9ϵ2 · 36d2.5(CT,δ/2) queries that are 3ϵ/4-bad. Setting T ≥ 64d2.5(CT,δ/2)/ϵ
2,

implies that at least half of the queries are not 3ϵ/4-bad. In the remainder of the proof, we only
consider the high-probability event in which this is the case.

For n1 = ⌈log2(4/δ)⌉ the probability that all n1 samples are 3ϵ/4-bad is at most (1/2)n1 ≤
δ/4.
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For n2 = ⌈128 ln(8n1/δ)/ϵ2⌉, by applying Hoeffding’s inequality and union bound over each of
the n1 rounds we get that with probability at most δ/4 there is some index ℓ ≤ n1 for which
|r̄tℓ − ρ(ztℓ | z∗)| > ϵ/8.

Overall, with probability at least 1 − δ we get that there is at least one index j of the n1 sampled
indices that is not 3ϵ/4-bad, and that |r̄tℓ −ρ(ztℓ |z∗)| ≤ ϵ/8 for all ℓ = 1, . . . , n1. Therefore,

r̄tj ≥ ρ(ztj | z∗)− ϵ/8 ≥ α− 3ϵ/4− ϵ/8 = α− 7ϵ/8.

For all indices k that are ϵ-bad we have

r̄tk ≤ ρ(ztk | z∗) + ϵ/8 < α− ϵ+ ϵ/8 = α− 7ϵ/8.

Thus, for all of the ϵ-bad queries we have r̄tk < r̄tj , and so Algorithm 2 will not return any of the
ϵ-bad queries, because it is choosing the index with maximum value of r̄tℓ . In other words, the
returned query ztℓ̂ satisfies

ρ(ztℓ̂ | z
∗) ≥ α− ϵ.

B Missing proofs of Section 4
First we discuss the connection between our SQ setting and the SQ model of Kearns [19]. We focus
on two aspects in which they appear to differ and explain why these models are equivalent.

Correlational vs general statistical queries. The restriction of the SQ model in which the oracle
may only output the approximate correlation between a query and the target function, termed
correlational statistical query (CSQ), was studied by Bshouty and Feldman [7]. The CSQ oracle can
be viewed as providing something akin to a negative distance between the query and the target. This
is equivalent to the learning by distances framework of Ben-David et al. [5], who defined their model
independently of Kearns [19]. Bshouty and Feldman [7] showed that an arbitrary statistical query
can be answered by asking two SQs that are independent of the target and two CSQs. That is, in the
distribution-dependent learning model (i.e., when the learner has access to the distribution over X ),
correlational queries can simulate general queries.

Adversarial vs statistical noise. The setting we consider in this work assumes stochastic query
responses, similar to several previous works [13, 31, 4]. On the other hand, the original SQ model [19]
assumed that the query oracle can respond with an adversarial (rather than statistical) noise, up to a
pre-specified tolerance parameter τ > 0. The previous works have shown that the two noise models
are equivalent [13, 31, 4]

B.1 Proof of Proposition 8
We first prove the first inequality of Eq. (3). Let ϵ > 0 and let d = dSQ(ϵ). Then there exists a
sequence h1, . . . , hd ∈ H satisfying both conditions of Definition 4. Let d′ be equal to the leftmost
expression of Eq. (3). We aim to show dρ(ϵ) ≥ d′. Note that d′ ≤ d.

Let c be the midpoint between cmin = mini<j⟨hi, hj⟩ and cmax = maxi<j⟨hi, hj⟩. Then c ≤ 1− ϵ.
Moreover, for all i ̸= j,

|⟨hi, hj⟩ − c| ≤ 1

2
|cmax − cmin| ≤

1

2d
≤ ϵ√

d′

where the last inequality follows from our choice of d′ (which ensures d′ ≤ 4(dϵ)2). Thus,
h1, . . . , hd′ , the first d′ elements of the original sequence of hypotheses, satisfy Definition 1, proving
the claim.

We prove the first inequality of Eq. (4) in a similar way. Let us re-define d = dρ(4ϵ) and let d′
be equal to the leftmost expression of Eq. (4). As before, d′ ≤ d. Then there exists a sequence
h1, . . . , hd ∈ H satisfying the conditions of Definition 1 for some c ≤ 1 − 4ϵ. Then for all i ̸= j,
⟨hi, hj⟩ ≤ c+ 4ϵ√

d
≤ 1− ϵ, since d ≥ 2. Moreover, for all i ̸= j and i′ ̸= j′,

|⟨hi, hj⟩ − ⟨hi′ , hj′⟩| = |⟨hi, hj⟩ − c+ c− ⟨hi′ , hj′⟩| ≤
8ϵ√
d
≤ 1

d′
,

with the last inequality following from our choice of d′. Thus, h1, . . . , hd′ , the first d′ hypotheses in
the original sequence, satisfy Definition 4.
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The second inequality of Eq. (4), now follows from the first inequality of Eq. (3), since if the second
inequality of Eq. (4) does not hold then the leftmost expression of Eq. (3) must be at least dρ(ϵ), a
contradiction. Likewise, the second inequality of Eq. (3), now follows from the first inequality of
Eq. (4).

B.2 Lower bound setting
Definition 8 (SQ oracle (adversarial)). Let D be the input distribution over the domain X . For a
tolerance parameter τ > 0, Oadv(τ) := Oadv

D,h∗(τ) oracle is the oracle that for any query function
h ∈ H, returns a value v ∈ [µ− τ, µ+ τ ], where µ = Ex∼D[h(x)h∗(x)].

Definition 9 (Sample oracle (statistical)). Let D be the input distribution over the domain X . The
Sample oracle O := OD,h∗ oracle is the oracle that given any function h ∈ H, takes an independent
random sample x from D and returns the value v = h(x)h∗(x).

We will need the following results for our proof. The first is a reduction from an adversarial noise
oracle to a statistical one. Specifically, consider the learning setting defined in Section 2, for a sample
oracle O. Let Alg be a (possibly randomized) algorithm for that setting. The following theorem shows
a simulation of O via Oadv the SQ oracle.

Theorem 25 ([13], Theorem 3.13). Assume that Alg outputs a ϵ-approximation to h∗ with probability
at least δ, using m samples from O. Then, for any δ′ ∈ (0, 1/4], there exists a SQ algorithm Alg′ that
uses at most m queries to Oadv(δ′

2
/m) and outputs an ϵ-approximation to h∗ with probability at

least δ − δ′.

Their result is obtained by simulating Alg using Oadv as follows: for any query of Alg to O, the
response of Oadv to that query is used as bias for a coin flip, which is then given to the learner
as the simulated outcome of O. They then prove that the true m samples of O and the simulated
coin flips are statistically close by bounding their distributional distance. This implies that the
success probability of Alg′, the simulated algorithm, is not much worse than that of Alg, the original
algorithm.

We note that the result originally stated in [13] differs from Theorem 25 above in two ways. First, it
reduces to a variant of Oadv(τ) with a tolerance τ ′ ∈ [τ,

√
τ ]. Thus, it holds for Oadv(τ) as well.

Second, it is phrased in a more general setting of search problems over distributions, which captures
the SQ model, as detailed in [13], Section 6.

The second result that is needed for our proof is the following lower bound due to [25].

Theorem 26 ([25], Theorem 8). Let ϵ > 0, and let H ⊆ {±1}X be a hypothesis space with strong
SQ dimension dSQ := dimSQ(H, 2ϵ) ≥ 3 (see Definition 4). Then for any SQ algorithm Alg using
m queries to Oadv(τ) with tolerance τ ≥ 2/

√
dSQ, there exist h∗ ∈ H such that if Alg outputs an

ϵ-approximation to h∗, then m > dSQτ
2/3.

B.2.1 Proof of Theorem 9
Set δ = 2/3. Let D be a distribution over X . Assume towards contradiction that there exists a
learning algorithm Alg such that for any h∗ ∈ H, given oracle access to O := OD,h∗ and using
m ≤ 3

√
dSQ/12 samples from O, the algorithm Alg outputs an ϵ-approximation to h∗ with probability

at least δ.

We then apply Theorem 25 for δ′ = δ/2 to simulate the algorithm using Oadv := Oadv
D,h∗ . The

resulting algorithm uses m ≤ 3
√
dSQ/12 queries to Oadv(τ) for τ = δ′

2
/m > 4/(3 3

√
dSQ) ≥

2/
√
dSQ and has success probability of at least δ − δ′ = δ/2 > 1/3. By Theorem 26 we obtain a

contradiction, as m > dSQτ
2/3 > 3

√
dSQ/2.

C Missing proofs of Section 5
C.1 Proof of Theorem 11
Let d = dρ(Z, α, 3ϵ/2). Note that the eluder dimension is always at least 1, so the theorem trivially
holds if d ≤ 9. In the remainder of the proof assume that d ≥ 10.

From the definition of the monotonic dissimilarity dimension, there exists τ ≥ 3ϵ/2 such that
d = d(Z, α, τ). Let (f1, a1), . . . , (fd, ad) be a sequence satisfying the dimension conditions for τ .
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We will show that the first ⌈d/9⌉ elements of this sequence also satisfy the conditions of the eluder
dimension for some ϵ′ ≥ ϵ. Specifically, we will show that there is some ϵ′ ≥ ϵ such that every
element aj with j ≤ ⌈d/9⌉ in the sequence above is ϵ′-independent of its predecessors. That is, we
will show that for every such element aj , there exists a pair of functions f, f ′ ∈ F that satisfy√√√√j−1∑

i=1

(
f(ai)− f ′(ai)

)2 ≤ ϵ′,

yet it also holds that f(aj)− f ′(aj) > ϵ′.

By definition of the dissimilarity dimension, there exists c ≤ α− τ such that for all i < j,∣∣∣fj(ai)− c
∣∣∣ = ∣∣∣ρ((fi, ai) ∣∣ (fj , aj))− c

∣∣∣ ≤ τ√
d
. (28)

Then, by the triangle inequality,∣∣fj(ai)− fj+1(ai)
∣∣ = ∣∣fj(ai)− c+ c− fj+1(ai)

∣∣ ≤ ∣∣fj(ai)− c
∣∣+ ∣∣fj+1(ai)− c

∣∣ ≤ 2τ√
d
. (29)

Therefore, (
fj(ai)− fj+1(ai)

)2 ≤ 4τ2

d
, (30)

and so for all j ≤ ⌈d/9⌉ it holds that,

j−1∑
i=1

(fj(ai)− fj+1(ai))
2 <

4τ2

9
. (31)

Next, recall that for all j ≤ d we have fj(aj) ≥ α ≥ c+ τ and fj+1(aj) ≤ c+ τ√
d

. Thus,

fj(aj)− fj+1(aj) ≥ c+ τ − c− τ√
d
>

2τ

3
, (32)

where the last inequality holds for d ≥ 10. Overall, Eqs. (31) and (32) then demonstrate that for
ϵ′ = 2τ/3 ≥ ϵ, the element aj is ϵ′-independent of its predecessors, finishing the proof.

C.2 Proof of Theorem 13
Our proof uses the following result on ranks of perturbed identity matrices (see [2, Lemma 2.2]):

Lemma 27. Let A ∈ Rd×d be a symmetric matrix such that Aii = 1 for all i and |Aij | ≤ 1/
√
d for

all i ̸= j. Then rank(A) > d/2.

The proof begins by constructing a matrix M whose entries are derived from the evaluation values of
elements that satisfy the dimension condition. Then we bound the rank of M from above as well as
from below. The lower bound is expressed in terms of the dimension d = dρ(Z, α, ϵ) while the upper
bound is expressed in terms of n. Combining the bounds then yields the result of the theorem.

Construction of M. Let (fθ1 ,a1), . . . , (fθd ,ad) denote the alternatives that satisfy the dimension
conditions, with respect to some value c such that c ≤ α− ϵ (see Definition 1). Define M to be the
d× d matrix with entries Mij = ⟨θi,aj⟩ − c for i, j ≤ d. Note that all diagonal entries of M are at
least α− c ≥ ϵ, and all other entries are in

[
− ϵ√

d
, ϵ√

d

]
.

Upper bound on rank(M). Let K ∈ Rd×d be the matrix of inner products, Kij = ⟨θi,aj⟩, and let
U be the Gram matrix for the set of vectors θ1, . . . ,θd,a1, . . . ,ad. Then U is a 2d× 2d matrix of
the rank at most n, because the vectors are of the dimension n (see, e.g., [17, Theorem 7.2.10]), and
K is a submatrix of U, so rank(K) ≤ rank(U) ≤ n. Moreover, M = K− c11⊤, where 1 is the
all-ones vector in Rd. Therefore, by subadditivity of rank,

rank(M) = rank(K− c11⊤) ≤ rank(K) + rank(−c11⊤) ≤ n+ 1. (33)
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Lower bound on rank(M). Let D ∈ Rd×d be the diagonal matrix with entries Dii = 1/
√
Mii.

Since Mii ≥ ϵ > 0, we have 0 < Dii ≤ 1/
√
ϵ. Consider the matrix M′ = DMD. Then

rank(M′) = rank(DMD) = rank(M), (34)

because the matrix D is non-singular (see [17, Section 0.4.6(b)]). Furthermore, matrix M′ satisfies
M ′

ii = 1 for all i and

|M ′
ij | = |DiiMijDjj | ≤

1√
ϵ
· ϵ√

d
· 1√

ϵ
=

1√
d

for all i ̸= j. Consider the symmetric matrix S = (M′ + (M′)⊤)/2. Then, we also have Sii = 1

for all i, and |Sij | ≤ 1/
√
d for all i ̸= j. Thus, by Lemma 27, rank(S) > d/2. Moreover, by the

subadditivity of the rank

d/2 < rank(S) ≤ rank(M′/2) + rank
(
(M′)⊤/2

)
= 2 rank(M′). (35)

Combining Eqs. (35), (34) and (33), we therefore obtain

d/2 < 2 rank(M′) = 2 rank(M) ≤ 2n+ 2,

and so d < 4n+ 4. Since d is an integer, we must have d ≤ 4n+ 3.

In the special case that α = 1, we have ⟨θi,ai⟩ ≥ 1 for all i ≤ d, which is only possible when
θi = ai for all i ≤ d. As a result, the matrices M and M′ are both symmetric, and thus S = M′

and
d/2 < rank(S) = rank(M′) = rank(M) ≤ n+ 1,

implying that d ≤ 2n+ 1.

C.3 Proof of Theorem 14
Using an existing bound on the eluder dimension for GLM bandits ([24], Proposition 7), and the fact
that our dimension is bounded by the eluder dimension (Theorem 11) the result follows.

C.4 Proof of Theorem 15
Denote d = dρ(Zrelu

b , 1− b, ϵ). Notice that since b < 1, for any θ,a ∈ Bn such that θ ̸= a it holds
that fθ,b(a) < fθ,b(θ) = 1− b. Let (fθ1,b,θ1), . . . , (fθd,b,θd) be a sequence of elements satisfying
the dimension definition, with respect to a corresponding scalar c ≤ 1− b− ϵ. Since the evaluation
is symmetric for ReLU functions, we can view this sequence as a set, and denote U = {θ1, . . .θd}.
In addition, note that by the dimension definition, for all θ ∈ U , ∥θ∥ = 1.

We start by proving an upper bound on d. Assume d ≥ 9. First, consider the case c ≤ ϵ/3. Let U0 be
any subset of the unit sphere such that for all θ ̸= θ′ in U0 it holds that ⟨θ,θ′⟩ ≤ b+ 2ϵ/3. Observe
that for all such θ ̸= θ′ we have fθ,b(u′) = fθ′,b(θ) ∈ [0, 2ϵ/3]. Thus, we get that d ≤ |U0|.

A standard sphere covering argument shows that the size of such a set is upper bounded as follows.
The δ-covering number of the unit sphere is at most (3/δ)n ([27], Cor. 4.2.13). Thus, there are at most
(3/δ)n points such that each pair θ ̸= θ′ satisfies ∥θ − θ′∥ ≥ δ, or equivalently ⟨θ,θ′⟩ ≤ 1− δ2/2.
By setting δ =

√
2(1− b− 2ϵ/3) we get that |U0| ≤ ( 3δ )

n ≤ ( 3

2
√

2(ϵ−2ϵ/3)
)n ≤ (4/

√
ϵ)n, which

yields the desired bound.

Now, consider the case c > ϵ/3. In this case, for all i ̸= j, we have that fθj ,b(θi) ≥ c − ϵ√
d
≥

c− ϵ/3 > 0, and so ⟨θi,θj⟩ > b. Let c′ = c+ b. Thus, it must also hold that, |⟨θi,θj⟩ − c′| ≤ ϵ√
d

for all i ̸= j. Note that c′ < 1− ϵ. Then, by applying Lemma 13 we get that d is upper bounded by
2n+ 4. Overall, the bound in the claim holds.

Next, we show a lower bound on d = dρ(Zrelu
1−ϵ, ϵ, ϵ), by lower bounding the size of the set U defined

above. We now apply a sphere packing argument, which shows that there exists such a set U with
size |U | ≥ (1/2ϵ)n/2. We follow a similar argument as above. Specifically, the δ-packing number
of the unit sphere is at most (1/δ)n ([27], Cor. 4.2.13). By plugging in δ =

√
2ϵ, yields the desired

bound.
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C.5 Proof of Proposition 12
We start with an auxiliary lemma:

Lemma 28 (dissimilarity subadditivity). Let Z1 and Z2 be two sets, and let α ∈ R and ϵ > 0.
Denote Z = Z1 ∪ Z2 and let ρ : Z × Z → R be an evaluation function. Then,

dρ(Z, α, ϵ) ≤ dρ(Z1, α, ϵ) + dρ(Z2, α, ϵ)

and
dρ(Z, α, ϵ) ≤ dρ(Z1, α, ϵ) + dρ(Z2, α, ϵ).

Proof. Let z1, . . . , zd ⊆ Z such that there exists c ≤ α− ϵ with |ρ(zi|zj)− c| ≤ ϵ√
d

for all i < j,
and ρ(zi|zi) ≥ α. Let I1, I2 ⊆ [d] be disjoint sets of indices with {zi}i∈I1 ⊆ Z1 and I2 = [d] \ I1.
Consider the sub-sequence zℓ1 , . . . , zℓ|I1| ordered by appearance in z1, . . . , zd of elements in I1. By
definition for all i < j,

|ρ(zℓi |zℓj )− c| ≤ ϵ√
d

Therefore the sequence zℓ1 , . . . , zℓ|I1| satisfies |ρ(zℓi |zℓj )− c| ≤ ϵ√
|I1|

for all i < j and therefore

|I1| ≤ dρ(Z1, α, ϵ). The same logic implies |I2| ≤ dρ(Z2, α, ϵ).

To get the monotonic version, note that if ϵ∗ = argmaxϵ′≥ϵ dρ(Z, α, ϵ′),

dρ(Z, α, ϵ) = dρ(Z, α, ϵ∗)
≤ dρ(Z1, α, ϵ

∗) + dρ(Z2, α, ϵ
∗)

≤ dρ(Z1, α, ϵ) + dρ(Z2, α, ϵ)

where the first inequality is by the first statement of the lemma which was proved above, the next
inequality is by definition of the monotonic dimension, and the last inequality follows by ϵ ≤ ϵ∗.

We can now construct the classes that demonstrate the separation of the eluder and dissimilarity
dimension.

We consider two overlapping semicircles, indexed by j ∈ {0, 1}, and defined as

U0 =
{
(cosx, sinx) : x ∈

(
−π
2
,
π

2

)}
, and U1 =

{
(cosx, sinx) : x ∈

(
0, π

)}
.

For each j ∈ {0, 1}, and any N ∈ N and ϵ > 0, we define the function class

Fj,N,ϵ :=
{
fv,S,σ : v ∈ C \ Uj , S ⊆ Uj , |S| = N, σ ∈ {±ϵ}S

}
,

containing functions

fv,S,σ(a) =


0 if a ∈ Uj \ S,
σ(a) if a ∈ S,

⟨v,a⟩ if a ∈ C \ Uj .

(36)

In words, the functions in the class Fj,N,ϵ are linear outside of the semicircle Uj , and zero in the
semicircle Uj , except for a set of size N , where they can take any combination of values +ϵ and −ϵ.
For any N ∈ N and ϵ > 0, we define the class FN,ϵ :=

⋃
j∈{0,1} Fj,N,ϵ and show that this class has

a constant dissimilarity dimension but its eluder dimension is at least N .

Finally, consider the action set A = C and the function class FN,ϵ as defined above. Let ZN,ϵ =
FN,ϵ×A, ρ = ρbandits and ϵ ∈ (0, 1/2). We how show that dimE(FN,ϵ, ϵ) ≥ N , but dρ(ZN,ϵ, 1, ϵ) ≤
16. First we prove the following lower bound on the eluder dimension of Fj,N,ϵ.

Lemma 29. The eluder dimension of Fj,N,ϵ satisfies dimE(Fj,N,ϵ, ϵ) ≥ N for all j ∈ {0, 1}.

Proof. Let a1, . . . ,aN be an arbitrary set of points in Uj and consider the functions {fi}N+1
i=1 ⊆

Fj,N,ϵ,S,v that for all i, i′ ≤ N satisfy:

fi(ai′) =

{
ϵ if i′ ̸= i

−ϵ if i′ = i,
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and fN+1(ai) = ϵ for all i ≤ N . We now show that for all i ≤ N , the action ai is ϵ-independent of

a1, . . . ,ai−1 with respect to Fj,N,ϵ,S,v. This holds since
√∑i−1

j=1(fi(aj)− fN+1(aj))2 = 0 while
|fi(ai)− fN+1(ai)| = 2ϵ > ϵ. This finalizes the proof.

Lemma 30. Denote ZN,ϵ = FN,ϵ ×A and let ϵ ∈ (0, 1/2). Then, dρ(ZN,ϵ, 1, ϵ) ≤ 16.

Proof. Denote by Zj,N,ϵ = Fj,N,ϵ×A for all j ∈ {0, 1}. We start by showing that for all j ∈ {0, 1},
dρ(Zj,N,ϵ, 1, ϵ) ≤ 8. Let z1, . . . , zd be a maximal sequence certifying the dissimilarity dimension
dρ(ZN,ϵ, 1, ϵ) ≥ d, i.e., it holds that,

|ρ(zi|zi′)− c| ≤ ϵ√
d

for all i < i′, while ρ(zi|zi) ≥ 1.

Since ρ(zi|zi) ≥ 1, it must be the case that zi = (fvi,Si,σi
,vi) with vi ̸∈ Uj (since otherwise the

self evaluations would be strictly less than 1). This implies that ρ(zi|zj) = ⟨vi,vj⟩ for all i < j.
Consequently, the score evaluations of all z1, . . . , zd are equivalent to the score evaluations of the
linear problem defined by v1, . . . ,vd. Thus Theorem 13 implies the maximum length of such a
sequence can be of size at most 2×2+4 = 8. Finally the sub-additivity of the dissimilarity dimension
(see Lemma 28) implies,

dρ(ZN,ϵ, 1, ϵ) ≤
1∑

j=0

dρ(Zj,N,ϵ, 1, ϵ) ≤ 16.

Combining the results of Lemmas 29 and 30 finalizes the proof of Proposition 12.

D Multi-Armed Bandits
In this section we explore the dissimilarity dimension of the K-armed bandit problem. In this setting
the learner interacts with a set of K arms and at every step of a sequential interaction pulls an arm
at ∈ [K] and receives a reward rt such that E[rt] = µit where µat

is the mean reward of arm at. For
simplicity we will assume µa ∈ [0, 1] for all a ∈ [K] and that |rt| ≤ 1.

The K-armed bandit problem is an instance of structured bandits where A = [K] and F = [0, 1]K .
The dissimilarity dimension of the K-armed bandit problem satisfies,

Proposition 31. Consider the action set A = [K] and the function class F = [0, 1]K as defined
above. Let α ∈ [0, 1] and Z = F ×A, ρ = ρbandits and ϵ ∈ (0, 1/2). Then dρ(Z, α, ϵ) ≤ K.

Proof. Let c ≤ α − ϵ and z1, . . . , zd ∈ Z with zi = (fi, ai) be a maximal sequence such that,
ρ(zi|zi) ≥ α while

|ρ(zi|zj)− c| ≤ ϵ√
d
.

For i < j. Substituting the definition of ρ, this implies fi(ai) ≥ α for all i ∈ [K] while |fj(ai)−c| ≤
ϵ√
d

for all i < j. By definition of c, if d ≥ 2

fj(ai) ≤ α− ϵ+
ϵ√
d
≤ α−

(
1− 1√

2

)
ϵ < α− ϵ

4
, for all i < j. (37)

Let Ii = {aℓ}iℓ=1 be the set of actions up to index i in the tuple sequence z1, . . . , zi. Equation 37
implies that fj(a) ≤ α− ϵ

4 for all j > i. Since aj satisfies fj(aj) ≥ α > α− ϵ
4 this implies aj ̸∈ Ii.

We conclude that ai ̸= aj for all i < j. Since there are at most K different arm values, this implies
d ≤ K.

D.1 Structured Bandits
We will now explain in detail how what Algorithm 1 reduces to in the structured bandits setting from
Example 2. We write zi = (fi, ai) for all i ∈ [T ]. The large evaluation set Zα can be reduced to the
following set of functions,

Fα = {f ∈ Fs t.max
a∈A

f(a) ≥ α}.
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Algorithm 5 Interactive Estimation for Structured Bandits

1: Input: action set A, function class F , optimality level α, number of steps T . Compute large-
evaluation function-action set Fα = {f ∈ F s.t. maxa∈A f(a) ≥ α} .

2: for t = 1, . . . , T do
3: Compute regression function

ft = argmin
f∈Fα

t−1∑
i=1

(f(ai)− ri)
2
.

4: Submit the query at = argmaxa∈A ft(a).
5: Observe reward rt.
6: end for

Since the ρbandits function ρbandits(zi|z) is independent on a for z = (f, a), the least squares equation

argminz∈Zα

∑t−1
i=1

(
ρ(zi | z)− ri

)2

reduces to,

ft = argmin
f∈Fα

t−1∑
i=1

(f(ai)− ri)
2
.

finally, to ensure the action query has a self evaluation of at least α, we output at = argmaxa∈A ft(a).

We will now explain in detail what the Optimistic Interactive Estimation Algorithm 3 reduces to in
the structured bandits setting from Example 2. We write zi = (fi, ai) for all i ∈ [T ].

The least squares objective (zt = argminz∈Zα

∑t−1
i=1

(
ρ(zi | z)− ri

)2

) can be written as,

f̂t = argmin
f∈F

t−1∑
i=1

(f(ai)− ri)
2
.

The action component of the z element in this objective can be ignored since the ρbandits evaluation

function does not depend on it. The confidence ball Zt =

{
z ∈ Z :

∑t−1
i=1

(
ρ(zi |z)−ρ(zi | ẑt)

)2

≤

R

}
reduces to,

Ft =

{
f ∈ F :

t−1∑
i=1

(
f(ai)− f̂t(ai)

)2

≤ R

}
.

The query can be reduced to the action component of zt,

at = argmax
f,a∈Ft×A

f(a).

Algorithm 6 summarizes this reduction and corresponds to the standard optimistic least squares for
sturctured bandit problems from [24].
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Algorithm 6 Optimistic Interactive Estimation for Structured Bandits

1: Input: action set A, function class F , confidence-set radius R, number of steps T .
2: for t = 1, . . . , T do
3: Compute confidence set

f̂t = argmin
f∈F

t−1∑
i=1

(f(ai)− ri)
2
.

Ft =

{
f ∈ F :

t−1∑
i=1

(
f(ai)− f̂t(ai)

)2

≤ R

}
.

4: Submit the query at = argmaxf,a∈Ft×A f(a).
5: Observe reward rt.
6: end for
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