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ABSTRACT

Efficiently mapping tasks to processors and data to memories is a cornerstone
of parallel programming to achieve high performance. Traditionally, this critical
task has been handled by expert-crafted mapper programs, tailored for specific
machine architectures and problem domains. However, creating customized map-
pers for each unique application is labor-intensive and time-consuming. Large
language models (LLMs) have recently demonstrated remarkable capabilities in
understanding and generating code, as well as in self-improvement for optimiz-
ing specific performance metrics. Inspired by these advancements, we intro-
duce the task of mapper generation (MAGE), which frames generating high-
performance mappers as a discrete optimization problem aimed at maximizing
compute throughput. To solve this optimization problem, we leverage agentic
LLMs in the mapper generation process. At the core of our approach lies a novel
domain-specific language (DSL), which provides a high-level interface for LLMs
to generate the mapper code without getting entangled with complicated, low-
level system programming. Moreover, our DSL defines a structured and con-
strained search space for RL to explore, guiding LLMs to discover the optimal
mapping policy. The evaluation shows that our LLM-generated mappers can sur-
pass expert-written mappers in performance, achieving up to 34% speedup across
9 benchmarks. Notably, our approach improves the throughput of parallel matrix
multiplication algorithms by up to 31%, reducing development time from several
days to just a few minutes.

1 INTRODUCTION

Task-based programming (Slaughter et al., 2015; Bauer et al., 2012; Augonnet et al., 2009; Cham-
berlain et al., 2007; Kaiser et al., 2014; Heller et al., 2017; Chandra et al., 2001; Duran et al., 2011;
Moritz et al., 2018; Barham et al., 2022) has recently emerged as a prominent paradigm in paral-
lel programming. The core idea is to decompose computations into self-contained functions called
tasks that do not communicate with other tasks except through their collection (typically tensor or
multi-dimensional array) arguments or data.

One performance-critical aspect of executing task-based applications is mapping: assigning tasks to
processors, data to physical memories, and managing other low-level physical resources. We refer
to a concrete mapping policy as a mapper. Different from directly modifying application-level (e.g.,
CUDA-level) code, mappers operate at a higher level (e.g., task and processor level) and do not
change the correctness of an application’s output; they only affect its performance. The difference
between a good mapper and a bad mapper is easily an order of magnitude or even more in perfor-
mance. Currently, writing mappers is a manual, labor-intensive, and time-consuming process that
requires deep knowledge of the application, the machine, its resource limits, and the C++ mapping
APIs. Even for experienced performance engineers, developing an effective mapper can take several
days due to the complexity and iterative refinement required.

In this paper, we focus on using LLMs to automatically generate mappers. There are two main
challenges in using LLMs for mapper code generation. First, when given a specific mapping policy
described in natural language, LLMs struggle to generate the corresponding mapper code, which
requires generating a few hundred lines of low-level C++ code. This code generation task contrasts
significantly with method- or function-level code generation, which is more isolated and where
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Figure 1: Agent-based search for mapper code generation, where the mapper is written in a Domain-
Specific Language (DSL) and refined through reinforcement learning (RL) with interactive feedback
to maximize application performance.

LLMs have demonstrated strong performance (Chen et al., 2021; Austin et al., 2021). In our case,
generating C++ mappers requires a deep understanding of low-level systems and broader contextual
dependencies in large-scale system code Jimenez et al., which is beyond the capabilities of current
LLMs (Du et al., 2023; Wang et al., 2024).

To address the first challenge, we design a self-contained Domain-Specific Language (DSL) for
mapper generation. Unlike the C++ APIs, the DSL provides a high-level interface, allowing LLMs
to generate code without handling the low-level intricacies and complexities of C++ APIs.

The second challenge is to identify the optimal mapping strategy that maximizes the performance of
application programs. Our key insight is to reformulate mapper generation into a search problem, a
category of problems that is well-suited to agentic LLMs that are inspired by classical reinforcement
learning (RL) techniques. Notably, RL has achieved tremendous success across a wide range of
applications, such as AlphaTensor (for finding better matrix multiplication) (Fawzi et al., 2022) and
AlphaGeometry (for generating math proofs for geometry problems) (Trinh et al., 2024). For the
mapper generation problem, our DSL constructs a more structured and constrained search space for
LLMs to explore.

For the search process, we combine the LLM’s code generation capabilities with an agent-based
solution built on the Trace framework (Cheng et al., 2024). In this approach, LLMs act as optimiz-
ers, generating mappers in the DSL and receiving iterative feedback through an interactive feedback
mechanism as shown in Figure 1. This feedback loop allows LLMs to refine their mapping strategies
efficiently, reducing the time required to develop high-performance mappers to just a few minutes.
Given the context-specific nature of mappers, this agent-based RL approach is particularly advan-
tageous. Our experiments show that mappers generated by LLMs not only match but can surpass
expert-written mappers, achieving up to 34% speedup across 9 benchmarks. Notably, the search
process enhances the performance of parallel matrix multiplication algorithms by up to 31%. We
also demonstrate, through ablation studies, that the critical role of high-quality feedback in guiding
LLM optimizers to discover more efficient mapping strategies.

1. Development of a Domain-Specific Language (DSL) to Simplify Mapper Generation: We
design a DSL to address the complexities of direct code generation in low-level systems. This
DSL provides a higher-level abstraction, enabling LLMs to generate mapping code more effec-
tively by encapsulating the complexities of low-level C++ APIs.

2. Formulation of Mapper Generation as a Discrete Optimization Problem: We formulate the
task of mapper generation (MAGE) as a discrete optimization problem with the objective of
maximizing application performance. Our DSL defines a more structured and constrained search
space for LLM to explore.

3. Experimental Validation and Performance Comparison: Our DSL significantly improves the
success rate of mapper code generation for a given mapping strategy from 0% in C++ to 80%
in our DSL. Leveraging high-quality feedback, our agent-based solution discovers mappers that
achieve up to 34% speedup compared with expert-designed mappers, enhancing the performance
of parallel matrix multiplication algorithms by up to 31%.
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2 RELATED WORK

Mapping in Parallel Programming Many parallel programming systems allow users to make their
own mapping decisions, such as Legion (Bauer et al., 2012), StarPU (Augonnet et al., 2009; 2010),
Chapel (Chamberlain et al., 2007), HPX (Kaiser et al., 2014; Heller et al., 2017), Sequoia (Fata-
halian et al., 2006), Ray (Moritz et al., 2018), TaskFlow (Huang et al., 2021), and Pathways (Barham
et al., 2022). Several techniques have been proposed to automate mapping, including machine learn-
ing models (O’Boyle et al., 2013; Wang & O’Boyle, 2009), static analysis (Poesia et al., 2017;
Ren et al., 2008), traditional reinforcement learning techniques (Mirhoseini et al., 2017), and auto-
tuning (SFX Teixeira et al., 2023). Unlike previous work, we use an agent-based reinforcement
learning approach with LLMs, exploring a larger search space for mappers than traditional methods.

LLM Code Generation With the rise of LLMs, various models (Chen et al., 2021; Nijkamp et al.,
2022; Li et al., 2023; Ouyang et al., 2022; Wei et al., 2023) have been trained on code, enabling them
to assist with programming tasks and automate software development. While LLMs have shown
success in generating isolated function-level Python code (Chen et al., 2021; Austin et al., 2021),
they face challenges when generating system-level C++ code in large repositories due to complex
APIs and broader contextual dependencies (Du et al., 2023; Wang et al., 2024). Thus, adopting
LLMs to generate code in real-world software remains difficult (Jimenez et al.). Our work addresses
this by developing a domain-specific language (DSL) that provides a high-level abstraction to help
LLMs generate mapper code more effectively.

LLM Optimization with Feedback More recently, LLMs have been used to solve optimization
problems. Usually, optimization problems exist in numerical domains (Boyd & Vandenberghe,
2004). AhmadiTeshnizi et al. (2023) used LLMs to solve structured optimization problems, such
as mixed-integer linear programming (LP). Yang et al. (2024) used LLM to solve unstructured prob-
lems as black-box optimization. Follow-up work by Nie et al. (2024) showed the effectiveness of
feedback in finding the global minima of black-box functions. Building on such ideas, Cheng et al.
(2024) formally defined a class of optimization problems solvable by LLMs and proposed an op-
timizer based on the execution graph of a program. Later, Yuksekgonul et al. (2024) proposed an
LLM optimizer inspired by gradient descent. These recent developments provide an opportunity to
use LLMs to optimize code not for task completion but for improving over a performance metric.

3 MAPPER GENERATION TASK

Task Definition The problem we address is the automated generation of high-performance map-
pers for the Legion parallel programming framework (Bauer et al., 2012). Mappers determine how
tasks are assigned to processors and how data is placed in memory to optimize performance. A well-
designed mapper can achieve up to 10× speedup compared to random mapping strategies. However,
mappers are highly context-specific and must be carefully tailored to an application’s input and the
machine’s architecture. Finding an optimal mapper is akin to solving a combinatorial optimization
problem—a process that is time-consuming, labor-intensive, and traditionally performed by experi-
enced performance engineers. The search space for discovering the best mapping strategy is vast,
growing to 214 even for the simplest scientific applications (as shown in prior work with a smaller
search space (SFX Teixeira et al., 2023) than ours), making it challenging to efficiently explore all
possible solutions. Moreover, even with a clear mapping strategy, writing the corresponding mapper
requires experts to produce hundreds of lines of low-level C++ code, a task that can take several
hours. As a result, the entire performance tuning process can take several days to complete.

Mapping Decisions Now we elaborate on the decisions that a mapper has to make. The first
critical decision is the processor selection for each task, determining whether a task is better suited
for GPUs, CPUs, or OpenMP runtime. This choice depends on factors such as task size, GPU
memory, and kernel launch latency. For example, tiny tasks that require very little computation may
prefer to run on CPUs due to the GPU kernel launch overhead, whereas tasks with large memory
footprints might prefer to be assigned to OpenMP or CPU when GPU memory is insufficient.

Next, the memory placement of data across different memory spaces is crucial to performance. A
mapper must decide where to place data — in the GPU’s FrameBuffer for faster access, in ZeroCopy
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task task2(C: region<80,80,80>,
D: region<80,80,80>,
...)

for i in range(80):
for j in range(80):
for k in range(80):
E[i,j] = C[i,k] * D[k,j];

...

Application Tasks

Application Data

C: region<80,80,80>

task task1(A: region<1000,1000>,
B: region<10,200,5>,
...)

...

A: region<1000,1000>
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Figure 2: Mappers decide the placement of each task in the task graph to processors, the placement of
data to memory, and how the iteration space of data is partitioned and mapped to different processors.

memory for shared access between CPU and GPU, or in CPU system memory for large data. Each
choice introduces a trade-off between memory access speed, memory usage, and transfer overhead.

The memory layout option determines the optimal memory arrangement for data structures. De-
pending on the memory access patterns and the underlying hardware, selecting between a Struct
of Arrays (SOA) or an Array of Structures (AOS) layout, along with constraints on array order-
ing (Fortran-order or C-order) and memory alignment, can significantly impact performance due to
cache efficiency and data locality. Such choice is task-dependent and processor-dependent.

Finally, mappers need to decide how to perform index mapping. As shown in Figure 2, index map-
ping controls how the data (or more accurately, parallel for loops of task launches) is partitioned
and mapped to the processors. The data (or tensors) can be multi-dimensional, and the distributed
machines can also be viewed as a processor space (nodes and processors within the node). In-
dex mapping controls the mapping between the two index spaces. Prior work Unger et al. (2022);
Zheng et al. (2022) shows that searching over how data is partitioned and mapped can significantly
change inter-processor communication volume, which affects performance. Commonly-used index
mapping functions are shown in Appendix A.5.

4 A NEW APPROACH: GENERATION AND OPTIMIZATION IN A DSL

4.1 DOMAIN-SPECIFIC LANGUAGE DESIGN

Figure 3a presents an example DSL mapper that illustrates the key features of our domain-specific
mapping language. By contrast, Figure 3b shows a (already simplified) code snippet extracted from
a C++ mapper. Notably, the C++ snippet covers only part of the functionality that the IndexMap
statement (which we discuss in detail below) in the DSL provides. While a typical C++ mapper
may require around 400 lines of code, the equivalent DSL mapper can achieve the same outcome in
under 30 lines — a tenfold reduction. This significant decrease in code complexity makes the DSL
more approachable as the code generation target for LLMs, as it abstracts away the low-level details.

Next, we will explain the DSL’s design, highlighting the immense search space it opens for opti-
mization, which makes generating high-performance mappers a challenging task.

The Task statement (Line: 2) performs processor selection for tasks. Although it may seem straight-
forward to always prefer GPUs, this decision is complicated by other factors such as limited GPU
memory and kernel execution time as explained in Section 3. This is a per-task decision.

The Region statement (Line: 5) performs memory placement for data. Possible choices include
GPU’s FrameBuffer or ZeroCopy memory, CPU’s System memory or RDMA memory. Such de-
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1 # Map task0 to GPU.
2 Task task0 GPU;
3
4 # Place certain data onto GPU ZeroCopy.
5 Region * ghost_region GPU ZCMEM
6
7 # Specify layout in memory
8 # (aligned to 64 bytes)
9 Layout * * * C_order SOA Align ==64

10
11 # Define a cyclic mapping strategy
12 def cyclic(Task task):
13 ip = task.ipoint;
14 mgpu = Machine(GPU);
15 node_idx = ip[0] % mgpu.size [0];
16 gpu_idx = ip[0] % mgpu.size [1];
17 return mgpu[node_idx , gpu_idx ];
18
19 IndexTaskMap task4 cyclic

(a) An example mapper in DSL

1 void slice_task(const Task& task ,
2 const SliceTaskInput &input ,
3 SliceTaskOutput &output) {
4 vector <Processor > targets =
5 this ->select_targets_for_task(ctx , task);
6 DomainT <2> space = input.domain;
7 Point <2> num_points =
8 space.bounds.hi - space.bounds.lo + ones;
9 Rect <2> blocks(zeroes , num_blocks - ones);

10 ...// **126 lines of C++ code ommitted **
11 for (PointInRectIterator <2> it(blocks); it() !=

NULL; it++) {
12 DomainT <2,coord_t > slice_space;
13 TaskSlice slice;
14 slice.domain = {slice_lo , slice_hi };
15 slice.proc = targets[index++ % targets.size()];
16 output.slices.push_back(slice);
17 }
18 }

(b) Simplified code snippet from a C++ mapper

Figure 3: A DSL mapper and a short code snippet from C++ mapper. The C++ mapper has already
been simplified, and the shown C++ snippet only contributes to part of the functionality achieved by
the IndexTaskMap statement on Line 19 in the DSL mapper.

cisions need to be made for each argument of each task, which opens up a huge trade-off space
between memory usage, task execution time, and data transfer costs as explained in Section 3.

The Layout statement (Line 9) defines memory layouts, supporting both SOA (Struct of Arrays) and
AOS (Array of Structures), as well as array ordering constraints like C_order, F_order, and memory
alignment. Optimizing memory layout is crucial for performance, as access patterns vary with tasks,
processors, and data structures. This is a per-task, per-data, per-processor decision.

The IndexMap statement (Line 19) enables the mapping of tasks to processors using custom func-
tions, such as cyclic or block mapping strategies. This creates a mapping between the index space
defined in application code (e.g., for loops) and the processor space of distributed machines. Many
parallel operators (e.g., matrix multiplications) are based on such loops, and deciding how to map
them to distributed machines is inherently difficult. The DSL enables users to express arbitrary
arithmetic mappings between two index spaces, significantly increasing the complexity of the search
space. Additionally, we introduce primitives that transform the processor space, allowing for more
flexible and precise index mapping decisions, as detailed in Appendix A.4.

We distill the key performance-critical aspects of mapping into language constructs that are easily
expressed in the DSL. To implement our DSL, we develop a compiler that can translate the map-
per written in DSL into low-level C++ mapping APIs. By providing a higher-level abstraction than
C++ APIs, the DSL simplifies interfacing with LLMs, allowing them to efficiently address the com-
plex optimization challenges of generating high-performance mappers. This optimization process,
including the role of LLMs in automating these decisions, is detailed in Section 4.2.

4.2 LEARNING TO GENERATE VIA INTERACTIVE FEEDBACK

We conceptualize the mapper generation problem as a search for valid DSL programs. Since ef-
fective mappers must account for both specific application inputs and the underlying hardware, this
task is well-suited to reinforcement learning (RL).

Our method combines the code-generation strengths of LLMs with an agent-based framework built
on Trace (Cheng et al., 2024). In this framework, LLMs act as optimizers, iteratively generating
mappers in the DSL and refining them based on real-time feedback. This feedback loop dramatically
reduces the time required to produce high-quality mappers, from days to minutes, making the RL-
driven agent particularly effective in this context-sensitive task.

Figure 4a illustrates the code templates used to construct the self-adapting agent with Trace. These
templates guide the LLM in generating syntactically correct DSL code, define the search space,
and provide heuristics for mapping decisions. Their design is critical to the quality of the gen-
erated code, ensuring the LLM starts with valid DSL syntax, a reasonable initial strategy, and an
understanding of the performance impact of each decision (detailed in the docstring). Functions
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1 class MapperGenerator(trace.Module):
2 def forward(self , app):
3 task_stmt = self.gen_task_stmt(app)
4 region_stmt = self.gen_region_stmt(app)
5 layout_stmt = self.gen_layout_stmt(app)
6 ...
7 return task_stmt + region_stmt + ...
8
9 @trace.bundle(trainable=True)

10 def gen_task_stmt(self , app) -> str:
11 """
12 Generate the policy for placing tasks.
13 Example generated code:
14 Task * GPU; Task task1 CPU;
15 """
16 code = ""
17 for task in app.tasks:
18 proc = random.choice (["GPU","CPU"])
19 code += f'Task {task} {proc };\n'
20 return code

(a) The decision procedures in generating a mapper.

1 policy = MapperGenerator ()
2 params = policy.parameters ()
3 optimizer = trace.Optimizer(params)
4
5 app = GetApplicationInfo ()
6 test = GetMapperEvaluator(app)
7
8 for i in range(iterations):
9 # Forward pass

10 try:
11 mapper = policy(app)
12 # feedback (str) contains performance
13 feedback = test(mapper)
14 except TraceExecutionError as e:
15 feedback = str(e)
16 target = e.exception_node
17 # Backward pass and update
18 optimizer.zero_feedback ()
19 optimizer.backward(target , feedback)
20 optimizer.step()

(b) Trainable policy using Trace operators.

Figure 4: We build a self-adapting agent with Trace. We need to provide the doc-string to explain
each mapping decision, and initial heuristics to indicate the optimization space and the DSL syntax
(Figure 4a). Then we use the Trace optimizer, which is similar to PyTorch (Figure 4b).

responsible for decision-making are annotated with trainable=True, allowing them to evolve iter-
atively as the LLM refines its strategy. All functions marked as trainable (along with the function
body and docstring) are included in the LLM prompt to support continuous improvement throughout
the optimization process. We show the full template in Section A.10.

In Figure 4b, we set up the agent using the optimizer from the Trace framework. We first retrieve the
application’s information and initialize the testing environment. During each iteration, the current
policy generates a mapper, which is then evaluated to provide feedback. The feedback can indicate
a failure in trace execution (if the trainable functions are not properly executed), an execution fail-
ure (e.g., running out of GPU memory), or performance metrics (if the mapper runs successfully).
Furthermore, we provide additional feedback that can further guide LLMs by 1) providing the error
explanation if there is an execution failure (i.e., a more informative failure message); and 2) provid-
ing suggestions on how to change the mapping decision when errors happen. We run an ablation
study in Section 5.4 in our experiments to demonstrate the effectiveness of the additional feedback.

5 EVALUATION

Experiments are conducted on a GPU cluster where each node has two Intel 10-core E5-2640 v4
CPUs, 256G main memory, and four NVIDIA Tesla P100 GPUs. Regarding the LLM, we use
gpt-4o-2024-08-06.

5.1 EFFECTIVENESS OF THE DSL

To evaluate the necessity and effectiveness of our DSL in mapper code generation, we compared
the generation of mappers in C++ versus DSL. We devised 10 mapping strategies, each described in
natural language, to serve as test cases for code generation.1 A complete list of these strategies is
provided in Appendix A.11. It is important to note that the objective is not to optimize the perfor-
mance of any specific application, but rather to assess whether the LLM can accurately generate a
C++/DSL mapper based on a given strategy.

We provided the same types of materials in the prompt to ensure a fair comparison. We provided
documentation2, example mapper programs, and starting code for both DSL and C++ interfaces. We
measured the success rate of generating mappers that can pass compilation and pass test cases.

1For example, one strategy is “aligning all data to 64 bytes in memory and utilizing Fortran ordering for
multi-dimensional data."

2We created documentation covering all features of DSL. We used existing documentation for C++ mapper.
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Code Generation Target Mapping Strategy Success Rate1 2 3 4 5 6 7 8 9 10
C++ (single trial) ✗ – – ✗ – – ✗ ✗ – – 0%

C++ (iterative refine) ✗ – – ✗ ✗ ✗ ✗ ✗ ✗ ✗ 0%
DSL (single trial) ✓ ✓ ✓ ✓ ✓ – ✓ ✓ ✓ – 80%

Table 1: Compilation and Strategy Test. We show the success rate for code generation given 10
mapping strategies. Generating DSL code significantly outperforms generating C++ (either without
or with compiler feedback). – fails to compile, ✗ compiles but fails the test, and ✓ passes the test.

For C++ code generation, we enhanced the process by incorporating compiler feedback. The LLM
received compiler error messages and iteratively refined the code, with up to 10 iterations allowed.
We use DSPy (Khattab et al., 2023) to build our interface.

Table 1 presents the performance of the LLM in code generation in three settings: C++ single trial
(without compiler feedback), C++ with compiler feedback, and DSL. We evaluate the LLM with
10 different mapping strategies. As observed, the DSL approach consistently outperforms the other
settings. These results confirm that the LLM is poor at generating system-level C++ code and
highlights the effectiveness and necessity of our DSL design in significantly enhancing the code
generation capabilities for mapping.

Failure Case Analysis The compilation errors in C++ mapper generation arise because LLMs
are unable to manage the framework-specific contextual dependencies inherent to low-level system
software programming. For instance, LLMs generate variable names or references that do not exist
within the provided codebase. The reason is that the documentation and example code are so long
and complex that LLMs fail to retrieve the related information and hallucinate the variable names.

In the cases where the code compiles but fails the test cases, the failures are exclusively in C++.
The root cause lies in the complexity of implementing a C++ mapper, which requires a deep un-
derstanding of the API documentation and reasoning about the code examples. As outlined in the
documentation, multiple APIs must work in concert to accomplish specific tasks, yet LLMs are
unable to grasp this level of coordination. For instance, to implement the index mapping feature,
LLMs need to override several different functions together (e.g., one function deciding the target
node index and the other deciding the target processor index, and some other functions to inform the
runtime that the heuristics has been changed), which is too challenging for LLMs. In contrast, this
has been simplified to just one simple function in the DSL (as shown in Figure 3).

While compiler feedback can guide LLMs in avoiding trivial errors (e.g., such as generating non-
existent variable names), it cannot bridge the gap in understanding the intricacies of low-level C++
mapping APIs. This limitation explains why all attempts at C++ code generation ultimately fail.

In contrast, only two test cases fail in the DSL context on the single trial, both due to compilation er-
rors stemming from incorrect syntax. This is understandable given that the DSL is a newly designed
language with limited training data available for the LLM. Thus, for performance optimization ex-
periments, we do not attempt to have LLMs optimize over C++ mappers, as results sufficiently
demonstrate that LLMs struggle to generate C++ code that meets the specifications of what a de-
sired mapper should do, let alone explore a large search space of different mapping strategies.

5.2 ACCELERATING SCIENTIFIC APPLICATIONS

In this experiment, we compared the performance of different mappers: expert-written mappers, ran-
domly generated mappers, and mappers generated by LLM agents. All mappers are implemented
using our DSL. Our goal is to determine whether LLMs can effectively explore the search space of
mappers by generating high-performance DSL mappers. We do not attempt to have LLMs search
over C++ mappers, as results from Section 5.1 sufficiently demonstrate that LLMs struggle to gen-
erate C++ code that meets a separate specification of what the desired mapper should do, let alone
explore the large search space of different mapping strategies.

The expert-written mappers were manually developed and optimized by domain experts as part of
the application development process. We re-implemented these expert-written C++ mappers using
our DSL to establish a ground truth for comparison with our approach. Validation confirmed that
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Figure 5: Normalized throughput for scientific applications comparing expert-written mappers, ran-
dom mappers, best mappers found by Trace-OptoPrime, and the average optimization trajectories of
Trace-OptoPrime, Trace-OPRO, and OpenTuner in 10 iterations across 5 runs.

the DSL-based mappers achieve performance equivalent to the original C++ mappers, providing a
fair basis for evaluating the performance of our generated mappers.

The randomly generated mappers, which makes random mapping decisions, serve as a baseline for
this experiment. We ran 10 random mappers and reported the average performance.

For LLM-generated mappers, we implemented the search using Trace (Cheng et al., 2024), which
employs LLMs as optimizers. We tested both the OptoPrime and OPRO (Yang et al.) search algo-
rithms, running 10 iterations for each application. Due to the stochastic nature of LLM outputs, we
repeated the optimization process 5 times and averaged the results. We also report the best mapper
found by Trace-OptoPrime across the 5 runs.

We use the following three scientific applications as our benchmarks. The circuit simulation bench-
mark (Bauer et al., 2012) models the behavior of an electrical circuit by simulating currents and
voltages across interconnected nodes and wires. The stencil computation benchmark (Van der Wi-
jngaart & Mattson, 2014) simulates a 2D grid where each point’s value is updated based on its
neighbors using a stencil pattern. The Pennant benchmark (Ferenbaugh, 2015) models unstructured
mesh, Lagrangian staggered-grid hydrodynamics, used for simulating compressible flow.

The performance-critical mapping decisions for these applications are the processor type selection,
memory placement of data, and the layout selection for data. Other choices available to mappers
do not change the performance of these applications much. The simplest application above (with
the smallest search space) is Stencil, which contains 2 tasks and 12 data collection arguments. Each
task and data argument has two choices of placement, together with additional 4 layout choices for
each data, forming an optimization space of 238.

Results We use normalized throughput as the performance metric in Figure 5, where higher val-
ues indicate better performance. The throughput is normalized w.r.t the expert-written mappers.
As shown in Figure 5, random mappers are consistently the least effective across all applications,
highlighting the importance of mapping decisions on application performance. When comparing
the optimization trajectories of Trace-OptoPrime and Trace-OPRO, Trace-OptoPrime performs sim-
ilarly to Trace-OPRO, and is slightly better than Trace-OPRO on Pennant. All the best mappers
found by Trace-OptoPrime can at least match the performance of expert mappers.

Interestingly, the best mapper identified in the Circuit benchmark outperforms the expert mapper by
34%. Upon manual investigation, we observed that the key difference lies in memory placement:
the best mapper allocates two data collections to the GPU FrameBuffer memory, whereas the expert
mapper places these collections in GPU ZeroCopy memory. This strategy reduces task execution
time, despite a slight increase in inter-GPU communication costs, ultimately leading to improved
overall performance. For the Pennant benchmark, while there is a minor difference in data collection
placement, the final performance results between the two mappers are nearly equivalent.

For each application, the search completes within 10 minutes, significantly reducing mapper devel-
opment time from days to minutes. This substantial improvement highlights the efficiency of our
LLM-enhanced DSL in quickly generating high-performance mappers, offering clear benefits for
both developers and application performance.
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Figure 6: Normalized throughput for matrix-multiplication algorithms. We compare expert-written
mappers, random mappers, best mappers found by Trace-OptoPrime, and the average optimization
trajectories of Trace-OptoPrime, Trace-OPRO, and OpenTuner in 10 iterations across 5 runs.

5.3 ACCELERATING MATRIX MULTIPLICATIONS

We follow the same experimental setup as described in Section 5.2, with the key difference being
the focus on matrix multiplication algorithms in this subsection. Unlike the applications in Sec-
tion 5.2, where processor selection and memory placement are the critical performance factors, the
performance-critical mapping decision here is index mapping, which is the choice of how to launch
concurrent tasks and distribute the tiles of matrices across multiple GPUs.

In the DSL mapper, achieving an effective index mapping requires specifying a function that maps
the iteration space (defined by the parallel for loop) to the processor space of the machine (please
see the IndexMap statement discussed in Section 4.1). Based on our estimates, each algorithm has
approximately 109 possible choices for index mapping. We show some of the mapping functions in
Appendix A.8

We target 6 different matrix multiplication algorithms: Cannon’s (Cannon, 1969), SUMMA (Van
De Geijn & Watts, 1997), PUMMA (Choi et al., 1994), Johnson’s (Agarwal et al., 1995),
Solomonik’s (Solomonik & Demmel, 2011), and COSMA (Kwasniewski et al., 2019). Each al-
gorithm exhibits different performance characteristics and may be the preferred implementation of
matrix multiply depending on the target machine, input size, and mapping decisions. Our goal is to
explore and identify better mappings for these algorithms. We categorize and elaborate further on
these algorithms in Appendix A.7.

Results As shown in Figure 6, the expert mappers’ compute throughput is normalized to 1.0,
reflecting the mapping decisions specified by the algorithms. Random mappers yield the lowest
throughput, underscoring the critical role of well-designed mappers. The best mappers found by
Trace-OptoPrime consistently outperform the expert mappers, achieving speedups ranging from 9%
to 31%. For both PUMMA and Solomonik’s, the throughput of the best mapper discovered by
Trace-OptoPrime is significantly higher than the average optimization trajectory across 5 runs. This
variability is due to the inherent randomness of LLMs in our experiments, where even subtle changes
in mappers can lead to notable performance differences. When comparing optimization trajectories
of Trace-OptoPrime and Trace-OPRO, Trace-OptoPrime shows significant performance gains in
SUMMA, PUMMA, Johnson’s, and COSMA, while achieving similar results on other benchmarks.

Finally, we inspected and compared the mapping decisions of the expert mappers with those of the
best mappers found through our search. The performance improvements are entirely attributable to
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more effective index mapping. Index mapping governs the partitioning and distribution of data, in
this case, matrices, across the GPUs. The optimized mapping reduces inter-GPU communication and
enhances data locality, leading to improved performance in parallel matrix multiplication algorithms.

5.4 ABLATION STUDY OF FEEDBACK

The quality of the feedback directly affects the success of the optimization process. We evaluate
three types of feedback to assess how different feedback influences the performance of LLM-based
optimizers during mapper search: (1) system feedback (compile error, execution error, or perfor-
mance metrics), (2) error explanations, and (3) suggestions for mapper adjustments.

The first feedback message includes only system feedback (labeled System in Figure 7). Next,
we evaluate an enhanced feedback message that includes both system feedback and error explana-
tions (labeled System+Explain). Finally, we provide the full feedback message, including all three
types (labeled System+Explain+Suggest), corresponding to the Trace-OptoPrime results shown in
Figure 5 and Figure 6. We evaluate three benchmarks, a subset of the total 9 applications.
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Figure 7: Comparison of three types of feedback design. 0-Shot and 5-Shot have no feedback.
System provides only the system execution information (performance numbers or error messages)
to the optimizer. Explain provides additional explanations of execution errors. Suggest provides
modification proposals to the mappers. All feedback is automatically generated.

As shown in Figure 7, across all three benchmarks, the full feedback message consistently achieves
the highest throughput after 10 iterations, followed by the one without guidance. The system-only
feedback performs the worst among the three. While the degree of impact from the feedback types
varies across benchmarks, the results clearly demonstrate the critical role of high-quality feedback
in guiding LLM optimizers to discover more efficient mappers.

6 CONCLUSION

In this paper, we addressed the challenges of automating mapper generation in task-based program-
ming through the use of LLMs and a Domain-Specific Language (DSL). By designing a high-level
DSL, we effectively simplified the complex task of generating low-level C++ mappers, enabling
LLMs to handle mapper generation without deep knowledge of system intricacies. Additionally, we
formulated the mapper generation task as a discrete optimization problem, leveraging reinforcement
learning (RL) techniques to explore a structured and constrained search space defined by the DSL.

Our experimental results demonstrate the efficacy of this approach, with LLM-generated mappers
achieving up to 34% speedup over expert-written mappers across 9 benchmarks. For matrix multi-
plication algorithms, we observed a performance boost of up to 31%. These findings show that our
LLM-enhanced DSL significantly reduces development time from days to minutes, benefiting both
human developers and the performance of parallel applications.
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A APPENDIX

A.1 LINES OF CODE COMPARISON BETWEEN DSL AND C++

Application 1 2 3 4 5 6 7 8 9 Avg.

LoC in C++ 347 306 379 447 437 430 428 433 448 406
LoC in DSL 16 14 16 38 38 38 33 38 32 29

LoC Reduction 22× 22× 24× 12× 12× 11× 13× 11× 14× 14×

Table A1: Lines of Code (LoC) of mapper written in DSL, and LoC reduction compared with C++

A.2 DSL GRAMMAR

We show the DSL grammar in Figure A1.

Program ::= Statement
+

Statement ::= IndexTaskMap TaskName var |
SingleTaskMap TaskName var |
FuncDef | TaskMapModifier
RegionMapping | DataLayout

Proc ::= CPU | GPU | . . .
Memory ::= SYSMEM | FBMEM | ZCMEM | . . .

TaskMapModifier ::= GarbageCollect TaskName RegionName |
Backpressure TaskName int | . . .

RegionMapping ::= Region TaskName RegionName Proc Memory
+

DataLayout ::= Layout TaskName RegionName Proc Constraint
+

Constraint ::= SOA | AOS | C_order | F_order | Align == int

FuncDef ::= def var(var+) : FuncStmt
+

FuncStmt ::= var = Expr | return Expr

Expr ::= var | var(Expr+) | Machine(Proc) | Expr.Expr |
Expr Op Expr | (Expr) | Expr[Expr] | ∗ Expr

Expr ? Expr : Expr

Figure A1: Grammar of DSL. A DSL program is a list of statements, each of which controls one
aspect of mapping.

A.3 IMPLEMENTATION OF THE TRANSLATION

Figure A2: Pipeline stages before task execution in Legion
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We outline how our implementation translates our DSL into Legion’s low-level C++ mapping in-
terface. The Legion runtime (and other modern tasking runtimes) employs a pipelined execution
model, where multiple tasks are going through different stages of analysis and execution concur-
rently. Each pipeline stage handles a different portion of a task’s analysis and execution, and some
pipeline stages may interact with the user’s mapper through the mapping interface. Since many
tasks progress through the pipeline simultaneously, callbacks are often interleaved with callbacks
for other tasks.

Legion is a distributed runtime—multiple ranks of the runtime run in different parts of the machine.
Each instance of the runtime exclusively manages some subset of the machine’s resources.

Figure A2 shows a simplified version of Legion’s task pipeline. We are not concerned with the
details of what the stages do; we focus on the parts relevant to the mapping callbacks. We focus
on the translation of IndexTaskMap and Region statements, as these illustrate all of the interesting
issues.

When the application launches an index task, the local rank first invokes the shard function of the
user’s mapper to choose the ranks where subsets of the index launch should be sent to complete the
rest of the mapping process. Some tasks may remain in the pipeline on the local rank, while other
tasks are sent to other ranks for mapping. Regardless of where the tasks are sent, the subsets of tasks
sent to each rank are themselves still represented as an index launch.

After the sharded index task launches arrive at the ranks where they will finish mapping, the call-
back slice_task is invoked. The slice_task function maps the tasks in the index launch onto
processors, typically (but not necessarily) the processors of the rank that the (subset of the) index
launch has been sharded to. We translate IndexTaskMap commands into the needed shard_task
and slice_task callbacks, ensuring the two are properly coordinated and any concurrency issues
are avoided. The key to this translation is that all of the machine transformations are invertible,
which makes it possible to take a processor selected in a transformed machine model and map it
back (possibly through multiple layers of machine transformations) to the corresponding processor
in the physical machine.

After slice_task finishes, tasks in the pipeline are all individual point tasks. The distribution stage
transfers any tasks that have been mapped to a processor owned by a different rank to their final
destination. Once on the rank with the task’s assigned processor, the mapper callback map_task
decides how to map the regions, i.e., in which memory a physical instance of the region will be
placed and with what layout. The compiler automatically generates the logic for map_task from the
region and layout statements.

A.4 PROCESSOR SPACE TRANSFORMATION FOR INDEX MAPPING

We define the semantics for each of DSL’s transformation primitives in Figure A3. A transformation
primitive is a function of the processor space m that returns a transformed processor space m′, where
m and m′ are related through the mapping shown in the right-hand side of Figure A3.

Our transformations are inspired by widely used operations for changing the dimensionality of arrays
in libraries such as NumPy, but the application to mapping is quite different. We now explain each
transformation in detail.

The split transformation takes two arguments: an integer i that indicates the dimension to be split,
and the splitting factor d. Suppose m is a processor space of size (8, 8), then after executing m′ =
m.split(0, 2), m′ will be a processor space of size (2, 4, 8). An important property of split and
all DSL transformations is that they are invertible. Thus, mappers can work with the transformed
space m′ but DSL can translate such uses back into the original processor space m to identify which
concrete processors to use. In this example, m′[j0, j1, j2] = m[j0 + j1 × 2, j2].

The merge transformation takes two dimensions of the original processor to be fused as its in-
put. Suppose m′ is a processor space of size (2, 4, 8). After applying m′′ = m′.merge(0, 1),
m′′ will be a processor space of size (8, 8). The processor indexed by m′′[j0, j1] corresponds to
m′[j0%2, j0/2, j1].

Transformations can be chained together. Suppose m is a 2D processor space, and we start with
m′ = m.split(0, d), followed by m′′ = m′.merge(0, 1). The final processor space m′′ is
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Transformation Semantics

m′ = m.split(i, d)

m′[a0, . . . , an+1] := m[b0, . . . , bn−1, bn]

bt =


at t < i

ai + ai+1 · d t = i

at+1 t > i

m′ = m.merge(p, q)

m′[a0, . . . , an−1] := m[b0, . . . , bn−1, bn]

p < q bt =


at t < p ∨ p < t < q

ap%m.size[p] t = p

ap/m.size[p] t = q

ap−1 t > q

m′ = m.swap(p, q)

m′[a0, . . . , an−1] := m[b0, . . . , bn−1]

bt =


aq t = p

ap t = q

at t ̸= p ∧ t ̸= q

m′ = m.slice(i, low, high)
m′[a0, . . . , an−1] := m[b0, . . . , bn−1]

0 ≤ low ≤ high < m.size[i] bt =

{
ai + low t = i

at t ̸= i

Figure A3: Semantics of processor space transformations expressed as mappings from the indices
of the transformed processor space to the indices of the original processor space.

a 2D processor space. Now we will derive the index transformation from m′′ to m by apply-
ing the transformation rules from merge transformation and split transformation: m′′[j0, j1] =
m′[j0%d, j0/d, j1] = m[(j0%d) + (j0/d) × d, j1]. The expression (j0%d) + (j0/d) × d can be
simplified to j0 because the division operator / between two integers rounds to zero. Therefore,
m′′[j0, j1] = m[j0, j1], showing that the split and merge transformation primitives are inverses of
each other.

The swap transformation primitive takes two parameters indicating the dimensions to be swapped
and returns a processor space where the two indices of the chosen dimensions are flipped. The
swap transformation is often combined with merge: The merge primitive linearizes two dimensions
into one, but there is a choice whether to use row-major or column-major iteration order in the
linearization. Users can change the iteration order for the merge by swapping the two dimensions.

The slice transformation primitive takes three parameters, the dimension to slice, and the lower
bound and upper bound of the dimension. The index mapping rule for the slice transformation is
to add a constant shift in the chosen dimension. The slice transformation primitive can be useful if
users want to map the iteration space to only part of the original processor space. If two iteration
spaces can be executed concurrently in the program, users can map one iteration space to half of the
processors and map the other iteration space to the other half of the processors. In this case, the slice
transformation allows users to map an iteration space to the selected portion of the processor space.
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A.5 COMMON INDEX MAPPING FUNCTIONS

Mapping FunctionTransformationProcessor 
Space

Iteration 
SpaceDistribution

def block2D(Tuple ipoint, Tuple ispace):
idx = ipoint * m.size / ispace
return m[*idx]

m  =  Machine(GPU)block2D

def block1D_x(Tuple ipoint, Tuple ispace):
idx = ipoint * m1.size / ispace
return m1[*idx]

m  =  Machine(GPU)
m1 =  m.merge(0, 1).split(0, 1)block1D_x

def block1D_y(Tuple ipoint, Tuple ispace):
idx = ipoint * m2.size / ispace
return m2[*idx]

m = Machine(GPU)
m2 =  m.merge(0, 1).split(0, 4)block1D_y

def cyclic2D(Tuple ipoint, Tuple ispace):
idx = ipoint % m.size
return m[*idx]

m  =  Machine(GPU)cyclic2D

def cyclic1D_x(Tuple ipoint, Tuple ispace):
idx = ipoint % m1.size
return m1[idx]

m  =  Machine(GPU)
m1 =  m.merge(0, 1).split(0, 1)cyclic1D_x

def cyclic1D_y(Tuple ipoint, Tuple ispace):
idx = ipoint % m2.size
return m2[idx]

m = Machine(GPU)
m2 =  m.merge(0, 1).split(0, 4)cyclic1D_y

def blockcyclic(Tuple ipoint, Tuple ispace):
idx = ipoint / m.size % m.size
return m[*idx]

m  =  Machine(GPU)block-cyclic

Figure A4: Common transformations and index mapping functions. The shaded subarea of the
iteration space will be mapped to the shaded processor in the processor space. The transformation
code can transform the original (2, 2) processor space into the desired processor space. The result
processor space will be used for mapping in the user-defined function.

A.6 EXAMPLES OF FEEDBACK CONFIGURATIONS

We give examples for the system feedback and enhanced feedback in Table A2. The enhanced
feedback includes explanations of errors and suggestions for mapper modifications.

A.7 PARALLEL MATRIX MULTIPLICATION ALGORITHMS

2D Algorithms Cannon’s (Cannon, 1969) introduced a systolic communication pattern with
tiled data partitioning for distributed matrix multiplication. PUMMA (Choi et al., 1994) and
SUMMA (Van De Geijn & Watts, 1997) extended this approach by supporting non-square ma-
trices and improving communication efficiency through pipelining. They are called 2D algorithms
because they partition the matrices into 2D tiles and then map them onto the processor space.

Non-2D Algorithms Johnson’s (Agarwal et al., 1995) introduced a 3D algorithm that partitions
the input matrices into 3D tiles and uses additional memory per processor to reduce communication
compared to 2D algorithms. Solomonik’s (Solomonik & Demmel, 2011) balances between 2D and
3D approaches by using extra memory to further minimize communication. COSMA (Kwasniewski
et al., 2019) takes a different approach by optimizing the processor grid and parallelization strategy
based on the input size and the machine size.

A.8 INDEX MAPPING FUNCTIONS USED BY MATRIX MULTIPLICATION ALGORITHMS

We show some index mapping functions used by matrix multiplication algorithms in Figure A5

A.9 EXPLANATION OF INDEX MAPPING FOR SOLOMONIK’S ALGORITHM

Figure A6 shows a mapper for the Solomonik’s algorithm on a 2-node machine with 4 GPUs per
node. The result distribution for the 3D iteration space is that each node will get half of the whole
iteration space by partitioning along the x-axis, and the 4 GPUs per node will perform a 2D block
distribution over the y-z plane.
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Mapper System Feedback Enhanced Feedback
Explain Suggest

mapper1
Compile Error: Syntax error,

unexpected :, expecting { N/A There should be no colon : in
function definition.

mapper2
Compile Error: IndexTaskMap’s

function undefined N/A Define the IndexTaskMap
function first before using it.

mapper3 Compile Error: mgpu not found N/A
Include mgpu =

Machine(GPU); in the
generated code.

mapper4
Execution Error: Assertion
failed: stride does not match

expected value.

Memory
layout is

unexpected.

Adjust the layout constraints or
move tasks to different

processor types.

mapper5
Execution Error: DGEMM

parameter number 8 had an illegal
value

Memory
layout is

unexpected.
Adjust the layout constraint.

mapper6
Execution Error: Slice processor

index out of bound

IndexTaskMap
statements
cause error.

Ensure that the first index of
mgpu ends with %

mgpu.size[0], and the second
element ends with %
mgpu.size[1].

mapper7
Execution Error: Assertion

‘event.exists()’ failed

InstanceLimit
statements
cause error.

Avoid generating InstanceLimit
statements.

mapper8
Performance Metric: Execution

time is 0.03s. N/A Move more tasks to GPU to
reduce execution time.

mapper9
Performance Metric: Achieved

throughput = 4877 GFLOPS N/A

Try using different
IndexTaskMap or

SingleTaskMap statements to
maximize throughput.

Table A2: System feedback and enhanced feedback (error explanations and adjustment suggestions)
for different mappers.
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def block_primitive(Tuple ipoint, Tuple ispace, Tuple pspace, int dim1, int dim2):

return ipoint[dim1] * pspace[dim2] / ispace[dim1]

def cyclic_primitive(Tuple ipoint, Tuple ispace, Tuple pspace, int dim1, int dim2):

return ipoint[dim1] % pspace[dim2]

m_2d = Machine(GPU)

def hierarchical_block3D(Tuple ipoint, Tuple ispace):

# split the 0th dimension into 3 dimensions

m_4d = m_2d.decompose(0, ispace);

# split the GPU dimension into 3 dimensions

# sub iteration space for each node: ispace / m_4d[:-1]

m_6d = m_4d.decompose(3, ispace / m_4d[:-1])

upper = tuple(block_primitive(ipoint, ispace, m_6d, i, i) for i in (0,1,2))

lower = tuple(cyclic_primitive(ipoint, ispace, m_6d, i, i + 3) for i in (0,1,2))

return m_6d[*upper, *lower]

def hierarchical_block2D(Tuple ipoint, Tuple ispace):

# Similar to hierarchical_block3D except for the dimension of iteration space

m_3d  = m_2d.decompose(0, ispace)

m_4d  = m_3d.decompose(2, ispace / m_3d[:-1])

upper = tuple(block_primitive(ipoint, ispace, m_4d, i, i) for i in (0, 1))

lower = tuple(cyclic_primitive(ipoint, ispace, m_4d, i, i + 2) for i in (0, 1))

return m_4d[*upper, *lower]

def linearize_cyclic(Tuple ipoint, Tuple ispace):

linearized = ipoint[0] + ispace[0] * ipoint[1] + ispace[0] * ispace[1] * ipoint[2]

# cyclic over node dimension and GPU dimension

node_idx = linearized % m_2d.size[0]

gpu_idx = (linearized / m_2d.size[0]) % m_2d.size[1]

return m_2d[node_idx, gpu_idx]

def special_linearize3D(Tuple ipoint, Tuple ispace):

# split the node dimension as equal as possible

m_5d = m_2d.decompose(0, (1, 1, 1))

gx = m_5d.size[2]

gy = m_5d.size[1]

linearized = ipoint[0] + ipoint[1] * gx + ipoint[2] * gx * gy

return m_2d[linearized % m_2d.size[0], 0]

def conditional_linearize3D(Tuple ipoint, Tuple ispace):

grid_size = ispace[0] > ispace[2] ? ispace[0] : ispace[2]

linearized = ipoint[0] + ipoint[1] * grid_size + ipoint[2] * grid_size * grid_size

return m_2d[linearized % m_2d.size[0], 0]

Helper functions,

Global variable

Cannon’s
PUMMA
SUMMA

Solomonik’s
(function 1)

Solomonik’s
(function 2)

COSMA

Johnson’s

Figure A5: Example mapping functions used by the mappers of matrix multiplication algorithms.

There is a dimension mismatch between the iteration space (3D) and the initial processor space (2D).
To conduct the desired mapping required by the algorithm, we first apply the split transformation
primitive four times (colored as red in the code). We apply the first (resp. last) two split transfor-
mations to make the node dimension (resp. GPU dimension) align with the 3D iteration space. We
visualize the result 6D processor space as two 3D spaces. The first 3D space (representing the node
dimension) is of size (2, 1, 1) and the second 3D space (representing the GPU dimension) is of size
(1, 2, 2).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

def block(Tuple ipoint, Tuple ispace, Tuple pspace, int dim1, int dim2):
return ipoint[dim1] * pspace[dim2] / ispace[dim1]

def block3d(Tuple ipoint, Tuple ispace):
# 2D Processor Space: (2, 4)
proc_2d  = Machine(GPU)
# 4D Processor Space: (2, 1, 1, 4)
proc_4d  = proc_2d.split(0, 2).split(1, 1)
# 6D Processor Space: (2, 1, 1, 1, 2, 2)
proc_6d  = proc_4d.split(3, 1).split(4, 2)

# Compute the 3D indices for the node dimension
node_idx = tuple(block(ipoint, ispace, proc_6d, i, i) for i in (0, 1, 2))
# Compute the 3D indices for the GPU dimension
gpu_idx = tuple(block(ipoint, ispace, proc_6d, i, i + 3) for i in (0, 1, 2))

# Return the processor in the 6D Processor Space
return proc_6d[*node_idx, *gpu_idx]

Processor Space Transformation

Node

GPU

0      1

3

2

1

0

Apply “split”
4 times

y

2 Nodes: 2	×	1	×	1

z

x
Two 3D spaces

y

4 GPUs: 1	×	2	×	2
x

Node 0

Node 1
G0

x

z

y

Node 0

Node 1

GPU0 GPU1

GPU2 GPU3

GPU0 GPU1

GPU2 GPU3

Iteration Space

x

z

y

Processor Space
GPU

0      1

3

2

1

0

Result

Mapping

Node

z

G1

G2 G3

Figure A6: Mapper of the Solomonik’s algorithm on a 2-node machine with 4 GPUs per node. The
2D processor space is transformed via the split transformation primitive into a 6D space (visualized
as two 3D spaces).

A.10 TRACE AGENT CODE

Trace (Cheng et al., 2024) uses Python decorators like @bundle to annotate Python programs. It
allows us to design an LLM code generation agent as if we were writing a Python program our-
selves. We first set up an end-to-end runnable Python program that can generate a valid mapper
program by randomly making decisions over the search space. We show the high-level structure
of our Trace Mapper below. At each optimization step, Trace will execute DSLMapperGenerator
and collect the corresponding execution flow to build up a graph. Then it will make a call to an
LLM to perform an update to any function that is decorated with @bundle(trainable=True). The
DSLMapperGenerator is structured in the same way as providing a search space specified by the
DSL, where an LLM optimizer can make decisions along the pre-designed axes. We note that this
type of design is only enabled by recent developments like Trace and is much more challenging to
do using older LLM-based frameworks.

1 import opto.trace as trace
2
3 @trace.model
4 class DSLMapperGenerator ():
5 @trace.bundle(trainable=True)
6 def task_decision(self , tasks):
7 ...
8
9 @trace.bundle(trainable=True)

10 def region_decision(self , regions):
11 ...
12
13 @trace.bundle(trainable=True)
14 def layout_decision(self):
15 ...
16
17 @trace.bundle(trainable=True)
18 def instance_limit_decision(self , tasks):
19 ...
20
21 @trace.bundle(trainable=True)
22 def index_task_map_decision(self , index_tasks):
23
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24 @trace.bundle(trainable=True)
25 def single_task_map_decision(self , single_tasks):
26 ...
27
28 def generate_mapper(self):
29 """
30 Generate the final mapper code by combining all code statements.
31 """
32 task_statements = self.task_decision(self.tasks)
33 region_statements = self.region_decision(self.regions)
34 layout_statements = self.layout_decision ()
35 instance_limit_statements = self.instance_limit_decision(self.tasks)
36 index_task_map_statements = self.index_task_map_decision(self.index_tasks ,

self.index_task_specification)
37 single_task_statements = self.single_task_map_decision(self.single_tasks)
38
39 code_statements = (
40 task_statements +
41 region_statements +
42 layout_statements +
43 instance_limit_statements +
44 index_task_map_statements +
45 single_task_statements
46 )
47 # Combine all code statements and function definitions into a single string
48 code_list = code_statements
49 mapper_code = str_join(node('\n'), *code_list)
50 return mapper_code

A.11 MAPPING STRATEGIES

Strategy 1: Map the tasks of calculate_new_currents, distribute_charge, update_voltages
onto GPUs in this way: linearize the 2D GPU processor space into 1D, then perform 1D block
mapping from launch domain to the linearized 1D processor space.

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2 Region * *GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
3 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
4
5 Layout * * * SOA C_order;
6
7 mcpu = Machine(CPU);
8 mgpu = Machine(GPU);
9

10 ========== Above is fixed ==========
11 def linearblock(Task task) {
12 return mgpu[task.ipoint [0] / mgpu.size[1], task.ipoint [0] % mgpu.size [1]];
13 }
14
15 IndexTaskMap calculate_new_currents ,distribute_charge ,update_voltages linearblock;

Strategy 2: Place ghost/shared regions (rp_shared and rp_ghost) onto GPU zero-copy memory

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
5
6 Layout * * * SOA C_order;
7
8 mcpu = Machine(CPU);
9 mgpu = Machine(GPU);

10
11 ========== Above is fixed ==========
12
13 Region * rp_shared GPU ZCMEM;
14 Region * rp_ghost GPU ZCMEM;

Strategy 3: Use Array Of Struct (AOS) data layout for all data instead of the default SOA

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
5
6 mcpu = Machine(CPU);
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7 mgpu = Machine(GPU);
8
9 ========== Above is fixed ==========

10
11 Layout * * * AOS;

Strategy 4: Use Fortran ordering of data layout for all data instead of the default C order

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 ========== Above is fixed ==========

10
11 Layout * * * F_order;

Strategy 5: Align all the regions to 64 bytes while using the Fortran ordering of data

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 ========== Above is fixed ==========

10
11 Layout * * * Align ==64 F_order;

Strategy 6 Place the task calculate_new_currents onto CPU

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
5
6 mcpu = Machine(CPU);
7
8 mgpu = Machine(GPU);
9

10 Layout * * * SOA C_order;
11
12 ========== Above is fixed ==========
13 Task calculate_new_currents CPU;

Strategy 7: Collect all the memory used by task calculate_new_currents

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 Layout * * * SOA C_order;

10
11 ========== Above is fixed ==========
12 CollectMemory calculate_new_currents *;

Strategy 8: Ensure that at most 4 tasks of calculate_new_currents can be run at the same time

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 Layout * * * SOA C_order;

10
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11 ========== Above is fixed ==========
12 InstanceLimit calculate_new_currents 4;

Strategy 9: Map the second region argument of task distribute_charge onto GPU’s Zero-Copy mem-
ory

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 Layout * * * SOA C_order;

10
11 ========== Above is fixed ==========
12 Region distribute_charge 1 GPU ZCMEM;

Strategy 10: Map the tasks of calculate_new_currents,distribute_charge,update_voltages onto
GPUs in a 1D cyclic manner: perform a cyclic distribution over both the node and processor di-
mensions.

1 Task * GPU ,CPU; # for any task , run on GPU if supported
2
3 Region * * GPU FBMEM; # for any task , any region , if mapped onto GPU , use FBMEM as default
4 Region * * CPU SYSMEM; # if mapped onto CPU , use SYSMEM as default
5
6 mcpu = Machine(CPU);
7 mgpu = Machine(GPU);
8
9 Layout * * * SOA C_order;

10
11 ========== Above is fixed ==========
12 def cyclic1d(Task task) {
13 ip = task.ipoint;
14 # cyclic over node , cyclic over gpu
15 return mgpu[ip[0] % mgpu.size[0], ip[0] / mgpu.size [0] % mgpu.size [1]];
16 }
17
18 IndexTaskMap calculate_new_currents ,distribute_charge ,update_voltages cyclic1d;
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