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ABSTRACT

Biological spiking neural networks (SNNs) can temporally encode information
in their outputs, e.g. in the rank order in which neurons fire, whereas artificial
neural networks (ANNs) conventionally do not. As a result, models of SNNs
for neuromorphic computing are regarded as potentially more rapid and efficient
than ANNs when dealing with temporal input. On the other hand, ANNs are
simpler to train, and usually achieve superior performance. Here we show that
temporal coding such as rank coding (RC) inspired by SNNs can also be applied
to conventional ANNs such as LSTMs, and leads to computational savings and
speedups. In our RC for ANNs, we apply backpropagation through time using the
standard real-valued activations, but only from a strategically early time step of
each sequential input example, decided by a threshold-crossing event. Learning
then incorporates naturally also when to produce an output, without other changes
to the model or the algorithm. Both the forward and the backward training pass
can be significantly shortened by skipping the remaining input sequence after that
first event. RC-training also significantly reduces time-to-insight during infer-
ence, with a minimal decrease in accuracy. The desired speed-accuracy trade-off
is tunable by varying the threshold or a regularization parameter that rewards out-
put entropy. We demonstrate these in two toy problems of sequence classifica-
tion, and in a temporally-encoded MNIST dataset where our RC model achieves
99.19% accuracy after the first input time-step, outperforming the state of the art
in temporal coding with SNNs, as well as in spoken-word classification of Google
Speech Commands, outperforming non-RC-trained early inference with LSTMs.

1 INTRODUCTION

Neuromorphic computing is the study and use of computational mechanisms of biological neural
networks in mathematical models, software simulations, and hardware emulations, both as a tool
for neuroscience, and as a possible path towards improved machine intelligence (Indiveri, 2021).
In fact, much of the recent progress in machine learning (ML) is attributed to artificial neural net-
works (ANNs), which share certain characteristics with biological neural networks. These biological
analogies of ANN models include a connectionist graph-like structure (Rosenblatt, 1958), parallel
computing over multiple synaptic weights and neurons (Indiveri & Horiuchi, 2011), and the non-
von Neumann collocation of memory and processing at each synapse and neuron (Sebastian et al.,
2020). On the other hand, state-of-the-art (SOTA) ANNs for ML often miss several other neuromor-
phic mechanisms that are fundamental in biological neural systems. A characteristic example is that
of “spikes”, i.e. the short stereotypical pulses that biological neurons emit to communicate (Maass,
1997; Ponulak & Kasinski, 2011). This is a principal neuromorphic feature, characterizing the
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brain and a category of bio-plausible models known as spiking neural networks (SNNs), but not the
most successful ANNs, suggesting unexploited potential and limited understanding of spike-based
approaches. Despite the stereotypical, unmodulated shape of spikes, spiking neurons can encode
continuous values, for example in their average firing rate (Brette, 2015), which is abstracted into
the continuous activation of conventional artificial neurons (Pfeiffer & Pfeil, 2018). Perhaps more
interestingly, spikes can also carry information in their specific timing, i.e. through temporal coding
that modulates when spikes are fired (Brette, 2015). Partly because individual spikes can encode in-
formation sparsely and rapidly, biological nervous systems and spiking neuromorphic systems can
be extremely energy-efficient and fast in the processing of their input stimuli (Qiao et al., 2015;
Davies et al., 2018; Zhou et al., 2021; Yin et al., 2021). This efficiency and speed are key motiva-
tions for much of the research on SNNs for potential applications in ML and inference. Moreover,
owing to neuronal and synaptic dynamics, SNNs are more powerful computational models than cer-
tain ANNs in theory (Maass, 1997; Moraitis et al., 2020). In practice, SNNs have recently surpassed
conventional ANNs in accuracy in particular ML tasks, by virtue of short-term synaptic plasticity
(Leng et al., 2018; Moraitis et al., 2020). Spike coding itself can also add computational power
to SNNs by increasing the dimensionality of neuronal responses (Izhikevich, 2006; Moraitis et al.,
2018). However, in practical ML terms, firstly, spike coding poses difficulties to precise modelling
and training that require ad hoc mitigation (Mostafa, 2017; Pauli et al., 2018; Pfeiffer & Pfeil, 2018;
Woźniak et al., 2020; Comşa et al., 2021; Zhang et al., 2021). Secondly, SNNs are particularly
difficult to analyse mathematically and rigorous ML-theoretic spiking models are scarce (Nessler
et al., 2013; Moraitis et al., 2020). Thirdly, they require unconventional neuronal models, which do
not fully benefit from the mature theoretical and practical toolbox of conventional ANNs (Bellec
et al., 2018; Woźniak et al., 2020; Comşa et al., 2021). As a result, the efficiency and speed ben-
efits of temporal coding for ML have been hard to demonstrate with SOTA accuracy in real-world
tasks. For instance, very recent literature on temporal coding with SNNs (Comşa et al., 2021; Zhang
et al., 2021; Zhou et al., 2021; Mirsadeghi et al., 2021; Göltz et al., 2021) uses rank coding (RC),
i.e. the temporal scheme where the first output neuron to spike encodes the network’s inferred label
(Thorpe & Gautrais, 1998), and it applies it to speed up inference on tasks such as hand-written
digit (MNIST) (Lecun et al., 1998) recognition. However, when applied (Zhou et al., 2021) to more
difficult datasets such as Imagenet (Deng et al., 2009), the accuracy is significantly lower than in
non-spiking versions of the same network (Szegedy et al., 2015). Moreover, in these demonstrations
there are no directly measured benefits compared to non-spiking ANNs.

Even though temporal coding is usually not described in terms comparable with non-spiking ANNs,
there are in fact ANN architectures with certain analogies to RC, when viewed from a particular an-
gle. Namely, in an SNN that receives a sequence example of several input steps, e.g. in a sequence-
classification task, one implication of RC is that the computation for each sequence example can be
halted after the first output neuron has spiked and produced an inferred label, even if several steps of
the input sequence still remain unseen. Therefore, this is an adaptive type of processing that dynam-
ically chooses the time and computation to be dedicated to each sequence. From this perspective,
RC is related to ANN techniques such as Self-Delimiting Neural Networks (Schmidhuber, 2012),
Adaptive Computation Time (Graves, 2016), and PonderNet (Banino et al., 2021), which are also
concerned with when computation should halt. However, these methods do not aim to adaptively
reduce the processed length of an input sequence as RC does, but rather to adaptively add time-
steps of processing to each step of the input sequence. A possibly more deeply related method is
that of adaptive early-exit inference (Laskaridis et al., 2021). In this case, the forward propagation
of an input throughout layers in a deep neural network at inference time is forwarded from an early
layer directly to a classifier head, skipping the layers that remain higher in the hierarchy, if that
early layer crosses a confidence threshold. In certain cases, early exit has been applied to sequence
classification with recurrent neural networks (RNNs), where the threshold-crossing dictates when in
the sequence of an input example the network should output its inference, saving indeed in terms
of time and computation (Dennis et al., 2018; Tan et al., 2021). This timing decision based on the
first cross of a threshold is similar to inference with RC. However, these early-exit models were not
specifically trained to learn a rank code. It is conceivable that this mismatch between training and
inference is suboptimal. In addition, this non-RC training of early-exit inference models does not
apply the computational savings and speed benefits also to the training process.

Taking together the limitations and benefits of SNNs and of other approaches, what is needed is a
strategy that introduces aspects of RC into conventional, non-spiking ANNs, including during train-
ing. This would potentially reap the speed and efficiency benefits of this neuromorphic scheme,
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without abandoning the real-world usability and performance of ANNs. In addition, these insights
into neural coding could feed back to neuroscience. Here we describe and demonstrate such a strat-
egy for temporal coding in deep learning and inference with ANNs. The general concept is simple.
Namely, even though ANN activations are continuous-valued and therefore neurons do not have to
rely on time to encode information as in SNNs, ANNs too could time their outputs and, importantly,
they could learn to do so. To achieve this in an RNN such as long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997), we back-propagate through time (BPTT) from a strategic and
early time step in each training example’s sequence. The time step is decided by the rank-one, i.e.
first, output neuron activation to cross a threshold. As a result of this Rank Coding (RC) during
training, the network learns not only to minimize the loss, but implicitly also to optimize its outputs’
timing, reducing time to insight as well as computational demands of training and inference. In
our experiments, we provide several demonstrations, with advantages compared to SNNs from the
literature as well as compared to conventional ANNs, including in MNIST classification and speech
recognition. Moreover, we show that our method could be applied to SNNs directly as well.

2 DEEP LEARNING OF RANK CODING

Algorithm 1 RC-training
Given: a training set of N example sequences Si = {xi0, ...,xiT } and corresponding labels yi; an
RNNR; and a threshold θ.

1: i = 0
2: while i < N do . iterate over training examples
3: i++; t = 0; Ti = duration of sequence Si

4: tsp,i ← Ti . latest possible first “spike”
5: while t < tsp,i do . iterate through input sequence steps until first spike
6: t++
7: activation ŷit = Rt(Si)
8: for all output neurons ŷj do
9: if ŷjit ≥ θ then . Inferred label=j

10: tsp,i ← t . rank-one spike time
11: ŷi = ŷit . activation at tsp is considered asR’s overall output from Si

12: BPTT(R, Loss(ŷit,yi)) . BPTT from tsp only
13: break . Done with this sequence

Algorithm 1 shows the RC-training process. The network decides the rank-one spike timing tsp of
its outputs based on its output-layer activations and a threshold θ (line 10). The loss function can
be a common on such as cross-entropy. There is no explicit parametrization on time, and only one
instantaneous output ŷit is used in the loss (line 12). Therefore, RC-training does not explicitly
optimize the timing tsp of the network’s outputs. Thus, it is not obvious that learning of the tim-
ing aspect can emerge. Nevertheless, timing is implicitly, albeit indeed optimized, as seen in what
follows. With random initialization, the activations are nearly uniformly distributed across output
neurons, and are smaller than the threshold, throughout the sequence. Without an earlier cross of
a threshold, the algorithm applies BPTT from the last step of the sequence (line 4: tsp = T ). As
training advances, minimizing the error between the outputs and the labels minimizes the entropy
of the output distribution, i.e. causes the activations at the end of each sequence example to be con-
centrated around one of the output neurons, such that the maximum activation ŷmax

tsp is maximized.
Through BPTT from that last time step, credit is assigned to earlier time steps as well. Progressively
through training, this causes outputs to cross the threshold earlier and earlier, under the condition
that relevant, credit-assigned input signal does exist earlier. This conditional acceleration causes the
optimization of output timing. This is also shown mathematically in Appendix A.

Importantly, the insight that it is through the minimization of entropy (Eq. 4) that timing is mini-
mized, gives us access to a mechanism for balancing between minimizing the loss and minimizing
the timing. Specifically, we introduce to the loss function a regularization term, weighted by a
hyperparameter β, such that minimization of the loss rewards entropy H of the outputs ŷtsp :

LRC(ŷtsp ,y) = L(ŷtsp ,y)− βH(ŷtsp). (1)
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RC-inference after RC-training is similar to Algorithm 1 but the backward pass (line 12) is not
applied. It should be noted that the inference stage on its own performed in this manner, where a
threshold decides the timing of the output, is a version of what has been called early exit or early
inference. In our implementation, the expectation is that the model learns to encode information in
the rank order of its output’s timing, because that timing is integrated into the learning process. In
this sense, at inference, the model does not merely exit early, but it does so through an underlying
learned rank code (RC). Our experimental demonstrations confirmed that the loss is minimized
through RC-training, although BPTT’s application time-step varies between training examples, and
that timing is also minimized down to an optimal floor, as the conditional arguments above (and Eq.
8 in the Appendix) predict.

3 EXPERIMENTAL DEMONSTRATIONS

3.1 CONTINUOUS SEQUENCE SPOTTING

The first task where we tested RC involves Poisson spike trains of a constant average firing rate of
0.5 spikes per time-step. Each Poisson input sequence consists of 25 binary time-steps (Fig. 1A).
The task is to conclude as soon as possible within each sequence whether the sequence includes a
period of at least five consecutive time-steps that are all spiking or all silent. That is the positive class
(Fig. 1A, blue), whereas the negative class includes at most four consecutive ones or zeros (Fig. 1A,
red). We trained an LSTM model on this task with cross-entropy loss and RC. When the positive-
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Figure 1: Continuous sequence spotting. A: Example spiking inputs. Black rectangles indicate
five spiking or silent continuous time-steps implying a positive example (blue, not red). B-D: RC-
trained inference. B: Labels. C: first output spikes (blue, red, and grey indicate positive, negative, or
no spike). D: Activations until first spike. E-G: Non-RC-trained model (backpropagation from the
end of each sequence). In F and G the model was allowed to continue operating after the first spike.

class-related output activation crossed a threshold, we considered this a positive-class output spike,
and vice versa for the negative class. That first spike’s label was used as the inferred label from the
model for each input sequence (Fig. 1B), as described by RC inference. In few cases, there was no
output spike produced (Fig. 1B, grey). These were specifically of the negative class, so they could be
considered as negative inferred labels. The RC-trained model achieved 100% accuracy, confirming
that training did work in terms of minimizing the explicit loss. In addition, the positive spikes
occurred in almost all cases at the earliest possible time-step relative to the five-step subsequences
(Fig. 1C, blue spikes & black rectangles), showing that RC-training did optimize the timing aspect
of the task as well. The timing effect is visible also in negative examples, where the absence of a five-
step-long continuous subsequence was recognized earlier than the last time step. The importance of
RC during training becomes clear if we compare to the result of training the same network without
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RC. That is, we trained it with BPTT from the last time-step of each training example. In this case,
we could perform inference conventionally, at the end of the sequence. However, attempting to
perform early, i.e. RC, inference in a manner similar to the RC-trained model is problematic in this
case. The first output spike is always negative (red) regardless of the true class, therefore the first
spike label cannot be used (Fig. 1F). Label prediction in this case can be improved by a scheme
where examples are considered negative unless a positive (blue) spike is output, whereas negative
(red) spikes are ignored. In terms of timing, the first positive spikes are in fact emitted soon relative
to the observation of a five-step subsequence, but still one step too late (Fig. 1F, bottom-most blue
spikes). Moreover, through this scheme, inference of negative labels cannot be performed before the
full 25 steps of an input sequence are all observed. Therefore, RC training is necessary for fastest
inference, for less computation, and for sparseness of output spikes. To gain deeper insight into
the RC-trained network, we also study its activations before the application of the threshold and
compare with the conventionally-trained model (Fig. 1D & G). Interestingly, the RC model flexibly
adapts its belief throughout each input sequence based on available evidence. In contrast, the non-
RC model begins early on in the 25 steps to believe inputs as negative examples, and does not show
signs of rapid adaptation to the changing input evidence. This by-default negative (red) belief, and
the slow switching of opinion cause comparatively low confidence when the 5-step sequences are
present (Fig. 1G, light blue). Furthermore, the sparsity that we observed in terms of output spikes of
the RC model is observable also at the pre-spike activations. Both positive and negative activations
remain low (light colours in Fig. 1F) until enough evidence appears. In summary, RC-training
solved both the classification and the timing aspects of this task, while it also introduced sparsity in
the network’s activity, and it reduced the computational steps in training and inference.

3.2 2-SEQUENCE PROBLEM
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Figure 2: (A) Input examples & (B) inference times of RC & non-RC LSTM throughout training.

The second task is inspired by the original “2-sequence problem” originally introduced in Bengio
et al. (1994) and adapted by Hochreiter & Schmidhuber (1997). The task is to classify input se-
quences into one of two classes. Each example of the positive class is a sequence of 40 independent
samples from a Gaussian distribution centred at +0.05, whereas the negative class is centred at -0.05
(Fig. 2A). Each sequence has a constant standard deviation sampled uniformly from the range (0.05,
0.25). These sequential inputs provide progressively more evidence on the underlying mean value,
which is difficult or impossible to infer correctly from a short sequence when the noise is high. Here
as well, we trained an LSTM model conventionally i.e. by back-propagating from the last time step
of each sequence, and compared to our RC-training approach. The RC-trained model, evaluated on
a test set at the time of its first spike, i.e. with RC-inference, achieved an accuracy of 95.45%. This
is lower than the 96.84% reached by the non-RC-trained model, when evaluated at the last, i.e. 40th,
time-step. However, the RC-trained model produced its RC-inference early, after 14 time-steps on
average. The accuracy of the non-RC-trained model, if evaluated at the 14th time-step, is much
lower (89%). Alternatively, we also tested the non-RC-trained model with RC-inference, and the
model achieved a higher accuracy of 96.32%. However, it was significantly slower than the RC-
trained model, with an average first spike after 23 time-steps. If we examine the distribution of the
first spike time as it changes throughout training, it can be seen that the RC-trained model becomes
significantly faster progressively (Fig. 2B, blue), which confirms experimentally our theoretical
result (Eq. 8) that RC-training optimizes timing. Conversely, when the non-RC-trained model is
evaluated with RC-inference throughout its training, it shows that conventional training has little
effect on the timing distribution. In this task, therefore, the RC-trained model achieves faster infer-
ence, by optimizing timing, albeit at the expense of accuracy. As we have introduced in the paper’s
theoretical section, it is theoretically possible to use a regularization that prevents over-optimization
of timing at any cost. We demonstrate this in the following more challenging tasks.
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3.3 SNN BENCHMARKS ON TEMPORAL MNIST
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Figure 3: Temporal MNIST with RC-convLSTM. 2 distinct regimes, i.e. an accurate & a fast one.

The MNIST dataset is a common image-recognition benchmark. It includes grey-scale images of
handwritten digits, where each pixel is an intensity value between 0 and 255. The task of classifying
such digits into 10 classes is considered rather simple by modern ML standards. However, more
complex versions have been designed to match and demonstrate the temporal capabilities of SNNs,
and contrast them to ANNs, by encoding the input temporally. In a common such version (Comşa
et al., 2021; Zhang et al., 2021; Zhou et al., 2021; Mirsadeghi et al., 2021), each input pixel’s
intensity is encoded by the timing of a single and binary spike in a time interval, where darker pixels
spike earlier. Some SNNs operate in continuous time, but here we use discrete time, and we encode
each MNIST frame over 10 time steps (Fig. 3A). Some of the recent SNN work has demonstrated
that temporally coded SNNs can perform the task earlier than the end of each input sequence (Comşa
et al., 2021; Zhang et al., 2021). Of particular background interest is a finding in Comşa et al. (2021).
Specifically, temporal coding has two possible regimes when performing this task. One regime is
relatively slow but more accurate. The other is a faster but less accurate regime, where on average
less than 15% of the input frame’s duration has passed before inference. As a result, in this task, for
each reported accuracy, the regime of speed must be specified, as is indeed in Comşa et al. (2021). A
different, very recent work reports results outperforming those of Comşa et al. (2021), but does not
mention the presence of two regimes. It does show histograms of inference time, where it appears
that the model is not in the fast regime, and it mentions a training time in the order of 100 epochs, at
which point Comşa et al. (2021) described that the network is at a high accuracy-low speed regime.
Here, we RC-trained an LSTM and a convolutional LSTM (ConvLSTM) (Xingjian et al., 2015).
Firstly, the RC models did learn to perform inference in a very fast regime, on average immediately
after the very first input time-step (Fig. 3B). Next, we confirmed that our theoretical method of
balancing the speed-accuracy trade-off, through an entropy-rewarding regularization term weighted
by β, is effective. By using a higher β during RC-training, the networks remained in a slower but
more accurate regime. By switching to a lower β value during training, the model switched to the
faster but slightly less accurate regime. Therefore, this validates the intended functionality of our
regularization term, and also confirms the presence of the two discrete regimes in this task (Fig.
3C). These were observed in every network that we trained, and Fig. 3 B & C shows these effects in
one of the models, namely a hidden layer of 20 ConvLSTM units, all-to-all connected to 10 output
neurons with a softmax. The speed-up is attributable to RC-training (see Appendix B.3). Our models
outperformed the SOTA SNNs in both the fast and the slow regime, except much larger and deeper
SNNs that slightly outperformed ours. Our models and their accuracies compared to the literature
are presented in Table 1. In addition, we could achieve high accuracy in the fast regime within
only 50 epochs (Fig. 3B), while the existing SOTA in the fast regime required several hundreds of
training epochs (Comşa et al., 2021)). For all results, we used Adam with a learning rate fixed at
0.001, and the threshold of 0.95. The only hyperparameter value that we searched systematically
was β. These results are noteworthy because they achieve and surpass some of the advantages of
SNNs by using a spike-based technique, but avoiding the main difficulties of SNNs. Moreover, RC
enables a novel reduction of the resource requirements. Specifically, it reduces the computation per
training example or batch, as RC only backpropagates from the first output spike. In contrast, even
in the temporal coding SNN literature, all output neurons spike before backpropagation is applied.
Notably, our new RC method is applicable to SNNs (Appendix E).
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Reference Accuracy Architecture Model

< 15% of frame Comşa et al. (2021) 97.4 784-340-10 α-PSP
(Fast regime) Comşa et al. (2021) <97.4 784-1000-10 α-PSP

RC-training (this work) 98.14 784-340-10 RC-LSTM
RC-training (this work) 98.90 784-10-10 RC-ConvLSTM
RC-training (this work) 99.19 784-20-10 RC-ConvLSTM

> 25% of frame Comşa et al. (2021) 97.96 784-340-10 α-PSP
(Slow regime) Zhang et al. (2021) 98.1 784-340-10 ReL-PSP

Zhang et al. (2021) 98.5 784-800-10 ReL-PSP
Zhang et al. (2021) 98.1 784-1000-10 ReL-PSP

RC-training (this work) 99.16 784-10-10 RC-ConvLSTM
RC-training (this work) 99.29 784-20-10 RC-ConvLSTM

Slow regime &
larger network Zhang et al. (2021) 99.4 784-16Conv-P2-

-32Conv-P2-800-128-10 ConvReL-PSP

Table 1: Comparison of our work to recent SNN literature on temporally-coded MNIST.

3.4 RAPID KEYWORD CLASSIFICATION - GOOGLE SPEECH COMMANDS

The last and most advanced task that we addressed is a form of speech recognition. Specifically,
we used the Google Speech Commands dataset v0.02 (Warden, 2018). This is a popular dataset
containing 105,829 utterances of 35 different spoken terms from 2,618 speakers, and each of these
recorded segments is at most 1-second long. 10 of the spoken terms (“Yes”, “No”, “Up”, “Down”,
“Left”, “Right”, “On”, “Off”, “Stop” and “Go”) are selected as keywords, whereas the remaining
25 terms are combined into an 11th, “unknown” class. We applied a preprocessing that is standard
for this type of task, generating log-mel filterbank energies to extract constituent frequencies of the
recording, and a moving window. This resulted in 20 frequency-features over a sequence of 81
frames. We used a network with 128 LSTM units before two fully connected layers of 32 and 11
neurons each, with a softmax at the output. The training, validation and testing split of the dataset
followed the convention provided in section 7 of Warden (2018). We trained the model with RC,
examining whether RC is effective in this task too, and then we compared to a baseline early infer-
ence after conventional training with BPTT from the end of each training sequence-example. First,

Non-RC-trained (baseline)

Non-RC-inference

RC-inference

RC-trained

Non-RC-trained (baseline)

Non-RC-inference

RC-inference

racy

Non-RC-training

D

A

C

B

Figure 4: Validation accuracies (top row) and spike times (bottom row) during RC- (left) and con-
ventional (right) training on Google Speech Commands, for varying regularization parameters. The
left panels (RC-training) include a non-RC-trained baseline.

throughout training for 1000 epochs we looked into the accuracy of the model on the validation set,
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evaluated using RC-inference with the same spiking threshold (0.95) as was used for RC-training
(Fig. 4A and C). In parallel, we recorded the mean time-to-inference on the validation set, as de-
fined by the first output spike time. In one case we used standard cross-entropy loss, i.e. with the
confidence-regularization term β set to zero. We observe that, in this case, spike time is significantly
reduced by RC-training, down to less than 500 ms on average, compared to the 1000 ms of the full
speech sequences (Fig. 4C lightest blue curve). In fact, training continues to minimize the spike
time. However, the validation accuracy (Fig. 4A, lightest blue) also decreases with training. This is
another expression of the effect that we observed in previous tasks, where continued minimization
of the timing trades off accuracy. To resolve that, we introduce a non-zero β regularization term,
which achieves its goal to balance timing minimization against loss minimization. Specifically, a
β ≤ 0.3 increases the RC-inference validation accuracy compared to β = 0. However, it keeps
the mean spike time delayed until the end of the sequence (Fig. 4A & C, darkest blue). An inter-
mediate value of β = 0.2 (medium-light blue curve) achieves a much better trade-off, where the
validation accuracy is almost identical to the one achieved by β = 0.4, but validation inference
speed is significantly higher, with a stably converged spike time of around 600 ms. As a first base-
line, we compare these validation accuracies and speeds to a model trained with backpropagation
from the last time-step of each sequence and without our regularization (i.e. β = 0). This non-RC-
trained model, validated using RC-inference, reached a maximum accuracy that was lower than the
accuracy of the best RC-trained models, and subsequently deteriorated fast (Fig. 4A, light green).
Importantly, even when evaluated, not on RC spiking early inference, but on conventional end-of-
sequence inference, its validation accuracy (Fig. 4A, red curve) is not significantly higher than the
RC-trained RC-inference – the curve is rather indistinguishable. This suggests that RC-training
optimizes accuracy comparatively well, despite also focusing on the timing. We will quantify this
comparison to non-RC training and make it conclusive on the test set, but first we will further anal-
yse the non-RC training process. As the best validation performance of the RC-trained models was
achieved by incorporating a non-zero confidence-regularization term β, we explored whether it is
this regularization, rather than the RC-training itself, that is responsible for the seeming timing ad-
vantage of the RC-trained model. Specifically, we trained with conventional backpropagation from
the end of each sequence using cross-entropy but now added regularization to the loss function by
β ∈ {0.2, 0.3, 0.4}, in addition to β = 0 as mentioned before. We performed threshold-based early
inference on the validation set throughout training, using the same confidence threshold (0.95) as
for the RC-trained models. Different thresholds were explored in the analysis we describe later. The
resulting accuracy and speed curves are shown in Fig. 4. It can be seen that values of increasing
β improves the convergence of the validation accuracy (Fig. 4B). However, to converge to a stable
level of accuracy, a β > 0.3 is required, which comes at a significant cost of speed. Therefore, β
regularization alone does not suffice to obtain the benefits of RC-training.

Ultimately, most interesting in such an application is the quality of the resulting trade-off between
speed and accuracy on the test dataset. In addition, the tunability of this trade-off is important. It is
indeed possible to tune this trade-off by varying the threshold of the trained model, thus obtaining
a varying accuracy as a function of inference time, i.e. spike time. This is an existing approach
in the literature (Sun et al., 2016; Dennis et al., 2018; Tan et al., 2021). By lowering the threshold,
faster inference is obtained for a cost of lower accuracy. As a result, for each trained model, the curve
representing the trade-off and its tunability is the curve of accuracy as a function of mean spike time.
This curve, for the case of the non-RC trained models, is shown in Fig. 5B. We used the network
weights that produced the best validation accuracy throughout training (i.e. the maxima in Fig.
4B). The models that were learned through different β values with conventional training had mostly
similar trade-off curves among them. To the contrary, in the case of RC-training, the trade-off curves
were different for different values of β. As a result, RC-training offers two methods for choosing the
desired trade-off. First, for a given trained model, the spiking threshold can be lowered for faster but
less accurate inference (Fig. 5A, each blue curve), as in the conventional non-RC-trained models.
However, the accuracy drop by lowering the threshold is significant, in both the RC- and the non-RC-
trained cases. RC-training offers a second method, with a smaller accuracy drop for faster inference.
By varying β while keeping the threshold at a fixed high value, significantly earlier inference is
obtained for a much smaller drop or even slight increase in accuracy (Fig. 5A, red curve), as a result
of RC-training. Therefore, through RC-training, we have an additional option for tuning the speed
of inference, and the model recognizes the spoken keywords with higher accuracy than the non-RC-
trained model, at any desired speed setting. It should be noted that the threshold-tuning can be used
simultaneously with the β tuning method, as the two are orthogonal to each other and combinable.
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Hence, more advanced threshold tuning mechanisms can be added after RC-training. For example,
it is possible to have a different threshold for each time-step through the input examples, and this set
of multiple thresholds at the inference stage can be optimized for a certain increase in accuracy (Tan
et al., 2021). Here instead we explored the direction of incorporating timing into the training process.
Future work could combine RC-training with the literature’s mechanisms that also optimize the RC-
inference stage. On θ during training, see Appendix C. In summary, RC-training was again effective
in optimizing the timing of inference, also in the time-critical application of keyword recognition
within speech recordings. It resulted in significantly improved speed-accuracy trade-offs, and, in
combination with an entropy-based regularizer, it improved the tunability of those trade-offs.
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Figure 5: Speed-accuracy trade-off curves of RC- & non-RC-trained models produced by varying
the RC threshold θ at inference, for various values of β. Red: The resulting composite best trade-off.

4 DISCUSSION

All in all, we provided a theoretical motivation and a practical implementation for a spike-inspired
technique that adaptively decreases computation and increases speed during both training and infer-
ence, while only trading off a small cost of accuracy, and offering flexibility in choosing the desired
speed-accuracy trade-off. On the one hand, our results strengthen the case for research in spike-
based networks, as they provide direct evidence for the benefits of spikes. This is supported by our
comparisons of RC- to non-RC-training. On the other hand, our results suggest that conventional
ANNs too can benefit by integrating specific isolated spike-inspired elements. For example, here
spikes were used only in the output, and only their triggering aspect was used, while the remaining
mechanisms were conventional RNNs and deep learning. This careful isolation of a specific neuro-
morphic feature allowed us to better understand and demonstrate several of RC’s advantages, despite
differences from Thorpe & Gautrais (1998). Other recent work also provided direct evidence for the
optimality of neuromorphic computing through focused application of very specific mechanisms
(Leng et al., 2018; Moraitis et al., 2020). In fact, the approach of identifying atomic neuromorphic
computational elements, isolating them from surrounding related complexities and embedding them
in otherwise conventional computational models, appears incremental but may be a more pragmatic
path towards fully neuromorphic computing. In addition to these broad implications, our results
also imply more focused impact, namely on SOTA benchmarks for SNNs, on SOTA algorithms for
fast inference, on the growing field of adaptive computation with RNNs, and on speech recognition.
Therefore, further exploration of RC-RNNs may benefit several different research directions.
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APPENDIX

A MATHEMATICAL DERIVATION OF RC-BASED TIME-OPTIMIZATION

In Section 2 we argued that RC (Algorithm 1) optimizes the timing of the network’s outputs. Below,
after the definitions and prerequisites 2-4, here we show this more concretely.

tsp := {ŷmax
tsp ≥ θ ∧ (ŷmax

t < θ, ∀t < tsp)} (t of first threshold-cross). (2)

j := class of the input. minLoss(ŷtsp ,y) =⇒ P (j|x0, ...,xtsp) = ŷj,tsp = ŷmax
tsp . (3)

Moreover,minLoss(ŷtsp ,y) =⇒ minEntropy(ŷtsp) =⇒ max ŷmax
tsp . (4)

[
RC-training

∣∣ given that signal that is partly responsible for label j is present in the input before tsp
]

=⇒
[
minLoss(ŷtsp ,y)

∣∣∣∣ ∂P (j|x0, ...,xtsp)

∂P (j|x0, ...,xtsp−1)
> 0

]
(5)

(4)
==⇒

[
max ŷmax

tsp

∣∣∣∣ ∂P (j|x0, ...,xtsp)

∂P (j|x0, ...,xtsp−1)
> 0

]
(6)

(3)
==⇒

[
max ŷmax

tsp

∣∣∣∣∣ ∂ŷmax
tsp

∂ŷmax
tsp−1

> 0

]
(7)

BPTT
====⇒ max ŷmax

tsp−1 =⇒ max
(
ŷmax
tsp−1 − θ

)
(2)
==⇒ min tsp. (8)

This shows indeed that, through optimizing cross entropy, RC also optimizes the timing down to the
minimum timing that satisfies the condition of credit assignment to a previous time step (Eq. 5).

B ADDITIONAL DETAILS ON EXPERIMENTS

B.1 CONTINUOUS SEQUENCE SPOTTING

This experiment allows us to compare RC training to traditional EOS training in a noise-free con-
trolled environment. This is the only experiment in which there is an unambiguous optimal spike
time step for each sequence. This allows us to isolate the effect of RC training when evaluation the
posterior probabilities and compare against a ground truth in terms of both classification and timing.

Throughout this experiment we use a standard LSTM architecture with a hidden state of size 125
and a projection to a single output neuron followed by a sigmoid activation. We apply binary cross-
entropy loss and Adam optimiser Kingma & Ba (2014) with a learning rate of 0.0003. In this
experiment we set β = 0 meaning we do not use a confidence penalty regularisation. Data is gen-
erated in batches of size 128 with 1,500,000 training examples in total. An independent validation
set of 2000 sequences is evaluated after every 50 training batches. We consider two distinct training
approaches: our proposed rank-coded training and EOS training where just the final model output
is used for prediction. The task is to produce a model that can robustly identify these continuous
sequences as they occur where we consider any output greater than 0.95 as being a positive spike
and any output less than 0.05 as being a negative spike.

B.2 2-SEQUENCE PROBLEM

This dataset introduces an imperfect relationship between sequence values and class labels and al-
lows us to consider the exact quantity of Gaussian noise added to a given sequence to be a proxy for
its level of difficulty. A desirable property of RC training would be to appropriately trade off speed
and accuracy by providing a balance of both fast and accurate predictions. Since each additional
element of the sequence provides additional evidence of the sequence class, the optimal choice to
maximise accuracy is to predict at the end of the sequence. Therefore this problem allows us to
compare RC training to traditional EOS training at trading off speed and accuracy.
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In this experiment we use the same LSTM architecture, optimiser and hyperparameters as in the
previous section. We consider the same two training methods: RC training and EOS training. We
train both models on 2,000,000 training examples in batches of size 128 and retain the model that
achieves the highest spiking accuracy on a validation set of size 2000 evaluated every 50 batches.

B.3 TEMPORAL MNIST

This problem is a standard benchmark for temporal coding schemes in the SNN literature. This
allows us to link our work to the existing body of research and compare performance. Previous
comparisons to ANNs in these works only considered non-recurrent neural networks which had
no temporal aspect to their inference. By introducing this task we can compare our proposed RC
training in ANNs to SOTA approaches from the SNN literature while also controlling for speed of
inference. This provides a comparison between these fields on a task originally designed to exploit
the temporal nature of SNNs.

We compare rank-coded training to SNN benchmarks by training a hidden layer 20 or 10 convo-
lutional LSTM units or 340 LSTM units, and a projection layer of 10 neurons representing the 10
MNIST classes. We also include the β-weighted confidence penalty regularisation term to our loss
calculation for the first time. For a fair comparison to the literature, we follow the experimental pro-
tocol taken in Comşa et al. (2021) and Zhang et al. (2021), as follows. Each model is trained on the
60,000 MNIST training examples and test accuracy is reported on the testing set of 10,000 examples.
Unlike the large hyperparameter search, e.g. in Comşa et al. (2021), we only required to search over
a single hyperparameter β over which we completed a random search in the range [0.15, 2] with the
LSTM model. We found β = 0.165 as performing best on LSTM, and we then used it, without
a separate search, also for training the convolutional LSTM. With this hyperparameter, we trained
each model twice, and we report the top accuracy on the test set.

time

A B

-

- -
-

Figure 6: RC vs non-RC training on temporal MNIST. A. The non-RC model does not minimize its
timing throughout training, even if tested with RC inference, and even if trained much longer. B.
Decreasing the RC-inference threshold speeds up inference, but for very early inference the non-RC
model’s accuracy drops significantly, whereas the RC model remains accurate despite very early
outputs.

RC is the cause of early inference in Temporal MNIST, not the data or the network alone. In
Section 3.3 we compared an RC-trained LSTM network to the current SOTA benchmarks in the
temporal coding literature, showing it achieves fast and accurate inference. A reasonable follow-up
question is whether the early inference in this case is not due to the learned RC, but rather only
due to particularities in the specific dataset or properties of LSTM that SNN models don’t have.
To evaluate this, we trained an LSTM network (784-340-10) with RC and compared to non-RC-
training. In the non-RC case, we calculated the loss and applied BPTT conventionally, from the end
of the sequence, on the 10th and final time step. In Fig. 6A, we present the mean first spike time
when both methods are evaluated throughout the training process using RC inference with a fixed
threshold of 0.95. The non-RC model does not minimize its timing throughout training, even if tested
with RC inference, and even if trained for a much longer time. The final model from each method
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was then evaluated on the test set for a range of threshold values as displayed in Fig. 6B. The first-
spike accuracy for the RC-trained model is evaluated at threshold values θ ∈ {0.85, 0.9, 0.95, 0.99},
while the non-RC model is evaluated at {0.25, 0.35, 0.45, 0.55, 0.75, 0.95}. We observe that because
the non-RC training objective is to maximize accuracy at the end of each input sequence, it is not
incentivised to provide reasonable outputs much earlier in the sequence, even though there is enough
exploitable information early. RC-training, on the other hand, is implicitly optimizing the timing of
its responses. This provides evidence that the strong performance in this task is largely a function of
the training mechanism rather than just a result of the dataset or of using an LSTM architecture.

B.4 RAPID KEYWORD CLASSIFICATION - GOOGLE SPEECH COMMANDS

This task is introduced to evaluate RC training on a popular sequential benchmark from the machine
learning literature. Classifying keywords in speech signals is, in principle, an excellent candidate for
RC training. In most examples throughout this dataset the correct class can be predicted before the
end of the sequence with any frames following the end of the keyword carrying no useful information
and thus resulting in wasted computation. This task provides the opportunity to evaluate if RC
training can still achieve SOTA accuracy among recurrent models on this task while significantly
decreasing inference time.

In this experiment we selected standard choices (Zhang et al., 2017) for all preprocessing parameters
using a hamming window function over a window of 25 ms with a stride of 10 ms and extracting 20
mel coefficients without applying padding. We also include an input context of 10 frames on either
side of the input frame as is common for RNNs on this dataset, see e.g. Sun et al. (2016). This entire
pipeline results in the full one-second sequences being 81 frames in length (after padding of the
small fraction of sequences not consuming the full second). Because some sequences in the dataset
are shorter, the average sequence length before padding is 78 frames. We also applied L2-norm
gradient-clipping with a maximum of 0.25. We applied early stopping to any model for which the
spiking accuracy fell below the proportion of the majority class (non-keyword class) in the data.
This only occurred for the non-RC-trained model with β = 0.

C (NON-)EFFECT OF THE THRESHOLD CHOICE θ DURING RC TRAINING

Throughout this work we considered the threshold θ during RC training to be a fixed hyperparameter.
In the training phase, the trade-off between resulting, i.e. inference, speed and accuracy is controlled
by varying β. We used a value of θ = 0.95 during training. Once the model is trained, thus far, we
have shown the possibility of also varying the threshold during inference as an additional mechanism
to further tweak this trade-off (Fig. 5).

As an alternative approach, we also considered tuning the threshold during the training phase. We
found it to have only a minimal effect on performance. As an example, in Fig. 7, we present
the results of varying the threshold during training on the 2-sequence problem (Section 3.2 and
Appendix 3). In this experiment, each model is trained as in Section 3.2, with a fixed threshold
throughout training. Each of the following candidate threshold values was used: {0.85, 0.9, 0.95,
0.99, 0.999}. Once trained, the model is tested on 100,000 random sequences using these thresholds,
and the resulting trade-off curves for the different RC-training thresholds are shown in Fig. 6. As can
be seen in the figure, the difference in performance between different training thresholds is minimal
as long as the threshold is reasonably high.

D HIDDEN TEMPORAL DYNAMICS

Our implementation of temporal coding considers only the first output spike, by applying a simple
threshold-based rule. However, the network manages to conform to this rule through more complex
operations that implement a more complex temporal code in the recurrently connected population
of neurons. Essentially, the simplicity is in the supervisory interface for training the network, but, to
map the input sequence to a well-timed and accurate summarizing spike, the network uses a more
involved, multidimensional, i.e. multi-neuron, temporal encoding in the neurons’ hidden state and
cell state. An example of such hidden temporal dynamics can be seen in Fig. 8 in the response of the
RC-trained LSTM network to an example recording from the Google Speech Commands dataset.
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RC-training-threshold value

Figure 7: Effect of the threshold used during the RC training-phase on the 2-sequence problem’s test
performance. Colours and dots on a curve represent training-phase- and testing-phase-θ respectively.
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Figure 8: Hidden temporal dynamics in the RC LSTM network in response to an example recording
of the utterance ”On”. The activity that would occur if operation were not stopped after the first
output spike is shown in grey-scale.

E RC TRAINING IN FULLY-SPIKING NETWORKS (SNNS)

Our aim in this paper was to explore the possibility of using the spike-inspired concept of rank
coding in non-spiking networks, and reaping benefits from both worlds. We hope that our spike-
inspired method could feed back to the field of SNNs in an adaptation of our scheme for fully spiking
networks. In this section we study the feasibility of this in preliminary experiments. A simple and
commonly used example of a spiking neuron is the Leaky Integrate and Fire (LIF) model. In discrete
time, the LIF can be seen as a recurrent ANN unit which can also be trained using an adaptation
of BPTT for the non-differentiable spiking activation functions. Here we implement a network
of LIF neurons trained with this adaptation of BPTT, and we combine it with our RC training on
the temporal MNIST task (Section 3.3). The specific implementation of LIF and adaptation of
BPTT that we chose to use with RC is the one from Wu et al. (2018) who also provide a code
implementation. It should be noted that in their work, the authors did not attempt to make the
model learn to perform fast inference, and they did not test it on temporal MNIST, but rather on the
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standard, static MNIST that was input as a constant rate code over a time window. The network
was then evaluated and trained over the whole length of each input and consequent output spike
sequence.

Here instead we apply our RC scheme by using only the first output spike to indicate the time when
the standard cross entropy loss should be calculated from the output layer’s membrane potentials
and the label. We then applied BPTT adapted to the LIF exactly as described by the authors. As in
Section 3.3, we trained both an RC model and a non-RC baseline which calculated the loss on the
final time-step.

A B

Figure 9: RC vs non-RC training of the SNN model introduced by Wu et al. (2018). A. The mean
time of the first observed spike during training. B. The accuracy when evaluated at those first spikes.

The architecture we used was convolutional. Specifically, we applied this to a two-layer architecture
both of 32 channels and 3× 3 kernels followed by a fully-connected layer of 128 neurons. Padding
of size one was applied after each convolutional layer. We selected the hyper-parameters of the
model by first training a spiking CNN model using the rate coding scheme described in Wu et al.
(2018) and matching the paper’s reported accuracy on MNIST. We then used these same choices
when training our two models from scratch. We used a threshold of 0.5, a decay factor of 0.2, a
derivative approximation factor of 0.5, batch size of 400 and learning rate of 0.001.

Figure 10: Speed-accuracy trade-off curves of the final SNN models when evaluated at a range of
threshold values.

The results of training are included in Figure 9 with the final models evaluated at a range of thresh-
olds in Figure 10. Since the model is designed to use a spike-coding scheme, it is not surprising
to observe that both models quickly learn to fire the first spike at the beginning of the sequence
(Figure 9 A). Interestingly, however, the same behaviour is observed as in the ANN case where the
RC-trained model provides much more accurate classifications in those early spikes (Figure 9 B).
We also consider varying the threshold on the final trained model where we observe that the low
RC-accuracy of the non-RC-trained model can be improved by increasing the threshold value and
encouraging a slower inference speed, as expected. On the other hand, in contrast to the ANN mod-
els, the RC-trained model here seems to decrease accuracy slightly when the threshold is increased
which may highlight some fundamental differences between these two neural network models.

All in all, our RC training appears applicable to fully spiking models too.
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