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Abstract

Recent studies have shown that paddings in con-
volutional neural networks encode absolute posi-
tion information which can negatively affect the
model performance for certain tasks. However,
existing metrics for quantifying the strength of
positional information remain unreliable and fre-
quently lead to erroneous results. To address this
issue, we propose novel metrics for measuring and
visualizing the encoded positional information.
We formally define the encoded information as
Position-information Pattern from Padding (PPP)
and conduct a series of experiments to study its
properties as well as its formation. The proposed
metrics measure the presence of positional infor-
mation more reliably than the existing metrics
based on PosENet and tests in F-Conv. We also
demonstrate that for any extant (and proposed)
padding schemes, PPP is primarily a learning ar-
tifact and is less dependent on the characteristics
of the underlying padding schemes.

1. Introduction
Padding, one of the most fundamental components in neu-
ral network architectures, has received much less attention
than other modules in the literature. In convolutional neural
networks (CNNs), zero padding is frequently used perhaps
due to its simplicity and low computational costs. This
design preference remains almost unchanged in the past
decade. Recent studies (Islam* et al., 2020; Islam et al.,
2021b; Kayhan & Gemert, 2020; Innamorati et al., 2020)
show that padding can implicitly provide a network model
with positional information. Such positional information
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can cause unwanted side-effects by interfering and affect-
ing other sources of position-sensitive cues (e.g., explicit
coordinate inputs (Lin et al., 2022; Alsallakh et al., 2021a;
Xu et al., 2021; Ntavelis et al., 2022; Choi et al., 2021),
embeddings (Ge et al., 2022), or boundary conditions of
the model (Innamorati et al., 2020; Alguacil et al., 2021;
Islam et al., 2021a)). Furthermore, padding may lead to sev-
eral unintended behaviors (Lin et al., 2022; Xu et al., 2021;
Ntavelis et al., 2022; Choi et al., 2021), degrade model per-
formance (Ge et al., 2022; Alguacil et al., 2021; Islam et al.,
2021a), or sometimes create blind spots (Alsallakh et al.,
2021a). Meanwhile, simply ignoring the padding pixels
(known as no-padding or valid-padding) leads to the foveal
effect (Alsallakh et al., 2021b; Luo et al., 2016) that causes
a model to become less attentive to the features on the im-
age border. These observations motivate us to thoroughly
analyze the phenomenon of positional encoding including
the effect of commonly used padding schemes.

Conducting such a study requires reliable metrics to de-
tect the presence of positional information introduced by
padding, and more importantly, quantify its strength consis-
tently. We observe that the existing methods for detecting
and quantifying the strength of positional information yield
inconsistent results. In Section 3, we revisit two closely
related evaluation methods, PosENet (Islam* et al., 2020)
and F-Conv (Kayhan & Gemert, 2020). Our extensive ex-
periments demonstrate that (a) metrics based on PosENet
are unreliable with an unacceptably high variance, and (b)
the Border Handling Variants (BHV) test in F-Conv suffers
from unaware confounding variables in its design, leading
to unreliable test results.

In addition, we observe all commonly-used padding
schemes actually encode consistent patterns underneath the
highly dynamic model features. However, such a pattern is
rather obscure, noisy, and visually imperceptible for most
paddings (except zeros-padding), which makes recognizing
and analyzing it difficult. Fortunately, we show that such
patterns can be consistently revealed with a sufficient num-
ber of samples by defining an optimal padding scheme (see
Section 2.1 and Figure 1). We accordingly propose a new

The source codes and data collection scripts will be made
publicly available: https://github.com/hubert0527/PPP.
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evaluation paradigm and develop a method to consistently
detect the presence of the Position-information Pattern from
Padding (PPP), which is a persistent pattern embedded in the
model features to retain positional information. We present
two metrics to measure the response of PPP from the signal-
to-noise perspective and demonstrate its robustness and low
deviation among different settings, each with multiple trials
of training.

To weaken the effect of PPP, in Section 2.4, we design a
padding scheme with built-in stochasticity, making it dif-
ficult for the model to consistently construct such biases.
However, our experiments show that the models can still
circumvent the stochasticity and end up consistently con-
structing PPPs. These results suggest that a model likely
constructs PPPs purposely to facilitate its training, rather
than falsely or accidentally learning some filters that respond
to padding features.

With reliable PPP metrics, we conduct a series of experi-
ments to analyze the characteristics of PPP in Section 4.1
and to understand its correlation to the degradations caused
by positional information in Section 4.3. Specifically, we an-
alyze the formation of PPP throughout each model training
process in Section 4.4. The results show PPPs are formed
expeditiously at the early stage of model training, slowly
but steadily strengthen through time, and eventually shaped
in clear and complete patterns. These results show that a
model intentionally develops and reinforces PPPs to facili-
tate its learning process. Moreover, we observe the PPPs of
all pretrained networks are significantly stronger than those
in their initial states. This indicates an unbiased training
procedure is of great importance in resolving the critical
failures caused by PPP in numerous vision tasks (Alsallakh
et al., 2021a; Xu et al., 2021; Ge et al., 2022; Alguacil et al.,
2021).

2. Observations and Methodology
In this section, we first define symbols for expressing the
functionality of paddings and define the optimal-padding
scheme. We then give a formal definition of Position-
information Pattern from Padding (PPP) and utilize the
optimal-padding scheme to develop propose a method to
capture PPP and measure its response with two metrics.

2.1. Optimal Padding

The process of capturing an image from the real world can
be simplified into two steps: (a) 3D information of the
environment is first projected onto an infinitely large 2D
plane, and then (b) the camera determines resolution as well
as field-of-view to form a digital image from such infinitely
large and continuous 2D signals (Liu et al., 2019; Ravi et al.,
2020). Let S∗ = {s∗n}Nn=1 be a collection of such infinitely

large and continuous 2D signals, and the collection of 2D
images captured by cameras at a spatial size (hn, wn) be
S′ = {s′n}Nn=1. Denote (♢) as the condition 0 < i < hn

and 0 < j < wn both satisfied, where i and j are indexes
of a pixel in the spatial dimension. A padding scheme can
be used to generate a set of algorithmically-padded images
Ŝ = {ŝn}Nn=1 by a padding function ρ:

ŝn[i, j] =

{
s′n[i, j] = s∗[i, j] if (♢) ,
ρ(s′n, i, j) otherwise.

(1)

We define a theoretical optimally-padded collection S† =
{s†n}Nn=1 with an optimal-padding function ρ† by:

s†n[i, j] =

{
s′n[i, j] = s∗[i, j] if (♢) ,
ρ†(s′n, i, j) = s∗[i, j] otherwise.

(2)

This equation clarifies the optimal padding should consider
the image collection procedure and seek the pixels presented
in s∗ back. In practice, without curated data, the optimal-
padding scheme described in Eq. 2 is difficult to achieve.
We describe how we relax this constraint in Section 2.3 and
achieve equivalent quatities.

2.2. Positional-information Pattern from Padding

Despite the previous literature discovering the existence of
positional information caused by the model paddings, there
is still no clear definition for such information, and lacks
effective metrics to detect or quantify it. Ideally, an effec-
tive metric for such positional information should have two
properties. First, it is a spatial pattern, it contributes dis-
tinctive information to different spatial locations. Its shape
enables the network to develop and exploit the absolute
positional information of each pixel, eventually leading to
the unattended and undesirable effects in certain tasks (Lin
et al., 2022; Alsallakh et al., 2021a; Xu et al., 2021; Ntavelis
et al., 2022; Choi et al., 2021; Ge et al., 2022; Alguacil et al.,
2021). Second, as it represents the positional information
purely contributed by the padding, it is a constant pattern
irrelevant to the image contents. We accordingly name it
the Positional-information Pattern from Padding (PPP).

Unfortunately, such a pattern shares space with image fea-
tures, where the image features typically have very diverse
appearances and high dimensionality. When these two sig-
nals interfere with each other, the appearance of PPP be-
comes extremely obscure and imperceptible in most cases
(except zeros padding). Figure 1 shows if we visualize fea-
tures sample-by-sample, there are no obvious differences
between optimally-padded features (gray-scale surface) and
algorithmically-padded features (colored surface). To ad-
dress the issue, we show that, by assuming the interferences
between PPP and image features to be random, its expec-
tation over a large set of images will saturate to a constant
bias and no longer hinder us from capturing PPP.
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Expectation of Channel-Averaged Image Features PPP

1 Sample 10 Samples 100 Samples 480 Samples 480 Samples
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Figure 1. Position-information Pattern from Padding (PPP). We propose a method that can consistently and effectively extract PPPs
through the distributional difference between optimally-padded (gray-scale surfaces) and algorithmically-padded features (colored
surfaces). These feature surfaces are collected at a user-specified layer, and flattened into a 2D array by averaging the batch- and channel
dimensions for visualization. Conceptually, a non-curated distribution (e.g., image content, the gray-scale distribution) will be averaged to
a smooth distribution with sufficient samples. In contrast, a distribution curated/embedded with positional information will retain a shifted
and static bias (i.e., positional information patterns) after averaging over a large set of samples. The results show that the two distributions
become distinguishable as the number of samples increases. On the right-hand side, following the procedure in Section 2.2, we extract a
clear view of PPP with the expectation of the pair-wise differences between optimally-padded and algorithmically-padded features. We
render each visualization in a tilted view (first row) and a top view (second row). The colors represent the magnitude (blue/cold/weak to
red/warm/strong) at each pixel. The features are extracted at the 3rd layer of interest (Appendix A) from a randn-padded (Section 2.4)
ResNet50 pretrained on ImageNet.

Based on these observations and assumptions, we define
PPP as the constant component independent of model inputs,
and its presence is completely contributed by the existence
of a padding scheme ρ. Given Ŝ and a model F (ŝ; θ, ρ),
which θ is the model parameters and ρ is a padding scheme
applied to F . Let the model feature extracted at k-th layer
be fn,k = Fk(ŝn; θ, ρ), where Fk is the model from the first
layer to the k-th layer. The PPP at k-th layer (PPPk) can
be formulated by:

PPPk = E
n

[
d
(
Fk(s

†
n; θ, ρ

†) , Fk(ŝn; θ, ρ)
) ]

, (3)

where d(·, ·) can be any distance function. We use ℓ1 dis-
tance in this work, and accordingly, name the metric PPP-
MAE.

Pitfalls: feature misalignment. It is important to note that,
some CNN components can cause serious feature misalign-
ment while computing PPP and leads to erroneous results.
A typical example is principal point shift, where the uneven
padding in stride-2 convolution causes the center of features
slightly drifted, as shown in Appendix Figure 7. Since the
measurement of PPP requires perfect alignment, such a drift
should be carefully considered while integrating PPP into

new architectures. We discuss the issue along with other
pitfalls in Appendix A and provide three detailed examples
of correcting the principal point shifting.

2.3. Simulated Optimal Padding

In practice, it is impossible to gain access to S∗ for calcu-
lating the optimal padding S† described in Eq. 2. But fortu-
nately, given our goal in Eq. 3 is to analyze the model fea-
tures within the (hn, wn) region, S∗ is an overshoot of the
data we actually required. Given a vision model F (ŝ; θ, ρ)
trained at a field-of-view (hn, wn) pixels, the receptive field
of such vision model is (hm, wm) pixels (we show the com-
putation in Appendix A), where hm ≫ hn and wm ≫ wn.
Let an alternative image collection S⊙ = {s⊙n }Nn=1 at
(hm, wm) pixels, the definition of receptive field implies
Fk(s

†
n; θ, ρ) equals to Fk(s

⊙
n ; θ, ρ

†) for all k.

In other words, in terms of computing Eq. 3, S⊙ is equiv-
alent to S∗ within the finite (hn, wn) region for a given
model architecture. Therefore, we can simulate the proce-
dure described in Eq. 1 and Eq. 2 using S⊙ instead of S†,
as long as ∀s⊙n ∈ S⊙ the spatial size of s⊙n is strictly larger
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than (hm, wm).

2.4. Randn Padding

Most of the existing padding schemes (e.g., zeros, reflect,
replicate, circular) exhibit certain consistent patterns that
can be easily detected by some designed convolutional ker-
nels. One may argue that the nature of easy detectability
can be a root cause of encouraging the models to learn to
rely on these obvious patterns. This motivates us to de-
sign an additional sampling-based padding scheme without
any consistent patterns, namely randn (i.e., random normal)
padding, which produces dynamical values from a normal
distribution while following the local statistics. We first
determine the maximal and minimal values of a sliding
window (which can be easily achieved with max-pooling),
use the average of them as a proxy mean µp, and use the
difference between the mean and the maximal value as a
proxy standard deviation σp. For each padding location, we
sample the padding value according to a normal distribution
N (µp, σ

2
p) from the nearest sliding window. We include

more implementation details in Appendix A.

Aside from creating a pattern-less padding scheme with sam-
pling, the design of randn padding is based on several factors.
The sampled padding pixels are allowed to occasionally ex-
ceed the min/max bound of the sliding window. Without
breaking the min/max bound can introduce detectable pat-
terns in certain extreme cases, such as a gradient-like feature
that has its maximal intensity at the top-left corner and min-
imal intensity at the bottom-right corner. We also design
the padding scheme to follow the local distribution. The
padding exhibits high entropy when the local variation is
high, while degenerates to value repetition with impercep-
tible perturbations while padding a flat area. As such, not
only do the padding pixels exhibit less pattern, but it also
prevents the padding pixels from breaking the features in
the border region. We later show that a model still deliber-
ately and incredibly built up PPP over time even with such
a sophisticated padding scheme.

3. Revisiting Prior Work
In this section, we first reproduce two experiments from
the prior art, which aim to assess positional information
from paddings. We show several critical design issues in
these experiments and discuss how these problems affect the
drawn conclusions. Finally, we propose two additional ex-
periments to quantify the amount of positional information
embedded in the paddings.

3.1. PosENet

Islam et al. show zeros-padding provides CNN models
positional information cues, and propose PosENet (Islam*

et al., 2020) to quantify the amount of positional informa-
tion encoded within CNN features. A PosENet experiment
involves several components: a pretrained CNN model F , a
shallow CNN Epem (i.e., position encoding module), an im-
age dataset X = {xi}Ni=1 to examine, and a constant target
pattern y (e.g., 2D Gaussian pattern). PosENet first extracts
intermediate features at k-th layer with f(i,k) = Fk(xi)
using the pretrained CNN, and then optimizes Epem to min-
imize Ei,k[||Epem(f(i,k)) − y||2] . Finally, the amount of
positional information is quantified by the average Spear-
man’s correlation (SPC) and Mean Absolute Error (MAE)
overall Epem(f(i,k)) toward y.

A critical issue with PosENet is the use of an optimization-
based metric. It is sensitive to hyperparameters with large
variation. As shown in Table 2, for all the PosENet results,
the standard deviation over five trials significantly domi-
nates the differences between different types of paddings,
and thus no definitive conclusions can be drawn. We also
observed that PosENet can report NaN results in certain
setups. Furthermore, PosENet quantifies the amount of
positional information by the faithfulness of the final recon-
struction. However, a better reconstruction does not have
a clear relationship to measuring the strength and signif-
icance of positional information. For instance, PosENet
sometimes shows responses to no-padding models, demon-
strating it is a metric with an indefinite bias pending on the
memorization ability of Epem. Moreover, optimizing for
pattern reconstruction is highly dependent on the underly-
ing data distribution, simply changing the evaluation data
distribution without changing the model weights can dras-
tically change the PosENet numerical magnitudes and the
conclusions of which model embeds the strongest positional
information.

Another issue is that the no-padding scheme used in the
Epem module in PosENet is known to have the foveal ef-
fect (Alsallakh et al., 2021b; Luo et al., 2016), where a
model pays less attention to the information on the edge
of inputs. Using such a padding scheme for detecting po-
sitional information from paddings, which is mostly con-
centrated on the edge of the feature maps, is less effective.
This is an inevitable dilemma as PosENet aims to identify
positional information from the padding of the pretrained
F , while applying any padding scheme to Epem introduces
intractable effects between the paddings of the two models.

3.2. F-Conv

Kayhan et al. propose a full-padding scheme (F-Conv) (Kay-
han & Gemert, 2020) and demonstrate it is more transla-
tional invariant than the alternatives. One of the critical
results is on “border handling variants” (Exp 2 of (Kayhan
& Gemert, 2020)), which we call it BHV test. The BHV
test creates a toy dataset, where each image has a black
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Table 1. Background color as a critical confounding variable
in BHV test. We show that using a grey background similar
to Figure 2 leads to discrepant results. All paddings are using
F-Conv (Kayhan & Gemert, 2020), which claims the similarity
and dissimilarity tests should result in a similar performance. We
additionally report an inconsistency rate as an even more sensi-
tive metric. We mark the numbers that oppose the conclusions
in (Kayhan & Gemert, 2020) with red. The standard deviations
are reported among 10 individual trials. We report the full table in
Appendix Table 5.

Bg Color Padding Similarity (%) Dissimilar (%) Inconsistency (%)

Black
Zeros 89.24±0.98 89.24±0.98 18.02±8.08

Circular 99.20±0.23 93.14±2.88 18.48±3.55

Reflect 100.00±0.00 11.70±15.38 97.33±6.16

Gray
Zeros 100.00±0.00 4.77±6.52 96.79±7.13

Circular 98.26±0.50 92.40±4.23 28.67±6.18

Reflect 100.00±0.00 17.16±12.19 98.13±3.44

Zeros Padding Zeros Padding

Figure 2. The BHV test trains a binary classifier to predict the
relative position of the two colored squares. It hypothesizes if the
padding provides no positional information, the classifier will only
focus on the relative position of the two squares. (Left) The black
background is a confounding variable. (Right) Zeros padding no-
longer pads optimum values after changing the background color.

background with a green square and a red square in the
foreground. The task is to predict if the red square is on the
left of the green square (class 1), or vice versa (class 2). In
addition, Kayhan et al. intentionally adds a location bias
such that both squares are located in the upper half of the
image for class 1, and located in the lower half of the image
for class 2. During testing, a “similar test” inherits the same
bias, while a “dissimilar test” exchanges the bias (i.e., both
squares are in the lower half of the image for class 1). As
a truly translation-invariant CNN model should not be af-
fected by the location bias, it should focus on the relation
between the red and green squares and perform similarly on
both tests. Since the experimental results show that F-Conv
performs best on the dissimilar test, it is concluded that
F-Conv is less sensitive to the location bias. The authors
also conclude the circular padding performs worse due to
the behavior of wrapping the pixels to the other side of the
image, which leads to confusion between two classes.

However, as shown in Figure 2, we find the experimental
design does not consider a crucial confounding variable:

the black background has a zero intensity, making zeros
padding the optimal padding that perfectly follows the back-
ground distribution. In Table 1, we show that the dissimilar
test is no longer in favor of F-Conv zeros after changing
the background color to grey. We also show that F-Conv
replicate and F-Conv circular perform best on the dissimilar
test, which is different from the original observation.

Finally, we report an additional inconsistency rate to show
that the CNN architecture used in the BHV test actually
has access to the absolute position of the squares. Given a
random sample in class 1, we create a trajectory of samples
by simultaneously moving the two squares to the bottom of
the canvas and recording the CNN-model prediction in all
intermediate states. We label a trajectory to be inconsistent
if the prediction of the CNN-model switches classes at any
step of the trajectory. A CNN model with no access to the
absolute-position information should have all trajectories
maintaining consistent predictions, with 0% inconsistency.
Table 1 shows the inconsistent ratio over 228 uniformly
sampled trajectories, where all models maintain high incon-
sistency rates, even with a no-padding architecture. These
results show that the CNN model used in the BHV test is
not translation invariant. This can be attributed to that a
CNN model has a large receptive field covering the whole
experiment canvas, therefore capable of gradually construct-
ing absolute coordinates for each input pixel. Note that we
only show the design of the BHV test is not suitable for
quantifying the amount of positional information exhibited
in a CNN model. Such a conclusion does not imply that
F-Conv cannot potentially improve the translation-invariant
property of CNNs.

4. Experiments and Analysis
Datasets Since most vision models are trained on tasks
for recognizing objects, an image collection containing a
diverse object appearance is more suitable for the task. As
mentioned in Section 2.3, evaluating PPP requires images
at a large field-of-view, in practice, we collect three image
datasets at 2,0482 pixels, which is larger than the receptive
field of all the models we tested. The three datasets at 2,0482

pixels are (a) 480 satellite images crawled from Google Map,
(b) 1,024 images synthesized by InfinityGAN (Lin et al.,
2022) trained with Flickr-Landscape dataset, and (c) 1,024
images synthesized by InfinityGAN trained with LSUN-
Tower (Yu et al., 2015) dataset. In addition, we also evaluate
PPP on three computer vision datasets: (d) ImageNet (Deng
et al., 2009) validation split, (e) MS-COCO (Lin et al., 2014),
(f) PASCAL-S (Li et al., 2014) used in PosENet. For (d)
and (e), we filter and only keep images with a resolution
larger than 5122 to avoid an unreasonable image resize
ratio, then all images in the (d-e) settings are resized to the
receptive field based on the tested model architecture. While
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evaluating PPP, we crop the input images depending on the
receptive field and principal point shifts from each model
(see Appendix A for details). We will release the script for
collecting and composing these large images.

4.1. Visualizing Position-information Pattern from
Padding (PPP)

We start with visualizing PPP in Figure 3. All the visualiza-
tions are conducted at the 3rd layer of interest as detailed in
Appendix A. We compute PPP using Eq. 3 and ℓ1 norm as
the distance metric, then average the resulting PPP in the
channel dimension to generate a gray-scale image. Since
the quantities are small and difficult to perceive, we normal-
ize the gray-scale image to [0, 1] range, and thus the colors
between images are not directly comparable.

In all scenarios, PPP noticeably spreads out after being
pretrained on ImageNet. In Table 4, the PPP-MAE of the
VGG19 and ResNet50 also reflects that the response of PPP
is significantly strengthened after model training. That is,
the model training has substantial effects on the construction
of PPP. Although the formation of padding pattern is sug-
gested to be mainly caused by the distributional difference
between features and paddings (Alsallakh et al., 2021a), our
results show that it only increases the response slightly, com-
pared to the considerable PPP-MAE gain through training.

Another intriguing observation is that, despite some varia-
tions in the detailed patterns, the overall structure of PPP
remains similar. Regardless of padding minimum values
with zero-padding (consider the features are processed with
ReLU activation), randn-padding that can sometimes pro-
duce large quantities by chance, or the unbalanced initial
state of ResNet50 caused by strided convolution (the first
row of ResNet50 in Figure 3), all models tend to have the
maximal PPP response in the corner of the features after
fully trained. While the underlying mechanism causing such
consistent preferences remains unknown, such preferences
may be an important factor to consider in future model
design.

4.2. Quantifying PPP and Comparing with PosENet

Table 2 shows the measurements of PPP and PosENet on
various architectures and padding schemes. We train five
models for each setup and measure the standard deviation of
these models. Our PPP-MAE has significantly lower stan-
dard deviations compared to PosENet, where the standard
deviation of PosENet dominates the differences between
padding variants, and thus the quantities from PosENet
cannot provide sufficient information for any analysis. Eval-
uating the true mean of PosENet requires an even larger
number of pretrained models, each requiring full training
on the target dataset (e.g., ImageNet), which is impractical
in reality. The main reason that PosENet has such a large

Table 2. Comparing PosENet and our PPP metric. Most of the
PosENet results are indistinguishable due to high variation.
We show a subset of results with VGG-19, the complete table is
reported in Appendix Table 6, 7 and 8. The standard deviation is
computed over five different pretrained models. We report MAE
metric for both PosENet and our PPP, use 2D Gaussian as PosENet
reconstruction pattern, and measure PPP-MAE at the 4th layer
of interest. (↑) indicates a higher value corresponds to stronger
positional information (vice versa for (↓)). For each group of
pretrained models, we label the strongest positional information re-
sponse with red, and the experiments within its standard deviation
range with blue. A good metric should have red entries concen-
trated under a single padding scheme and a few blue entries.
Padding Eval Dataset PosENet-MAE (↓) PPP-MAE (↑) Accuracy (%)

Zeros

GMap 0.196±0.006 0.0176±0.0005

74.0972±0.0870

InfGAN-flickr 0.183±0.007 0.0163±0.0006

InfGAN-tower 0.173±0.010 0.0179±0.0001
ImageNet-val 0.237±0.178 0.0164±0.0003

MS-COCO 0.200±0.173 0.0173±0.0002
PASCAL-S 0.081±0.145 0.0163±0.0002

Circular

GMap 0.197±0.007 0.0158±0.0006

74.4716±0.0863

InfGAN-flickr 0.185±0.009 0.0137±0.0004
InfGAN-tower 0.176±0.009 0.0184±0.0005
ImageNet-val 0.175±0.174 0.0161±0.0003
MS-COCO 0.148±0.165 0.0167±0.0003
PASCAL-S 0.083±0.164 0.0154±0.0003

Reflect

GMap 0.196±0.007 0.0158±0.0002

74.0516±0.0621

InfGAN-flickr 0.185±0.008 0.0146±0.0008
InfGAN-tower 0.177±0.009 0.0168±0.0005
ImageNet-val 0.183±0.193 0.0157±0.0004
MS-COCO 0.173±0.170 0.0165±0.0002
PASCAL-S 0.102±0.182 0.0153±0.0003

Replicate

GMap 0.197±0.006 0.0144±0.0009

73.9964±0.1079

InfGAN-flickr 0.184±0.007 0.0128±0.0012
InfGAN-tower 0.173±0.010 0.0156±0.0006
ImageNet-val 0.229±0.181 0.0143±0.0006
MS-COCO 0.209±0.169 0.0149±0.0006

PASCAL-S 0.110±0.176 0.0139±0.0004

Randn

GMap 0.195±0.006 0.0182±0.0012

73.7716±0.0758

InfGAN-flickr 0.185±0.007 0.0167±0.0008
InfGAN-tower 0.181±0.010 0.0186±0.0012
ImageNet-val 0.204±0.188 0.0173±0.0008
MS-COCO 0.153±0.180 0.0182±0.0008
PASCAL-S 0.099±0.201 0.0166±0.0008

NoPad

GMap 0.204±0.013 0.0000±0.0000

62.0396±0.0830

InfGAN-flickr 0.187±0.012 0.0000±0.0000
InfGAN-tower 0.172±0.014 0.0000±0.0000

ImageNet-val 0.048±0.241 0.0000±0.0000
MS-COCO 0.031±0.231 0.0000±0.0000
PASCAL-S 0.033±0.257 0.0000±0.0000

variation is due to its optimization-based formulation, and
thus the final quantities highly depend on the convergence
of the PosENet training. In fact, we also observe a simi-
lar level of standard deviation even when the PosENet is
measured on the same model for multiple trials. On the
other hand, PPP is based on a closed-form formulation, and
thus the variations are only introduced by the differences
among the parameters of the pretrained models. Further-
more, PosENet often reports positive SPC responses from
no-padding models, as shown in its large standard deviation.
In contrast, PPP has zero response to no-padding models
by definition, and therefore is less biased for measuring the
positional information from padding.

Although certain paddings seem to have slightly lower PPP-
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Pretrained VGG19 ResNet50

Zeros Circular Reflect Replicate Randn Zeros Circular Reflect Replicate Randn

×

ImageNet

Figure 3. Visualization of Position-Information Pattern from Padding (PPP). The visualizations are calculated based on Eq. 3 over
480 GMap samples extracted at the 3rd layer-of-interest (Appendix A). The results show that the pretrained model significantly reinforces
PPP compared to randomly initialized networks. Note that each image is normalized to [0, 1] separately, therefore the colors between
images are not comparable. More visualizations are presented in Appendix E.

MAE than other paddings, in Table 4, we find the differences
are not significant when comparing the extremely low PPP-
MAE from most of the randomly initialized networks. In
most cases, the network can effectively construct its PPP,
even with the highly stochastic randn padding. The only
exception seems to be the case of randn padding in the
salient object detection (SOD) task, where the network fails
to achieve a compatible performance with other paddings1.
The results show that the model training plays an important
role in the formation of PPP, and perhaps its contribution
is much larger than which underlying padding scheme is
being used. This motivates us to further analyze the PPP
formulation during model training.

4.3. Correlation with Generalization

Despite a sufficiently low standard deviation being a criti-
cal requirement for a usable metric, it is still unclear if our
proposed PPP metric can be used to measure the general-
ization issues caused by the positional information patterns.
Therefore, we design an additional experiment to verify
the correlation between the positional information metrics
(i.e., PPP and PosENet) and the generalization gaps.

Evaluating the degradation. However, for most computer
vision tasks, it is not straightforward to recognize which
degradation is purely caused by the positional information.
We found the semantic image synthesis problem is an ideal
testbed for such a problem, where the goal of the task is to
synthesize a realistic image based on a semantic segmen-
tation map as the conditional input. The task is an ideal
choice as its evaluation does not require labels, therefore
it is easier to obtain and evaluate on test data at different
field-of-views (not resolution). We use SPADE (Park et al.,

1We use the same setting as PosENet to evaluates PiCANet (Liu
et al., 2018) on the SOD task. PiCANet is initialized by a model
pretrained on ImageNet (with zero padding). The discrepancy
in the padding scheme can be the major cause of failure while
training the network on SOD task with randn padding.

Table 3. CropFID measures degradation due to positional in-
formation. We evaluate CropFID on SPADE models trained on
the Flickr Landscapes dataset at 2562 field-of-view, and tested at
various field-of-views. We report the degradation percentage in
parentheses, and mark the degraded cases in red.
Test
Size Zeros Circular Reflect Replicate Randn

2562 46.49 (0%) 48.85 (0%) 43.97 (0%) 45.64 (0%) 47.35 (0%)
3842 52.52 (+13%) 50.33 (+3%) 44.53 (+1%) 49.67 (+9%) 48.64 (+3%)
5122 67.30 (+45%) 51.47 (+5%) 45.97 (+5%) 54.17 (+19%) 49.98 (+6%)
10242 67.36 (+45%) 51.52 (+5%) 46.43 (+6%) 54.31 (+19%) 50.03 (+6%)

2019) in this case study.

Similar to image recognition tasks, semantic image synthe-
sis models also learn to exploit the positional information
pattern and synthesize contents based on the location of the
pixel. After the model is trained at a certain field-of-view
(e.g., 2562 pixels), it is adapted to the specific positional
information pattern at such a field-of-view. Consequently,
these models will suffer from performance degradation if
tested at different field-of-views (e.g., 10242 pixels, four
times field-of-view at the same resolution), due to the dis-
torted positional information patterns after changing the
field-of-view. We show a few samples of such degradation
in Appendix Figure 8.

Measuring degradation with CropFID. We measure such
degradation with CropFID, where we always center-crop
the synthesized image to a certain field-of-view (e.g., 2562

pixels, again) regardless of the current input condition field-
of-view, then measure the FID (Heusel et al., 2017) between
the cropped synthetic images with real images. Since the
CropFID only evaluates the center region of the image patch,
the additional field-of-view that appeared at testing will not
be evaluated. Therefore, the degradation of the network
performance is purely caused by the discrepancy of the
positional information in the center region of the image. By
separately measuring CropFID at different field-of-views,
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Figure 4. PPP has a stronger correlation to the degradation caused by positional information. In (a), we first show that a SPADE (Park
et al., 2019) model trained at 2562 pixels has degraded CropFID performance in all larger field-of-view settings in all types of paddings.
Then, in (b), we show PPP (x-axis) has a strong correlation to such a degradation (y-axis). Meanwhile, in (c), PosENet (Islam* et al.,
2020) (x-axis) has a weaker correlation to such degradation, along with a very high standard deviation.

Table 4. Significant PPP gain from model training. We measure
PPP-MAE on GMap with randomly initialized and fully trained
models. The results show a consistent and significant increment of
PPP is developed after the model is fully trained.

Model Pretrained Padding

Zeros Circular Reflect Replicate Randn

VGG-19 × 0.0132 0.0000 0.0000 0.0000 0.0000
ImageNet 0.0176 0.0158 0.0158 0.0144 0.0182

ResNet50 × 0.0052 0.0032 0.0018 0.0015 0.0020
ImageNet 0.0162 0.0188 0.0150 0.0150 0.0147

we can accurately measure the amount of degradation purely
caused by the change of positional information pattern.

Experiment setup. For the dataset, we use the Flickr-
landscape dataset from InfinityGAN (Lin et al., 2022),
where all images are at 10242 pixels. Following the pro-
cedure described in SPADE (Park et al., 2019), we use
UperNet101 (Zhou et al., 2017) to automatically label seg-
mentation maps for all images. We use 4,800 test images to
evaluate all the metrics (i.e., CropFID, PPP, and PosENet).
To ensure the visual representations learned by the network
do not have a large train-test domain gap, the image content
should maintain a similar resolution during both the training
and testing phases. Therefore, we center-crop (instead of
resize) images to 2562 for training, and evaluate CropFID
at 2562.

Observations. In Figure 4a and Table 3, we first show
the existence and the severeness of the degradation while
changing the field-of-view to different levels at testing. Not
only the degradation consistently appears in all types of
padding schemes, but the degradation can be up to 50% of
the original CropFID for certain padding schemes.

In Figure 4b and 4c, we show that PPP has a stronger cor-
relation to the degradation caused by changing the image
field-of-view. We also report the coefficient of determina-
tion (R2), where the R2 in all layers are typically larger than
0.8 for PPP, while lower than 0.4 for PosENet, showing PPP

has a stronger correlation to the degradation caused by the
positional information.

4.4. Chronological PPP

To understand the formulation of PPP through time, we snap-
shot checkpoints every 10 epochs for all training episodes.
By measuring the PPP-MAE at all the checkpoints, we plot
a chronological curve and monitor the progress of PPP. We
train 5 individual models for each pair of model-padding set-
ting and report the standard deviations, which demonstrates
the significance of the trend.

Figure 5 shows all models achieve a significant gain of PPP
within the first 10 epochs in all intermediate layers. Most
models continuously increase their PPP as training proceeds,
especially in the fourth layer of interest, which is the last
output from the convolutional layers before the final linear
projection. Another interesting observation is that our randn
padding, which is designed to be less easily detectable with
built-in stochasticity, indeed shows less PPP built-up at the
intermediate stages in certain layers. However, the network
still adjusts the behavior and ends up forming complete
PPPs at the fourth layer of interest in all scenarios. All
these shreds of evidence show that the network builds PPP
purposely as a favorable representation to assist its learning.

5. Conclusion and Limitations
In this paper, we develop a reliable method for measuring
PPP and conduct a series of analyses toward understanding
the formation and properties of PPP. Through a large-scale
study, we demonstrate that PPP is a representation that the
network favorably develops as a part of its learning process,
and its formation has weak connections to the underlying
padding algorithm. We show that reliable PPP metrics are
important steps for understanding the effects of PPPs in
different tasks, and useful for measuring the effectiveness
of future methods in debiasing PPP.

However, an unfortunate and inevitable limitation of the
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VGG19

ResNet50

Figure 5. Chronological PPP. We quantify PPP every 10 epochs and plot its development in four different layer of depth (the rightmost
layer is the one closest to model output). All curves consistently show a sudden surge at the early stage, and all the later layers are slowly
but steadily gaining stronger PPP until the end of training. The shadow region represents standard deviations among 5 individual training
episodes. The colors represent zeros, circular, reflect, replicate, and randn paddings.

PPP metrics is that their measure is biased by the model ar-
chitecture and parameters. Since the PPP metrics are based
on the distributional differences between the paired model
outputs (i.e., optimal padding to algorithmic padding), dif-
ferent architecture and layers of depth exhibit different and
intractable biases due to different interactions between PPP
and model parameters. Such a bias makes PPP metrics less
comparable while dissecting models with different archi-
tectures or parameter distributions (e.g., weight decay and
weight normalization), which is important for studying the
effect of architectural changes. However, this limitation is
inevitable for any (and all existing) metric that attempts to
measure PPP using the outputs of a model. We note future
studies in measuring PPP without model inferences will be
an important step toward tackling and understanding the
property of PPP under different architectural choices.
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Supplementary Material
A. Implementation Details
A.1. Architecture and Feature Alignments
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Figure 6. The architecture for VGG19 and ResNet50 used in the paper. We mark the calculation of optimal padding in orange arrows
and principal point in blue arrows. We label the layers of interest that are used in the paper. The red † indicates where a principal point
shift is identified.
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Figure 7. Principal point shift. (a) The stride-2 Conv2d only pads on one side, causing the principal point shift (red squares) in earlier
layers. (b) Such a shift requires careful margin correction while aligning algorithmically-padded and optimally-padded features (we
describe the details of point shift in Appendix A). (c) The shift is visible in the feature space (marked with red and yellow boxes). (d) It is
crucial to correct the principal point shift while measuring PPP. The PPP calculation involves pixel-wise distance functions, which are not
robust to spatial shifts (Zhang et al., 2018).

A.2. PPP Feature Misalignment

There are several pitfalls in visualizing and quantifying PPP. We identify two critical pitfalls from the architectures we
implemented. However, these may not be sufficient to cover all potential issues while integrated into other architectures.
Therefore one must be alerted to any unusual behavior (e.g., Figure 2(d) in the main paper) throughout their implementation.

Principal point shifting. Conv2d has a hidden behavior that few people are aware of, the operation is one-pixel skewed
while applying a stride-two Conv2d on even-shaped features. To understand how the one-pixel shift happens, we first define
the principal point of a feature map. We first define the principal point of the last feature map as the center pixel (note that
we define it as the middle-point between the center-two pixels in case the last feature size is even). Then, we recursively
define the principal point of the (N − 1)-th layer as the pixel that positions at the center of the Conv2d receptive field that
mainly forms the principal point of the N -th layer. In the case of optimally-padded features, the principal points in every
layer are the center of the feature map. But, as shown in Figure 2(a), the principal point of algorithmically-padded features
will have a one-pixel shift when a stride-2 convolution is applied to even-shaped features, which can be further amplified
as more layers stack up. Such a skew causes the principal points of algorithmically-padded features shift several pixels
away from the principal points of optimally-padded features. As PPP metrics use pixel-wise subtraction to distinguish the
image content from PPP, the misalignment becomes a critical issue, since the image contents are no longer aligned and
subtractable.

In Figure 6, we show the procedure of calculating the principal point in blue arrows and marking the values impacted by
principal point shift with red †. For the ResNet50 architecture, the principal point shift accumulates to 16(= 224/2− 96)
pixels in the early layers.

Fortunately, such a displacement can be fixed by adding corrections to how we calculate the feature margins. As shown in
Figure 2(b), the concept of the margin correction is to make the two principal points overlapping each other after adding the
margin. In the example, the left-right margins are corrected to (209, 180) (instead of the more intuitive choice of (195, 194)
or (194.5, 194.6)).

We also show how the principal point shift visually looking like in Figure 2(c), notice the patterns have right-bottom shifted
16 pixels. As shown in Figure 2(d), failing to identify the principal point shift will result in checkerboard artifacts while
calculating PPP, and adding correction eliminates the artifacts.

Maxpooling misalignment. This is a hypothetical condition that may potentially happen but has not been observed in the
three architectures we tested. Consider a case of a Maxpooling layer of window size 2 and stride 2, the sliding windows
of each pooling operation have no overlap, therefore the initial index of the first sliding window solely determines the
spatial location of all sliding windows. Accordingly, there is a chance that the initial condition of the optimally-padded
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features causes all of its sliding windows to be one-pixel misaligned to the algorithmically-padded features. Fortunately,
the condition can be easily determined by calculating the top and left margins of the feature alignment (similar to the
aforementioned principal point shift calculation). For the case of a Maxpooling layer of window size 2 and stride 2, the
misalignment will not happen if the top and left margins are even numbers, and that is exactly the case for VGG19 and
ResNet50, as shown in Figure 6.

A.3. Randn Padding
A critical implementation detail is that such a padding scheme must be applied before activation functions. Since the
paddings are based on the distribution within sliding windows, activation functions such as ReLU, which clamps all negative
values, can discard a significant amount of information beforehand. Instead of the traditional use of padding-convolution-
normalization-activation, we modify the order to convolution-normalization-padding-activation. Note that such a change of
order does not affect the behavior or results of other padding schemes.

B. The Full Experimental Results of Border Handling Variants (BHV) Test
Table 5. Background color as a critical confounding variable in BHV test. We show that using a grey background similar to Figure 2
leads to discrepant results. The standard deviations are reported among 10 individual trials. We mark the best performance in green, and
the worst two in red.

Padding F-Conv? Black Background Grey Background

Similar (%) Dissimilar (%) Diff (%) Inconsistency (%) Similar (%) Dissimilar (%) Diff (%) Inconsistency (%)

Zeros N 99.83±0.00 3.21± 8.35 −87.68 95.81± 2.07 100.00± 0.00 4.96± 5.93 −95.04 97.85± 4.55

Y 89.24±0.98 89.24± 0.98 0.00 18.02± 8.08 100.00± 0.00 4.77± 6.52 −95.23 96.79± 7.13

Circular N 80.31±3.23 80.31± 3.23 0.00 34.25± 8.32 72.75± 0.96 72.75± 0.96 0.00 26.30± 5.55

Y 99.20±0.23 93.14± 2.88 −6.06 18.48± 3.55 98.26± 0.50 92.40± 4.23 −5.87 28.67± 6.18

Reflect N 100.00±0.00 15.67±12.72 −84.33 91.18±13.19 100.00± 0.00 19.96±13.54 −80.04 90.33±11.95

Y 100.00±0.00 11.70±15.38 −88.30 97.33± 6.16 100.00± 0.00 17.16±12.19 −82.84 98.13± 3.44

Replicate N 100.00±0.00 43.39±11.42 −56.61 75.32± 8.20 100.00± 0.00 33.16± 6.42 −66.83 84.09± 6.47

Y 98.32±0.39 93.65± 1.36 −4.67 32.60± 4.97 97.17± 0.48 94.99± 1.20 −2.18 32.15± 5.11

Randn N 100.00±0.00 10.31±12.56 −89.70 94.88± 5.55 99.97± 0.13 35.47±10.82 −64.50 83.59± 8.48

Y 100.00±0.00 20.80±14.15 −79.20 92.54± 8.37 77.28±16.13 66.70±11.58 −10.59 45.70±20.62

No-pad - 100.00±0.00 3.21± 8.35 −96.79 95.81± 2.07 100.00± 0.00 30.07± 4.06 −69.93 81.30± 2.44

C. Examples of SPADE Degradation Due to The Change of Field-of-View

(a) Input semantic map condition (Full: 10242; red bounding box: 2562)

(b) Synthetic results using only 2562 bounding box region.

(c) Synthetic results using full 10242 input, then crop back to 2562

Figure 8. SPADE degradation due to change of field-of-view. The SPADE model was trained at 2562 pixels. The first row shows the
input semantic segmentation map at 10242 pixels (four times field-of-view at the same resolution). The second row shows the synthesized
results using 2562 center crop of the inputs. The third row shows the synthesized results using 10242 inputs, then center-crop back to
2562 after the model inference.
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D. The Full Table of Comparing PPP with PosENet

Table 6. Comparing PosENet and our PPP metric. Most of the PosENet results are indistinguishable due to high variation. The
standard deviation is computed over five different pretrained models. We report MAE metric for both PosENet and our PPP, use 2D
Gaussian as PosENet reconstruction pattern, and measure PPP-MAE at the 4th layer of interest. (↑) indicates a higher value corresponds
to stronger positional information (vice versa for (↓)). For each group of pretrained models, we label the strongest positional information
response with red, and the experiments within its standard deviation range with blue. A good metric should have red entries concentrated
under a single padding scheme and a few blue entries.

Model Padding Eval Dataset
PosENet

PPP-MAE(ours) (↑) Performance (%)
SPC (↑) MAE (↓)

VGG-19

Zeros

GMap 0.107±0.128 0.196±0.006 0.0176±0.0005

74.0972±0.0870

InfinityGAN-flickr 0.368±0.116 0.183±0.007 0.0163±0.0006

InfinityGAN-tower 0.492±0.106 0.173±0.010 0.0179±0.0001

ImageNet-val 0.237±0.178 0.190±0.009 0.0164±0.0003

MS-COCO 0.200±0.173 0.192±0.009 0.0173±0.0002

PASCAL-S 0.081±0.145 0.197±0.006 0.0163±0.0002

Circular

GMap 0.098±0.139 0.197±0.007 0.0158±0.0006

74.4716±0.0863

InfinityGAN-flickr 0.323±0.147 0.185±0.009 0.0137±0.0004

InfinityGAN-tower 0.460±0.102 0.176±0.009 0.0184±0.0005

ImageNet-val 0.175±0.174 0.193±0.008 0.0161±0.0003

MS-COCO 0.148±0.165 0.194±0.008 0.0167±0.0003

PASCAL-S 0.083±0.164 0.197±0.007 0.0154±0.0003

Reflect

GMap 0.109±0.139 0.196±0.007 0.0158±0.0002

74.0516±0.0621

InfinityGAN-flickr 0.343±0.132 0.185±0.008 0.0146±0.0008

InfinityGAN-tower 0.460±0.113 0.177±0.009 0.0168±0.0005

ImageNet-val 0.183±0.193 0.193±0.009 0.0157±0.0004

MS-COCO 0.173±0.170 0.193±0.0007 0.0165±0.0002

PASCAL-S 0.102±0.182 0.196±0.0008 0.0153±0.0003

Replicate

GMap 0.084±0.137 0.197±0.006 0.0144±0.0009

73.9964±0.1079

InfinityGAN-flickr 0.356±0.111 0.184±0.007 0.0128±0.0012

InfinityGAN-tower 0.498±0.111 0.173±0.010 0.0156±0.0006

ImageNet-val 0.229±0.181 0.191±0.009 0.0143±0.0006

MS-COCO 0.209±0.169 0.192±0.008 0.0149±0.0006

PASCAL-S 0.110±0.176 0.196±0.008 0.0139±0.0004

Randn

GMap 0.125±0.154 0.195±0.006 0.0182±0.0012

73.7716±0.0758

InfinityGAN-flickr 0.374±0.137 0.185±0.007 0.0167±0.0008

InfinityGAN-tower 0.421±0.161 0.181±0.010 0.0186±0.0012

ImageNet-val 0.204±0.188 0.192±0.008 0.0173±0.0008

MS-COCO 0.153±0.180 0.194±0.007 0.0182±0.0008

PASCAL-S 0.099±0.201 0.196±0.008 0.0166±0.0008

NoPad

GMap 0.001±0.239 0.204±0.013 0.0000±0.0000

62.0396±0.0830

InfinityGAN-flickr 0.303±0.192 0.187±0.012 0.0000±0.0000

InfinityGAN-tower 0.516±0.139 0.172±0.014 0.0000±0.0000

ImageNet-val 0.048±0.241 0.200±0.011 0.0000±0.0000

MS-COCO 0.031±0.231 0.200±0.010 0.0000±0.0000

PASCAL-S 0.033±0.257 0.202±0.013 0.0000±0.0000
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Table 7. Comparing PosENet and our PPP metric. Most of the PosENet results are indistinguishable due to high variation. The
standard deviation is computed over five different pretrained models. We report MAE metric for both PosENet and our PPP, use 2D
Gaussian as PosENet reconstruction pattern, and measure PPP-MAE at the 4th layer of interest. (↑) indicates a higher value corresponds
to stronger positional information (vice versa for (↓)). For each group of pretrained models, we label the strongest positional information
response with red, and the experiments within its standard deviation range with blue. A good metric should have red entries concentrated
under a single padding scheme and a few blue entries.

Model Padding Eval Dataset
PosENet

PPP-MAE(ours) (↑) Performance (%)
SPC (↑) MAE (↓)

ResNet50

Zeros

GMap 0.191±0.188 0.193±0.008 0.0162±0.0012

75.6856±0.0924

InfinityGAN-flickr 0.682±0.107 0.152±0.019 0.0137±0.0004

InfinityGAN-tower 0.721±0.077 0.144±0.017 0.0153±0.0013

ImageNet-val 0.553±0.194 0.170±0.016 0.0143±0.0005

MS-COCO 0.465±0.208 0.179±0.014 0.0146±0.0002

PASCAL-S 0.259±0.221 0.190±0.010 0.0148±0.0003

Circular

GMap 0.398±0.115 0.197±0.007 0.0188±0.0016

76.1432±0.1026

InfinityGAN-flickr 0.628±0.084 0.159±0.013 0.0178±0.0005

InfinityGAN-tower 0.585±0.105 0.165±0.014 0.0189±0.0012

ImageNet-val 0.397±0.233 0.182±0.014 0.0194±0.0003

MS-COCO 0.348±0.238 0.185±0.014 0.0203±0.0002

PASCAL-S 0.232±0.244 0.191±0.011 0.0199±0.0006

Reflect

GMap 0.197±0.185 0.192±0.008 0.0150±0.0004

75.5068±0.1213

InfinityGAN-flickr 0.594±0.096 0.169±0.012 0.0134±0.0009

InfinityGAN-tower 0.667±0.087 0.153±0.016 0.0157±0.0002

ImageNet-val 0.493±0.206 0.178±0.013 0.0137±0.0005

MS-COCO 0.401±0.230 0.182±0.015 0.0138±0.0005

PASCAL-S 0.250±0.223 0.190±0.010 0.0139±0.0004

Replicate

GMap 0.249±0.192 0.189±0.009 0.0138±0.0003

75.6122±0.0911

InfinityGAN-flickr 0.700±0.095 0.147±0.018 0.0114±0.0003

InfinityGAN-tower 0.726±0.069 0.142±0.016 0.0142±0.0007

ImageNet-val 0.536±0.194 0.172±0.015 0.0127±0.0008

MS-COCO 0.458±0.209 0.179±0.014 0.0129±0.0003

PASCAL-S 0.320±0.237 0.186±0.012 0.0128±0.0003

Randn

GMap 0.210±0.192 0.191±0.009 0.0147±0.0007

75.3076±0.1016

InfinityGAN-flickr 0.566±0.100 0.171±0.011 0.0122±0.0011

InfinityGAN-tower 0.714±0.068 0.142±0.015 0.0153±0.0004

ImageNet-val 0.416±0.207 0.182±0.013 0.0141±0.0004

MS-COCO 0.430±0.242 0.178±0.017 0.0142±0.0005

PASCAL-S 0.336±0.231 0.186±0.013 0.0139±0.0004
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Table 8. Comparing PosENet and our PPP metric. Most of the PosENet results are indistinguishable due to high variation. The
standard deviation is computed over five different pretrained models. We report MAE metric for both PosENet and our PPP, use 2D
Gaussian as PosENet reconstruction pattern, and measure PPP-MAE at the 4th layer of interest. (↑) indicates a higher value corresponds
to stronger positional information (vice versa for (↓)). For each group of pretrained models, we label the strongest positional information
response with red, and the experiments within its standard deviation range with blue. A good metric should have red entries concentrated
under a single padding scheme and a few blue entries.

Model Padding Eval Dataset
PosENet

PPP-MAE(ours) (↑) Performance (%)
SPC (↑) MAE (↓)

SOD
(PiCANet)

Zeros

GMap 0.156±0.212 0.201±0.017 0.0049±0.0001

62.69±0.0015

InfinityGAN-flickr 0.365±0.140 0.184±0.012 0.0036±0.0001

InfinityGAN-tower 0.449±0.120 0.179±0.013 0.0032±0.0001

ImageNet-val 0.288±0.259 0.189±0.018 0.0034±0.0001

MS-COCO 0.265±0.237 0.190±0.016 0.0033±0.0000

PASCAL-S 0.307±0.240 0.188±0.016 0.0031±0.0000

Circular

GMap 0.011±0.209 0.207±0.014 0.0062±0.0001

62.60±0.0009

InfinityGAN-flickr 0.329±0.133 0.187±0.012 0.0068±0.0001

InfinityGAN-tower 0.398±0.115 0.182±0.011 0.0050±0.0002

ImageNet-val 0.249±0.274 0.191±0.019 0.0050±0.0001

MS-COCO 0.208±0.244 0.194±0.016 0.0049±0.0000

PASCAL-S 0.249±0.248 0.192±0.017 0.0048±0.0000

Reflect

GMap 0.062±0.210 0.205±0.016 0.0053±0.0001

62.43±0.0022

InfinityGAN-flickr 0.322±0.133 0.188±0.013 0.0030±0.0001

InfinityGAN-tower 0.396±0.125 0.183±0.013 0.0039±0.0001

ImageNet-val 0.290±0.267 0.190±0.020 0.0040±0.0001

MS-COCO 0.239±0.250 0.193±0.017 0.0040±0.0000

PASCAL-S 0.305±0.242 0.190±0.019 0.0035±0.0000

Replicate

GMap 0.071±0.215 0.204±0.016 0.0043±0.0002

62.55±0.0013

InfinityGAN-flickr 0.335±0.139 0.186±0.012 0.0023±0.0001

InfinityGAN-tower 0.409±0.120 0.182±0.012 0.0032±0.0001

ImageNet-val 0.312±0.264 0.188±0.019 0.0032±0.0000

MS-COCO 0.260±0.246 0.191±0.016 0.0030±0.0001

PASCAL-S 0.340±0.237 0.187±0.019 0.0026±0.0000

Randn

GMap 0.002±0.244 0.202±0.009 0.0001±0.0000

25.70±0.0022

InfinityGAN-flickr 0.228±0.173 0.197±0.010 0.0001±0.0000

InfinityGAN-tower 0.212±0.148 0.200±0.011 0.0001±0.0000

ImageNet-val 0.108±0.397 0.203±0.021 0.001±0.0000

MS-COCO 0.176±0.321 0.200±0.018 0.001±0.0000

PASCAL-S 0.155±0.329 0.203±0.020 0.001±0.0000

NoPad

GMap 0.000±0.264 0.211±0.019 0.0000±0.0000

47.59±0.0013

InfinityGAN-flickr 0.454±0.194 0.178±0.021 0.0000±0.0000

InfinityGAN-tower 0.520±0.167 0.172±0.020 0.0000±0.0000

ImageNet-val 0.072±0.282 0.203±0.018 0.0000±0.0000

MS-COCO 0.065±0.277 0.203±0.017 0.0000±0.0000

PASCAL-S 0.086±0.283 0.206±0.020 0.0000±0.0000
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E. More PPP Visualizations

Layer of
Interest
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4
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Figure 9. Visualization of Position-Information Pattern from Padding (PPP). The visualizations are calculated based on Eq. 3 over
480 GMap samples. The results show that the pretrained model significantly reinforces PPP compared to randomly initialized networks.
Note that each image is normalized to [0, 1] separately, therefore the colors between images are not comparable.
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Layer of
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Figure 10. Visualization of Position-Information Pattern from Padding (PPP). The visualizations are calculated based on Eq. 3 over
480 GMap samples. The results show that the pretrained model significantly reinforces PPP compared to randomly initialized networks.
Note that each image is normalized to [0, 1] separately, therefore the colors between images are not comparable.
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Figure 11. Visualization of Position-Information Pattern from Padding (PPP). The visualizations are calculated based on Eq. 3 over
480 GMap samples. The results show that the pretrained model significantly reinforces PPP compared to randomly initialized networks.
Note that each image is normalized to [0, 1] separately, therefore the colors between images are not comparable.19


